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Abstract. This paper presents a novel algorithm to build hierarchies from inde-
pendent component analyzer mixtures and its application to image similarity 
measure. The hierarchy algorithm composes an agglomerative (bottom-up) 
clustering from the estimated parameters (basis vectors and bias terms) of the 
ICA mixture. Merging at different levels of the hierarchy is made using the 
Kullback-Leibler distance between clusters. The procedure is applied to merge 
similar patches on a natural image, to group different images of an object, and 
to create hierarchical levels of clustering from images of different objects. Re-
sults show suitable image hierarchies obtained by clustering from basis func-
tions to higher-level structures. 

1 Introduction 

Independent component analyzers (ICA) mixture models were introduced in [1] con-
sidering a source model switching between Laplacian and bimodal densities. Recently 
this model has been relaxed using generalised exponential sources [2], self-similar ar-
eas as a mixture of Gaussians sub-features [3], and sources with non-Gaussian struc-
tures recovered by a learning algorithm using Beta divergence [4]. Real applications 
of those works span: separation of eye-movement artefacts from EEG recordings, 
separating ‘back-ground’ brain tissue, fluids and tumours in fMRI images, and the 
separation of voices and background music in conversations. 

It is well known that local edge detectors can be extracted from natural scenes by 
standard ICA algorithms as Infomax  [5], or fastICA [6] or new approaches as Linear 
Multilayer ICA [7]. In addition there is neurophysiological evidence that suggest rela-
tion of primary visual cortex activities with the detection of edges, and some theoreti-
cal dynamic models of abstraction process from visual cortex to higher-level abstrac-
tion has been proposed [8]. 

The contribution of this paper is to provide a new algorithm to process the parame-
ters of ICA mixtures in order to obtain hierarchical structures from the basis function 
level (edges) to higher levels of clustering. Particularly the algorithm is applied to im-
age analysis obtaining promising results in discerning object similarity and suitable 
levels of hierarchies by processing image patches. This kind of feedforward process 
would suggest some relation with abstraction. The algorithm is agglomerative and 
uses the symmetric Kullback-Leibler distance [9] to select the grouping of the clusters 
at each level. 



2 Hierarchy of ICA Mixtures 

2.1 Estimation of the ICA mixture parameters 

In the ICA mixture model, the observation vectors x  are modelled as the result of ap-
plying a linear transformation kA  ( 1

k k
−=W A  is the filter matrix) to a vector ks  

(sources), whose elements are independent random variables, plus a bias vector kb , 
for all the classes , ( 1  number of ICAs)kC k K= … . The probability of every available 
observation vector can be separated into the contributions due to every class. 

An iterative learning algorithm based on maximum-likelihood estimation (MLE) is 
used to adapt the parameters of the ICA mixtures, i.e., the basis functions and the bias 
terms of each class, using gradient ascent [1]. To estimate the probability density 
function of the sources different priors could be used as Laplacian [1] or non-
parametric densities [10]. 

2.2 Agglomerative clustering 

From the estimated ICA mixture parameters, a procedure that follows a bottom-up 
agglomerative scheme for merging the mixtures was developed.   

The conditional probability density of x  for cluster , 1,2,..., 1h
kC k K h= − + in 

level 1,2,...,h K=  is ( / )h
kp Cx . At the first level, 1h = , it is modelled by K ICA mix-

tures, i.e., 1( / )kp Cx is: 

( )1 1( / ) detk k kp C p−=x A s , ( )kkk bxAs −= −1  (1) 

 
At each consecutive level, two clusters are merged according to some minimum 

distance measure until we reach at level h K= only one cluster.  
As distance measure we use the symmetric Kullback-Leibler distance between the 

ICA mixtures. It is defined for the clusters ,u v  by: 
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For level 1h = , from (2), we can obtain (we write 1( ) ( / )

u up p C=x x x and omit the 
superscript 1h =  for brevity):  
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where, imposing the independence hypothesis and supposing that both clusters 
have the same number of sources M for simplicity (assuming that sources follow the 
same model and the data they draw are on the same space): 
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The pdf of the sources is approximated by a non-parametric kernel-based density 

for both clusters: 
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where again for simplicity we have assumed the same kernel function for all the 

clusters, with the parameters ,a h and number of samples N  adapted to each cluster. 
Note that this corresponds to a Gaussian mixture model where the number of Gaus-
sians is maximum (one for every observation) and the weights are equal. Reducing to 
standard mixture of Gaussians does not help in order to compute the Kullback-Leibler 
distance because there is not analytical solution to it. Therefore, we prefer to maintain 
the non parametric approximation of the pdf in order to model more complex distribu-
tions than a mixture of a small finite number of Gaussians. 

The symmetric Kullback-Leibler distance between the clusters ,u v  can be ex-
pressed such as: 

KL ( ( ) // ( )) ( ) ( ) ( ) log ( ) ( ) log ( )
u v u v v uu vD p p H H p p d p p d= − − − −∫ ∫x x x x x xx x x x x x x x x x  (6) 

 
where ( )H x is the entropy, defined as [ ]( ) log ( )H E p= − xx x . To obtain the dis-

tance, we have to calculate the entropy for both clusters and the cross-entropy 
terms log ( ) , log ( )

v u u v
E p E p⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦x x x xx x . 

The entropy for the cluster u can be calculated through the entropy of the sources 
of that cluster considering the linear transformation of the random variables and their 
independence (4): 
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The entropy of the sources can not be analytically calculated. Instead, we can ob-

tain a sample estimate ˆ ( )
iuH s  using the training data. Denote the i-th source obtained 

for the cluster u  by { }(1), (2), , ( )
i i iu u u is s s Q… . The entropy can be approximated as 

follows:  
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The entropy of ( )vH x  is obtained analogously: 
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with ˆ ( )
ivH s defined analogously to (8). Following the same procedure for j-th 

source we can estimate ˆ ( )
jvH s . 

Once the entropy is computed, we have to obtain the cross-entropy terms. After 
some operations and considering the relationships ,u u u v v v= + = +x A s b x A s b  and 

thus ( )1
v v u u u v

−= + −s A A s b b , the independence of the sources, and that the samples 

for clusters ,u v  follow the corresponding distribution { }(1), (2), , ( )
i i iu u u is s s Q… , 

1,...,i M= , { }(1), (2), , ( )
j j jv v v js s s Q… , 1,...,j M= ; we can estimate, 

( )
2

1

1

1

( )1
2

1 1 1

1

1ˆ ( , ) ... log

u v v v u uii

M

i
v vM

s n

Q Q N h

v u M
s s n

i
i

H s ae
Q

−⎛ ⎞⎡ ⎤+ − −⎜ ⎟⎣ ⎦− ⎜ ⎟
⎜ ⎟
⎝ ⎠

= = =

=

= ⋅ ∑ ∑ ∑
∏

A A s b b

s  (10) 

and ˆ ( , )
ju vH ss defined analogously to (10), with ( )1

u u v v v u
−= + −s A A s b b . 

Using the terms obtained above, we can estimate the symmetric Kullback-Leibler 
distance between the clusters ,u v : 
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As we can observe, the similarity between clusters depends not only on the similar-

ity between the bias term, but the similarity between the distributions and the mixing 
matrices. 

Once the distances are obtained for all the clusters, the two clusters with minimum 
distance are merged in level 2h = . This is repeated in every step of the hierarchy un-
til we reach one cluster in the level h K= . To merge cluster in level h we can calcu-
late the distances from the distances of level 1h − . Suppose that from level 1h − to 
h the clusters 1 1,h h

u vC C− − are merged in cluster h
wC . Then, the density for the merged 

cluster at level h is: 
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where 1 1
1 1( ), ( )h h

h u h vp C p C− −
− − are the priors or proportions of the clusters ,u v at 

level 1h − . The rest of terms are the same in the mixture model at level h that at level 
1h − . The only difference from one level to the next one in the hierarchy is that there 

is one cluster less and the prior for the new cluster is the sum of the priors of its com-
ponents and the density the weighted average of the densities that are merged to form 
it. Therefore, the estimation of the distance at level h can be done easily starting from 
the distances at level 1h − and so on until level 1h = . Consequently, we can calculate 
the distances at level h  from a cluster h

zC to a merged cluster h
wC  obtained by the ag-

glomeration of clusters 1 1,h h
u vC C− − at level 1h − as the distance to its components 

weighted by the mixing proportions: 
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3 Application on image data 

ICA can be used to analyze image patches as a linear superposition of basis functions. 
Those vectors have been related with the detection of borders in natural images [5]. 
Therefore basis functions have a physical relation with objects and they can be used 
to measure the similarity between objects based on ICA decomposition. In image 
patches decomposition, the set of independent components is larger than what can be 
estimated at one time, and what we get at one time is an arbitrarily chosen subset [11]. 
Nevertheless ICA has been applied successfully in several image applications [1]. 

3.1 Object similarity 

For the hierarchical classification of images of objects, the COIL-100 database was 
used [12]. The database consists of different views of objects over a dark background. 
The method applied to preprocess the images was this. The images were converted to 
greyscale, and grouped in different views in order to obtain several images to train up 
to three classes per object. From each image, patches of 8 by 8 pixels were randomly 
taken to estimate the basis function previous a whitening process, with a reduction to 
40 components. A total of 1000 patches per object were extracted [5].  

The basis functions of each class were then calculated with the ICA mixtures algo-
rithm, considering supervision, and using the Laplacian prior to estimate the source 
pdfs. Fig. 1 shows the 40 basis functions of six classes corresponding to different 
views of two objects. The basis functions of Fig. 1a correspond to a box with a label 
inscribed whereas Fig. 1b corresponds to an apple. We can observe the similarity be-



tween the functions of each object and differences, for instance, the lower frequency 
in the pattern corresponding to a natural object versus the frequency in the pattern of a 
more artificial object. 

The same data were used to measure the distance between classes estimating the 
symmetric Kullback-Leibler distance from the mixture matrices calculated previously, 
as we explain in Section 2. Distances reveal that basis functions allow finding the 
similarity (short distances) between classes corresponding to the same object (intra-
object), whereas distances are much longer between classes of different objects (inter-
object), see Table 1. 
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Fig. 1. Two groups of basis functions corresponding to two different objects. Basis functions at 
top are from a little box and basis functions at bottom are from an apple. 

Table 1. Mean distances inter-object and intra-object of Fig. 1. 

Object box (a) apple (b) 
box (a) 12.89 114.90 

apple (b) 114.90 13.81  
 
Additionally, experiments in order to create a hierarchical classification of objects 

were performed. Thus, patches were sampled from a large number of objects, some of 
them very similar among themselves. A hierarchical representation was then created 
applying the agglomerative clustering algorithm. Fig. 2 shows an example of classifi-
cation of eight objects, with three main kinds of objects. The tree outlined by the den-
drogram positively shows grouping of objects based on similarity content, and suit-
able similarities between ‘families’ of objects, e.g., cars were more alike with cans 
than with apples. 

3.2 Natural images 

The proposed algorithm was applied to natural images in order to obtain a bottom-
up structure merging several zones of an image. Fig. 3 shows an image with 9 zones, 
some of then clearly different and others more or less similar each other. Dendrogram 
of Fig. 3 shows how the zones are merged from the patches. It shows two broad kinds 



of basis functions that correspond to the part of the image that mainly contains por-
tions of sky, and those zones that correspond to patches where there is a predominant 
portion of stairs (high frequency). 

The dendrogram also shows the distances at which the clusters are merged, it can 
be used as a similarity measure of the zones of the image. The bottom zones are 
merged at low distances due to the high similarity in borders. 

 
Fig. 2. Hierarchical representation of object agglomerative clustering. Three kinds of object 
‘families’ are obtained. 

  

Fig. 3. (Left) Image divided in nine zones. (Right) Hierarchical representation of the zones of 
the image based on basis functions similarity. It shows two broad groups of zones. 

4 Conclusions 

The new algorithm for hierarchical ICA mixtures uses the mixture matrices to calcu-
late distances between the distributions of the independent sources based on a sym-
metric Kullback-Leibler distance. The estimation of the source pdfs is made using a 
non-parametric kernel-based approach allowing adaptation to several kinds of densi-
ties. Clusters are merged using a bottom-up strategy defining hierarchical levels creat-
ing higher-level structures. 



Results of the hierarchical algorithm application demonstrated its suitability to 
process image data. Image content similarity between objects based on ICA basis 
functions allows learning an organization of objects in higher-levels of abstraction 
where the more separated hierarchical levels more different the objects. Experiments 
with natural images showed application to image segmentation based on similarity of 
the different zones. The application of the procedure could be extended to unsuper-
vised or semi-supervised classification of images in order to discover meaningful hi-
erarchical levels.  

Many potential applications of the procedure could be approached as defect classi-
fication in non-destructive testing. Hierarchical levels would represent concepts as 
material condition, kind of defect, defect orientation, or defect dimension [13]. 
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