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Abstract

Counting the number of distinct objects within a region is a basic
problem in the field of surveillance, with a wide array of possible uses.
One approach to this problem involves scanning a wide area and recog-
nizing objects of interest, an approach that can be both computation-
ally intensive and error prone. A recent geometric approach, based upon
change detection, can often provide an accurate count of the new objects
in a scene without solving the recognition problem. This approach uses
a visual hull, which is defined as a set of polygons at the intersection of
silhouette cones. The visual hull provides upper and lower bounds on the
number of objects in a scene. Often, however, the visual hull is quite am-
biguous, meaning these bounds are not tight. Earlier work assumes that
these ambiguities will reduce as objects move in the scene.

We consider using a two phase approach to counting objects. In the
first phase, a set of horizontal sensors builds a visual hull. We then use
a secondary network of overhead sensors to resolve ambiguous regions of
the visual hull, tightening the bounds and permitting an exact count.
One example of such a setup would be to use a network of ground-based
cameras as the initial phase, then to use cameras on unmanned aerial
vehicles to tighten the bounds.

We describe several results furthering the understanding of this prob-
lem: 1) A hardness result showing that computing a tight lower bound is
intractable, 2) A greedy algorithm for maximizing the number of polygons
viewed by a network of overhead sensors, 3) A hardness result showing that
orienting the overhead sensors to view the maximum number of polygons
is intractable, 4) Results showing that a greedy algorithm can be applied
to resolve ambiguous portions of the visual hull, with provable bounds
relative to an optimal algorithm, and 5) Extensions of these results to
two abstracted sensor models for the case when polygons can be occupied
by more than one object. Due to the generality of this framework, the
algorithms and results apply to counting many different kinds of objects
with a wide variety of different sensors.
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1 Introduction

Counting the number of objects within a region is a basic problem in the field of
surveillance. Once determined, the number of objects has many potential uses,
such as counting people moving across a border, identifying vehicle movements,
or providing an accurate count of the people attending a sporting event or other
outdoor gathering. Traditional (non computer-based) methods typically rely on
manual head counting and would not work in these situations. We consider the
problem of developing an accurate count with no human involvement.

Counting the objects in any environment first requires identifying the dis-
tinct individual objects and, typically, their locations. These problems are fairly
simple for a human to solve, but are often extremely difficult and error-prone
when attempted automatically. Moreover, they are often impossible from a sin-
gle viewpoint, and, as such, require fusing the information from multiple sensors.
One previous approach, by Yang, et al.[15], utilizes what is called a visual hull
to count people with a network of fixed position cameras. The visual hull is a
geometric construction for combining the information from multiple viewpoints
to recover the geometry of objects in the plane. Since the technique is entirely
geometric in nature and requires no recognition, it has a much lower computa-
tional burden. Yang, et al., demonstrated that their approach performs well in
both simulated and real settings.

The visual hull is not limited to just cameras, however; any network of
sensors, visual or not, can create a visual hull so long as they can create silhouette
cones where they sense objects. For cameras, these cones are typically created
by employing background subtraction techniques. An infrared motion detector,
however, can also produce a silhouette cone when it detects motion. Since a
wide variety of sensors can produce the same construction, we can approach
the counting problem more abstractly; instead of worrying about the specific
sensors involved, we will treat them as abstract units that sense occupancy. We
will continue to refer to this construction as a visual hull, however, to ensure
that this work retains its connection to previous results using the concept.

Though the visual hull allows the sensors to be abstracted away, algorithms
using the visual hull still have to deal with occlusions. Yang et al. developed
a novel way to use the visual hull to develop upper and lower bounds on the
number of people in a region [15]. If the upper and lower bounds converge, they
converge to the true count. In a static scene the bounds can be quite far apart.
If, however, the objects in the scene are moving, then it is possible to prune
away empty polygons from the visual hull, resulting in tighter bounds. Yang et
al. demonstrate how to exploit the assumption of movement in an efficient way.

In some counting situations, such as counting slow-moving and/or stationary
objects,1 the assumption of constant movement is unrealistic – without a con-
siderable amount of movement, the occlusions will never change and the count

1More generally, the difficult case is when the objects are moving slowly relative to the
field of view of the sensors and the time scale of the problem. If, for example, a number of
vehicles have moved into an area of interest over night, it may be desirable to achieve a count
of the number of vehicles before they have a chance to move again.
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will remain ambiguous. To solve these problems, we instead propose using a set
of secondary, overhead sensors to tighten the bounds. We assume that the over-
head sensors can be aimed at portions of the visual hull to sense occupancy. For
example, one could use orbital imaging satellites or pan-tilt cameras mounted on
unmanned aerial vehicles (UAVs). Again, these sensors are treated abstractly,
so the results apply to any network of aimable overhead sensors that can be
used to sense occupancy.

The goal is to answer the question of where to aim the overhead sensors to
tighten the bounds resulting from the visual hull produced by the ground-based
network. We present a simple, greedy strategy for aiming the overhead sensors,
as well as complexity results indicating that finding the optimal strategy is
intractable. We also describe how this strategy compares to an optimal strategy
for aiming the sensors, but we do so in two steps. The first step bounds the
suboptimality of the greedy strategy over a single set of aims for the overhead
network, which we will refer to as a phase. We then extend this result to develop
a bound on the number of phases required to recover the true count. Finally,
we discuss how these results change when polygons can be occupied by multiple
individuals.

2 Previous Work

Counting is not a new problem; this simple problem has been solved for millennia
through the use of manual counting by having a person identify and count
each individual object. One example of a traditional counting technique (for
people) is “checkpoint counting”, counting people as they pass through some
pre-specified checkpoint, e.g. turnstiles. As stated before, however, there are a
large number of situations where such a direct involvement is either impractical
or impossible. Consequently, automated techniques have been attempted many
times in the past. Many of these techniques have focused specifically on counting
people, but much of the work extends to counting other objects as well.

One common approach to this problem involves tracking the objects of in-
terest. Multi-target tracking algorithms generally either assume a fixed, known
number of targets, or will attempt to generate a count of the number of targets
while simultaneously tracking them. Many approaches to multi-target track-
ing [6, 14, 16, 9] attempt to model the arrival and departure of new objects,
typically when an unrecognized object is detected. Solving this problem is non-
trivial, however; to detect new objects accurately, an algorithm will either re-
quire constant human involvement or a solution to the data association problem.
While there are many proposed solutions to the data association problem [2, 8],
they are often not accurate enough to give strong guarantees on the count, nor
even to develop upper and lower bounds on the number of individuals. Many
tracking approaches also struggle with the occlusion problem, particularly when
trying to determine the number of targets [16], making the count even more
ambiguous if not impossible to determine. Observation planning approaches
to the tracking problem also generally assume a known number of targets. He
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Figure 1: Two examples of a visual hull created with two sensors. Note that
there are polygons in the second visual hull which are empty.

and Chong [7], for example, formulate the observation planning problem as a
POMDP and use an approximate solution based on sampling. Berry et al. [1]
uses a greedy, entropy-based measure to decide where to next aim a sensor to
reduce the uncertainty of the position of a target.

The difficulty in using tracking to count objects lies in the problem of recogni-
tion. One markedly different approach to counting objects employs a geometric
construct called the visual hull to obtain the count without solving the recogni-
tion problem. The visual hull is defined as the intersection of all cones swept out
by the silhouettes of objects viewed from all the sensors, traditionally cameras.
Computing the entire visual hull in three dimensions is computationally very
expensive [10, 11], but a planar projection of the visual hull often suffices[15].

2.1 Counting using Visual Hulls

Previous work by Yang et al. [15] used a horizontal sensor network to build a
planar projection of the visual hull, creating a set of polygonal objects in the
plane. These polygons are equal to the intersection of all of the object silhouette
cones as seen from each of the fixed location sensors. Each cone corresponds to a
detection in a conical, sensitive area in front of the sensor. In the case of a cam-
era, background subtraction is used to identify pixels that have changed from a
reference image. Each cone then corresponds to the projection of the identified
pixels on the sensor through the lens and into the region of interest. Once these
cones have been created, simple techniques from computational geometry can
be applied to create the visual hull in polynomial time. More specifically, one
can view the visual hull as a subset of an arrangement of lines; using algorithms
for computing this arrangement can create the visual hull in O(n2) time, where
O(n2) is the maximum number of polygons that can result from n cones.

The visual hull only determines where it is possible for there to be an ob-
ject. Determining the exact count from the visual hull is impossible in many
situations, as shown in Figure 1. In the first diagram, there is only a single
polygon; since each silhouette cone is created where the sensors view an object,
the polygon contains (at least) a single object. In the second diagram, however,
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the visual hull is too ambiguous to conclude an exact count; since there are
two cones from each viewpoint, there must be at least two objects, but there
could be many more. It is often impossible to conclude the exact count from the
geometry of the visual hull alone, but the geometry of the cones and polygons
can be used to compute upper and lower bounds.

• The Upper Bound (UB) is the total area of all the polygons in the visual
hull divided by some minimum object size, fixed a priori. This loose bound
assumes that objects fill polygons as a fluid would. It is possible that a
better bound could be obtained by taking advantage of the geometry of
the observed objects.

• The Lower Bound (LB) is the number of polygons seen by only one
visual hull cone. Counting the number of such polygons gives a weak
lower bound on the number of objects in the scene.

Yang, et al. [15] use these bounds to count people moving in a room through
the use of stationary cameras. The movement of the people allows them to
prune polygons, reducing the upper bound and, sometimes, increasing the lower
bound. Maintaining these counts as the visual hull changes is a fairly simple
process and the bounds give the true count when they converge to a single
number. Yang, et al. show that the algorithm converges well for synthetic data
and also does reasonably well for real data. The assumptions of Yang, et al.
differ from this paper in that this paper attempts to improve the bounds with
additional sensors, rather than relying upon the assumption of movement.

3 Static Bound Calculation

3.1 Formal Definition of the Lower Bound

This section defines what it means to conclude (or infer) that a polygon must
be occupied. This is a more formal version of the lower bound described by
Yang, et al. [15].

Definition The cone upper bound of a cone c is the number of polygons the
cone contains.

Definition A polygon, composed of a set of cones C, is provably occupied if
∃c ∈ C such that the cone upper bound of c is equal to 1.

See the example in Figure 2 (left). The dark polygons are the only polygons
that are provably occupied, while it is impossible to conclude anything about
the lighter polygon. The cone upper bounds are also given. Similarly, the right
figure has no provably occupied polygons, as all cones have a cone upper bound
of two.

The number of provably occupied polygons is a lower bound on the number
of objects contained by the visual hull. In fact, this is just a more rigorous defi-
nition of the lower bound presented in the previous section. This new definition
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Figure 2: Examples of polygons which are provably occupied (dark) and which
are not provably occupied (light). The right image has no provably occupied
polygons. The cone upper bounds are also included.

helps to explain why the lower bound is weak; visual hulls with a large amount
of occlusion will have many cones with high cone counts. Though this is a very
weak lower bound, it does have a useful property. This bound is informative, in
that all objects contributing to the bound have a known location in the visual
hull. Not all lower bounds are informative. See, for example, Figure 2 (right);
since there are two cones in the figure, there are at least two objects in the visual
hull. Knowing that there are two, however, does not give any information about
their positions.

3.2 Hardness Result for Lower Bound

As shown in the previous section, the informative lower bound, LB, may be
considerably smaller the minimum number of objects possible in the scene. The
optimal lower bound is a true count of the smallest number of objects that
could produce a given visual hull. Based on the definition of the visual hull,
this optimal lower bound could equivalently be defined as the size of the smallest
set of polygons such that each cone contains at least one polygon in the set. This
formulation leads to the following decision problem and hardness result.

Definition Given a Visual Hull V and a number k, LowerBound decides whether
it is possible to produce V with k objects (or fewer).

Theorem 3.2.1 LowerBound is NP-Complete.

Proof The reduction is from Planar Vertex Cover. Given a planar graph con-
sisting of only straight edges, fill in the empty regions of the graph with walls.
Then place a single sensor for each edge in this manner: For the edge (u, v),
select either u or v – we will use u for the purposes of this proof. Position a
sensor at the chosen vertex looking down the edge, i.e. towards v. These sensors
should be thought of as having a very small field of view. From each sensor,
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Figure 3: A planar graph before (left) and after (right) the reduction. The cones
in this case have a very small angle, making them lines. Note that the polygons
occur at the intersections.

place a cone down the edge, terminating at the wall beyond v. With proper
placement of the cones, the only created polygons will be located at the vertices
of the graph. See Figure 3 for an example.

The original graph has a vertex cover of size k if and only if this visual
hull could have been created by k objects. Since edges in the graph become
cones in the visual hull, placing an object in a polygon is the same as placing
a vertex in the cover. Thus LowerBound can solve Planar Vertex Cover. Note
that LowerBound is trivially a member of NP; given a set of polygons, verifying
that each cone contains at least one is simple. Therefore, LowerBound is NP-
Complete. �

This argument contains some implicit assumptions. The first assumption is
that vertices of the planar graph can be drawn in general position with all edges
represented as straight lines. A known fact about planar graphs permits this
assumption [3]. Even without this general fact, it is clear from the standard
reduction from Vertex Cover to Planar Vertex Cover [5] that there is no loss of
generality in this assumption.

A second assumption, or specialization, is the introduction of walls into the
problem. Many geometric problems (e.g. Art Gallery [13]) become more difficult
when there are walls inside the area of interest. These walls were introduced
to maintain the simplicity of the reduction; it is possible to remove the walls,
though doing so requires introducing additional sensors to the network. It is, in
fact, possible to extend the reduction to include visual hulls contained within
a convex region, even when all the sensors are on the border. The procedure
works as follows, reducing again from Planar Vertex Cover.

• Compute the convex hull of the planar graph. Create walls outside this
convex hull.

• Place the sensors as directed above, i.e, for each edge (u, v), place a sensor
at the point u looking towards v. Assume that the field of view of each
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sensor is sufficiently narrow that it can be treated as a line.

• For each sensor at a u endpoint, move the sensor along the u−v line away
from v. Keep track of any line segments that are crossed on the path to
the convex hull. Call these crossings unintentional intersections.

• For each unintentional intersection w, create a new sensor that looks only
at w and sees no other intersections. While the original sensors all provide
positive information, meaning that they have detected objects in their
field of view, the new sensors provide only negative information, i.e., they
see no objects in their field of view. The negative information prevents
unintentional intersections from changing the bounds. One might wonder
if it is always possible to place a new sensor that sees only w and nothing
else. The assumption of general position guarantees that there is always
such a point on the convex hull that sees w and no other intersection
points. Thus, one can remove the unintentional intersection points and
still have all the sensors on the room boundary.

• The resulting visual hull will contain only polygons corresponding to ver-
tices from the original graph and all sensors are located on the convex hull.
This conversion produces an equivalent visual hull to that of the simpler
reduction but does not require internal walls. See Figure 4 for before and
after pictures.

The visual hull created here remains polynomial in size, as there are only
O(n2) possible intersections on a graph with n edges. Thus the problem of
computing the smallest number of objects which could create any given visual
hull is intractable, even when the room is convex and all the sensors are on the
perimeter.

4 Aim Planning

The general aim planning problem involves querying the status of a set of poly-
gons (by aiming an auxiliary sensor) to reduce the gap between the upper and
lower bounds. Since it may not be possible to cover all polygons given a fixed
number of sensors, multiple phases of sensor aiming could be required before all
possible information has been extracted from a scene, where a phase specifies a
single aim for each overhead sensor.

Rather than analyzing the multi-phase aim planning problem monolithically,
our analysis is divided into parts. In Section 4.1 we analyze a single camera aim
and the possible suboptimality resulting from a simple aiming strategy. In
Section 4.2 we consider the subproblem of choosing a set of camera aims to
maximize the number of polygons viewed, and the suboptimality resulting from
a greedy strategy. Finally, in Section 4.3 we combine these results to address
the full, multi-phase aiming problem.
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Figure 4: A planar graph after the basic reduction and then after converting to
a convex room. To ensure readability, only the cameras pertaining to the central
line have been drawn. In the left figure, only the correct polygons (at i1 and
i2) exist, but removing the central walls and moving c1 away from i2 introduces
unintentional intersections w1 and w2. Adding negative cones c2 and c3 removes
these unintentional intersections, leaving only the original ones intact.

4.1 Bound Tightening

In this section, we prove that no reasonable algorithm can do too poorly at
tightening the gap between the bounds. Since computing an optimal lower
bound is intractable, this section will use the informative lower bound. This
section also makes the simplifying assumption that polygons contain at most
one object. Section 5.2 extends these results to more general polygons. To
recap:

• The Upper Bound (UB) is the number of polygons in the visual hull.
This is based on the assumption that polygons are simply occupied or
unoccupied – i.e., there are no polygons containing two or more objects.

• The Lower Bound (LB) is the number of provably occupied polygons. This
is the same LB discussed in Section 3.1.

The goal is to aim a set of overhead sensors to reduce the difference between
the two bounds, UB - LB, to zero (or the smallest number possible) in the small-
est number of steps. Note that the number of ambiguous polygons (polygons of
unknown occupancy) is exactly UB - LB.

Before considering the full aiming problem, first consider a more abstract
version. Suppose there is an oracle that indicates whether a polygon is occupied
and that this oracle can be queried about any polygon in the visual hull.2 In this
framework, the bounds always change by at least one: A query either decreases

2This is a reasonable abstraction if the overhead sensor is very high above the plane and has
a narrow field of view. The sensor could be aimed at any specified polygon without concerns
about occlusion. This might not be true if the overhead sensors are not very high above the
plane.
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the UB by exactly one (on a negative, or unoccupied, answer) or increases the LB
by at least one (on a positive answer). A negative answer for p will change the
cone upper bounds (see Section 3.1) of all cones in which p lies, possibly reducing
the cone upper bounds to 1 and making other polygons provably occupied. To
bound the number of polygons which can become provably occupied from a
negative answer, we assume that there are no more than cmax cones per polygon.
This quantity, cmax, is bounded above by the number of sensors in the ground-
based network, since each sensor can see a given polygon only a single time. It
is reasonable to assume that in the cases where overhead sensors are used, cmax

will not be large. As cmax increases, and ambiguity in the visual hull decreases
and the motivation for using overhead sensors also decreases.

Theorem 4.1.1 Consider two algorithms, A and B, that can query this oracle.
Both algorithms choose the same number of polygons to query, k. Assume
that A follows an optimal querying strategy, whereas B can be any algorithm to
choose k polygons. B yields a cmax + 1 approximation algorithm to A.

Proof First consider the change in bounds for B. In the worst case, B will
gain information about no polygons aside from the ones it queries, i.e., it either
never queries an unoccupied polygon or never reduces a cone upper bound to 1.
On the other hand, the best A could do is to reduce cmax cone upper bounds
to 1 for each polygon it queries, thus reducing the bounds by cmax + 1 for each
of the k polygons. The total change in bounds is thus k for algorithm B and
(cmax + 1)k for algorithm A. B is therefore a (cmax + 1) approximation. �

This theorem demonstrates that any algorithm for choosing k polygons
would be a (cmax + 1) approximation algorithm. Based on this result, it is
safe to say that maximizing the number of polygons queried would be a reason-
able approach to this problem. Note that if B employs this strategy, A cannot
choose to query more polygons than B and the result holds.

4.2 Maximizing Polygons Viewed by Multiple Sensors

This section considers the problem of choosing a set of aims θ1, θ2, . . . , θm to
maximize the number of polygons viewed. The main result of this section is
that a simple, greedy approach yields a constant factor approximation for the
largest number of objects the entire overhead network can see. If the overhead
sensors have distinct sets of possible aims, then the greedy algorithm is a 2-
approximation. If the overhead sensors are interchangeable in the sense that all
aims are possible for all sensors, then the greedy algorithm is an e

e−1 approxi-
mation.

Figure 5 presents the pseudocode for a greedy aiming algorithm called Polys-
elect. Polyselect assumes the existence of a function called maxaim that exhaus-
tively considers all possible aims for a sensor and returns the maximum number
of new polygons viewable given the set of aims possible for the sensor. Clearly,
there are many opportunities for caching and incremental computation in the
implementation of maxaim. Among all sensors for which an aim is not already

10



function polyselect(S) ; S is a list of sensors
if S is empty, stop
for i:1..size(S)

mx[i] = maxaim(S[i])
sstar = argmax(mx[i])
swap(S[0], S[sstar]);
mark the polygons sstar can see as viewed
polyselect(S[1..size(S)]);

Figure 5: The Polyselect algorithm.

assigned, Polyselect chooses the sensor and aim that maximizes the number of
previously unseen polygons viewed. The newly viewed polygons are removed
from the set of viewable polygons and the procedure continues until aims are
determined for all sensors.

4.2.1 Maximizing Polygons viewed by non-interchangeable sensors

Theorem 4.2.1 Polyselect is a 2-approximation of the optimal polygon selec-
tion procedure.

Proof Let G1, G2, . . . , Gm be the total number of previously unviewed polygons
seen by the aims chosen by Polyselect, given in descending order, i.e., the or-
dering chosen by Polyselect. Now consider the output of an optimal algorithm,
O1, O2, . . . , Om, given in the same order (Oj is the optimal aim for sensor j in
the greedy ordering). Both quantities are only the new polygons seen by each
sensor, meaning that Ok does not count any polygons counted by O1...k−1.

Define the loss to be the difference between the number of polygons viewed
by Polyselect and the number viewed by an optimal algorithm. Trivially:

loss =
∑

i

Oi −
∑

i

Gi =
∑

i

(Oi −Gi) ≤
∑

i

max{0, Oi −Gi}

Now consider some Oj > Gj , i.e., one of the sensors that contributes to the
final summation. For this sensor j, there is an aim viewing a larger number
of polygons than what Polyselect chose, and there are at least Oj − Gj more
polygons at this optimal aim. Since Polyselect chose the aim giving Gj (instead
of Oj), however, these additional polygons must have been seen by sensors
Polyselect fixed earlier, and are accounted for in G1, G2, . . . , Gj−1. Therefore,

loss ≤
∑

i

max{0, Oi −Gi} ≤
∑

i

Gi.

Substituting into the original expression for the loss:∑
i

Oi −
∑

i

Gi ≤
∑

i

Gi
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Figure 6: An example demonstrating the tightness of the approximation ratio
for non-interchangeable sensors. There are two overhead sensors, each with two
different aim points. Polyselect will choose the aims L2 and R2, whereas an
optimal algorithm would choose L1 and R1.

∑
i

Gi ≥
1
2

∑
i

Oi

Thus, Polyselect yields a 2-approximation for the optimal set of aims. �

This approximation ratio is also tight. Consider the simplified scenario in
Figure 6, in which there are two sensors, each with two possible aims. Polyselect
will choose to orient both sensors in position 2, yielding a total of n+1 polygons.
An optimal algorithm, however, will orient both sensors in position 1, with a
total of 2n polygons.

4.2.2 Maximizing Polygons viewed by Interchangeable Sensors

If all the sensors can see the same region, and thus can choose from the same
set of views, Polyselect achieves a better approximation ratio. This result draws
upon earlier work on the maximization of submodular functions [12]. Nemhauser
et al. established several equivalent criteria for a function z to be a submodular
non-decreasing function. We use the following criterion:

z(S ∪ {i})− z(S) ≥ z(T ∪ {i})− z(T ) ≥ 0 ∀S ⊂ T ⊂ A,∀i ∈ A

Lemma 4.2.2 Let A be the set of views available to the overhead sensors and
z : 2A → N be the number of distinct polygons viewed by a subset of these views.
z is a non-decreasing, submodular function.

Proof Let S and T be subsets of A such that S ⊂ T . Now consider adding an
additional aim i to both sets. Since z counts the number of distinct polygons
viewed by a subset of the aims, the additional aim i cannot contribute fewer
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n n+1 n+1 n

Figure 7: An example where Polyselect will give a 4/3-approximation to the
optimal polygon selection. The optimal aims are given by the two dashed rect-
angles, while the greedy solution is drawn with solid lines. The size of the
optimal aims have been shortened to ensure readability.

new polygons to S than it would to T . Also note that adding an aim can only
increase the number of distinct polygons, implying that z is non-decreasing. �

Note that interchangeability is necessary for submodularity. If the sensor views
are not chosen from the same set, z is not a set function, as there are some
views which are not available to all the sensors. Consequently, the results in
this section do not apply to the case of non-interchangeable sensors.

Nemhauser et al. describe a greedy heuristic [12], for maximizing a submod-
ular set function. Starting with a null set S, the greedy heuristic adds a new
item i 6∈ S that maximally increases z(S ∪ {i}). After k greedy choices, the
resulting z(S) is within

1−
(

k − 1
k

)k

of the best possible choice of k elements. In the limit of large k, this becomes
(e− 1)/e.

Theorem 4.2.3 When all the sensors have the same viewable region, Polyselect
gives an e/(e−1)-approximation to the optimal procedure for selecting polygons.

Proof By construction, Polyselect is a greedy heuristic of the form described
by Nemhauser et al. Therefore, the number of polygons chosen by Polyselect is
within (e− 1)/e of optimal, making Polyselect an e/(e− 1) approximation. �

The tightness of this bound remains an open question. Figure 7 depicts an
example of a situation where Polyselect with interchangeable sensors will give a
4/3-approximation to the optimal solution for two overhead sensors, correspond-
ing to the Nemhauser et al. result for k = 2. This pattern can be replicated and
Polyselect remains a 4/3 approximation for an arbitrary number of copies. This
is better than the limiting case of the Nemhauser et al. result, which would be
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e/(e − 1). It is not known if more difficult, large instances exist to fill the gap
between e/(e− 1) and 4/3.

4.2.3 The Hardness of Maximizing Polygons viewed by Multiple
Sensors

One could reasonably ask whether it is necessary to resort to a greedy algorithm
(or other approximation) to maximize the number of polygons viewed. Could
a polynomial time algorithm choose a maximizing set of aims? This section
shows that, in general, some form of approximation will be necessary because
the basic problem is intractable. MaxPoly is the decision version of this polygon
maximization problem. More formally:

Definition Given a collection S of overhead sensors (with |S| = c) and a set
P of polygons, MaxPoly decides whether there exists a set of aims Θ such
that aiming the sensors in these aims will allow the network to view at least k
polygons.

Theorem 4.2.4 MaxPoly is NP-Complete.

Proof This problem is NP-Hard so long as the number of overhead sensors
is not fixed ahead of time. The reduction follows from the c-center problem:
Given a set P of n points in the plane, does there exist a set of c “balls” of
radius r which can completely cover all the points in P? 3

The c-center problem is NP-Complete so long as c is part of the input, even
when the metric is L∞. [4] Note that “balls” in L∞ are axis parallel squares of
size 2r. The reduction works as follows:

• Given a set of points P , create a polygon for each point. Let each polygon
be very small, so none of the polygons overlap.

• Create c overhead sensors. These overhead sensors have a square field of
view and are positioned in so that they can view any portion of the plane
occupied by the points in P . The field of view of these sensors is also just
the size needed to view a radius r square in L∞, that is, a square of size
2r.

An algorithm to decide this instance of the MaxPoly decision problem will also
decide the original instance of c-center. Suppose there exist aims for the sensors
which view at least n polygons. Looking at the squares created by the fields of
view of the c sensors would create a set of c squares that contain all n of the
input points.

MaxPoly is also trivially a member of the class NP. Given a set of aims for
the sensors, it is easy to decide whether the overhead sensors can actually view
k polygons. Thus, MaxPoly is NP-Complete. �

3This problem is typically known as the p-center problem. We refer to it as the c-center
problem to emphasize the connection between the covering “balls” and the overhead sensors.
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This theorem demonstrates that finding the aims maximizing the number of
viewed polygons is intractable if the number of overhead sensors is part of the
problem input. If the number of sensors is a constant, however, then finding the
aims that maximize the number of viewed polygons can be solved in polynomial
time via exhaustive search since there are O(nc) possible choices. For moderate
values of c, however, the runtime of this procedure can be quite high.

4.3 Multi-phase Bound Resolution

This section considers how Polyselect performs when applied over multiple
phases of sensor aims. A phase assigns an aim to each sensor and processes
the results of the aims, updating the visual hull and set of polygons. In each
phase, the network gathers more information about the count in the region. The
objective of this section is to determine how many greedy phases are required
to minimize UB - LB, relative to an optimal algorithm.

We consider two versions of this problem, one with inference and the other
without. In this section, inference means using the cone upper bounds to prove
occupancy, as described in Section 3.1. Bound Resolution without inference
requires viewing all of the polygons in the visual hull, whereas resolving with
inference can conclude that a polygon is occupied without necessarily viewing
it. Recall that a polygon can become provably occupied if it lies on a cone for
which all other polygons were shown to be empty.

4.3.1 Bound Resolution Without Inference

Suppose there are n polygons to view and that an optimal algorithm is able to
view them in k phases, which will henceforth be referred to as a round.

Lemma 4.3.1 If an optimal algorithm requires k phases (one round) to view n
polygons, then Polyselect will view at least n/2 polygons in one round in general,
and at least n(e−1)

e when the cameras are interchangeable.

Proof Consider an aim planning algorithm that plans aims for a single round
by planning aims for k copies of the c overhead sensors. The algorithm could
produce a physically impossible sequence of aims, e.g., by tasking a sensor mul-
tiple times within a window of c aims. However, since no camera is used more
than c times, the aims can be reordered to correspond to a physically possible
sequence. Note that the total number of polygons viewed for any strategy does
not depend upon the order.

Consider the greedy algorithm from Section 4.2 applied to the problem of
aiming k copies of the c sensors. By Theorem 4.2.1 this algorithm is a 2 approx-
imation in general. If the sensors are interchangeable, it is a e

e−1 approximation
by Theorem 4.2.3. �

In general, assuming a greedy d approximation algorithm is used for aim
planning, the number of extra rounds needed is logarithmic in the number of
polygons.
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Theorem 4.3.2 If an optimal aim planning algorithm requires k phases (one
round) to view n polygons, then a greedy d-approximation algorithm requires at
most logd/(d−1) n rounds to view all the polygons and is therefore a logd/(d−1) n
approximation.

Proof Suppose that after some round i of the greedy algorithm, nleft polygons
remain unviewed. The same set of aims used by the optimal algorithm will suffice
to view these nleft polygons. Therefore, by Lemma 4.3.1, the greedy algorithm
will be able to view at least nleft/d in the next round. Each round, in the
worst case, the greedy algorithm reduces the number of remaining polygons by
a constant factor. This leads to a simple recurrence for the number of rounds
required by the greedy algorithm: T (n) = T (n · (1 − 1/d)) + 1. Solving the
recurrence gives: T (n) = logd/(d−1) n. �

Corollary 4.3.3 Polyselect requires at most log2 n more rounds than an opti-
mal algorithm to view all polygons.

Corollary 4.3.4 When the sensors are interchangeable, Polyselect requires at
most lnn more rounds than an optimal algorithm to view all polygons.

4.3.2 Bound Resolution With Inference

Consider the general case where it is possible to infer that polygons are occupied
in some cases. The problem is now to view, or infer, the status of n polygons
in the minimum number of phases. This problem is more interesting than the
case without inference because the optimal strategy could be conditional: The
decision to view a particular polygon could depend upon the status of earlier
views. In this section, we will use the word resolve to mean either viewing or
inferring the status of a polygon.

Lemma 4.3.5 If an optimal algorithm requires k phases (one round) to resolve
n polygons, then Polyselect will view at least n

2(cmax+1) polygons in one round in

general, and at least n(e−1)
e(cmax+1) when the cameras are interchangeable.

Proof By Theorem 4.1.1, an algorithm that exploits inference can resolve at
most a factor of cmax + 1 more polygons than an algorithm that doesn’t plan
on inference. To resolve n polygons, the optimal algorithm must view at least
n/(cmax + 1) polygons. If it is possible to view n/(cmax + 1) polygons, then by
Theorem 4.2.1, a greedy algorithm will view at least n/2(cmax + 1) polygons in
general and at least n(e−1)

ecmax
when the cameras are interchangeable. �

Theorem 4.3.6 Using a greedy d-approximation to plan the sensor aims in
each phase requires no more than d(cmax+1) log2 n more rounds than an optimal
algorithm that plans to use inference.

Proof Suppose that after some round i of the greedy algorithm, nleft polygons
remain. The same set of aims used by the optimal algorithm will suffice to
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resolve these nleft polygons. Therefore, by Lemma 4.3.5, the greedy algorithm
will be able to view at least nleft/d(cmax + 1) in the next round. Each round,
in the worst case, the greedy algorithm cuts the number of remaining polygons
by a constant factor. This leads to the same recurrence as Theorem 4.3.2, with
a = d(cmax + 1):

T (n) = log a
a−1

n =
log2 n

log2 a− log2 (a− 1)

The denominator, log2 a − log2 (a− 1), is a finite difference approximation of
the derivative of log2 at a. Since log is concave, this must be larger than the
true derivative, 1/a, implying:

T (n) =
log2 n

log2 a− log2 (a− 1)
≤ log2 n

1
a

= a log2 n

Substituting a = d(cmax + 1), T (n) ≤ d(cmax + 1) log2 n. �

Corollary 4.3.7 When the optimal algorithm can plan to use inference, Poly-
select (see Section 4.2) requires at most 2(cmax + 1) log n more rounds than the
optimal algorithm to resolve all polygons.

Corollary 4.3.8 When the optimal algorithm can plan to use inference and the
overhead sensors are interchangeable, Polyselect requires at most e−1

e (cmax +
1) log n more rounds than the optimal algorithm to resolve all polygons.

4.3.3 Hardness of Multi-phase Planning

Theorem 4.3.9 The multi-phase MaxPoly problem is NP-Hard if the number
of sensors is not fixed a priori.

Proof Section 4.2.3, proves that maximizing the number of viewed polygons for
c sensors is NP-Hard so long as c is part of the input. If the number of phases is
not determined a priori, then any algorithm that solves the multiphase MaxPoly
program must also solve the single phase problem to determine if more than a
single phase is required. �

It is also possible to extend this result to the case where the number of
sensors is fixed a priori.

Definition Given a collection S of overhead sensors (with |S| = c) and a set
P of polygons, NumPhases is the problem of determining whether it is possible
to view P with m phases.

Theorem 4.3.10 NumPhases is NP-Hard, even when the number of sensors is
fixed a priori.
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Proof The reduction is from the c-center problem, and follows a similar line
of reasoning as used in Theorem 4.2.4. Given a set of points P , create a very
small polygon for each point; these polygons should be small enough that none
overlap. Next, create a single overhead sensor with a square field of view of
radius r and position it such that it can aim at any location within the region
of interest.

An algorithm to decide this instance of NumPhases will also decide the
original instance of c-center. Consider the set of aims chosen by the algorithm
deciding NumPhases. These k aims would correspond with k squares (of size
2r) covering all the points in P , thus also deciding the original decision problem.
Therefore, NumPhases is NP-Hard. �

This result is much stronger than the result proved in Section 4.2.3 as the
problem remains NP-Hard even when the number of sensors a constant.

4.4 Complete Approximation Algorithm

The complete algorithm works as follows:

1. Given an initial visual hull with n ambiguous polygons, run an algorithm
that maximizes the number of ambiguous polygons seen by all m sensors.
This problem is NP-Hard in general (see Theorem 4.2.4), but Section 4.2
provides a 2-approximation in general and an e

e−1 approximation when
the sensors are interchangeable.

2. Orient the sensors to the positions given by step (1) and update the cone
counts. Remove the resolved polygons from the visual hull.

3. Repeat from step one until all polygons are resolved. As proved in Section
4.3.2, this algorithm will not require more than than 2(cmax+1) log n more
rounds than an optimal algorithm would require in general, and no more
than e

e−1 (cmax + 1) log n more if the sensors are interchangeable.

5 Large Polygons

So far, the analysis has assumed that only a single object can be in each poly-
gon, meaning that polygons are simply occupied or unoccupied. Depending
upon the range and density of the sensors, however, a visual hull could contain
larger polygons which are large enough to contain multiple objects. This sec-
tion considers how performance changes with the relaxation of the single object
per polygon assumption. This assumption is relaxed in two different ways, re-
sulting in slightly different versions of the multi-object detection problem. The
first problem is quite similar to the single-object case discussed in Section 4.1;
we call this problem Multiple Occupancy Single Detection. This problem corre-
sponds with the case where sensors can detect occupied polygons, but cannot
distinguish distinct objects within the polygons. The other relaxation leads to
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a problem with more powerful sensors; this problem is called Multiple Occu-
pancy Multiple Detection, and it corresponds with the case where sensors can
distinguish distinct objects within polygons. The same strategies as discussed
in Section 4 apply to these new problems, leading to bounds on the number of
phases required to fully resolve the number of objects.

5.1 Upper and Lower Bounds

The number of polygons previously served as an upper bound on the number
of objects that could create a visual hull, an assumption that no longer holds
in the case of large polygons. Following from Yang, et al. [15], it is possible to
offer some better bounds for this case:

• The Lower Bound remains the number of provably occupied polygons.
This provides a loose lower bound on the smallest number of objects in
the visual hull.

• The Upper Bound is the same as the one used by Yang, et al.: It is the
maximum number of objects that could be placed within the visual hull.
This could be computed by dividing the total area of all the polygons in
the visual hull by some pre-specified minimum object size. The upper
bound is also a loose estimate of the maximum number of objects, as it
assumes that the objects occupying each polygon can fill it like a liquid
[15]. Making further assumptions about the geometry of the objects could
yield a tighter bound.

5.2 Single Detection

Recall from Theorem 4.1.1 that, for single occupancy polygons, any reasonable
aiming algorithm resolves at least 1/(cmax + 1) times as many polygons as an
optimal algorithm. The proof of this approximation ratio, however, depended
crucially on the assumption that each polygon is occupied by at most a single
object. This section extends these results to multiply occupied polygons and
shows that the previous proof is a special case of this more general framework.
We first consider a simple modification of this previous problem.

Definition The Multiple Occupancy Single Detection (MOSD) problem is an
instance of the aim planning problem in which polygons can be occupied by mul-
tiple objects, but overhead sensors return only a single bit of information; they
can distinguish between occupied or unoccupied polygons but cannot determine
how many objects are within an occupied polygon.

As with the single occupancy case, the objective of the MOSD problem
is to reduce the difference between the bounds, UB − LB, to the minimum.
An optimal algorithm would reduce this gap in the smallest possible number of
“steps”, where the definition of a single step depends on the method of querying
polygons.
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First we define a few properties of specific polygons given a minimum object
size, MINSIZE.

• The Lower Score, LS(p), of a polygon is one for all polygons.

• The Upper Score, US(p), of a polygon p is barea(p)/MINSIZEc.

Note that the Upper Bound becomes the sum of US(p) for all polygons. Let
the quantity umax be the maximum US(p), i.e., umax = maxp US(p).

Mirroring the theoretical development in Section 4.1, assume that there is
an oracle which gives information about polygon occupancy. This oracle plays
the role of an abstract sensor, meaning that it gives a single bit of information
when queried about a polygon.

With this type of oracle, a single ‘unoccupied’ result reduces the upper bound
by US(p) and possibly increases the lower bound by LS(p) for at most cmax other
polygons. An ‘occupied’ result, on the other hand, increases the lower bound
by only LS(p) for the queried polygon. This leads to a more general version of
Theorem 4.1.1 with these new bounds.

Theorem 5.2.1 Let A and B be algorithms that query an MOSD oracle about
polygon occupancy, with both algorithms querying k polygons. Let A be an opti-
mal algorithm, whereas B can be any other algorithm to choose k polygons. B
yields a (cmax + umax) approximation to A.

Proof Algorithm B will gain information about at least k polygons, but pos-
sibly no more. On the other hand, Algorithm A gains information about at
most

∑
p (US(p) + cmax) polygons. Since US(p) ≤ umax, then A gains infor-

mation about at most k(umax + cmax) polygons. Thus, in this framework, B is
a (umax + cmax) approximation to A. �

Recall Theorem 4.1.1 proved that B is a (cmax +1) approximation. This fol-
lowed by assuming that each polygon contains at most one object, i.e. US(p) =
1 ∀p and umax = 1. The MOSD problem is therefore a more general case of the
problem defined in Section 4.1 and the results from Theorem 4.3.6 extend to
these new bounds.

Corollary 5.2.2 Using Polyselect to aim sensors for the MOSD problem re-
quires no more than 2(cmax + umax) log n more rounds than an optimal algo-
rithm.

Corollary 5.2.3 Using Polyselect for the MOSD problem with interchangeable
sensors requires no more than e

e−1 (cmax + umax) log n more rounds than an op-
timal algorithm.

As stated before, the MOSD problem makes a pessimistic assumption about
the inability of the overhead sensors to resolve the individual occupants of the
polygons, i.e., if a polygon has more than one object in it, the sensors cannot
detect exactly how many. The next subsection addresses a different problem
where the sensors are able to detect multiple objects within a single polygon.
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Figure 8: Before and after pictures for sensors in the MOMD problem. The
polygon in the left image contains two objects, represented by filled circles. The
result of viewing this polygon with a multiple detection sensor is shown on the
right. There are two new polygons, each containing exactly one object.

5.3 Multiple Detection

Suppose that the overhead sensors are also capable of creating cones and adding
them to the projected visual hull. These cones are perpendicular to the pro-
jection plane and, as such, will appear to be provably occupied polygons in the
plane. This description leads to a new version of the counting problem:

Definition The Multiple Occupancy Multiple Detection (MOMD) problem is
an instance of the aim planning problem in which polygons can be occupied
by multiple objects and overhead sensors can resolve individual objects within
polygons.

For an example of multiple detection sensors, see Figure 8. This section
analyzes the worst-case reduction in bounds for an algorithm directing sensors
which satisfy the MOMD assumptions. The bounds given here are crucially
dependent on the minimum object size, as defined in the previous sections.

Definition Given an aim v viewing polygons p(v) in the visual hull, we define
C(v) to be the number of potential objects seen by v. More formally:

C(v) =
∑

p∈p(v)

⌈
area(p ∩ v)
MINSIZE

⌉

This definition gives a lower bound on how much a view can change the
bounds.

Lemma 5.3.1 In the MOMD problem, if all objects are the same size, then
choosing aim v and adding the information to the visual hull will reduce the gap
in the bounds by at least C(v), regardless of the number of objects seen in the
view.

21



Proof First, suppose that there were no objects detected by aim v. If this is
the case, then the upper bound (defined in Section 5.1) will decrease by C(v),
because all the polygons that were previously in the field of view of v will be
removed from the visual hull. Now suppose the overhead sensor detects a total
of k objects. Viewing the k objects creates k new polygons, each of size roughly
equal to the size of the objects, as in Figure 8. Since the objects are all of the
same size, the upper bound will be decreasing by C(v)− k and the lower bound
will increase by k, resulting in a net change of C(v). �

This lemma leads directly to a bound on the worst-case reduction in bounds
as compared to an optimal aim selection algorithm.

Theorem 5.3.2 Consider two algorithms for aiming sensors: A and B. Both
algorithms choose the same number of potential objects to view, meaning that
they chose vA and vB such that C(vA) = C(vB). Let A be an optimal algorithm,
whereas B is any algorithm that can choose a view of this type. For multiple
occupancy polygons and the MOMD problem, B is a cmax + 1 approximation.

Proof Consider the change in bounds for algorithm B. In the worst case,
the bounds will change by C(vB); this corresponds with the case where all
the polygons are occupied. On the other hand, A can potentially change the
bounds by much more. The best that A can do is to change the bounds by
C(vA) + |p(vB)| · (cmax + 1), which we can upper bound by C(vB) · (cmax + 1).
Thus, B is a cmax + 1 approximation. �

As in Section 4.1, this theorem is deliberately vague about the algorithm
used for B; based on this theorem, any algorithm that chooses a view v seeing
at least C(vA) would be a cmax + 1 approximation to the optimal algorithm.
Consequently, an algorithm which maximizes this quantity would work well for
bounds resolution with this sensor model. Polyselect (see Section 4.2) can be
modified to maximize this quantity instead, and will give the same approxima-
tion guarantees. Likewise, this problem still remains NP-Hard, as the reduction
in Section 4.2.3 corresponds to the case where none of the polygons are larger
than a single object.

As in the previous section, the previous multi-phase analysis (see Section
4.3.2) extends to this new sensor model.

Corollary 5.3.3 For the MOMD problem, Polyselect (approximately maximiz-
ing the number of potential objects viewed) will require no more than 2(cmax +
1) log n more rounds than an optimal algorithm, where n is the number of po-
tential objects in the original visual hull.

Corollary 5.3.4 For the MOMD problem with interchangeable sensors, Polys-
elect will require no more than e

e−1 (cmax +1) log n more rounds than an optimal
algorithm.
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Figure 9: (left) A plot of the gap in bounds for TrueGreedy vs Phase. Data
were averaged over 15, 14 and 10 experiments. (right) A plot of the gap in
bounds versus phase for Polyselect. Data were averaged over 15 experiments
for all lines. Note that both plots are essentially the same.

6 Empirical Results

We evaluated our greedy approach using a simulated version of the counting
problem. We generated random configurations of objects with nine horizontal
and two overhead sensors. Since many real visual hulls contain large polygons,
we did not make the assumption that polygons are only occupied by single ob-
jects and used the MOMD sensor model. We then ran Polyselect to completion
and measured change in bounds over time. To implement maxaim, we developed
a sweepline approach which finds local maxima in the viewed polygon area as
the overhead sensor’s aim is swept in the y-direction. These local maxima were
then searched to find the global maximum. We compared the performance of
Polyselect to a procedure which actually maximizes the area of viewed polygons,
which we call TrueGreedy. Both algorithms chose from the same set of aims.
The optimal, non-myopic strategy is too expensive to compute, so we do not
compare against the truly optimal set of aims. All of the tested configurations
had interchangeable sensors.

Polyselect, in general, runs approximately 10-40 times faster than True-
Greedy. Figure 9 shows two plots of the gap in bounds (UB - LB), one running
TrueGreedy and the other running Polyselect. As the graphs demonstrate, the
suboptimality of using Polyselect is reasonable. Note also that no more than
ten phases were required for any of the experiments.

7 Conclusion

This paper described a fairly simple, greedy method for using a combination
of horizontal and overhead sensors to count the number of objects in a region.
The results are very general in that they apply to any ground-based sensors that
can sense occupancy and produce silhouette cones; some examples include cam-
eras, infrared motion detectors, and possibly others. The algorithm presented
here assumes only that the overhead sensors can be aimed at various points in
the region and can similarly detect occupancy. Moreover, this technique has
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provable bounds relative to an optimal algorithm for aiming the same set of
sensors. These bounds extend to several different sensor models and special
occupancy cases (e.g., multiply occupied polygons). The paper also presented
hardness results on the difficulty of finding a tight lower bound and on orienting
the overhead sensors to view the largest number of polygons.
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