Contradiction: when avoidance equals removal

Part 1

José Julio Alferes and Luis Moniz Pereira

CRIA, Uninova and DCS, U. Nova de Lishoa*
2825 Monte da Caparica, Portugal

{ija

Imp}@fct.unl.pt

Abstract. Recently several authors have stressed and illustrated the
importance of including a second kind of negation (explicit negation) in
logic programs besides “negation as failure”, and its use in dedunctive
databases, knowledge representation, and nonmonotonic reasoning,.

By introducing explicit negation into logic programs contradiction may
appear. In this work we present two approaches for dealing with contra-
diction, and show their equivalence. One of the approaches consists in
avoiding contradiction, and is based on restrictions in the adoption of
abductive hypotheses. The other approach consists in removing contra-
diction, and is based on a transformation of contradictory programs into
noncontradictory ones, guided by the reasons for contradiction.

The work is divided into two parts: one is presented in this paper, and
comprises the contradiction avoidance approach, and the other in [10]
in this volume, comprises the contradiction removal approach and shows
the equivalence between the avoidance and removal approaches.

1 Introduction

Recently several authors have stressed and illustrated the importance of includ-
ing a second kind of negation in logic programs besides “negation as failure”,
and its use in deductive databases, knowledge representation, and nonmonotonic
reasoning [9, 12, 13, 14, 10, 18, 19, 20, 27].

Proposals for extending logic programming semantics with a second negation
have been advanced. One is the Answer Sets semantics [9], shown to be an
extension of the Stable Model semantics [8] of normal logic programs. In [13] a
similar extension proposal was introduced, based also on stable models, where an
implicit preference between negative information (exceptions) over positive one
is assumed. However, answer sets semantics is not well founded. The meaning
of the program, defined as the intersection of all answer sets, is known to be
computationally expensive. Yet another extension to include a second negation
is suggested by Przymusinski in [24]. Though the intersection of models identified
by this extension is a model and enjoys the well founded property, it gives less
intuitive results [2] with respect to the coexistence of both forms of negation.

* We thank JNICT and Esprit BR project Compulog 2 (no 6810) for their support.

Well Founded Semantics with Explicit Negation (WFSX) [15], which we pre-
fer, is an extension of the Well Founded Semantics [26] to include a second nega-
tion — called explicit negation, that preserves well foundedness and procedural
properties. Explicit negation is characterized by that, whatever the objective lit-
eral L, whenever =L holds not L does too (Coherence Principle), and so L is
false, thus avoiding the less intuitive results mentioned.

Ounce the new negation is introduced contradiction may arise (e.g. when L
and =L both hold) and no meaning is assigned?. While for some programs this
seems reasonable (e.g. P = {a — ; —a <}), for others this is too strong.

Ezample 1. Consider the statements: Birds not shown to be abnormal fly; Tweety
is a bird and does not fly; Socrates is a man; naturally expressed by the program:

fly(X) — bird(X), not abnormal(X) = fly(tweety)
bird(tweety) man(socrates)

None of the above mentioned semantics assign a meaning to this program.
Intuitively however, we should at least be able to say that Socratesis a man and
tweety is a lird. It is also reasonable to conclude it doesn’t fly, since the fact
stating that it doesn’t fly makes a stronger statement than the rule concluding it
flies because not abnormal. The latter relies on accepting an assumption of non-
abnormality, enforced by the closed world assumption treatment of the negation
as failure involving the abnormality predicate. Indeed, whenever an assumption
supports a contradiction it seems logical to be able to take the assumption back
in order to prevent it “reductio ad absurdum” or “reasoning by contradiction”.

The scenario semantics paradigm of logic programs [6] has been recently ex-
panded in [1] to encompass extended logic program, including WFSX, built upon
simple primitive notions, such as those of “scenario” (a program plus a set of
NAF-hypotheses), “acceptability of a hypothesis wrt to a scenario” (i.e. without
contrary evidence), “evidence contrary to a hypothesis” (i.e. that contradicts it),
“admissible scenario” (i.e. all its hypotheses are acceptable), “completeness of
a set of hypotheses wrt to a scenario” (L.e. contains all acceptable hypotheses),
etc.

[1] presents semantics more sceptical than WFSX, thus avoiding contradiction
in cases where the latter gives no meaning to a program. For example, the
semantics WFS0, whose precise details are not relevant here, assigns to the
above program the meaning (with obvious abbreviations for constants):

{man(s), = fly(t), bird(t), not fly(t)}
which corresponds to intuition?.

2 Other researchers have defined paraconsistent semantics for contradictory programs
[5, 3, 25, 28]. This is not our concern. On the contrary, we wish to remove contra-
diction whenever it rests on withdrawable assumptions.

% For the sake of simplicityt, we omit in the model some literals that are irrelevant for
the problem (such as flies(s), ~flies(s), bird(s), man(t), etc). All these literals are
false by default (i.e. not flies(s), etc, belong to the model).

Furthermore, there is motivation to consider semantics even more sceptical
than WFES0, in which some acceptable hypotheses might not be adopted in com-
plete scenarios. For instance, the acceptance of a hypothesis may be conditional
upon the equal acceptance of another. This is typical of hypothesizing faults
in a device or program debugging, whenever causally deeper faults are to be
preferred over faults that are simply a consequence of the deeper ones: the for-
mer cannot be hypothesized without the latter [21, 22]. Problem specific and
user defined preference criteria affecting acceptance of hypotheses is another in-
stance. In general, the rules of a logic program may he seen as providing a causal
directionality of inference, similar to physical causality directionality, so that a
distinction can sometimes be drawn about the primacy of one hypothesis over

another (cf. [11, 4]).

Ezample 2. Consider this program, describing bicycle behaviour:

—wobbly_wheel — not flat_tyre,not broken_spokes
flat_tyre — leaky_valve
flat_tyre — punctured_tube
—molight «— not faulty_dynamo

plus the factual observation: wobbly_wheel. WFS0 assigus to it the meaning:

{wobbly_wheel, not faulty_dynamo, —no light, not nolight,
not leaky_valve, not punctured tube}

neither accepting the hypothesis not flat_tyre nor not broken_spokes, because
acceptance of any of them, if the other were accepted too, would lead to a
contradiction. Being sceptical WFS0 accepts neither. However, one would like
the semantics in this case to delve deeper into the bicycle model and, again heing
sceptical, accept neither not leaky_valve nor not punctured_tube as well.

In order to respond to such epistemological requirements, we begin by intro-
ducing into the complete scenario semantics of [1] the more flexible notion of
optative acceptance of hypotheses. In a complete scenario, optative hypotheses,
or optatives, might or might not be accepted even if acceptable. On the other
hand, non-optative hypotheses must be accepted if acceptable.

First we make no restriction on the optatives, and consider them provided
by the user along with the program. Then we proceed to consider the issue
of inferring optative hypotheses from the program, given specific criteria. In
particular we show how to infer optatives when the criterion is those hypotheses
that do not depend on any other.

As pointed out in [17], these more sceptical semantics model rational rea-
soners who assume the program absolutely correct and so. whenever confronted
with an acceptable hypothesis leading to an inconsistency cannot accept it; i.e.
they prefer to assume the program correct rather than assume that an acceptable
hypothesis must perforce be accepted.

WFESX models less sceptical reasoners who, confronted with an inconsistent
scenario, prefer considering the program wrong rather than admitting that an
acceptable hypothesis be not accepted. Such a reasoner is more confident in his
acceptability criterion: an acceptable hypothesis is accepted once and for all; if
an inconsistency arises then there is certainly a problem with the program, not
with the individual acceptance of each acceptable hypothesis. If the problem is
with the program then its revision is in order. This view position can be justified
if we think of a program as resulting from the assimilation of knowledge into a
previous one.

In [12], Kowalski presents a detailed exposition of assimilation processes in
various cases, and he claims the notion of integrity constraint is needed in logic
programming for knowledge processing, representation, and assimilation. The
problem of inconsistency arises from nonsatisfaction of the integrity constraints.
If some new knowledge can be shown incompatible with the existing theory and
integrity constraints, a revision process is needed to restore satisfaction of those
constraints.

In extended logic programming we can view the requirement of non-contra-
diction as integrity constraint satisfaction, where constraints are denials of the
form «— L,—L. Consequently we extend logic programs with integrity constraints
in the form of denials.

Let’s go back to example 1, and view the program as the result of adding to
the previous knowledge the fact that tweety doesn’t fly. According to WFSX the
resulting program is inconsistent. One way of restoring consistency would be to
add a rule stating that ab(tweety) cannot be false, viz. assuming so would lead
directly to contradiction: ab(tweety) «— not ab(tweety). The resulting program
is now non-contradictory and its W FSX contains:

{man(s), = fly(t), bird(t), not fly(t)}

which corresponds to intuition.

This work is divided into two parts. In this part we present a sceptical se-
mantics which avoids contradiction for extended logic programs plus integrity
contraints in the form of denials, based on the notion of optative hypotheses —an
abductive approach. In the second part of this work, in [16], we define a program
revision method for removing contradiction from contradictory programs under
WFSX, based on the notion of revisable hypotheses —a belief revision approach—
and show the equivalence between the contradiction avoidance semantics and
the WFSX of revised programs obtained by contradiction removal. Proofs of all
theorems are omitted for brevity, but exist in an extended version of this work.

2 Logic Programming with Denials

A program with integrity rules (or constraints) is a set of ground rules:

H— Ay,...,A,,not By,...,not By,, (n,m >0)

where H, Ay,...,A,,By,...,B,, are objective literals. An objective literal is an
atom A or its explicit negation = A. A default (or NAF) literal is not L where L
is an objective literal. Literals are either objective or default ones. The (default)
complement of objective literal L is the default literal not L, and vice-versa.
The explicit negation complement of objective literal —L is the atom L. and
vice-versa. not S, where S is a set of literals, denotes the set of complements of
those in S. H stands for the set of all objective literals of a program.

An integrity rule is a rule whose head is the reserved atom L, standing for
falsity. Integrity rules must have a non-empty body.

A program P with semantics SEM satisfies the integrity rules iff P [Espar L.

3 Contradiction Avoidance

Next we present a semantics more sceptical than WFS0, based on the notion of
scenarios presented in [1]. We begin by briefly reviewing some concepts presented
there and needed in the sequel.

Definition 1. A scenario of an extended logic program P is the first order
Horn theory P U H, where the set of default literals H C not 'H are the scenario
hypotheses.

When introducing explicit negation into logic programs one has to consider
its relation to the notion of default negation. When a scenario P U H F =A% it
is explicitly stating that A is false in that scenario. Thus the hypothesis not A
must be enforced in the scenario, and cannot optionally be held independently.

Definition 2. The set of mandatory hypotheses wrt a scenario P U H is:
Mand(H) = {not L| PUHU{not L —~L|L¢& H}Fnot L}®
A scenario P U H of a program with integrity rules IC' is consistent iff:
PUHUMand(H)UICU{L «— L.onot L|LeH} /L

An extended logic program P with integrity constraints IC' is consistent iff
it has some consistent scenario.

N.B. From now on, unless otherwise stated, we restrict programs to consistent
ones only.

1 The rather straightforward formal definition of F. where each (ground) not L is
treated as a new propositional symbol not_L, and each (ground) =L is treated as a
new propositional symbol =_L, can be found in [1]. Intuitively, I is just the standard
Tp operator of the Horn propositional programs obtained with the new symbols in
place.

® The rule not L « =L amounts to the “coherence principle” of [15].

Not every consistent scenario specifies a consensual semantics for a program
[23]. For example [6] the program P = {p « not q} has a consistent scenario
PU{not p} which fails to give the intuitive meaning of P. It is not consensual to
assume not p since there is the possibility of p being true (if not ¢ is assumed), and
—p is not explicitly stated (if this were the case then not ¢ could not be assumed).
Intustively, a hypothesis can be assumed only if there can be no evidence to the
contrary. Clearly a hypotheses not L is only contradicted by the objective literal
L. Evidence for an objective literal L in a program P is any set of hypotheses
which, if assumed in P, would derive L. As in [6], a hypothesis is acceptable wrt
a scenario iff any evidence to the contrary is defeated by the scenario:

Definition 3. F C not H is evidence for objective literal L (and against not L)
in Piff PUFEU Mand(E)F LY and we say PU E defeats not L. If P is under-
stood and E is evidence for L we write £~ L.

A hypothesis not L is acceptable wrt the scenario PU H iff
VE:E~L=3not Ac E|PUHUMand(H)F A

i.e. in each evidence against not L there is a hypothesis defeated by P U H.
Whenever P is understood, the set of acceptable hypotheses wrt P U H is

denoted by Acc(H).

In a consensual semantics we are interested in admitting only consistent
scenarios whose hypotheses are either acceptable or mandatory.

Definition 4. A scenario P U H is admuissible iff it is consistent and
Mand(H) C HC Mand(H) U Acc(H)

Based on this notion, in [1] some more or less sceptical semantics are de-
fined. Here we review the complete scenario semantics, which has been proven
equivalent to WFSX there.

Definition 5. A scenario P U H is complete iff it is em consistent, and for each
not L :

(7) not L € H = not L € Acc(H)V not L € Mand(H)
(i¢) not L € Mand(H) = not L € H
(vii) not L € Acc(H)= not L e H

where (i) and (ii) simply express admissibility. In other words, a scenario PU H
is complete iff H = Mand(H) U Acc(H).

The complete scenarios semantics of P is the set of all complete scenarios
of P. As usual, the meaning of P is determined by the intersection of all such
scenarios.

® The consistency of P U E is not required (cf. [6]); e.g. P U {not H} F H is allowed.

If every acceptable hypothesis must be accepted some programs might have
no meaning (viz. example 1). In WFS0 some acceptable hypotheses are not ac-
cepted in order to avoid inconsistency. However, as shown in example 2, WFS(0
allows no control over which acceptable hypotheses are not accepted. Conceiv-
ably, any acceptable hypothesis may or may not actually be accepted, in some
discretionary way.

It is clear from example 2 that we wish to express that only the hypotheses
not broken_spokes, not leaky_valve, not faulty_dynamo and not punctured_tube
may be optative, i.e. to be possibly accepted or not, if acceptable. The acceptance
of hypotheses like not flat_tyre is to be determined solely by the acceptance of
other hypotheses, and so we always wish them accepted once acceptable.

Thus we should distinguish between optative hypotheses (or optatives) and
non-optative ones. Optative hypotheses are those in some pre-defined Opt C
not ‘H. That distinction made, we can conceive of scenarios that might not be
complete wrt optatives, but are still complete wrt non-optatives: i.e. scenarios
which contain all acceptable hypotheses except for possibly optative ones.

In general, when some acceptable optative hypothesis not L is not accepted,
then some otherwise acceptable hypotheses become unacceptable:

Ezample 3. Let P ={p <« not a; a — b; L — p} where Opt = {not b}.

In our notion of optative, if not b is not accepted then not a is unacceptable,
i.e. if optative b is not assumed false, the possibility of being true must be
considered and so a cannot be assumed false; P U {b} F a counts as evidence
against not a.

Definition 6. A hypothesis not L is acceptable wrt scenario PUH and optatives
Opt iff not L is acceptable” both wrt P U H and PU H U F, where F is the set
of facts not ((OptN Acc(H)) L H),i.e. F is the set of complements of acceptable
Opts wrt H which are not in H (that is which were not accepted).

Accop(H) denotes the set of acceptable hypotheses wrt P U H and Opt.

Ezxample 4. In example 3 Accop({not p}) = {}. not b is not acceptable because,
even though acceptable wrt PU{not p}, it is not acceptable wrt PU{not p}U{b}".
The same happens with not a.

With this more general notion of acceptability scenarios may be partially
complete; i.e. complete wrt non-optatives, but possibly not complete wrt opta-
tives (condition (iil) below):

Definition 7. A scenario P U H is a complete scenario wrt a set of optatives
Opt iff it is consistent, and for each not L :

(1) mot L€ H = not L€ Accop(H)Vmnot L € Mand(H)
(¢7) not L € Mand(H) = not L € H
(¢ii) not L € Accop(H) and not L ¢ Opt = not L € H

T Cf. definition 3.
¥ Note that here not ((Opt N Acc(H)) — H) = not ({not b} — {not p}) = {b}.

Let § = PU H be a complete scenario wrt Opt. A hypothesis in Opt accept-
able wrt P U H that leads to an inconsistent scenario if added to S, will simply
not be accepted in it so as to preserve consistency. This amounts to contradiction
avoidance.

Ezample 5. Recall the wobbly wheel example 2. If Opt were {} there would be
no complete scenario because of inconsistency. If (with obvious abbreviations)
Opt = {not bs,not lv,not pt, not fd}, complete scenarios wrt Opt are :

{not ~ww} {not ~ww,not v} {not ~ww,not lv,not pt,not ft}
{not —ww,not fd} {not —ww,not pt} {not —ww,not fd,not lv}
{not —ww, not bs} {not —ww, not fd,not bs}

It is clear some of these scenarios are over-sceptical, in the sense that they
fail to accept more optatives than need be to avoid contradiction. For example
in the first scenario, in order to avoid contradiction none of the optatives were
accepted. This occurs because no condition of maximal acceptance of optatives
was enforced.

In order to impose this condition we begin by identifying, for each complete
scenario wrt Opt, those optatives that though acceptable were not accepted.

Definition 8. Let P U H be a complete scenario wrt Opt. The avoidance set of
PUH is (OptN Ace(H)) L H.

Ezample 6. The avoidance set of the first scenario in example 5 is {not lv, not pt,
not fd} and of the second one is {not lv, not pt}.

In keeping with the scepticism vocation of WFSX, consider those scenarios
which, for some given avoidance set, are minimal.

Definition 9. A complete scenario P U H wrt Opt is a base scenario if there
exists no scenario P U H', with the same avoidance set, such that H' C H.

Ezample 7. Consider P = {a «+ not b; b — not a; ¢+ not d; L « c} with
Opt = {not d}.

Complete scenarios wrt Opt are {}, {a, not b}, and {b, not a}.

For all, the avoidance set is {not d}. The corresponding base scenario wrt
Opt is the first.

Proposition 10. The base scenarios wrt Opt form a lower semi-lattice under
set inclusion.

Consider now those scenarios comprising as many optatives as possible, i.e.
having minimal avoidance sets:

Definition 11. A base scenario P U H wrt Opt, with avoidance set S, is quasi-
complete if there is no base scenario PU H' wrt Opt, with avoidance set S’, such
that §" C S.

Ezample 8. In example 5 the quasi-complete scenarios wrt Opt are:

{not —ww,not fd,not bs,not lv}
{not —ww,not fd,not bs,not pt}
{not —ww, not fd,not lv,not pt,not ft}

These correspond to minimal faults compatible with the wobbly wheel ob-
servation, i.e. the ways of avoiding contradiction (inevitable if Opt were {}) by
minimally not accepting acceptable optatives. In the first not pt was not ac-
cepted, in the second not lv, and in the third not bs.

As the consequences of these quasi-complete scenarios are pairwise incompat-
ible the well-founded scenario, being sceptical, is their meet in the semi-lattice
of proposition 10, so that its avoidance set is the union of their avoidance sets.

Definition 12. The well-founded scenario of a program P with ICs is the meet
of all quasi-complete scenarios wrt Opt in the semi-lattice of all base scenarios.
For short we use W F S, to denote the well-founded scenario wrt Opt.

Ezample 9. In example 5 WFSo, = P U {not —ww.not fd}. Thus one can
conclude:

{ww,=nl, not —ww,not fd}

i.e. no other hypothesis can be assumed for certain; everything is sceptically
assumed faulty except for fd. This differs from the result of WFS0, shown in
example 2.

Ezample 10. Consider the statements: Let’s go hiking if it 1s not known to rain;
Let’s go swimmang if it 18 not known to rain; Let’s go swimmang if the water is
not known to be cold; We cannot go both swimming and hiking. They render
the set of rules P:

L — hiking, swimming swimming < not rain
hiking «— not rain swimming «— not cold_water

and let Opt = {not rain,not cold_water}.

Complete scenarios wrt Opt are P U {}, and P U {not coldawater}, where
the latter is the well founded wrt Opt. It entails that swimming is true. Note
that not rain is not assumed because it is optative to do so, and by assuming it
contradiction would be unavoidable.

To obtain less sceptical complete scenarios wrt Opt, and in the spirit of
partial stable models [24], we introduce:

Definition 13. Let P be an extended logic program with ICs, and let the well-
founded scenario of P wrt Opt be PU H.

PU K is a partial scenario of P wrt Opt iff it is a base scenario wrt Opt and
HCK.

Example 11. The partial scenarios of P wrt Opt in example 5 are the union of
P with each of:

{not ~ww,not fd} {not ~ww, not fd,not bs,not lv}
{not —ww,not fd,not bs} {not —ww, not fd,not bs,not pt}
{not ~ww, not fd,not lv} {not —ww,not fd,not lv, not pt,not ft}
{not —ww,not fd,not pt}

The first is the WFSoy, (cf. example 9), which corresponds to the most scep-
tical view whereby all possibly relevant faults are assumed. The other extended
scenarios represent, in contrast, all other alternative hypothetical presences and
absences of faults still compatible with the wobbly wheel observation.

If a program is non-contradictory (i.e. its WFSX exists) then no matter which
are the optatives, the well-founded semantics wrt Opt is always equal to the least
complete scenario wrt {} (and so, ipso facto, equivalent to the WFSX).

Theorem 14. If WFSX s defined for a program P with an empty set of ICs
then, for whatever Opt, W FSo,, is the least complete scenario of P.

For programs without explicit negation WESX is equivalent to well-founded
semantics of [26] (WFS).

4 Primacy in Optative Reasoning

Up to now no restriction was made regarding the optatives of programs. It is
possible for optatives to be identified by the user along with the program, or for
the user to rely on criteria for specifying the optatives, and expect the system
to infer them from the program.

Next we identify a special class of optatives, governed by an important cri-
terion [11, 4]: Ezactly the hypotheses not depending on any others are optative.

Ezample 12. Let P = {a «— not b; b «— not ¢; c — not d}.
Clearly not a depends on not b, not b on not ¢ and not ¢ on not d. not d
alone does not depend on any other hypothesis and so is the only optative.

In diagnosis this criterion means hypothesizing as abnormal first the causally
deeper faults.

In taxonomies with exceptions this is not the desired preference criterion.
To give priority to the most specific default information only a hypothesis on
which no other depends should be optative. This way the relinquishing of default
hypotheses to avoid contradiction begins with less specific ones.

The subject of defining preference criteria to automatically determine opta-
tive hypotheses from programs is complex. It is closely related to that of prefer-
ence among defaults [7].

How to infer optatives for criteria different from the one above is left open.

Clearly every hypothesis which is not acceptable in P U {} depends on the
acceptance of some other hypothesis. In other words, if a hypothesis not L is
acceptable in a scenario P U H, but is not acceptable in P U {}, this means that
in order to make not L acceptable some other hypotheses S C H have to be
accepted too. Thus not L depends on the hypotheses of S, and the latter are
more primal than not L. As a first approximation we define the set of prime
optative hypotheses as Acc({}).

Ezample 13. In program P of example 12 Acc({}) = {not d}. So the only prime
optative hypothesis is not d. Hypothesis not b is not prime optative because it
is only acceptable once not d is accepted, otherwise not ¢ constitutes evidence
to the contrary.

In general, not all hypotheses in Acc({}) though are independant of one
another. Hence we must refine our first approximation to prime optatives.

Ezample 1. Let P={a —b; b~ ¢; p—mnot a; L — p}.

Then the optatives are Acc({}) = {not a,not b,not ¢}, and the WFS wrt
Ace({}) is P U {not b,not c}.

However, it is clear from the program that only not ¢ should be prime opta-
tive, since the acceptance of not b depends on the absence of conclusion ¢ in P,
but not vice-versa, and likewise regarding the acceptance of not a. Any defini-
tion of a semantics based on the notions of scenarios and evidence alone cannot
distinguish the optative primacy of not ¢, because it is insensitive to the ground-
edness of literals, viz. there being no rules for ¢, and thus its non-dependence on
other hypotheses.

An asymmetry must be introduced, based on a separate new notion, to cap-
ture the causal directionality of inference implicit in logic program rules, as
mentioned in the introduction:

Definition 15. A hypothesis not A € Acc({}) is sensitive to a separate set of
hypotheses not F in P iff not A ¢ Acc(PU F). Note that F is a set of facts.
A hypothesis not A € Acc({}) is prime optative iff for all not S C Ace({}) if
not A is sensitive to not S then an element of not S is sensitive to {not A}.
The set of prime optatives is denoted by POpt, and we refer to the well-
founded semantics wrt POpt as the prime optative semantics, or POS.

Ezample 15. In example 14 the only prime optative is not c¢. For example, not a
is not prime optative since not a is sensitive to {not b} and not vice-versa.

Ezample 16. In example 2, POpt = {not bs,not pt,not lv,not fd}.
Acc({}) = POpt U {not ft}. However, not ft is not prime optative since it
is sensitive to both {not lv} and {not pt}, but not vice-versa.

Ezample 17. Consider P = {p « not a; —=p; a < b; b« a,not ¢; ¢ « not d}.
Then A(:(:({}) = {not a,not b, not (]}.

All of these are prime optatives: not d because it is insensitive to other
hypotheses; not b because it is only sensitive to {not a}, but not a is sensitive
to {not b}; similarly for not a.

By insisting on only allowing prime optatives to be possibly accepted, if
acceptable, one may fail to give meaning to some consistent programs, as there
are fewer options for avoiding inconsistency.

Ezample 18. Let P = {c « not b; b — not a; —a; L «— not c}.

In this case POpt = Ace({}) = {not a}, and no complete scenario wrt POpt
exists. Thus POS is not defined.

Note that by making Opt = {not ¢}, PU{not a} is now complete wrt Opt. In
fact this scenario corresponds to the WF My, .1, expressing that contradiction
is avoided by not assuming the optative hypothesis not c. It still allows the
conclusions {—a, not a,b}.

References

1. J. J. Alferes, P. M. Dung, and L. M. Pereira. Scenario semantics of extended logic
programs. In L. M. Pereira and A. Nerode. editors, 2nd Int. Ws. on Logic Pro-
grammang and NonMonotonic Reasoning. MIT Press, 1993.

2. J. J. Alferes and L. M. Pereira. On logic programs semantics with two kinds of
negation. In K. Apt, editor, Int. Joint Conf. and Symp. on Logic Programming,
pages 574-588. MIT Press, 1992.

3. H. Blair and V. S. Subrahmanian. Paraconsistent logic programming. In Conf.
on Foundations of Software Technology and Theoretical Computer Science, pages
340 360. Springer Verlag, 1987.

4. G. Brewka and K. Komnolige. An abductive framework for generalized logic pro-

grams and other nonmonotonic systems. Tech. report, GMD and SRI Int., 1993.

N. Costa. On the theory of inconsistency formal system. Noire Dame J. of Formal

Logic, 15:497 510, 1974.

6. P. M. Dung. Negation as hypotheses: An abductive framework for logic programn-
ming. In K. Furukawa, editor, 8th Int. Conf. on Logic Programming, pages 3—17.
MIT Press, 1991.

P. Geerts and D. Vermeir. A nonmonotonic reasoning formalism using implicit

ot

=I

specificity information. In L. M. Pereira and A. Nerode, editors, 2nd Int. Ws. on
Logic Programming and NonMonotonic Reasoning. MIT Press, 1993.

8. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In R. A. Kowalski and K. A. Bowen, editors, 5th Int. Conf. on Logic Programming,
pages 1070 1080. MIT Press, 1988.

9. M. Gelfond and V. Lifschitz. Logic programs with classical negation. In D. H. D.
Warren and P. Szeredi, editors, 7th Int. Conf. on Logic Programming, pages 579—
597. MIT Press, 1990.

10. K. Inoue. Extended logic programs with default assumptions. In K. Furukawa,
editor, 8th Int. Conf. on Logic Prograrmming, pages 490 504. MIT Press, 1991.

11. K. Konolige. Using default and causal reasoning in diagnosis. In B. Nebel, C. Rich,
and W. Swartout, editors, $rd Int. Conf. on Knowledge Representation and Rea-
soning. Morgan Kaufmann, 1992.

12

13.

14.

15.

16.

17.

18.

19.

20.

R. Kowalski. Problems and promises of computational logic. In John Lloyd, editor,
Computational Logic Symp., pages 1 36. Springer-Verlag, November 1990.

R. Kowalski and F. Sadri. Logic programs with exceptions. In D. H. D. Warren
and P. Szeredi, editors, 7th Int. Conf. on Logic Programmang. MIT Press, 1990.
D. Pearce and G. Wagner. Reasoning with negative information I: Strong nega-
tion in logic programs. In L. Haaparanta, M. Kusch, and I. Niiniluoto, editors,
Language, Knowledge and Intentionality, pages 430-453. Acta Philosophica Fen-
nica 49, 1990.

L. M. Pereira and J. J. Alferes. Well founded semantics for logic programs with
explicit negation. In B. Nenmann, editor, European Conf. on Al pages 102 106.
John Wiley & Sons, Ltd, 1992.

L. M. Pereira and J. J. Alferes. Contradiction: when avoidance equal removal.
Part II. In R. Dyckhoff, editor, 4th Int. Ws. on Extensions of Logic Programming.
1993.

L. M. Pereira and J. J. Alferes. Optative reasoning with scenario semantics. In
D. S. Warren, editor, 10th International Conference on Logic Programming, pages
601-615. MIT Press, 1993.

L. M. Pereira, J. N. Aparicio, and J. J. Alferes. Counterfactual reasoning based
on revising assumptions. In Ueda and Saraswat, editors, Int. Logic Programmaing
Symp. MIT Press, 1991.

L. M. Pereira, J. N. Aparicio, and J. J. Alferes. Nonmonotonic reasoning with well
founded semantics. In K. Furukawa, editor, 8th Int. Conf. on Logic Programmaing,
pages 475 489. MIT Press, 1991.

L. M. Pereira, J. N. Aparicio, and J. J. Alferes. Logic programiming for nonmono-
tonic reasoning. In Applied Logic Conf. ILLC, Amsterdam, 1992.

. L. M. Pereira, C. Damasio, and J. J. Alferes. Diagnosis and debugging as con-

tradiction removal. In L. M. Pereira and A. Nerode, editors, 2nd International
Workshop on Logic Programming and NonMonotonic Reasoning, pages 316 330.
MIT Press, 1993.

. L. M. Pereira, C. Damésio, and J. J. Alferes. Diagnosis and debugging as contra-

diction removal in logic programs. In L. Damas and M. Filgueiras, editors, 6th
Portuguese Artificial Intelligence Conference. Springer Verlag, 1993.

. D. Poole. A logical framework for default reasoning. Artificial Intelligence, 36:27

47, 1988.

. T. Przymusinski. Extended stable semantics for normal and disjunctive programs.

In D. H. D. Warren and P. Szeredi, editors, 7th Int. Conf. on Logic Programmaing,
pages 459 477. MIT Press, 1990.

. C. Sakama. Extended well founded semantics for paraconsistent logic programs.

In Fifth Generation Computer Systems, pages 592-599. ICOT, 1992.

. A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for gen-

eral logic programs. Journal of ACM, pages 221 230, 1990.

. G. Wagner. A database needs two kinds of negation. In B. Thalheim,

J. Demetrovics, and H-D. Gerhardt, editors, MFDBS, pages 357 371. Springer-
Verlag, 1991.

. G. Wagner. Reasoning with inconsistency in extended deductive databases. In

L. M. Pereira and A. Nerode, editors, 2nd Int. Ws. on Logic Programming and
NonMonotonic Reasoning. MIT Press, 1993.

This article was processed using the IATEX macro package with LLNCS style

