
Contradiction: when avoidance equals removalPart IJos�e J�ulio Alferes and Lu��s Moniz PereiraCRIA, Uninova and DCS, U. Nova de Lisboa?2825 Monte da Caparica, Portugalfjja j lmpg@fct.unl.ptAbstract. Recently several authors have stressed and illustrated theimportance of including a second kind of negation (explicit negation) inlogic programs besides \negation as failure", and its use in deductivedatabases, knowledge representation, and nonmonotonic reasoning.By introducing explicit negation into logic programs contradiction mayappear. In this work we present two approaches for dealing with contra-diction, and show their equivalence. One of the approaches consists inavoiding contradiction, and is based on restrictions in the adoption ofabductive hypotheses. The other approach consists in removing contra-diction, and is based on a transformation of contradictory programs intononcontradictory ones, guided by the reasons for contradiction.The work is divided into two parts: one is presented in this paper, andcomprises the contradiction avoidance approach, and the other in [16]in this volume, comprises the contradiction removal approach and showsthe equivalence between the avoidance and removal approaches.1 IntroductionRecently several authors have stressed and illustrated the importance of includ-ing a second kind of negation in logic programs besides \negation as failure",and its use in deductive databases, knowledge representation, and nonmonotonicreasoning [9, 12, 13, 14, 10, 18, 19, 20, 27].Proposals for extending logic programming semantics with a second negationhave been advanced. One is the Answer Sets semantics [9], shown to be anextension of the Stable Model semantics [8] of normal logic programs. In [13] asimilar extension proposal was introduced, based also on stable models, where animplicit preference between negative information (exceptions) over positive oneis assumed. However, answer sets semantics is not well founded. The meaningof the program, de�ned as the intersection of all answer sets, is known to becomputationally expensive. Yet another extension to include a second negationis suggested by Przymusinski in [24]. Though the intersection of models identi�edby this extension is a model and enjoys the well founded property, it gives lessintuitive results [2] with respect to the coexistence of both forms of negation.? We thank JNICT and Esprit BR project Compulog 2 (no 6810) for their support.

Well Founded Semantics with Explicit Negation (WFSX) [15], which we pre-fer, is an extension of the Well Founded Semantics [26] to include a second nega-tion : called explicit negation, that preserves well foundedness and proceduralproperties. Explicit negation is characterized by that, whatever the objective lit-eral L, whenever :L holds not L does too (Coherence Principle), and so L isfalse, thus avoiding the less intuitive results mentioned.Once the new negation is introduced contradiction may arise (e.g. when Land :L both hold) and no meaning is assigned2. While for some programs thisseems reasonable (e.g. P = fa ; :a g), for others this is too strong.Example 1. Consider the statements:Birds not shown to be abnormal
y; Tweetyis a bird and does not
y; Socrates is a man; naturally expressed by the program:fly(X) bird(X); not abnormal(X) :fly(tweety)bird(tweety) man(socrates)None of the above mentioned semantics assign a meaning to this program.Intuitively however, we should at least be able to say that Socrates is aman andtweety is a bird: It is also reasonable to conclude it doesn't fly, since the factstating that it doesn't fly makes a stronger statement than the rule concluding itflies because not abnormal. The latter relies on accepting an assumption of non-abnormality, enforced by the closed world assumption treatment of the negationas failure involving the abnormality predicate. Indeed, whenever an assumptionsupports a contradiction it seems logical to be able to take the assumption backin order to prevent it {\reductio ad absurdum" or \reasoning by contradiction".The scenario semantics paradigm of logic programs [6] has been recently ex-panded in [1] to encompass extended logic program, includingWFSX, built uponsimple primitive notions, such as those of \scenario" (a program plus a set ofNAF-hypotheses), \acceptability of a hypothesis wrt to a scenario" (i.e. withoutcontrary evidence), \evidence contrary to a hypothesis" (i.e. that contradicts it),\admissible scenario" (i.e. all its hypotheses are acceptable), \completeness ofa set of hypotheses wrt to a scenario" (i.e. contains all acceptable hypotheses),etc.[1] presents semanticsmore sceptical thanWFSX, thus avoiding contradictionin cases where the latter gives no meaning to a program. For example, thesemantics WFS0, whose precise details are not relevant here, assigns to theabove program the meaning (with obvious abbreviations for constants):fman(s);:fly(t); bird(t); not fly(t)gwhich corresponds to intuition3.2 Other researchers have de�ned paraconsistent semantics for contradictory programs[5, 3, 25, 28]. This is not our concern. On the contrary, we wish to remove contra-diction whenever it rests on withdrawable assumptions.3 For the sake of simplicityt, we omit in the model some literals that are irrelevant forthe problem (such as flies(s); :flies(s), bird(s); man(t), etc). All these literals arefalse by default (i.e. not flies(s); etc, belong to the model).

Furthermore, there is motivation to consider semantics even more scepticalthanWFS0, in which some acceptable hypotheses might not be adopted in com-plete scenarios. For instance, the acceptance of a hypothesis may be conditionalupon the equal acceptance of another. This is typical of hypothesizing faultsin a device or program debugging, whenever causally deeper faults are to bepreferred over faults that are simply a consequence of the deeper ones: the for-mer cannot be hypothesized without the latter [21, 22]. Problem speci�c anduser de�ned preference criteria a�ecting acceptance of hypotheses is another in-stance. In general, the rules of a logic programmay be seen as providing a causaldirectionality of inference, similar to physical causality directionality, so that adistinction can sometimes be drawn about the primacy of one hypothesis overanother (cf. [11, 4]).Example 2. Consider this program, describing bicycle behaviour::wobbly wheel not flat tyre; not broken spokesflat tyre leaky valveflat tyre punctured tube:no light not faulty dynamoplus the factual observation: wobbly wheel: WFS0 assigns to it the meaning:fwobbly wheel; not faulty dynamo;:no light; not no light;not leaky valve; not punctured tubegneither accepting the hypothesis not flat tyre nor not broken spokes; becauseacceptance of any of them, if the other were accepted too, would lead to acontradiction. Being sceptical WFS0 accepts neither. However, one would likethe semantics in this case to delve deeper into the bicycle model and, again beingsceptical, accept neither not leaky valve nor not punctured tube as well.In order to respond to such epistemological requirements, we begin by intro-ducing into the complete scenario semantics of [1] the more
exible notion ofoptative acceptance of hypotheses. In a complete scenario, optative hypotheses,or optatives, might or might not be accepted even if acceptable. On the otherhand, non-optative hypotheses must be accepted if acceptable.First we make no restriction on the optatives, and consider them providedby the user along with the program. Then we proceed to consider the issueof inferring optative hypotheses from the program, given speci�c criteria. Inparticular we show how to infer optatives when the criterion is those hypothesesthat do not depend on any other.As pointed out in [17], these more sceptical semantics model rational rea-soners who assume the program absolutely correct and so, whenever confrontedwith an acceptable hypothesis leading to an inconsistency cannot accept it; i.e.they prefer to assume the program correct rather than assume that an acceptablehypothesis must perforce be accepted.

WFSX models less sceptical reasoners who, confronted with an inconsistentscenario, prefer considering the program wrong rather than admitting that anacceptable hypothesis be not accepted. Such a reasoner is more con�dent in hisacceptability criterion: an acceptable hypothesis is accepted once and for all; ifan inconsistency arises then there is certainly a problem with the program, notwith the individual acceptance of each acceptable hypothesis. If the problem iswith the program then its revision is in order. This view position can be justi�edif we think of a program as resulting from the assimilation of knowledge into aprevious one.In [12], Kowalski presents a detailed exposition of assimilation processes invarious cases, and he claims the notion of integrity constraint is needed in logicprogramming for knowledge processing, representation, and assimilation. Theproblem of inconsistency arises from nonsatisfaction of the integrity constraints.If some new knowledge can be shown incompatible with the existing theory andintegrity constraints, a revision process is needed to restore satisfaction of thoseconstraints.In extended logic programming we can view the requirement of non-contra-diction as integrity constraint satisfaction, where constraints are denials of theform L;:L: Consequently we extend logic programs with integrity constraintsin the form of denials.Let's go back to example 1, and view the program as the result of adding tothe previous knowledge the fact that tweety doesn't
y. According to WFSX theresulting program is inconsistent. One way of restoring consistency would be toadd a rule stating that ab(tweety) cannot be false, viz. assuming so would leaddirectly to contradiction: ab(tweety) not ab(tweety): The resulting programis now non-contradictory and its WFSX contains:fman(s);:fly(t); bird(t); not fly(t)gwhich corresponds to intuition.This work is divided into two parts. In this part we present a sceptical se-mantics which avoids contradiction for extended logic programs plus integritycontraints in the form of denials, based on the notion of optative hypotheses {anabductive approach. In the second part of this work, in [16], we de�ne a programrevision method for removing contradiction from contradictory programs underWFSX, based on the notion of revisable hypotheses {a belief revision approach{and show the equivalence between the contradiction avoidance semantics andthe WFSX of revised programs obtained by contradiction removal. Proofs of alltheorems are omitted for brevity, but exist in an extended version of this work.2 Logic Programming with DenialsA program with integrity rules (or constraints) is a set of ground rules:H A1; : : : ; An; not B1; : : : ; not Bm; (n;m � 0)

where H; A1; : : : ; An; B1; : : : ; Bm are objective literals. An objective literal is anatom A or its explicit negation :A: A default (or NAF) literal is not L where Lis an objective literal. Literals are either objective or default ones. The (default)complement of objective literal L is the default literal not L; and vice-versa.The explicit negation complement of objective literal :L is the atom L; andvice-versa. not S; where S is a set of literals, denotes the set of complements ofthose in S: H stands for the set of all objective literals of a program.An integrity rule is a rule whose head is the reserved atom ?; standing forfalsity. Integrity rules must have a non-empty body.A program P with semantics SEM satis�es the integrity rules i� P 6j=SEM ?:3 Contradiction AvoidanceNext we present a semantics more sceptical than WFS0, based on the notion ofscenarios presented in [1]. We begin by brie
y reviewing some concepts presentedthere and needed in the sequel.De�nition 1. A scenario of an extended logic program P is the �rst orderHorn theory P [H; where the set of default literals H � not H are the scenariohypotheses.When introducing explicit negation into logic programs one has to considerits relation to the notion of default negation. When a scenario P [H ` :A4 itis explicitly stating that A is false in that scenario. Thus the hypothesis not Amust be enforced in the scenario, and cannot optionally be held independently.De�nition 2. The set of mandatory hypotheses wrt a scenario P [H is:Mand(H) = fnot L j P [H [fnot L :L j L 2 Hg ` not Lg5A scenario P [H of a program with integrity rules IC is consistent i�:P [H [Mand(H) [IC [f? L; not L j L 2 Hg 6` ?An extended logic program P with integrity constraints IC is consistent i�it has some consistent scenario.N.B. From now on, unless otherwise stated, we restrict programs to consistentones only.4 The rather straightforward formal de�nition of `; where each (ground) not L istreated as a new propositional symbol not L; and each (ground) :L is treated as anew propositional symbol : L; can be found in [1]. Intuitively, ` is just the standardTP operator of the Horn propositional programs obtained with the new symbols inplace.5 The rule not L :L amounts to the \coherence principle" of [15].

Not every consistent scenario speci�es a consensual semantics for a program[23]. For example [6] the program P = fp not qg has a consistent scenarioP [fnot pg which fails to give the intuitive meaning of P: It is not consensual toassume not p since there is the possibility of p being true (if not q is assumed), and:p is not explicitly stated (if this were the case then not q could not be assumed).Intuitively, a hypothesis can be assumed only if there can be no evidence to thecontrary. Clearly a hypotheses not L is only contradicted by the objective literalL: Evidence for an objective literal L in a program P is any set of hypotheseswhich, if assumed in P; would derive L: As in [6], a hypothesis is acceptable wrta scenario i� any evidence to the contrary is defeated by the scenario:De�nition 3. E � not H is evidence for objective literal L (and against not L)in P i� P [E [Mand(E) ` L6, and we say P [E defeats not L: If P is under-stood and E is evidence for L we write E ; L:A hypothesis not L is acceptable wrt the scenario P [H i�8E : E ; L) 9not A 2 E j P [H [Mand(H) ` Ai.e. in each evidence against not L there is a hypothesis defeated by P [H:Whenever P is understood, the set of acceptable hypotheses wrt P [H isdenoted by Acc(H):In a consensual semantics we are interested in admitting only consistentscenarios whose hypotheses are either acceptable or mandatory.De�nition 4. A scenario P [H is admissible i� it is consistent andMand(H) � H �Mand(H) [Acc(H)Based on this notion, in [1] some more or less sceptical semantics are de-�ned. Here we review the complete scenario semantics, which has been provenequivalent to WFSX there.De�nition 5. A scenario P [H is complete i� it is em consistent, and for eachnot L : (i) not L 2 H) not L 2 Acc(H)_ not L 2Mand(H)(ii) not L 2Mand(H)) not L 2 H(iii) not L 2 Acc(H)) not L 2 Hwhere (i) and (ii) simply express admissibility. In other words, a scenario P [His complete i� H = Mand(H)[Acc(H):The complete scenarios semantics of P is the set of all complete scenariosof P: As usual, the meaning of P is determined by the intersection of all suchscenarios.6 The consistency of P [E is not required (cf. [6]); e.g. P [fnot Hg ` H is allowed.

If every acceptable hypothesis must be accepted some programs might haveno meaning (viz. example 1). In WFS0 some acceptable hypotheses are not ac-cepted in order to avoid inconsistency. However, as shown in example 2, WFS0allows no control over which acceptable hypotheses are not accepted. Conceiv-ably, any acceptable hypothesis may or may not actually be accepted, in somediscretionary way.It is clear from example 2 that we wish to express that only the hypothesesnot broken spokes; not leaky valve; not faulty dynamo and not punctured tubemay be optative, i.e. to be possibly accepted or not, if acceptable. The acceptanceof hypotheses like not flat tyre is to be determined solely by the acceptance ofother hypotheses, and so we always wish them accepted once acceptable.Thus we should distinguish between optative hypotheses (or optatives) andnon-optative ones. Optative hypotheses are those in some pre-de�ned Opt �not H: That distinction made, we can conceive of scenarios that might not becomplete wrt optatives, but are still complete wrt non-optatives: i.e. scenarioswhich contain all acceptable hypotheses except for possibly optative ones.In general, when some acceptable optative hypothesis not L is not accepted,then some otherwise acceptable hypotheses become unacceptable:Example 3. Let P = fp not a; a b; ? pg where Opt = fnot bg:In our notion of optative, if not b is not accepted then not a is unacceptable,i.e. if optative b is not assumed false, the possibility of being true must beconsidered and so a cannot be assumed false; P [fbg ` a counts as evidenceagainst not a:De�nition 6. A hypothesis not L is acceptable wrt scenario P[H and optativesOpt i� not L is acceptable7 both wrt P [H and P [H [F; where F is the setof facts not ((Opt\Acc(H))�H); i.e. F is the set of complements of acceptableOpts wrt H which are not in H (that is which were not accepted).AccOpt(H) denotes the set of acceptable hypotheses wrt P [H and Opt:Example 4. In example 3 AccOpt(fnot pg) = fg: not b is not acceptable because,even though acceptable wrt P[fnot pg; it is not acceptable wrt P[fnot pg[fbg8.The same happens with not a:With this more general notion of acceptability scenarios may be partiallycomplete; i.e. complete wrt non-optatives, but possibly not complete wrt opta-tives (condition (iii) below):De�nition 7. A scenario P [H is a complete scenario wrt a set of optativesOpt i� it is consistent, and for each not L :(i) not L 2 H) not L 2 AccOpt(H) _ not L 2Mand(H)(ii) not L 2Mand(H)) not L 2 H(iii) not L 2 AccOpt(H) and not L 62 Opt) not L 2 H7 Cf. de�nition 3.8 Note that here not ((Opt \ Acc(H))�H) = not (fnot bg � fnot pg) = fbg:

Let S = P [H be a complete scenario wrt Opt: A hypothesis in Opt accept-able wrt P [H that leads to an inconsistent scenario if added to S, will simplynot be accepted in it so as to preserve consistency. This amounts to contradictionavoidance.Example 5. Recall the wobbly wheel example 2. If Opt were fg there would beno complete scenario because of inconsistency. If (with obvious abbreviations)Opt = fnot bs; not lv; not pt; not fdg; complete scenarios wrt Opt are :fnot :wwg fnot :ww;not lvg fnot :ww;not lv; not pt; not ftgfnot :ww;not fdg fnot :ww;not ptg fnot :ww;not fd; not lvgfnot :ww;not bsg fnot :ww;not fd; not bsg : : :It is clear some of these scenarios are over-sceptical, in the sense that theyfail to accept more optatives than need be to avoid contradiction. For examplein the �rst scenario, in order to avoid contradiction none of the optatives wereaccepted. This occurs because no condition of maximal acceptance of optativeswas enforced.In order to impose this condition we begin by identifying, for each completescenario wrt Opt; those optatives that though acceptable were not accepted.De�nition 8. Let P [H be a complete scenario wrt Opt: The avoidance set ofP [H is (Opt \Acc(H))�H:Example 6. The avoidance set of the �rst scenario in example 5 is fnot lv; not pt;not fdg and of the second one is fnot lv; not ptg:In keeping with the scepticism vocation of WFSX, consider those scenarioswhich, for some given avoidance set, are minimal.De�nition 9. A complete scenario P [H wrt Opt is a base scenario if thereexists no scenario P [H 0; with the same avoidance set, such that H 0 � H:Example 7. Consider P = fa not b; b not a; c not d; ? cg withOpt = fnot dg:Complete scenarios wrt Opt are fg, fa; not bg; and fb; not ag:For all, the avoidance set is fnot dg: The corresponding base scenario wrtOpt is the �rst.Proposition 10. The base scenarios wrt Opt form a lower semi-lattice underset inclusion.Consider now those scenarios comprising as many optatives as possible, i.e.having minimal avoidance sets:De�nition 11. A base scenario P [H wrt Opt; with avoidance set S; is quasi-complete if there is no base scenario P [H 0 wrt Opt; with avoidance set S0; suchthat S0 � S:

Example 8. In example 5 the quasi-complete scenarios wrt Opt are:fnot :ww;not fd; not bs; not lvgfnot :ww;not fd; not bs; not ptgfnot :ww;not fd; not lv; not pt; not ftgThese correspond to minimal faults compatible with the wobbly wheel ob-servation, i.e. the ways of avoiding contradiction (inevitable if Opt were fg) byminimally not accepting acceptable optatives. In the �rst not pt was not ac-cepted, in the second not lv; and in the third not bs:As the consequences of these quasi-complete scenarios are pairwise incompat-ible the well-founded scenario, being sceptical, is their meet in the semi-latticeof proposition 10, so that its avoidance set is the union of their avoidance sets.De�nition 12. The well-founded scenario of a program P with ICs is the meetof all quasi-complete scenarios wrt Opt in the semi-lattice of all base scenarios.For short we use WFSOpt to denote the well-founded scenario wrt Opt:Example 9. In example 5 WFSOpt = P [fnot :ww;not fdg: Thus one canconclude: fww;:nl; not :ww;not fdgi.e. no other hypothesis can be assumed for certain; everything is scepticallyassumed faulty except for fd: This di�ers from the result of WFS0, shown inexample 2.Example 10. Consider the statements: Let's go hiking if it is not known to rain;Let's go swimming if it is not known to rain; Let's go swimming if the water isnot known to be cold; We cannot go both swimming and hiking. They renderthe set of rules P :? hiking; swimming swimming not rainhiking not rain swimming not cold waterand let Opt = fnot rain; not cold waterg:Complete scenarios wrt Opt are P [fg; and P [fnot cold waterg; wherethe latter is the well founded wrt Opt: It entails that swimming is true. Notethat not rain is not assumed because it is optative to do so, and by assuming itcontradiction would be unavoidable.To obtain less sceptical complete scenarios wrt Opt, and in the spirit ofpartial stable models [24], we introduce:De�nition 13. Let P be an extended logic program with ICs, and let the well-founded scenario of P wrt Opt be P [H:P [K is a partial scenario of P wrt Opt i� it is a base scenario wrt Opt andH � K:

Example 11. The partial scenarios of P wrt Opt in example 5 are the union ofP with each of:fnot :ww;not fdg fnot :ww;not fd; not bs; not lvgfnot :ww;not fd; not bsg fnot :ww;not fd; not bs; not ptgfnot :ww;not fd; not lvg fnot :ww;not fd; not lv; not pt; not ftgfnot :ww;not fd; not ptgThe �rst is theWFSOpt (cf. example 9), which corresponds to the most scep-tical view whereby all possibly relevant faults are assumed. The other extendedscenarios represent, in contrast, all other alternative hypothetical presences andabsences of faults still compatible with the wobbly wheel observation.If a program is non-contradictory (i.e. itsWFSX exists) then no matter whichare the optatives, the well-founded semantics wrt Opt is always equal to the leastcomplete scenario wrt fg (and so, ipso facto, equivalent to the WFSX).Theorem 14. If WFSX is de�ned for a program P with an empty set of ICsthen, for whatever Opt; WFSOpt is the least complete scenario of P:For programs without explicit negation WFSX is equivalent to well-foundedsemantics of [26] (WFS).4 Primacy in Optative ReasoningUp to now no restriction was made regarding the optatives of programs. It ispossible for optatives to be identi�ed by the user along with the program, or forthe user to rely on criteria for specifying the optatives, and expect the systemto infer them from the program.Next we identify a special class of optatives, governed by an important cri-terion [11, 4]: Exactly the hypotheses not depending on any others are optative.Example 12. Let P = fa not b; b not c; c not dg:Clearly not a depends on not b; not b on not c and not c on not d: not dalone does not depend on any other hypothesis and so is the only optative.In diagnosis this criterion means hypothesizing as abnormal �rst the causallydeeper faults.In taxonomies with exceptions this is not the desired preference criterion.To give priority to the most speci�c default information only a hypothesis onwhich no other depends should be optative. This way the relinquishing of defaulthypotheses to avoid contradiction begins with less speci�c ones.The subject of de�ning preference criteria to automatically determine opta-tive hypotheses from programs is complex. It is closely related to that of prefer-ence among defaults [7].How to infer optatives for criteria di�erent from the one above is left open.

Clearly every hypothesis which is not acceptable in P [fg depends on theacceptance of some other hypothesis. In other words, if a hypothesis not L isacceptable in a scenario P [H; but is not acceptable in P [fg; this means thatin order to make not L acceptable some other hypotheses S � H have to beaccepted too. Thus not L depends on the hypotheses of S; and the latter aremore primal than not L: As a �rst approximation we de�ne the set of primeoptative hypotheses as Acc(fg):Example 13. In program P of example 12 Acc(fg) = fnot dg: So the only primeoptative hypothesis is not d: Hypothesis not b is not prime optative because itis only acceptable once not d is accepted, otherwise not c constitutes evidenceto the contrary.In general, not all hypotheses in Acc(fg) though are independant of oneanother. Hence we must re�ne our �rst approximation to prime optatives.Example 14. Let P = fa b; b c; p not a; ? pg:Then the optatives are Acc(fg) = fnot a; not b; not cg; and the WFS wrtAcc(fg) is P [fnot b; not cg:However, it is clear from the program that only not c should be prime opta-tive, since the acceptance of not b depends on the absence of conclusion c in P;but not vice-versa, and likewise regarding the acceptance of not a: Any de�ni-tion of a semantics based on the notions of scenarios and evidence alone cannotdistinguish the optative primacy of not c; because it is insensitive to the ground-edness of literals, viz. there being no rules for c; and thus its non-dependence onother hypotheses.An asymmetry must be introduced, based on a separate new notion, to cap-ture the causal directionality of inference implicit in logic program rules, asmentioned in the introduction:De�nition 15. A hypothesis not A 2 Acc(fg) is sensitive to a separate set ofhypotheses not F in P i� not A 62 Acc(P [F): Note that F is a set of facts.A hypothesis not A 2 Acc(fg) is prime optative i� for all not S � Acc(fg) ifnot A is sensitive to not S then an element of not S is sensitive to fnot Ag:The set of prime optatives is denoted by POpt; and we refer to the well-founded semantics wrt POpt as the prime optative semantics, or POS:Example 15. In example 14 the only prime optative is not c: For example, not ais not prime optative since not a is sensitive to fnot bg and not vice-versa.Example 16. In example 2, POpt = fnot bs; not pt; not lv; not fdg:Acc(fg) = POpt [fnot ftg: However, not ft is not prime optative since itis sensitive to both fnot lvg and fnot ptg; but not vice-versa.Example 17. Consider P = fp not a; :p; a b; b a; not c; c not dg.Then Acc(fg) = fnot a; not b; not dg:

All of these are prime optatives: not d because it is insensitive to otherhypotheses; not b because it is only sensitive to fnot ag; but not a is sensitiveto fnot bg; similarly for not a:By insisting on only allowing prime optatives to be possibly accepted, ifacceptable, one may fail to give meaning to some consistent programs, as thereare fewer options for avoiding inconsistency.Example 18. Let P = fc not b; b not a; :a; ? not cg:In this case POpt = Acc(fg) = fnot ag, and no complete scenario wrt POptexists. Thus POS is not de�ned.Note that by making Opt = fnot cg; P [fnot ag is now complete wrt Opt: Infact this scenario corresponds to theWFMfnot cg; expressing that contradictionis avoided by not assuming the optative hypothesis not c: It still allows theconclusions f:a; not a; bg:References1. J. J. Alferes, P. M. Dung, and L. M. Pereira. Scenario semantics of extended logicprograms. In L. M. Pereira and A. Nerode, editors, 2nd Int. Ws. on Logic Pro-gramming and NonMonotonic Reasoning. MIT Press, 1993.2. J. J. Alferes and L. M. Pereira. On logic programs semantics with two kinds ofnegation. In K. Apt, editor, Int. Joint Conf. and Symp. on Logic Programming,pages 574{588. MIT Press, 1992.3. H. Blair and V. S. Subrahmanian. Paraconsistent logic programming. In Conf.on Foundations of Software Technology and Theoretical Computer Science, pages340{360. Springer{Verlag, 1987.4. G. Brewka and K. Konolige. An abductive framework for generalized logic pro-grams and other nonmonotonic systems. Tech. report, GMD and SRI Int., 1993.5. N. Costa. On the theory of inconsistency formal system. Notre Dame J. of FormalLogic, 15:497{510, 1974.6. P. M. Dung. Negation as hypotheses: An abductive framework for logic program-ming. In K. Furukawa, editor, 8th Int. Conf. on Logic Programming, pages 3{17.MIT Press, 1991.7. P. Geerts and D. Vermeir. A nonmonotonic reasoning formalism using implicitspeci�city information. In L. M. Pereira and A. Nerode, editors, 2nd Int. Ws. onLogic Programming and NonMonotonic Reasoning. MIT Press, 1993.8. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.In R. A. Kowalski and K. A. Bowen, editors, 5th Int. Conf. on Logic Programming,pages 1070{1080. MIT Press, 1988.9. M. Gelfond and V. Lifschitz. Logic programs with classical negation. In D. H. D.Warren and P. Szeredi, editors, 7th Int. Conf. on Logic Programming, pages 579{597. MIT Press, 1990.10. K. Inoue. Extended logic programs with default assumptions. In K. Furukawa,editor, 8th Int. Conf. on Logic Programming, pages 490{504. MIT Press, 1991.11. K. Konolige. Using default and causal reasoning in diagnosis. In B. Nebel, C. Rich,and W. Swartout, editors, 3rd Int. Conf. on Knowledge Representation and Rea-soning. Morgan Kaufmann, 1992.

12. R. Kowalski. Problems and promises of computational logic. In John Lloyd, editor,Computational Logic Symp., pages 1{36. Springer-Verlag, November 1990.13. R. Kowalski and F. Sadri. Logic programs with exceptions. In D. H. D. Warrenand P. Szeredi, editors, 7th Int. Conf. on Logic Programming. MIT Press, 1990.14. D. Pearce and G. Wagner. Reasoning with negative information I: Strong nega-tion in logic programs. In L. Haaparanta, M. Kusch, and I. Niiniluoto, editors,Language, Knowledge and Intentionality, pages 430{453. Acta Philosophica Fen-nica 49, 1990.15. L. M. Pereira and J. J. Alferes. Well founded semantics for logic programs withexplicit negation. In B. Neumann, editor, European Conf. on AI, pages 102{106.John Wiley & Sons, Ltd, 1992.16. L. M. Pereira and J. J. Alferes. Contradiction: when avoidance equal removal.Part II. In R. Dyckho�, editor, 4th Int. Ws. on Extensions of Logic Programming,1993.17. L. M. Pereira and J. J. Alferes. Optative reasoning with scenario semantics. InD. S. Warren, editor, 10th International Conference on Logic Programming, pages601{615. MIT Press, 1993.18. L. M. Pereira, J. N. Apar��cio, and J. J. Alferes. Counterfactual reasoning basedon revising assumptions. In Ueda and Saraswat, editors, Int. Logic ProgrammingSymp. MIT Press, 1991.19. L. M. Pereira, J. N. Apar��cio, and J. J. Alferes. Nonmonotonic reasoning with wellfounded semantics. In K. Furukawa, editor, 8th Int. Conf. on Logic Programming,pages 475{489. MIT Press, 1991.20. L. M. Pereira, J. N. Apar��cio, and J. J. Alferes. Logic programming for nonmono-tonic reasoning. In Applied Logic Conf. ILLC, Amsterdam, 1992.21. L. M. Pereira, C. Dam�asio, and J. J. Alferes. Diagnosis and debugging as con-tradiction removal. In L. M. Pereira and A. Nerode, editors, 2nd InternationalWorkshop on Logic Programming and NonMonotonic Reasoning, pages 316{330.MIT Press, 1993.22. L. M. Pereira, C. Dam�asio, and J. J. Alferes. Diagnosis and debugging as contra-diction removal in logic programs. In L. Damas and M. Filgueiras, editors, 6thPortuguese Arti�cial Intelligence Conference. Springer{Verlag, 1993.23. D. Poole. A logical framework for default reasoning. Arti�cial Intelligence, 36:27{47, 1988.24. T. Przymusinski. Extended stable semantics for normal and disjunctive programs.In D. H. D. Warren and P. Szeredi, editors, 7th Int. Conf. on Logic Programming,pages 459{477. MIT Press, 1990.25. C. Sakama. Extended well{founded semantics for paraconsistent logic programs.In Fifth Generation Computer Systems, pages 592{599. ICOT, 1992.26. A. Van Gelder, K. A. Ross, and J. S. Schlipf. The well-founded semantics for gen-eral logic programs. Journal of ACM, pages 221{230, 1990.27. G. Wagner. A database needs two kinds of negation. In B. Thalheim,J. Demetrovics, and H-D. Gerhardt, editors, MFDBS, pages 357{371. Springer-Verlag, 1991.28. G. Wagner. Reasoning with inconsistency in extended deductive databases. InL. M. Pereira and A. Nerode, editors, 2nd Int. Ws. on Logic Programming andNonMonotonic Reasoning. MIT Press, 1993.This article was processed using the LaTEX macro package with LLNCS style

