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Abstract Separation Logic (SL) is often presented as an assertion language for reasoning
about mutable data structures. As recent results about verification in SL have mainly been
achieved from a model-checking point of view, our aim in this paper is to study Separation
Logic from a complementary proof-theoretic perspective in order to provide results about
proof-search in SL. We begin our study with a fragment of SL, denoted SLP, where first order
quantifiers, variables and equality are removed. We first define specific structures, called
resource graphs, that capture SLP models by considering heaps as resources via a labelling
process. We then provide a tableau calculus that allows us to build such resource graphs
from which either proofs, or countermodels can be generated. We finally prove soundess,
completeness and termination of our tableau calculus before discussing extensions to various
fragments of SL (including full SL) and the related decidability issues.

1 Introduction

Separation Logic (SL) and its variants are logics for reasoning about mutable data struc-
tures in which the pre- and postconditions are written using specific forms of conjunction
or implication. In this context, Reynolds initially proposed an intuitionistic logic extended
with a separation connective ∗ [24] and Ishtiaq and O’Hearn then investigated the same
approach from the point of view of the logic of Bunched Implications (BI) [22], which allows
a joint and modular treatment of intuitionistic connectives (additive implication → and
conjunction ∧) and linear connectives (multiplicative implication −∗ and conjunction ∗).
The resource interpretation of BI’s connectives, where ∗ decomposes the current resource
into pieces and −∗ talks about new and fresh resource, is central.

Separation Logic, also denoted BI’s pointer logic, provides an actual way of understanding
the separating conjunction ∗ and implication −∗ in the context of program verification
apart from logical concerns [17]. From a semantic point of view, the models of SL are
very specific models of Boolean BI (BBI) that validate the axioms for Hoare triples and in
which the additive connectives are classical. Since Separation Logic is mainly used as an
assertion language for specifying properties about programs that manipulate dynamically-
allocated linked data structures, it is essential to provide methods and tools for verifying
or proving SL specifications. As the existing works on automated assertion checking in SL

are mainly based on a model-checking approach [2,25], we aim at developing an alternative
approach based on theorem-proving in order to provide methods and tools for proof-search
and countermodel generation in SL. Knowing that many other spatial logics [12,11,8], for
which the model-checking approach is the only approach currently available, can also be



seen as extensions or specializations of SL, we expect to develop similar theorem-proving
methods and tools for these logics too. Moreover, with our results on SL as a starting
point, studying the combination of both approaches could be fruitful in order to improve
the verification of properties expressed in various spatial logics.

The central contribution of this paper is a new characterization of validity in SL based
on a labelled tableau calculus that builds specific structures, called resource graphs, from
which validity can be analyzed and countermodels can be generated. A few preliminary
and incomplete results about this tableau calculus have already been presented in [15] but
in the present paper we give the complete presentation, with refined concepts, more proofs
and new results about countermodel generation, termination and decidability issues.

One challenge of this work is to investigate whether the general methodology applied for
the standard version of BI [16], which admits intuitionistic additive connectives, can also be
applied to SL. The results presented in this paper show that using a general methodology
based on the design of an appropriate labelling algebra allows us to capture, in a non-trivial
way, the essential properties of SL models inside specific structures called resource graphs
from which validity, entailment and countermodel contruction in SL can be analyzed.

Starting from a propositional fragment of SL called SLP which contains no variables and no
equality predicates, we define the central notion of resource graphs and provide a tableau
calculus that builds such resource graphs in parallel of the tableau construction process.
This calculus represents a first theorem-proving alternative to the existing model-checking
approaches w.r.t. the verification problem in SL. The main properties of the calculus,
namely soundness, completeness and termination are then proved with an emphasis on
how to generate countermodels from resource graphs when proof-search fails. Having in
mind that full SL is not decidable, we study various extensions of SLP including first order
quantifiers, variables and equality predicates and finally discuss the known decidability
results and issues [9] using alternative proof-theoretic arguments.

In Section 2 we recall the main characteristics of Separation Logic and more particularly
its language and semantics. With its local form of reasoning, SL is a logic for specifying
and verifying properties of programs that manipulates dynamically-allocated linked data
structures in a much simpler way than previous formalisms [5,3,13]. Knowing that exist-
ing works on automated assertion checking in SL are mainly based on a model-checking
approach [2,25], our aim is to devise verification methods based on a theorem-proving
approach. We view our work on SL as a first important step toward new proof-search
methods for related spatial logics based on ambient or tree models [12,11,8] for which only
model-checking techniques have been developed so far.

In Section 3 we focus on heaps, labels and resource graphs. Although a similar approach
has already been successfully applied to BI, one challenge of this work is to study if the
same general methodology also applies to SL. Two main obstacles arise:

– the first one is that the additive connectives of SL are classical, so that most of the
crucial arguments relying on the intuitionistic nature of BI can no longer be applied;

– the second one lies in the fact that heap composition in SL interacts with the points-to
predicate 7→ and admits subtle properties that require non-trivial adaptations to the
initial notion of BI’s resource graphs in order to capture entailment in SL appropriately.



For mixed resource logics such as BI or SL, the main principle of the methodology consists
in reflecting the semantic relation of entailment at a syntactic level via a labelling process
that results in an algebra of labels and label constraints obtained by means of a particular
closure operator. The closure of a set of labels and label constraints then leads to the
notion of resource graphs from which the validity of SL formulas can be analyzed. Thus,
our first contribution is the definition of an appropriate notion of resource graphs for SL

that captures the properties of heap composition w.r.t. points-to predicates.

In Section 4 we present the main contribution which is a labelled tableau calculus for SLP

that builds resource graphs in parallel of the tableau construction process. This calculus
represents a first theorem-proving alternative to the existing model-checking approaches,
the choice of a tableau representation being justified by its known ability to ease counter-
model construction. After an overview of the various kinds of expansion rules and their
impact on resource graph construction, we introduce a specific notion of measure in order
to determine how many cells are assumed to be actually present in the heap denoted by a
given node in a resource graph. A key point here is that provability in SLP is characterized
with a clear distinction between two distinct notions: structural and logical consistency.
The former means that a resource graph actually represents a model and the latter means
that a formula can be falsified in some model. We are quite confident that validity in some
other resource logics that are closely related to SL can also be characterized through an
appropriate notion of resource graphs using a similar approach. Therefore, we view our
work on SLP as a first step toward providing proof-theoretic foundations and tableau-based
calculi to a wide range of separation logics that deal with semi-structured data.

In Section 5 we prove the main properties of the tableau calculus. We first prove soundness
by introducing the size of a heap, which is the number of locations it contains. Then
we proceed with the completeness proof, which relies on the effective construction of a
countermodel from an open tableau branch. To complete these results we develop the
main arguments that justify the termination of the tableau method for SLP from which
we can deduce the well-known decidability and complexity results about the propositional
fragment of SL [9] using alternative proof-theoretic arguments.

In Section 6 we study a few extensions of SLP including first order quantifiers, variables and
the equality predicate. In order to deal with quantifiers, we use a standard technique that
eliminates variables by instantiating parameters depending on the sign of a labelled formula
[14]. Equality is handled via (plain syntactic) term-unification and requires modifying the
condition for a closed tableau branch. Having in mind that SL is not decidable, we finally
discuss decidability issues in a particular fragment of SL where memory cells are restricted
to single values instead of pairs of values.

In Section 7 we summarize the results and develop some perspectives. We aim at applying
the same proof-theoretic approach to the affine fragment of SL [17] which admits intu-
itionistic additives and allows one to write interesting properties about sharing. Moreover
some spatial logics for trees or graphs [10] being strongly related to SL and Boolean BI

we aim at studying these logics from our proof-theoretic perspective as an alternative
and complementary basis to the model-checking approach. Moreover, comparisons with
existing works on theorem proving and pointer programs [18,20,23] could lead to fruitful
refinements of our results.



2 Separation Logic and Verification

Separation Logic (SL) is a logic for reasoning about mutable data structures and can be
viewed as a specific extension of Hoare Logic in which pre- and post-conditions are written
in the logic of Bunched Implications (BI) [22,24] 1. BI allows one to write statements that
mix the (additive) connectives of intuitionistic logic (∧, ∨, →) with the (multiplicative)
connectives of intuitionistic linear logic (∗, −∗). Accordingly, SL includes

– a spatial form of (separating) conjunction ∗ that splits a heap into distinct subheaps;
– a spatial form of (separating) implication −∗ that describes fresh pieces of heaps;
– and a form of assertion that allows one to make statements about the content of a

heap cell via the points-to predicate 7→.

Various problems about pointer management, including aliasing, are difficult to address
with standard approaches and the correctness of a program that mutates data structures
defined via pointers (such as linked-lists) usually depends on making restrictions on the
sharing inside such data structures. In order to deal with such problems, Separation Logic
admits simple axioms that capture the intuitive operational locality of assignment [21].
Separation logics usually comes in two flavours depending on the nature of the additive
connectives ∧ and → [24]:

– the first one uses intuitionistic additives and includes a monotonicity property which
ensures that an assertion which holds for a portion of a storage still holds in any
extension of this portion;

– the second one does not have the previous monotonicity property as it uses classical
additives, but allows reasoning about explicit storage deallocation.

The underlying idea of separation used in SL can be generalized in order to describe the
separation of other kinds of resources (e.g., trees, graphs or processes [8,10,12]).

2.1 Separation Logic: Syntax and Semantics

In this section we summarize the main notions and results about SL. Let us begin with

– a countable set Loc of locations l, k,m, l1, k1,m1, . . .
– a countable set Cst of constants a, b, c, a1, b1, c1, . . .
– a countable set V ar of variables x, y, z, x1, y1, z1, . . . and
– a countable set V al = Cst ∪ Loc of values (constants or locations).

We then define a stack s as a finite partial function V ar ⇀fin V al that associates values
to variables and a heap h as a finite partial function Loc ⇀fin V al × V al that associates
pairs of values to locations. We respectively write H and S to denote the set of all heaps
and the set of all stacks.
An expression E can either be a value or a variable or that can be interpreted as a
value w.r.t. a stack s (JE Ks ∈ V al). Variables that are bound by a stack are called stack
variables.
1 Separation Logic was indeed initially called BI’s Pointer Logic [17].



Definition 2.1. The language of SL consists of the points-to predicate 7→, the equality
predicate =, the existential quantifier ∃, the propositional connectives of BI and the sets
V ar and V al of variables and values.
SL formulas are then inductively defined by the following grammar:

– At ::= (E 7→ E1, E2) | E1 = E2 where E, E1 and E2 are expressions,
– φ ::= At | I | φ ∗ φ | φ−∗ φ | ⊤ | ⊥ | φ ∧ φ | φ→ φ | φ ∨ φ| ∃x.φ.

Moreover, negation ¬φ is defined as a shorthand for φ→ ⊥. Since additive connectives in
SL are classical, one could also take negation as primitive and define implication φ → ψ
as a shorthand for (¬φ) ∨ ψ.
Given a stack s, the points-to predicate (x 7→ a, b) allows us to represent the state of the
memory: there exists a location l in a heap h such that Jx Ks = l and h(l) = (a, b).
The use of pairs of values follows the original presentations of Separation Logic [21,24].
Recent works show that restricting to single values does not improve the decidability status
of SL [7], which remains undecidable, but surely harms expressive power: for example, one
can still describe a linked-list structure

(x1 7→ x2) ∗ (x2 7→ x3) ∗ . . . ∗ (xn−1 7→ xn),

but can no longer state properties about the values contained in the nodes of the list as in

((x1 7→ a1, x2) ∗ (x2 7→ a2, x3) ∗ . . . ∗ (xn−1 7→ an, xn)) ∧ (a1 = an).

Since the actual use of SL mainly consists in writing formulas that describe specific prop-
erties of memory states and verifying that these properties hold in some model of the logic,
we need to define precisely what a model of SL looks like.
We write e to denote the empty heap (the domain of which is empty) and we say that two
heaps h1 and h2 are disjoint iff the domains of h1 and h2 are disjoint, more formally,

h1#h2 iff dom(h1) ∩ dom(h2) = ∅.

We then define heap composition (⋆) as the function H×H → H which maps two disjoint
heaps h1 and h2 to the heap h1 ⋆ h2 given by the union of the two functions h1 and
h2. A key point here is that composition of non-disjoint heaps is undefined so that heap
composition is only a partial function.
In order to interpret SL formulas we define a forcing relation (s, h) |= φ which asserts that
the formula φ is true in a stack s ∈ S and a heap h ∈ H. It is required that the free
variables of φ should be included in the domain of s.

Definition 2.2. For all stacks s ∈ S and heaps h ∈ H, the semantics of SL formulas is
inductively defined as follows:

– (s, h) |= ⊤ always;
– (s, h) |= ⊥ never;
– (s, h) |= E1 = E2 iff JE1 Ks = JE2 Ks;
– (s, h) |= (E 7→ E1, E2) iff dom(h) = { JE Ks } and h(JE Ks) = (JE1 Ks, JE2 Ks);
– (s, h) |= φ ∧ ψ iff (s, h) |= φ and (s, h) |= ψ;



– (s, h) |= φ ∨ ψ iff (s, h) |= φ or (s, h) |= ψ;
– (s, h) |= φ→ ψ iff (s, h) |= φ implies (s, h) |= ψ;
– (s, h) |= I iff h is the empty heap e;

– (s, h) |= φ ∗ ψ iff ∃h1, h2 ∈ H. h1#h2, h1 ⋆ h2 = h, (s, h1) |= φ and (s, h2) |= ψ;
– (s, h) |= φ−∗ ψ iff ∀h1 ∈ H. if h1#h and (s, h1) |= φ then (s, h1 ⋆ h) |= ψ;
– (s, h) |= ∃x.φ iff ∃ v ∈ V al. ([ s | x 7→ v ], h) |= φ.

Let us remark that the classical nature of the additive connectives in SL is captured via a
pointwise interpretation of the additive implication →. An intuitionistic version of φ→ ψ
would require that (s, h′) |= φ should imply (s, h′) |= ψ for all heaps h′ extending h (heaps
h′ such that h ⊆ h′). Note also that (s, h) |= (x 7→ a, b) does not imply (s, h′) |= (x 7→ a, b)
for any heap h′ that strictly extends h since the condition for (s, h) |= (E 7→ E1, E2)
requires that h should contain exactly one cell.
Given two formulas ψ and φ, entailment in SL is written ψ |= φ and defined as follows:

ψ entails φ iff (s, h) |= ψ implies (s, h) |= φ for all stacks s and heaps h.

Validity in SL for a formula φ, written |= φ, is then derived from entailment:

φ is valid iff (s, h) |= φ for all stacks s and heaps h.

In SL models, the worlds are heaps (collections of cons cells in storage) and the separating
conjunction φ ∗ ψ is true just when the current heap can be split into two subheaps, one
making φ true, the other one making ψ true. The separating implication φ−∗ψ generates
new heaps such that whenever we get a fresh heap h1 that makes φ true, combining it with
the current heap h results in a new heap h ⋆ h1 that makes ψ true. All other connectives
are interpreted pointwise.
For instance, the formula (x 7→ a, b) ∗ ((x 7→ c, b) −∗ P ) says that, in the current heap, x
denotes a location that points to a cell containing the pair (a, b) and that if we update a
to c then P will be true. Indeed, the semantics of ∗ splits a heap into two parts, one where
(x 7→ a, b) holds and the other one where the location x is dangling. The semantics of −∗
and 7→ then ensures that P must be true when the second heap is extended by binding
x’s location to the cell (c, b). The update therefore consists in first deleting the cell (a, b)
from the current heap in order to bind the location denoted by x with the new cell (c, b).

2.2 Separation Logic and Proofs

Main concepts about the use of SL as an assertion language are given in [17,24]. As an
interesting result, we can mention an operation that disposes of memory by creating dan-
gling pointers through the command dispose(E), which deallocates a location by removing
it from the heap. From a semantic point of view, the dispose operation is defined by the
following axiom (where a, b are not free in E):

{P ∗ ∃a∃b.(E 7→ a, b)}
dispose(E)

{P}



Reasoning backwards from ⊤ we can find cases under which a program is safe to execute.
With a double dispose we obtain ⊥ for the precondition as expected, indicating that the
program is not safe to execute for any start state:

{⊥}
{⊤ ∗ ∃a∃b.(x 7→ a, b) ∗ ∃c∃d.(x 7→ c, d)}

dispose(x)
{⊤ ∗ ∃a∃b.(x 7→ a, b)}

dispose(x)
{⊤}

Separation Logic is a logic for specifying properties of dynamically-allocated linked data
structures in a much simpler way than previous formalisms. Various works illustrate this
point by showing that local reasoning allows a specification to focus only on the resources
that are relevant to its soundness without bothering about the global context [3,5,13,24].
Therefore, an important challenge consists in providing methods and tools for verifying
or proving such interesting specifications. Given that existing works on checking assertion
written in Separation Logic automatically are mainly based on a model-checking approach
[2,25], one of the main purpose of this paper is to study an alternative approach based on
theorem-proving in order to provide methods and tools for proof-search and countermodel
generation in Separation Logic. As a main result, we design a labelled tableau method
which allows countermodel construction in case of non-provability. Further work will be
devoted to comparisons between the model-checking approach and the theorem-proving
approach and will lead to a deeper study of how both approaches can be combined in
order to improve automated deduction.
Our starting point to develop proof-theoretic foundations for SL is our previous works
on characterizing provability in the intuitionistic variant of BI through so-called resource
graphs [16]. Two main obstacles arise:

– the first one is that SL is not really an extension of BI but is in fact an extension of
Boolean BI (BBI) in which the additives are classical and thus it is not possible to
extend our initial work to SL directly;

– the second one is that the points-to predicate forces us to design resource graphs that
take into account the specific properties of SL models.

Nevertheless, the general methodology that consists in reflecting the main properties of the
models using labels, label constraints and resource graphs can be successfully adapted to
Separation Logic. This can be seen as an important contribution as we expect to develop
new theorem-proving methods for other spatial logics such as the Ambient Logic (a logic
for mobile processes [12] which is also an extension of BBI), the labelled tree model [11]
or even Context Logic [8] for which only model-checking techniques exist.
We begin our proof-theoretic investigation of SL with a fragment, denoted SLP, where first
order quantifiers, equality and stack variables are discarded. In other words, SLP is the
propositional fragment of SL where atomic formulas are points-to predicates (l 7→ u, v),
where l is a location and u, v are values so that we can forget stack variables in the clauses
of Definition 2.2. We shall conclude the paper with a discussion of how to extend the
results obtained for SLP to more expressive fragments, including full SL.



3 Heaps, Labels and Resource Graphs

Purely syntactic proof methods (in sequent or natural deduction style) usually deal with a
great amount of operational overhead (structural rules, permutabilities of inferences) which
is mainly irrelevant w.r.t. the provability of a formula. On the other hand, purely semantic
methods often abstract away too much of the operational aspects to be significantly helpful
for countermodel construction. In the case of SL, we have a complete semantics based
on partial monoids of heaps so that syntactic and semantic entailments (provability and
validity) coincide 2. Therefore, the main properties of SL models as well as entailment in
SL can be reflected at a syntactic level using labels, label constraints and a specific closure
operator in order to define a resource driven proof method for SL.

3.1 Labels and Constraints

Our labelling language consists of a countable set C of constant symbols c1, c2, . . . , ci, . . .

Definition 3.1 (label). Let I = { i1, . . . , in }(⊆ N⋆) be a finite set of indexes, a label is
a (possibly empty) finite string ci1 . . . cin ∈ C∗ which satisfies the following condition :

for all indexes ip, iq ∈ I, if p < q then ip < iq (LL).

A label x is a sublabel of a label y, written x ⊆ y, iff all the constant symbols occurring
in x also occur in y, more formally, iff (∀ ck ∈ C)(ck ∈ x⇒ ck ∈ y).
A label x is a strict sublabel of y, written x ( y, iff x ⊆ y and x 6= y.

For example, the empty string ǫ is a label, the strings c1, c2, c1c2 and c2c4c5 are labels
The strings c2c1 and c2c2 are not labels because they do not satisfy the previous (LL)
condition (label linearity) which requires that the indexes of the constant symbols should
be sorted in a strict ascending order. Let us remark that (LL) implies that the same
constant symbol cannot occur more than once in a label.
Following Definition 3.1, ǫ, c2, c4, c5, c2c4, c2c5, c4c5 and c2c4c5 are all sublabels of c2c4c5,
c2c4c5 being the only one of them which is not also strict. Let us remark that being
a sublabel and being a substring are two distinct notions as illustrated in the previous
example where c2c5 is a sublabel but not a substring of c2c4c5.

Definition 3.2. Let I = { i1, . . . , in }(⊆ N⋆) be a finite set of indexes and x be the label
ci1 . . . cin , we define the length of the label x, written |x|, as the number of constant symbols
occurring in x. Moreover, for all k ∈ N such that 1 ≤ k ≤ |x|, xk denotes the constant
symbol which is at index k in x, i.e., xk = cik .

Intuitively, constant symbols are intended to be a syntactic reflection of heaps. We now
introduce the notion of label composition, which is intended to be a syntactic reflection of
heap composition.

Definition 3.3 (label composition). Let L be the smallest subset of C∗ containing all
the labels, the composition x ◦ y of two labels x and y is defined as the shortest label z
containing the string xy as a sublabel.

2 This is not the case for Boolean BI, for which there currently exists no complete monoid-based semantics.



Since the composition x ◦ y of two labels x and y is required to be a label, the linearity
condition (LL) of Definition 3.1 entails that x ◦ y is defined iff x and y do not share any
constant symbol, thus making ◦ : L ×L → L a partial function.
It is routine to check that ◦ is associative, commutative and admits the empty string ǫ as
its unit. Therefore, the structure LA = (L, ◦, ǫ), called the labelling algebra, is in fact a
partial commutative monoid of labels. For example, the following equalities hold:

c1 ◦ (((c2 ◦ ǫ) ◦ ǫ) ◦ (c3 ◦ c4)) = (c2 ◦ c1) ◦ (ǫ ◦ (c4 ◦ c3)) = c1c2c3c4.

Given that label composition ◦ is associative and commutative, we almost always omit
parentheses. More often than not, we simplify our notation even further by omitting the
composition symbol ◦ as well. This slight abuse of notation allows us to write labels
as unordered sequences of symbols so that we can for example speak of “the label c2c1ǫ”
keeping in mind that what we actually mean is “the label c1c2 resulting from the evaluation
of the composition c2 ◦ c1 ◦ ǫ”.
Let us now introduce some useful operations on labels.

Definition 3.4. Let x and y be labels,

– x ∩ y is the longest label that is a sublabel of both x and y;

– x\y is the longest sublabel of x that does not share any constant symbol with y.

In other words, x ∩ y is the label which contains all the constant symbols that are shared
by x and y while x\y is the label obtained by discarding from x all the constant symbols
that also occur in y. For example, we have

– c1c2c3\c1c3 = c1c2c3\c1c3c4 = c2 and c1c2c3\c1c2c3 = c1c2c3\c1c2c3c4 = ǫ;
– c1c2c3 ∩ c1c3 = c1c2c3 ∩ c1c3c4 = c1c3, c1c2c3 ∩ c1c2c3 = c1c2c3 and c1c2c3 ∩ c4 = ǫ.

It is routine to check that x ∩ y = ǫ iff x and y are disjoint and that (x\y) ◦ (x ∩ y) = x
for all labels x and y.

Definition 3.5 (label constraint). A label constraint is either an expression of the
form Tx, where x is a label and T is a letter from the alphabet T = {Z,U }, or a binary
expression of the form x ⋄ y where x and y are labels.
We write K to denote the set of all label constraints generated by L.

Intuitively, the purpose of a label constraint x ⋄ y is to capture the fact that the labels x
and y denote the same heap. Therefore, the symbol ⋄ is meant to be a syntactic reflection
of equality between heaps. Accordingly, a label constraint of the form (y ◦ z) ⋄ x means
that if x, y, z are interpreted as heaps, then the heap denoted by x is the same as (or equal
to) the one obtained by combining the heaps denoted by y and z.
On the other hand, label constraint of the form Zx (respectively Ux) means that x should
be interpreted as a heap containing no cell (respectively exactly one cell). For simplicity,
we shall often write “constraint” instead of “label constraint”.

In order to capture the various resource interactions that occur in SL models we define an
appropriate closure operator (·)† on sets of labels and label constraints.



Definition 3.6 ((·)†-closure). Let X (⊆ L ∪ K) be a set of labels and label constraints,
X† is defined as the couple (XL,XK), where the sets XL and XK are defined by mutual
induction according to the following rules:

– Base case:
• XL = (X ∩ L) ∪ { ǫ };
• XK = (X ∩ K) ∪ {Zǫ }.

– Mutual induction:
• x ∈ XL and y ( x⇒ y ∈ XL (Saturation);
• x ∈ XL ⇒ x ⋄ x ∈ XK (⋄-Reflexivity);
• x ⋄ y ∈ XK ⇒ x, y ∈ XL (⋄-Completion);
• x ⋄ y ∈ XK ⇒ y ⋄ x ∈ XK (⋄-Symmetry);
• x ⋄ y ∈ XK and y ⋄ z ∈ XK ⇒ x ⋄ z ∈ XK (⋄-Transitivity);
• x ⋄ y ∈ XK and y ◦ z ∈ XL ⇒ (x ◦ z) ⋄ (y ◦ z) ∈ XK (⋄-Propagation);
• Tx ∈ XK ⇒ x ∈ XL (T-Completion, T ∈ T);
• Zx ∈ XK and y ( x⇒ Zy ∈ XK (Z-Decomposition);
• Ux ∈ XK and Uy ∈ XK and y ( x⇒ Z(x\y) ∈ XK (U-Decomposition);
• Tx ∈ XK and x ⋄ y ∈ XK ⇒ Ty ∈ XK. (T-Propagation, T ∈ T).

The set XL is called the domain of X and the set XK is called the structure of X.
The set X⋄

K (respectively the set XT
K , T ∈ T) is the restriction of XK to the label constraints

of the form x ⋄ y (respectively of the form Tx, T ∈ T).

The (Saturation) property ensures that XL is closed under sublabels while (⋄-Completion)
ensures that any label occurring in a label constraint of XK also explicitly occurs as a label
in XL. (⋄-Reflexivity), (⋄-Transitivity), (⋄-Symmetry) and (⋄-Propagation) entail that ⋄
is a congruence on (XL, ◦) just as equality between heaps is a congruence on (H, ⋆).
(Z-Decomposition) reflects the fact that all subheaps of an empty heap are also empty.
Now let hx and hy be the heaps denoted by x and y respectively, then, (U-Decomposition)
reflects the fact that if hy is a subheap of hx and both hx and hy have exactly one location
then all subheaps of hx that are disjoint from hy must be empty.
Finally, (T-Propagation) describes how the properties of being an empty heap or a heap
with exactly one location are propagated through heap composition. For example, if T = Z,
x = c1 and y = c2c3, then, (T-Propagation) means that if c1 denotes an empty heap which
may be obtained by composition of the two heaps denoted by c2 and c3 then c2c3 also
denotes an empty heap, i.e., if Zc1 ∈ XK and c2c3 ⋄ c1 ∈ XK then Zc2c3 ∈ XK.

3.2 Resource Graphs

In this subsection, we explain how the (·)†-closure of a set of labels and label constraints
gives rise to a structure called a resource graph. This concept has already been introduced
for BI [16] but needs specific adaptations for SL.

Definition 3.7. Let X (⊆ L ∪ K) be a set of label and label constraints.

1. We define η as the function XL → ℘(T) ×XL which maps each label x in the domain
XL of X to the couple (Γ, x) where Γ (⊆ T) is defined as follows:



∀T ∈ T. T ∈ Γ iff Tx ∈ XK.

We write Γx to denote the couple (Γ, x) and we call Γ the tag of the label x.

2. We define ν as the function X⋄
K → ℘(℘(T) × XL) which maps each label constraint

x ⋄ y in the structure XK of X to the (unordered) pair { η(x), η(y) }.

In the rest of the paper we shall use the letters Γ,∆,Θ to range over tags. Using the
functions η and ν we can proceed with the definition of a resource graph.

Definition 3.8 (resource graph). The resource graph G(X)[N,E] associated to a set
X (⊆ L ∪K) of labels and label constraints is the undirected graph such that:

– the set of nodes N is the set η(XL) = { η(x) | x ∈ XL };

– the set of edges E is the set ν(X⋄
K) = { ν(k) | k ∈ X⋄

K }.

Let us remark that η is a one-to-one correspondence between nodes and labels. Strictly
speaking, ν is not a one-to-one correspondence between edges and ⋄-constraints because
a resource graph is an undirected graph (ν(x ⋄ y) = ν(y ⋄ x) = { η(x), η(y) }). However, ν
can be thought of as a one-to-one correspondence between edges { η(x), η(y) } and pairs
{x ⋄ y, y ⋄ x } of symmetric ⋄-constraints.

For a first example of resource graph, let us consider the set

X = {Zǫ, c2c3 ⋄ c1,Uc2,Uc2c3 }.

In order to obtain the resource graph G(X) associated to X we need to compute the closure
X† according to Definition 3.6. Therefore, we first add the label constraint Zc3 to satisfy
(U-Decomposition) since we have Uc2, Uc2c3 and c3 ( c2c3. Then, because of c2c3 ⋄c1 and
Uc2c3, we add Uc1 to satisfy (U-Propagation). Applying (T-Completion) finally leads to
the closure

X† = (XL,XK) = ({ ǫ, c1, c2, c3, c2c3 }, {Zǫ, c2c3 ⋄ c1,Uc2,Uc2c3,Zc3,Uc1 }).

Therefore, the resource graph G(X) looks as follows 3:

G(X) : Zǫ Zc3 Uc1 Uc2

Uc2c3

For a second example, let us consider the set

Y = {Zǫ, c2c3 ⋄ c1,Uc2,Uc3,Zc1 }.

The application of (Z-Propagation) and (Z-Decomposition) to the label constraints c2c3⋄c1
and Zc1, followed by the application of (T-Completion) leads to

Y † = (YL, YK) = ({ ǫ, c1, c2, c3, c2c3 }, {Zǫ, c2c3 ⋄ c1,Uc2,Uc3,Zc1,Zc2c3,Zc2,Zc3 }).
3 For readability, we do not explicitly represent reflexive and transitive edges.



Therefore, the resource graph G(Y ) looks as follows 4:

G(Y ) : Zǫ ZUc3 Zc1 ZUc2

Zc2c3

3.3 Labels and Constraints vs Resource Graphs

The one-to-one correspondence induced by the functions η and ν given in Definition 3.7
allows us to translate any concept defined in terms of (·)†-closure directly in terms of
resource graphs and vice versa.
In particular, given a set X (⊆ L ∪ K) of label and constraints, any function f : XL → F
defined on the domain XL of X induces a function g : N → F defined on the nodes of
G(X)[N,E] by setting:

∀Γx ∈ N. g(Γx) = f(x).

Conversely, any function g : N → F defined on the nodes of G(X)[N,E] gives rise to a
function f : XL → F on the domain XL of X by setting:

∀x ∈ XL. f(x) = g(η(x)).

More generally, any n-ary relation RL (⊆ Xn
L) between the labels in the domain XL of X

induces a n-ary relation RN (⊆ Nn) between the nodes N of G(X)[N,E] by setting:

∀Γ1x1, . . . ,Γnxn ∈ N. RN (Γ1x1, . . . ,Γnxn) iff RL(x1, . . . , xn).

The other way round, any n-ary relation RN (⊆ Nn) between the nodes N of G(X)[N,E]
induces a n-ary relation RL (⊆ Xn

L) between the labels in the domain XL of X by setting:

∀x1, . . . , xn ∈ XL. RL(x1, . . . , xn) iff RN (η(x1), . . . , η(xn)).

Definition 3.9. Let X (⊆ L ∪ K) be a set of label and label constraints.

1. Given a label constraint k, we say that k holds in X, written X ⊢ k, iff k ∈ XK.
2. Given a n-ary relation RL (⊆ Xn

L) between the labels of XL, we write

∀x1, . . . , xn ∈ XL. X ⊢ RL(x1, . . . , xn) iff RL(x1, . . . , xn).

3. For all letters T ∈ T, a label x such that X ⊢ Tx is called a T-label, or a T-constant
whenever x is a constant symbol.

Lifting the previous definitions to the resource graph G(X)[N,E] associated to X we get:

1. Given a label constraint k, G(X) ⊢ k iff X ⊢ k.
2. Given a n-ary relation RN (⊆ Nn) between the nodes of G(X), we write

∀Γ1x1, . . . ,Γnxn ∈ N. G(X) ⊢ RN (Γ1x1, . . . ,Γnxn) iff RN (Γ1x1, . . . ,Γnxn).

3. For all letters T ∈ T, a node Γx such that T ∈ Γ is called a T-node.

4 We shall see later in the paper that G(Y ) cannot be realized in any model of SLP since it contains nodes,
namely c2 and c3, that have both the letter Z and the letter U in their tag and no SLP model can have
a heap which contains zero and exactly one location at the same time.



4 A Tableau Calculus for SLP

In this section, we introduce a tableau-based calculus for SLP which uses labels and label
constraints to build resource graphs. The choice of a tableau method is motivated by its
well-known ability to provide countermodel extraction facilities [14], but our notions of
labels, constraints and resource graphs can also be integrated into connection-based, or
sequent-based calculi, in order to characterize provability in SLP.

4.1 Tableau Rules

In general, tableau methods are methods in which one tries to prove a formula φ by
showing that there cannot exist any model M such that M 6|= φ. In classical logic, this
amounts to showing that the formula ¬φ has no model. Tableau methods are therefore
based on a refutation principle as the proof-search process tries to build a model of ¬φ
and concludes the validity of φ if it fails to do so.
In order to find a model of ¬φ, the tableau construction process relies on the application
of expansion rules (depending on the syntactic structure of φ) that should ideally allow
the enumeration of all possible models of ¬φ.
Since we deal with Separation Logic, which is a non-classical logic, our tableau method
uses signs F or T instead of the negation symbol ¬ to indicate whether a formula is to be
proved or disproved. Such signs help avoiding confusion between negation in the object
language (here, the formulas of SL) which may have various specific properties (like for
instance ¬¬φ = φ or (¬φ ∗ ¬ψ) = ¬(φ ∗ ψ)) and the meta-language used to describe the
proof-search process.

Definition 4.1 (labelled formula). A signed formula is a pair (S, φ), denoted Sφ, where
S (∈ {F,T }) is a sign and φ (∈ SLP) is a formula. A labelled formula is a triple (S, φ, x),
denoted Sφ :x, such that Sφ is a signed formula and x (∈ L) is a label.

Intuitively, a labelled formula Sφ :x means that whenever the label x is interpreted as a
heap hx in some stack s we have (s, hx) |= φ if S = T and (s, hx) 6|= φ if S = F.
Let us now recall that entailment in Separation Logic is defined as follows:

ψ entails φ (ψ |= φ) iff for all stacks s and heaps h, (s, h) |= ψ implies (s, h) |= φ (E).

Validity is then defined so that

φ is valid (|= φ) iff for all stacks s and heaps h, (s, h) |= φ (V),

which is in turn equivalent to the following statement that clearly shows the link between
entailment and validity:

φ is valid (|= φ) iff ⊤ entails φ (⊤ |= φ) (VE).

Since we do not deal with variables in the SLP fragment, we can forget the stacks and
rewrite entailment and validity so that

ψ entails φ (ψ |= φ) iff for all heaps h, h |= ψ implies h |= φ (E’);



φ is valid (|= φ) iff for all heaps h, h |= φ (V’).

It is then clear from the definition of −∗ that in SLP

ψ |= φ iff e |= ψ −∗ φ (EE),

which, using the link (VE) between validity and entailment, implies that

|= φ iff e |= ⊤−∗ φ (VEE).

The (EE) condition means that in order to prove an entailment ψ |= φ, we only need to
show that the empty heap e satisfies the formula ψ −∗ φ. Let us remark that the previous
statement is not true if −∗ is replaced by → because e |= ψ → φ does not imply h |= ψ → φ
for all heaps h and all formulas ψ and φ.
In terms of tableaux, where one tries to refute the existence of a model, what we need
to show is that trying to disprove the formula ψ −∗ φ w.r.t. the syntactic reflection ǫ of
the empty heap e eventually fails (leads to contradictions), which justifies the fact that
a tableau proof should start with the labelled formula Fψ −∗ φ : ǫ as formalized in the
following definition.

Definition 4.2 (tableau). Let φ be a formula in SLP.

1. A tableau for ψ |= φ is a binary tree T built according to the rules given in Figure 1
and such that:

– all nodes are labelled either with a labelled formula, or with a label constraint,

– the root node is labelled with the labelled formula Fψ −∗ φ : ǫ.

2. A tableau tableau for |= φ (more shortly, a tableau for φ) is a tableau for ⊤ |= φ.

We divide and present the tableau rules of Figure 1 into four groups.
The first group of rules consists of the conservative rules {S∧,S∨,S→ | S ∈ {F,T } }
associated to the additive connectives. Conservative rules standing on the first line of
Figure 1 are given the type α, while those standing on the second line are given the
type β. This terminology is justified by the fact that if one forgets about the labels, the
conservative rules simply amount to the standard α and β tableau rules for classical logic.
Let us note that applying a rule of type α in a tableau branch results in a simple extension
of that branch, while applying a rule of type β splits one tableau branch in two. Moreover,
conservative rules expand tableau branches without modifying the labels (propagation
from formulas to subformulas). For example the expansion of a labelled formula Fφ ∧ ψ :x
in a tableau branch B splits it in two branches B1 and B2, the first one containing Fφ :x
and the second one containing Fψ :x, which semantically means that one should either
falsify φ, or falsify ψ in order to falsify φ ∧ ψ.

The second group of rules consists of the assertive rules T ∗ and F−∗, which are given
the type πα. Assertive rules introduce two new labels and a new label constraint, which
is called an assertion because it is established as a fact. For example, the expansion of a
labelled formula Tφ ∗ ψ :x leads to the introduction of the assertion as : (ci ◦ cj) ⋄ x which
means that whenever the labels x, ci and cj are respectively interpreted as heaps hx, hci



Fφ→ ψ :x

Tφ :x
Fψ :x

Tφ ∧ ψ :x

Tφ :x
Tψ : x

Fφ ∨ ψ :x

Fφ : x
Fψ :x

T(l 7→ a, b) :x

as : Ux

Tφ→ ψ :x
a
a

!
!

Fφ : x Tψ :x

Fφ ∧ ψ : x
a
a

!
!

Fφ :x Fψ : x

Tφ ∨ ψ : x
a
a

!
!

Tφ :x Tψ :x

T I :x

as : Zx

Tφ ∗ ψ :x

as : (ci ◦ cj) ⋄ x (1)

Tφ : ci
Tψ : cj

Fφ−∗ ψ : x

as : (x ◦ ci) ⋄ c (1)
j

Tφ : ci
Fψ : cj

Fφ ∗ ψ :x

rq : (y ◦ z) ⋄ x (2)

a
a

!
!

Fφ : y Fψ : z

Tφ−∗ ψ :x

rq : (x ◦ y) ⋄ z (3)

a
a

!
!

Fφ : y Tψ : z

(1) ci, cj (i<j) are fresh constant symbols (2) B ⊢ (y ◦ z) ⋄ x (3) B ⊢ (x ◦ y) ⋄ z

Figure1. TSLP Tableau Rules.

and hcj
, it must be the case that hx = hci

⋆ hcj
, i.e., it must be the case that the heap

denoted by x can be obtained by the composition of the two heaps denoted by ci and cj .
Let us note that this necessarily implies that the heaps hci

and hcj
denoted by ci and cj

should be disjoint. Moreover, the proviso requiring i < j ensures that ci ◦ cj = cicj .

Definition 4.3 (resource graph G(B)). Given a tableau branch B,

– the set of all the assertions occurring in B is denoted BA;
– the notations BL and BK are shorthands for the sets BA

L and BA
K respectively;

– for all label constraints k, k holds in B (written B ⊢ k) iff k ∈ BK;
– for all n-ary relation RL (⊆ Bn

L) between the labels of BL, we write

∀x1, . . . , xn ∈ BL. B ⊢ R(x1, . . . , xn) iff RL(x1, . . . , xn);

The resource graph associated to B, denoted G(B)[N,E], is the resource graph G(BA)
generated by the assertions occurring in B. Lifting the previous definitions to G(B) we get:

– for all label constraints k, G(B) ⊢ k iff B ⊢ k;
– for all n-ary relation RN (⊆ Nn) between the nodes of G(B), we write

∀Γ1x1, . . . ,Γnxn ∈ N. G(B) ⊢ RN (Γ1x1, . . . ,Γnxn) iff RN (Γ1x1, . . . ,Γnxn).

The assertions occurring in a tableau branch B are used to distinguish a particular class of
SLP models and such a class is captured by the resource graph G(B), which is a graphical
representation of the closure (BL,BK). Therefore, a key point of our tableau system is that
it builds a resource graph for each tableau branch in parallel of the tableau construction.



Fφ−∗ ψ : x

as : (x ◦ ci) ⋄ (x ◦ ci) (1)

Tφ : ci
Fψ :x ◦ ci

Tφ−∗ ψ :x

rq : (x ◦ y) ⋄ (x ◦ y) (2)

a
aa

!
!!

Fφ : y Tψ :x ◦ y

(1) ci is a fresh constant symbol (2) B ⊢ (x ◦ y) ⋄ (x ◦ y)

Figure2. Alternative Tableau Rules F′ −∗ and T′ −∗.

The third group of rules consists of the generative rules F ∗ and T−∗, which are given the
type πβ. Generative rules do not introduce new labels in a tableau branch B but rather
reuse the ones that already exist in BL (or equivalently, in the resource graph G(B)) by
the time the expansion needs to be performed. Moreover, the label constraint introduced
by a generative rule is called a requirement because it is intended to behave as a goal that
should be achieved from the set of assertions (which behave as facts). For example, the
expansion of a labelled formula Fφ ∗ ψ :x in a tableau branch B requires us to find two
labels y, z ∈ BL such that B ⊢ (y ◦ z) ⋄ x, i.e., such that (y ◦ z) ⋄x ∈ BK, which necessarily
implies by (⋄-Completion) and (Saturation) of Definition 3.6 that y ◦ z ∈ BL.

Unlike all other rules, generative rules can be expanded several times since there might be
several labels y, z ∈ BL such that B ⊢ (y ◦ z) ⋄ x and each suitable choice for y and z might
be tried. From a semantic point of view, the proviso B ⊢ (y ◦ z) ⋄ x means that it should
always be the case that, whenever a SLP model belongs to the class of models captured
by the closure (BL,BK) of the assertions occurring in B (or equivalently, by the resource
graph G(B)), this model should be such that the heap hx denoted by x can be obtained
by the composition of the two heaps hy and hz denoted by y and z, i.e., hx = hy ⋆ hz .

The fourth and last group of rules consists of the special rules {T I,T 7→ }, which deal with
the multiplicative unit I and points-to predicates by introducing a new assertion without
introducing new labels. For example, the assertion as : Ux generated by the expansion of a
labelled formula T (l 7→ a, b) :x reflects the fact that if the heap denoted by x is to satisfy
(l 7→ a, b) then it should contain exactly one cell. Similarly, the assertion as : Zx generated
by the expansion of the labelled formula TI : x reflects the fact that x should denote the
empty heap if it is to satisfy I. Let us note that there are no tableau rules for F I : x and
F (l 7→ a, b) :x because we shall deal with such labelled formulas in the forthcoming notion
of logical consistency (see Definition 4.15 for the details).

The F−∗ rule can be safely reformulated so that it generates only one new constant
symbol ci instead of two by setting cj = x ◦ ci. Doing so immediately turns the initial
assertion as : (x ◦ ci) ⋄ cj into as : (x ◦ ci) ⋄ (x ◦ ci) which only imposes as a fact that x
and ci should denote disjoint heaps. Similarly for the T−∗ rule, setting z = x◦y turns the
initial requirement rq : (x ◦ y) ⋄ z into rq : (x ◦ y) ⋄ (x ◦ y) which trivially holds in a tableau
branch B by the (⋄-Reflexivity) condition of Definition 3.6 as soon as the label x◦y occurs
in BL. More formally, if x◦y ∈ BL then B ⊢ (x ◦ y) ⋄ (x ◦ y). The corresponding alternative
versions of the tableau rules for −∗ are given in Figure 2.



√
1 F((l 7→ a, b) ∗ ((l 7→ a, b) −∗ (k 7→ c, d))) −∗ (m 7→ e, f) : ǫ

√
2 T (l 7→ a, b) ∗ ((l 7→ a, b) −∗ (k 7→ c, d)) : c1

F (m 7→ e, f) : ǫ ◦ c1(= c1)

as1 : c2c3 ⋄ c1
√

3 T(l 7→ a, b) : c2

as2 : Uc2

√
4 T(l 7→ a, b) −∗ (k 7→ c, d) : c3

X
X
X
XX

�
�
�
��

F (l 7→ a, b) : c2

B1

√
5 T (k 7→ c, d) : c2c3

as3 : Uc2c3

B2

G0 Zǫ

G1 Zǫ ∅c1

G2 Zǫ ∅c1 ∅c2∅c3

∅c2c3

G3 Zǫ ∅c1 Uc2∅c3

∅c2c3

Figure3. Tableau T for (l 7→ a, b) ∗ ((l 7→ a, b) −∗ (k 7→ c, d)) |= (m 7→ e, f).

In order to keep the notation of our tableaux reasonably compact, we almost always

– use the alternative versions F′ −∗ and T′ −∗ of the tableau rules for −∗;
– omit the trivial assertion as : (x ◦ ci) ⋄ (x ◦ ci) introduced by F′ −∗;
– omit the trivial requirement rq : (x ◦ y) ⋄ (x ◦ y) introduced by of T′−∗;
– omit the assertions introduced by the special rules since we keep track of them in the

resource graphs associated to the branches of a tableau.

Figure 3 gives a step by step illustration of how the tableau rules build a tableau together
with a resource graph for each of its branches.
At the beginning, the tableau has only one branch containing the labelled formula

F ((l 7→ a, b) ∗ ((l 7→ a, b) −∗ (k 7→ c, d))) −∗ (m 7→ e, f) : ǫ

so that the associated resource graph is the resource graph named G0 in Figure 3.
In Step 1 (marked with a check sign

√
1
), the initial labelled formula is expanded using

the rule F′ −∗, which requires the introduction of a fresh constant symbol c1. Since F′−∗
is a πα rule, it simply extends the existing branch the resource graph of which becomes
G1.
In Step 2 we apply the rule T ∗ on the labelled formula

T (l 7→ a, b) ∗ ((l 7→ a, b) −∗ (k 7→ c, d)) : c1

which introduces c2 and c3 and a new assertion as1 : c2c3 ⋄ c1 that imposes as a fact that
c1 can be decomposed into two parts c2 and c3. Let us also note that Step 2 results in the
introduction of the two labelled formulas

T (l 7→ a, b) : c2 and T (l 7→ a, b) −∗ (k 7→ c, d) : c3



which respectively lead to Step 3 and Step 4.
In Step 3, we apply the rule T 7→ on the labelled formula T (l 7→ a, b) : c2, which inserts
the assertion as2 : Uc2 between the two labelled formulas previously introduced in Step 2.
Such an assertion imposes as a fact that the label c2 should denote a heap with exactly
one cell.
In Step 4, applying the rule T′−∗ on the labelled formula

T (l 7→ a, b) −∗ (k 7→ c, d) : c3

requires us to find a label y such that (y ◦c3)⋄ (y ◦ c3) holds in the current resource graph,
which is the resource graph G3 generated by Step 3. Choosing c2 for y is admissible because
the labels c2, c3, c2c3 occur in G3 so that (c2 ◦ c3) ⋄ (c2 ◦ c3) trivially holds in G3. However,
other choices may be admissible, for example, one can also choose ǫ for y since c2 ◦ ǫ = c2
and c2 ⋄ c2 holds in G3. Anyway, all suitable choices may be considered one after the other
as T′−∗ is a generative rule and can therefore be applied as many times as needed.
After Step 4 the tableau splits into two branches B1 and B2, the first one being extended
with the labelled formula F (l 7→ a, b) : c2, the second one with T (k 7→ c, d) : c2c3. Since a
generative rule does not modify the resource graph of the tableau branch it splits, after
Step 4 is completed, we obtain the resource graphs

G(B1) = G3 and G(B2) = G3.

The equality G(B1) = G(B2) does not hold any longer after Step 5 since B2 is extended
with the assertion as3 : Uc2c3 while B1 remains unchanged. We then finally obtain the
resource graphs G(B1) and G(B2) depicted in Figure 4.

G(B1) = G6 Zǫ ∅c1 Uc2∅c3

∅c2c3

G(B2) = G5 Zǫ Uc1 Uc2Zc3

Uc2c3

Figure4. Resource Graphs for T .

4.2 Measuring and Normalizing Resource Graphs

In this subsection, we introduce the notion of measure on a resource graph. The purpose
of this notion is to unambiguously determine how many cells are assumed to be actually
present in the heap hx denoted by a label x since the information conveyed in a resource
graph is generally an incomplete abstraction. For example in the resource graph G(B1) of
Figure 4, the tag of ∅c3 being empty, it does not give any useful information about the
number of locations occurring in the heap denoted by c3.
A similar approach has been applied in [6,19] in the context of model-checking to encode SL

into first order logic and extend it with temporal modalities. Here, the notion of measure is
used from a proof-search point of view in order to guide the tableau construction process.



Definition 4.4. A measure on a set X (⊆ L ∪ K) of label and label constraints is a total
function µ : XL → N which satisfies the following conditions:

– ∀x ∈ XL. if Zx ∈ XK then µ(x) = 0;
– ∀x ∈ XL. if Ux ∈ XK then µ(x) = 1;
– ∀x, y ∈ XL. if x ◦ y ∈ XL then µ(x ◦ y) = µ(x) + µ(y);
– ∀x, y ∈ XL. if x ⋄ y ∈ XK then µ(x) = µ(y).

A set X (⊆ L ∪ K) is measurable iff there exists a measure on it.
A measure µ on a set X(⊆ L ∪ K) induces a measure µ : N → N on the corresponding
resource graph G(X)[N,E] defined as follows 5:

∀Γx ∈ N. µ(Γx) = µ(x).

A resource graph G(X) is measurable iff X is measurable.

The previous definition gives rise to the notion of normal resource graph which is devised
to take into account the following semantic facts:

– there is only one empty heap (Fact 1),
– the empty heap is the unit of heap composition (Fact 2).

In general, a resource graph (set of labels and constraints) does not satisfy (Fact 1) since
there can be several distinct Z-nodes (Z-labels). We remedy this situation by defining the
following notion of Z-equivalence.

Definition 4.5 (Z-equivalence). Let X (⊆ L∪K) be a set of label and label constraints,

∀x, y ∈ XL. X ⊢ x ≃ y iff ∀ c ∈ C. Zc 6∈ XK ⇒ (c ∈ x⇔ c ∈ y) (ZEL).

Let G(X)[N,E] be the resource graph associated to X,

∀Γx,∆y ∈ N. G(X) ⊢ Γx ≃ ∆y iff X ⊢ x ≃ y (ZEG).

Intuitively, two labels x and y are equivalent up to ≃ (Z-equivalent) if all of their constant
symbols that are not Z-constants are the same.
However, not all nodes in a resource graph are known for sure to denote empty heaps
since the information may only be partial. Nevertheless, given a particular measure on a
resource graph one can unambiguously determine all the nodes that should denote empty
heaps. This additional information given by a measure leads to the notion of µ-equivalence.

Definition 4.6 (µ-equivalence). Let X (⊆ L∪K) be a set of label and label constraints,

∀x, y ∈ XL. X ⊢ x ≈ y iff ∀ c ∈ C. µ(c) 6= 0 ⇒ (c ∈ x⇔ c ∈ y) (µEL);

Let G(X)[N,E] be the resource graph associated to X,

∀Γx,∆y ∈ N. G(X) ⊢ Γx ≈ ∆y iff X ⊢ x ≈ y (µEG).

5 Although we should write µL for the measure on X and µN for the measure on G(X), we simply keep
writing µ for both measures since the presence (or the absence) of a tag makes its perfectly clear what
measure we are in fact referring to.



The following lemma shows that the notion of Z-equivalence is in fact contained in the
notion of µ-equivalence.

Lemma 4.1. Let X(⊆ L ∪ K) be a set of label and label constraints and µ be a measure
on X, then

1. ∀x, y ∈ XL. (Zx ∈ XK and Zy ∈ XK) ⇒ X ⊢ x ≃ y;

2. ∀x, y ∈ XL. X ⊢ x ≃ y ⇒ X ⊢ x ≈ y.

Similarly, for the resource graph G(X)[N,E] associated to X:

1. ∀Γx,∆y ∈ N. (Z ∈ Γ and Z ∈ ∆) ⇒ G(X) ⊢ Γx ≃ ∆y;

2. ∀Γx,∆y ∈ N. G(X) ⊢ Γx ≃ ∆y ⇒ G(X) ⊢ Γx ≈ ∆y.

Proof. The first implication is a consequence of (Z-Decomposition). Since Zz ∈ XK for all
labels z such that z ⊆ x or z ⊆ y, in particular, Zc ∈ XK for all constant symbols c ∈ C
such that c ∈ x or c ∈ y. Therefore, for all constant symbols c ∈ C, either Zc ∈ XK and
then the condition Zc 6∈ XK ⇒ (c ∈ x⇔ c ∈ y) is trivially satisfied, or Zc 6∈ XK and then
(c ∈ x⇔ c ∈ y) holds because c 6∈ x and c 6∈ y.
For the second implication, we observe that ≈ contains ≃ because for all constant symbols
c ∈ XL, µ(c) 6= 0 implies Zc 6∈ XK by Definition 4.4.

Definition 4.7 (µ-compatibility). Let X (⊆ L∪K) be a set of label and label constraints.
An equivalence relation RL (⊆ XL ×XL) between the labels of XL is µ-compatible with a
measure µ on X iff

∀x, y ∈ XL. X ⊢ RL(x, y) ⇒ µ(x) = µ(y) (µCL).

Accordingly, an equivalence relation RN (⊆ N×N) between the nodes of the resource graph
G(X)[N,E] is µ-compatible with a measure µ on G(X)[N,E] iff

∀Γx,∆y ∈ N. G(X) ⊢ RN (Γx,∆y) ⇒ µ(Γx) = µ(∆y) (µCG).

Lemma 4.2. The µ-equivalence ≈ induced by a measure µ on a set X (⊆ L∪K) of label
and label constraints (or its associated resource graph G(X)) is µ-compatible with µ.

Proof. Suppose that X ⊢ x ≈ y for all labels x, y ∈ XL. Now let z = x ∩ y, x′ = x\z
and y′ = y\z, i.e., x = x′ ◦ z and y = y′ ◦ z, where z is the label containing the constant
symbols shared by x and y. Since x′ ∩ y′ = ǫ (x and y are disjoint), for all constant
symbols c occurring in x′, c does not occur in y′. Therefore, (µEL) implies that µ(c) = 0
for all constant symbols occurring in x′, so that µ(x′) = 0. Similarly, we get µ(y′) = 0.
Consequently, we have µ(x) = µ(x′) + µ(z) = µ(z) = µ(y′) + µ(z) = µ(y).

4.3 Quotients of Resource Graphs

In this subsection we formally define what we call the quotient of a resource graph by an
equivalence relation.



Definition 4.8. Let X (⊆ L∪K) be a set of label and label constraints and R (⊆ XL×XL)
be an equivalence relation between the labels of XL. The quotient of X by R is written X/R

and is such that:

– X/R = (XL/R,XK/R);
– XL/R = {x | x ∈ XL } with x = { y ∈ XL |R(x, y) };

– XK/R = XT
K/R ∪X⋄

K/R with

• XT
K/R = {Tx | T ∈ T and x ∈ XL/R and ∃u ∈ x.Tu ∈ XK } and

• X⋄
K/R = {x ⋄ y | x, y ∈ XL/R and ∃u ∈ x.∃ v ∈ y. u ⋄ v ∈ XK }.

In other words, the elements of XL/R are equivalence classes of labels modulo R and the
elements of XK/R are constraints between equivalence classes of labels which we call “label
class constraints” although we more often simply speak of “constraints” when the context
is clear. A label class constraint holds between two equivalence classes of labels whenever
the corresponding type of label constraint holds between some members u and v of each
class. Adapting Definition 3.8 to equivalence classes of labels we get the following definition
for the quotient of a resource graph.

Definition 4.9. Let G(X)[N,E] be a resource graph and R (⊆ XL×XL) be an equivalence
relation between the labels of XL. The quotient of G(X) by R is written G(X/R)[N/R, E/R]
and is such that:

– N/R = {Γx | x ∈ XL } with x = { y ∈ XL |R(x, y) }, Γ = {T ∈ T | ∃u ∈ x.Tu ∈ XK };
– E/R = { {Γx,∆y } | Γx,∆y ∈ N/R and ∃u ∈ x.∃ v ∈ y. u ⋄ v ∈ XK }.

In other words, the first step to compute the quotient G(X/R)[N/R, E/R] of a resource
graph G(X)[N,E] by the equivalence relation R consists in gathering all the labels that
are equivalent up to R, thus obtaining a set of label classes x = { y ∈ XL | R(x, y) }.
The second step consists in deriving the nodes of the quotient by giving each label class x
a tag Γ obtained by merging (using set union) the tags of all the labels populating x.
Finally, the last step requires putting an edge between two nodes Γx and ∆y of the quotient
whenever the label classes x and y respectively contain a label u and a label v for which
the corresponding nodes η(u) and η(v) in the initial graph G(X) are related by an edge.

Definition 4.10. Let G(X) be a resource graph, µ be a measure on G(X) and ≈ be the
equivalence induced on G(X) by µ. The quotient G(X/≈) is called the normal resource
graph associated to (G(X), µ).

The resource graph G5 depicted in Figure 4 contains only Z-nodes and U-nodes so that
the first two conditions of Definition 4.4 imply that there is only one measure µ on G5.
Moreover, this measure satisfies the following equations:

– µ(Zǫ) = µ(Zc3) = 0;
– µ(Uc1) = µ(Uc2c3) = µ(Uc2) + µ(Zc3) = µ(Uc2) = 1.

Since µ(Zc3) = 0 implies G5 ⊢ Uc2 ≈ Uc2c3, we obtain the following normal resource graph:

G(B2/≈) = G5/≈ : Zǫ Uc1

Uc2

ǫ = c3 = { ǫ, c3 }
c1 = { c1 }
c2 = c2c3 = { c2, c2c3 }



4.4 Structural Consistency

In this subsection we introduce the notion of structural consistency for resource graphs.
Such a notion allows us to determine whether a resource graph can actually represent a
model in the sense of Definition 2.2.

Definition 4.11. Let B be a tableau branch, Π(B) is the set of points-to predicates

Π(B) = { (l 7→ a, b) | ∃x ∈ L.T (l 7→ a, b) : x ∈ B }.

A valuation on B is a function π : BL → ℘(Π(B)) from the labels of BL to the subsets of
Π(B) such that:

∀x ∈ BL.

{

π(x) = { (l 7→ a, b) | T(l 7→ a, b) : x ∈ B } if Ux ∈ BK

π(x) = ∅ otherwise

We then define the set Λ(B) as the following extension of Π(B):

Λ(B) = Π(B) ∪ { (Li 7→ Ai, Bi) | ∀ i ∈ N.∀x, y ∈ V al. (Li 7→ x, y) 6∈ Π(B) }.
Finally, given a valuation π on B, an interpretation on (B, π) (more shortly on B) is a
function λ : BL → ℘m(Λ(B)) extending π which maps each label in BL to a finite multiset
over Λ(B) and which satisfies the following conditions:

– ∀x ∈ BL. λ(x) ⊇ π(x) (π-extension);
– ∀x, y ∈ BL. if x ◦ y ∈ BL then λ(x ◦ y) ⊇ λ(x) ∪ λ(y) 6;
– ∀x, y ∈ BL. if x ⋄ y ∈ BK then λ(x) = λ(y).

In terms of the resource graph G(B)[N,E] associated to the tableau branch B
– a valuation on G(B) is a function such that ∀Γx ∈ N. π(Γx) = π(x);
– an interpretation on G(B) is a function such that ∀Γx ∈ N. λ(Γx) = λ(x).

If we apply the previous definition to the second branch of the tableau given in Figure 3
and its associated resource graph G5, we have to set

π(Uc2) = { (l 7→ a, b) } and π(Uc2c3) = { (k 7→ c, d) },

which leads to the following decorated resource graph:

G(B2) = G5 : Zǫ Uc1 Uc2Zc3

Uc2c3

l 7→ a, b

k 7→ c, d

We now try to extend the previous valuation into an interpretation.
Let us first remark that a given valuation can in general give rise to several distinct
interpretations. For example, a first interpretation λ1 can be obtained for G5 if we set

λ1(Zǫ) = λ1(Zc3) = ∅.

6 We write multisets using double brackets {{ . . . }} and ∪ (∩) denotes multiset union (intersection) as soon
as one of its operands is a multiset.



Trying to satisfy the conditions of Definition 4.11 then leads us to the following equations:

1. λ1(Zǫ) = λ1(Zc3) = ∅
2. λ1(Uc2) = {{ (l 7→ a, b) }}
3. λ1(Uc2c3) = λ1(Uc2) ∪ λ1(Zc3) = {{ (l 7→ a, b), (k 7→ c, d) }}
4. λ1(Uc1) = λ1(Uc2c3) = {{ (l 7→ a, b), (k 7→ c, d) }}

Setting λ2(Zǫ) = ∅ and λ2(Zc3) = {{ (l 7→ a, b) }} leads to another interpretation λ2:

1. λ2(Zǫ) = ∅
2. λ2(Uc2) = λ2(Zc3) = {{ (l 7→ a, b) }}
3. λ2(Uc2c3) = λ2(Uc2) ∪ λ2(Zc3) = {{ (l 7→ a, b), (l 7→ a, b), (k 7→ c, d) }}
4. λ2(Uc1) = λ2(Uc2c3) = {{ (l 7→ a, b), (l 7→ a, b), (k 7→ c, d) }}

Let us note that since an interpretation maps a node to a multiset, the points-to predicate
(l 7→ a, b) occurs twice in λ2(Uc2c3) (and thus also in λ2(Uc1)), one occurrence coming
from λ2(Uc2), the other one coming from λ2(Zc3).

Definition 4.12. Let B be tableau branch, the restriction of a valuation π (on B) to its
locations, denoted πL, is such that:

∀x ∈ BL. π
L(x) = { l | ∃ a, b ∈ V al. (l 7→ a, b) ∈ π(x) }.

Similarly, the restriction of an interpretation λ to its locations, denoted λL, is such that:

∀x ∈ BL. l
n ∈ λL(x) iff l occurs n times in λ(x) on the lhs of a points-to predicate.

Let us write |α| for the size of a multiset α, i.e., the number of elements
∑

zn∈α
n it contains.

An interpretation λ on B is well-formed iff

∀x ∈ BL. ∀ ln ∈ λL(x). n ≤ 1 (SC1).

An interpretation λ on B is compatible with a measure µ on B iff
{

∀x ∈ BL. |λL(x)| ≤ µ(x) (SC2);
∀x, y ∈ BL. if B ⊢ x ≈ y then λ(x) = λ(y) (SC3).

An interpretation λ on B is maximally compatible with a measure µ on B iff

λ is compatible with µ and ∀x ∈ BL. |λL(x)| = µ(x) (SC4).

Adapting Definition 4.12 to the resource graph G5 given in Figure 4 we get:

πL(Uc2c3) = { k } and λL
2 (Uc2c3) = {{ l2, k }}.

Therefore, λ2 is not well-formed since the location l occurs twice in λL
2 (Uc2c3). Moreover,

λ2 is not compatible with the measure µ defined on G5 after Definition 4.10 since it does not
satisfy the two conditions (SC2) and (SC3) of Definition 4.12: (SC2) does not hold because
|λL

2 (Uc2c3)| = 3 6≤ 1 = µ(Uc2c3) and (SC3) does not hold because G5 ⊢ Uc2 ≈ Uc2c3 and

λ2(Uc2) = {{ (l 7→ a, b) }} 6= {{ (l 7→ a, b), (l 7→ a, b), (k 7→ c, d) }} = λ2(Uc2c3).



Although λ1 is well-formed, it is no more compatible with µ than λ2 because

λ1(Uc2c3) = {{ (l 7→ a, b), (k 7→ c, d) }} implies |λL
1 (Uc2c3)| = 2,

which contradicts (SC2) since µ(Uc2c3) = 1 and obviously 2 6≤ 1.

Lemma 4.3. Let B for a tableau branch, if λ and λ′ are two interpretations on B, then,
the function λ ∩ λ′ : BL → ℘m(Λ(B)) given by ∀x ∈ BL. λ ∩ λ′(x) = λ(x) ∩ λ′(x) is an
interpretation on B.

Proof. We show that λ ∩ λ′ satisfies all the conditions required by Definition 4.11 for an
interpretation:

1. for all label x ∈ BL, we have λ ∩ λ′(x) ⊇ π(x) since by definition of an interpretation
λ(x) ⊇ π(x) and λ′(x) ⊇ π(x), which implies λ(x) ∩ λ′(x) ⊇ π(x) ∩ π(x) = π(x);

2. given that for all labels x, y ∈ BL such that x ◦ y ∈ BL

we have both λ(x ◦ y) ⊇ λ(x) ∪ λ(y) and λ′(x ◦ y) ⊇ λ′(x) ∪ λ′(y),
we get λ(x ◦ y) ∩ λ′(x ◦ y) ⊇ (λ(x) ∪ λ(y)) ∩ (λ′(x) ∪ λ′(y)),
which implies λ(x ◦ y) ∩ λ′(x ◦ y) ⊇ (λ(x) ∩ λ′(x)) ∪ (λ(y) ∩ λ′(y)),
and finally λ ∩ λ′(x ◦ y) ⊇ λ ∩ λ′(x) ∪ λ ∩ λ′(y);

3. given that for all labels x, y ∈ BL such that x ⋄ y ∈ BK we have λ(x) = λ(y) and
λ′(x) = λ′(y), we get λ(x)∩λ′(x) = (λ(y)∩λ′(y)), which implies λ ∩ λ′(x) = λ ∩ λ′(y).

Corollary 4.1. Let B be a tableau branch, the function λm : BL → ℘m(Λ(B)) given by

∀x ∈ BL. λm(x) = ∩{λ(x) | λ is an interpretation on B }

is the smallest possible interpretation on B.

Proof. It is an easy consequence of Lemma 4.3.

Let us finally remark that there exists no compatible interpretation on the resource graph
G5 since λ1 is not compatible with G5 and λ1 is in fact λm, i.e., the smallest possible
interpretation on G5.

Definition 4.13 (structural consistency). Let B (G(B)) be a tableau branch (resource
graph), µ be a measure and λ be an interpretation on B (G(B)). We say that B (G(B)) is
structurally consistent with (µ, λ) iff λ is well-formed and maximally compatible with µ.
Accordingly, B (G(B)) is structurally consistent with µ iff there exists an interpretation
λ such that B (G(B)) is structurally consistent with (µ, λ) and B (G(B)) is structurally
consistent iff there exists a measure for which it is structurally consistent with.

The notion of structural consistency means that a resource graph actually represents a
“real” model of SLP. For example, the resource graph G5 is not structurally consistent
since it cannot be compatible with any measure on G5 as explained previously.



4.5 Logical Consistency

Before we proceed with the notion of logical consistency, which intuitively means that a
formula of SLP can be falsified, we need to introduce a new equivalence relation.

Definition 4.14 (λµ-equivalence). Let B be a tableau branch. Given a measure µ and
an interpretation λ on B, the relation ∼ (⊆ BL × BL) is the smallest equivalence induced
by µ and λ such that:

∀x, y ∈ BL. B ⊢ x ∼ y iff µ(x) = µ(y) and λ(x) = λ(y).

For the resource graph G(B)[N,E] associated to B
∀Γx,∆y ∈ N. G(B) ⊢ Γx ∼ ∆y iff B ⊢ x ∼ y.

Lemma 4.4. Let µ be a measure and λ be an interpretation on a tableau branch B, if λ
is compatible with µ then

∀x, y ∈ BL. if B ⊢ x ≈ y then B ⊢ x ∼ y.

Proof. Let x, y ∈ BL such that B ⊢ x ≈ y. We show that λ(x) = λ(y) and µ(x) = µ(y).

1. Since λ is compatible with µ, condition (SC3) of Definition 4.12 implies λ(x) = λ(y).
2. Now let z = x ∩ y, x′ = x\z and y′ = y\z, i.e., x = x′ ◦ z and y = y′ ◦ z, where z

is the label containing all the constant symbols shared by x and y. The definition of
B ⊢ x ≈ y then implies that ∀ c ∈ C. if c ∈ (x′ ◦ y′) then µ(c) = 0. Thefore, we get
µ(x′) = µ(y′) = 0, which implies µ(x) = µ(x′) + µ(z) = µ(z) = µ(y′) + µ(z) = µ(y).

Definition 4.15 (logical consistency). Let B be a tableau branch, µ be a measure and
λ be an interpretation on B (G(B)). We say that B is logically consistent with (µ, λ) iff
none of the following conditions holds:

– ∃x, y ∈ BL. T (l 7→ a, b) :x ∈ B, F (l 7→ a, b) : y ∈ B and B ⊢ x ∼ y (LC1);
– ∃x ∈ BL. F I : x ∈ B and µ(x) = 0 (LC2);
– ∃x ∈ BL. F⊤ : x ∈ B (LC3);
– ∃x ∈ BL. T⊥ :x ∈ B (LC4).

Accordingly, B (G(B)) is logically consistent with µ iff there exists an interpretation λ
such that B (G(B)) is logically consistent with (µ, λ) and B (G(B)) is logically consistent
iff there exists a measure for which it is logically consistent with.

Looking back at the tableau of Figure 3 we can see that B2 is logically consistent for the
only measure µ definable on G(B2) = G5 because:

– the initial formula does not contain any occurrence of I, ⊤ or ⊥ so that none of the
conditions (LC2) – (LC4) holds and

– B2 does not contain any points-to predicate with sign F so that condition (LC1) does
not hold either.

On the contrary, B1 is not logically consistent because



– T (l 7→ a, b) : c2 ∈ B1, F (l 7→ a, b) : c2 ∈ B1 and

– for all measures on G(B1), c2 = c2 implies that c2 ∼ c2 holds in B1 (B1 ⊢ c2 ∼ c2).

Definition 4.16. A tableau branch B is open iff there exists a measure µ and an inter-
pretation λ on B (G(B)) such that B (G(B)) is both structurally and logically consistent
with (µ, λ). A tableau branch that is not open is said to be closed. A tableau is open if it
contains at least one open branch, it is closed otherwise.

Definition 4.17 (provability). A tableau T is a TSLP-proof of ψ |= φ iff there is a
finite sequence of tableaux (Ti)1≤i≤n such that:

1. T1 is the one-node tableau the root of which is labelled with Fψ −∗ φ : ǫ;

2. Ti+1 is obtained from Ti by a tableau rule of Figure 1;

3. Tn = T and T is closed.

An entailment ψ |= φ is provable in TSLP if there exists a TSLP-proof of ψ |= φ.

Let us summarize all the information we have about the tableau T of Figure 3:

– on one hand, for all measures µ on B1, B1 is not logically consistent with µ and,

– on the other hand, B2 is not structurally consistent with the only measure it admits.

Therefore, according to Definition 4.16, B1 and B2 are closed, which implies that T is
closed and is a TSLP-proof of (l 7→ a, b) ∗ ((l 7→ a, b) −∗ (k 7→ c, d)) |= (m 7→ e, f).

4.6 Theorem-proving vs. Model-checking

Before we prove the main properties of the tableau calculus let us emphasize the interest of
the theorem-proving approach. Compared to model-checking, which is the main approach
considered for Separation Logic so far [2], theorem-proving aims at discovering all classes
of models for which a formula is satisfied. As seen in this section, a key feature of our
tableau method is that provability is captured through two distinct notions: structural
and logical consistency. The first one ensures that a resource graph actually denotes a
model in the class of Separation Logic models while the second one ensures that a formula
can be falsified in some model.

Such an approach allows us to distinguish whether a formula is valid for intrinsic logical
reasons (for example φ→ φ should be valid in any “reasonable” resource logic) or because
the conditions required for a given structure to be a model in the class of Separation Logic
models are too restrictive to allow the existence of a model. This key point also makes
the method more modular as one can change the conditions for structural consistency in
order to match other classes of resource models. For example, one could consider models
for which the composition does not require disjoint resources and therefore allows some
kind of overlapping so that the condition µ(x ◦ y) = µ(x) + µ(y) does not hold in general
for all resources x and y.



√
1 F ((l 7→ a, b) ∗ (l 7→ c, d)) −∗ ⊥ : ǫ

√
2 T(l 7→ a, b) ∗ (l 7→ c, d) : c1

F⊥ : c1

as1 : c2c3 ⋄ c1
√

3 T (l 7→ a, b) : c2√
4 T(l 7→ c, d) : c3

as3 : Uc2

as4 : Uc3

B

×

G(B) : Zǫ Uc2 ∅c1 Uc3

∅c2c3

l 7→ a, b l 7→ c, d

Figure5. Tableau for (l 7→ a, b) ∗ (l 7→ c, d) |= ⊥.

4.7 Another Example

We complete this section with an example that illustrates some key points of the tableau
construction and the related characterization of validity.

Figure 5 gives a tableau for the entailment (l 7→ a, b) ∗ (l 7→ c, d) |= ⊥ which means that
a heap cannot have two distinct cells at the same location. The tableau contains a single
branch B and its associated resource graph G(B) (after Step 4) admits only one measure
µ which is such that:







µ(Zǫ) = 0
µ(Uc2) = µ(Uc3) = 1
µ(∅c1) = µ(∅c2c3) = µ(Uc2) + µ(Uc3) = 2

Moreover, the tableau branch B induces the following valuation on G(B):

π(Uc2) = { (l 7→ a, b) }, π(Uc3) = { (l 7→ c, d) }.

According to Definition 4.11, any interpretation should then verify the equation

λ(∅c2c3) ⊇ λ(∅c2) ∪ λ(∅c3) = {{ (l 7→ a, b), (l 7→ c, d) }}.

Since the previous equation implies that the location l should occur at least twice in
any interpretation, it is clear that no interpretation can satisfy the condition (SC1) of
Definition 4.12 and thus no interpretation can be well-formed.
Consequently, Definition 4.13 implies that, for all measures µ and interpretations λ, the
resource graph G(B) is not structurally consistent with (µ, λ) which, by Definition 4.16,
finally implies that the tableau branch B is closed.
Therefore, the tableau of Figure 5 is a TSLP-proof of (l 7→ a, b) ∗ (l 7→ c, d) |= ⊥.



5 Properties of the Tableau Calculus

In this section we study and prove the main properties of the tableau calculus, namely
soundness, completeness and termination. Soundness is obtained via a notion of realization
which is preserved by the tableau rules of TSLP, completeness relies on the construction
of a countermodel from an open branch and termination follows from arguments on the
maximal size of a heap denoted by a label.

5.1 Soundness

Before we proceed with the soundness proof, let us first introduce the notation Size(h) to
denote the size of a heap h, i.e., the number of locations it contains.

Definition 5.1 (realization). Let B be a tableau branch. A realization of B is a function
‖–‖ : BL → H satisfying the following conditions:

– ∀x, y ∈ BL. x ◦ y ∈ BL ⇒ ‖x ◦ y‖ = ‖x‖ ⋆ ‖y‖;
– ∀x ∈ BL. Zx ∈ BK ⇒ Size(‖x‖) = 0;
– ∀x ∈ BL. Ux ∈ BK ⇒ Size(‖x‖) = 1;
– ∀x, y ∈ BL. x ⋄ y ∈ BK ⇒ ‖x‖ = ‖y‖;
– ∀x ∈ BL. Tφ :x ∈ B ⇒ ‖x‖ |= φ;
– ∀x ∈ BL. Fφ :x ∈ B ⇒ ‖x‖ 6|= φ.

A tableau branch B is realizable if there exists a realization of B.
A tableau T is realizable if it contains a realizable branch.

Let us remark that the first condition, namely ‖x◦y‖ = ‖x‖⋆‖y‖, implies that a realization
‖–‖ is completely determined by its values on the constants occurring in BL. Moreover, it
is not difficult to see that B ⊢ x ≈ y ⇒ ‖x‖ = ‖y‖.

Lemma 5.1. If a tableau branch B is closed then it is not realizable.

Proof. We show that if B is realizable for some realization ‖–‖ then B is open.

1. Let us first show that the resource graph G(B)[N,E] associated to the branch B is
structurally consistent. For that we need to show that there exists some measure µ
and interpretation λ on G(B) such that λ is well-formed and maximally compatible
with µ. It is not difficult (although quite lengthy) to show that such a pair (µ, λ) can
be obtained by setting:

∀Γx ∈ N.

{

µ(Γx) = Size(‖x‖)
(l 7→ a, b) ∈ λ(Γx) iff ‖x‖(l) = (a, b)

The four conditions (SC1)–(SC4) are enforced by the previous definition since a heap
‖x‖ cannot associate more than one cell to a location (condition (SC1)), contains
exactly as many cells as locations in its domain (conditions (SC2) and (SC4)) and
finally, if B ⊢ x ≈ y then ‖x‖ = ‖y‖, which obviously implies that ‖x‖ and ‖y‖ have
the same cells associated to the same locations (condition (SC3)).



2. We now show that if B is realizable then it is logically consistent. Suppose otherwise,
then at least one of the conditions (LC1)–(LC4) of Definition 4.15 holds. Let us assume
that (LC1) holds (other cases are similar), then, there is a points-to predicate (l 7→ a, b)
such that T (l 7→ a, b) :x ∈ B, F (l 7→ a, b) : y ∈ B and B ⊢ x ∼ y for some labels x and
y. Since ‖–‖ is a realization of B, we deduce ‖x‖ |= (l 7→ a, b), ‖y‖ 6|= (l 7→ a, b) and
‖x‖ = ‖y‖, which is a contradiction.

From (1) and (2) we can conclude that B is open according to Definition 4.16.

Lemma 5.2. All rules of TSLP preserve realizability.

Proof. We show that, for all realizable tableaux T , if T ′ is a tableau obtained from T
by application of a tableau rule, then T ′ is realizable. Since T is realizable, it contains
a branch B which is realizable for some realization ‖–‖. If the labelled formula Sφ :x
that has been expanded to obtain T ′ does not belong to B, then T ′ is realizable since
it still contains B. Otherwise, we show by case analysis on Sφ :x that the corresponding
expansion rule preserves realizability.

– case Tφ ∗ ψ :x
B is extended into the branch B′ such that B′ = B + Tφ : ci + Tψ : cj + as : cicj ⋄ x,
ci and cj being new constants. Since ‖–‖ realizes B, we have ‖x‖ |= φ ∗ ψ. Therefore,
there exist two heaps h1 and h2 such that h1#h2, h1 ⋆ h2 = ‖x‖, h1 |= φ and h2 |= ψ.
We then only need to extend ‖–‖ to ci and cj by setting ‖ci‖ = h1 and ‖cj‖ = h2 in
order to obtain ‖ci‖ |= φ and ‖cj‖ |= ψ. Since ‖ci‖ ⋆ ‖cj‖ = ‖x‖, B′ is realizable and,
consequently, T ′ is realizable.

– case Fφ ∗ ψ :x
B splits into two branches B1 and B2 such that B1 = B + Fφ : y + rq : (y ◦ z) ⋄ x and
B2 = B + Fψ : z + rq : (y ◦ z) ⋄ x. An admissible application of the F ∗ rule requires
that B ⊢ (y ◦ z) ⋄ x, which implies ‖y‖ ⋆ ‖z‖ = ‖x‖. Since ‖–‖ realizes B, we have
‖x‖ 6|= φ ∗ ψ. Therefore, for all heaps h1 and h2 such that h1#h2 and h1 ⋆ h2 = ‖x‖,
either h1 6|= φ, or h2 6|= ψ, which implies that either ‖y‖ 6|= φ, or ‖z‖ 6|= ψ. Then, either
B1, or B2 is realizable and, consequently, T ′ is realizable.

– other cases are similar.

Theorem 5.1 (soundness). If there exists a TSLP-proof of ψ |= φ then the entailment
ψ |= φ holds in SLP.

Proof. Let (Ti)1≤i≤n be a TSL-proof of ψ |= φ. Suppose that ψ |= φ does not hold in SLP,
then e 6|= ψ −∗ φ. Consequently, ‖ǫ‖ = e is a trivial realization of T0. Lemma 5.2 then
entails that all tableaux in (Ti)1≤i≤n are realizable. This is a contradiction because Tn is
closed by definition of a TSL-proof, which implies that Tn is not realizable by Lemma 5.1.

5.2 Completeness and Countermodel Generation

We give here a proof of completeness of the calculus based on countermodel construction.



F (⊤ ∗ (l 7→ a, b)) ∧ (⊤ ∗ (k 7→ a, b)) −∗ (l 7→ a, b) : ǫ

T(⊤ ∗ (l 7→ a, b)) ∧ (⊤ ∗ (k 7→ a, b)) : c1
F (l 7→ a, b) : c1

T⊤ ∗ (l 7→ a, b) : c1
T⊤ ∗ (k 7→ a, b) : c1

as : c2c3 ⋄ c1

T⊤ : c2
T(l 7→ a, b) : c3

as : c4c5 ⋄ c1

T⊤ : c4
T(k 7→ a, b) : c5

B

G(B) : Zǫ ∅c1

∅c2 Uc3 ∅c4 Uc5

∅c2c3 ∅c4c5

l 7→ a, b k 7→ a, b

Figure6. Open Tableau for (⊤ ∗ (l 7→ a, b)) ∧ (⊤ ∗ (k 7→ a, b)) |= (l 7→ a, b)

Definition 5.2. Let B be tableau branch, a labelled formula Sφ :x is analyzed in B, de-
noted B � Sφ : x, iff Sφ : y ∈ B for some label y ∈ BL such that B ⊢ x ≈ y.

Definition 5.3. Let B be a tableau branch, a labelled formula Sφ :x is completely ana-
lyzed or fulfilled in B, denoted B  Sφ :x, iff it matches one of the following cases:

– B  T I : x iff B � T I :x and B ⊢ Zx;

– B  T (l 7→ a, b) :x iff B � T(l 7→ a, b) :x and B ⊢ Ux;

– B  Tψ ∧ χ :x iff B � Tψ :x and B � Tχ :x;
– B  Fψ ∨ χ :x iff B � Fψ : x and B � Fχ :x;

– B  Tψ ∨ χ :x iff B � Tψ :x or B � Tχ :x;

– B  Fψ → χ :x iff B � Tψ :x and B � Fχ :x;
– B  Tψ → χ : x iff B � Fψ :x or B � Tχ :x;

– B  Fψ ∗ χ : x iff (∀ y, z ∈ BL) (B ⊢ (y ◦ z) ≈ x implies (B � Fψ : y or B � Fχ : z));

– B  Tψ ∗ χ :x iff (∃ y, z ∈ BL) (B ⊢ (y ◦ z) ≈ x and B � Tψ : y and B � Tχ : z);
– B  Fψ −∗ χ :x iff (∃ y ∈ BL) (x ◦ y ∈ BL and B � Tψ : y and B � Fχ :x ◦ y);
– B  Tψ −∗ χ :x iff (∀ y ∈ BL) (x ◦ y ∈ BL implies (B � Fψ : y or B � Tχ :x ◦ y));
– for all other cases, B  Sφ : x iff B � Sφ :x.

Definition 5.4. A tableau branch B is complete iff it is open and all labelled formulas in
B are fulfilled. A tableau T is complete iff it contains a complete branch.

It is standard to define a tableau construction procedure that builds either a closed tableau
or a complete tableau [14].

Let us now explain how to construct a countermodel from an open and complete tableau
branch B using the tableau depicted in Figure 6. The first thing we need to check is whether



the tableau branch B is open, i.e., if it is both structurally and logically consistent for some
measure µ and some interpretation λ on G(B) such that λ is well-formed and maximally
compatible with µ.

Let us first prove that G(B) is measurable. In this example, the resource graph G(B) implies
that all measures µ on G(B) should satisfy the following equations:















µ(Zǫ) = 0
µ(Uc3) = µ(Uc5) = 1
µ(∅c1) = µ(∅c2c3) = µ(∅c2) + µ(Uc3)
µ(∅c1) = µ(∅c4c5) = µ(∅c4) + µ(Uc5)

The previous system of µ-equations admits infinitely many solutions of the following form:
for all X ∈ N, µ is a measure on G(B) iff:















µ(Zǫ) = 0
µ(Uc3) = µ(Uc5) = 1
µ(∅c2) = µ(∅c4) = X
µ(∅c1) = µ(∅c2c3) = µ(∅c4c5) = X + 1

Then we take into account the conditions required by Definition 4.11. We know that all
interpretations λ on G(B) should satisfy the following equations:







λ(∅c1) = λ(∅c2c3) ⊇ λ(∅c2) ∪ λ(Uc3) ⊇ {{ (l 7→ a, b), (k 7→ a, b) }}
λ(∅c1) = λ(∅c4c5) ⊇ λ(∅c4) ∪ λ(Uc5) ⊇ {{ (l 7→ a, b), (k 7→ a, b) }}
|λL(∅c1)| = |λL(∅c2c3)| = |λL(∅c4c5)| ≥ 2

Now if B is to be open, we can make use of Definition 4.12 to help us narrow down the
set of admissible measures on G(B). Indeed, in order to satisfy condition (SC4), any given
measure µ must be such that:















|λL(Zǫ)| = 0
|λL(Uc3)| = |λL(Uc5)| = µ(Uc5) = µ(Uc3) = 1
|λL(∅c2)| = |λL(∅c4)| = µ(∅c2) = µ(∅c4) = X
2 ≤ |λL(∅c4c5)| = |λL(∅c2c3)| = |λL(∅c1)| = µ(∅c1) = µ(∅c2c3) = µ(∅c4c5) = X + 1

We can therefore deduce that X ≥ 1.

Let us try the measure µ induced by setting X = 1. In this case, we obtain:















µ(Zǫ) = 0
µ(Uc3) = µ(Uc5) = 1
µ(∅c2) = µ(∅c4) = 1
µ(∅c1) = µ(∅c2c3) = µ(∅c4c5) = 2















|λL(Zǫ)| = µ(Zǫ) = 0
|λL(Uc3)| = |λL(Uc5)| = 1
|λL(∅c2)| = |λL(∅c4)| = 1
|λL(∅c1)| = |λL(∅c2c3)| = |λL(∅c4c5)| = 2

Since |λL(∅c2)| = |λL(∅c4)| = 1, we must complete λ(∅c2) and λ(∅c4) so that they contain
exactly one points-to predicate. Since we know nothing about these points-to predicates
for the moment we simply set

λ(∅c2) = {{ (L1 7→ A1, B1) }} and λ(∅c4) = {{ (L2 7→ A2, B2) }}.



We can now consider Li, Ai, Bi (1 ≤ i ≤ 2) as variables in a process of multiset-unification
in order to solve the following system of λ-equations:































λ(Zǫ) = ∅
λ(Uc3) = {{ (l 7→ a, b) }}
λ(Uc5) = {{ (k 7→ a, b) }}
λ(∅c2) = {{ (L1 7→ A1, B1) }}
λ(∅c4) = {{ (L2 7→ A2, B2) }}
λ(∅c1) = λ(∅c2c3) = λ(∅c4c5) = {{ (l 7→ a, b), (k 7→ a, b) }}

Having |λL(∅c1)| = |λL(∅c2c3)| = 2 on one hand and |λL(∅c2)| = |λL(Uc3)| = 1 on the
other hand implies that λ(∅c2c3) = λ(∅c2) ∪ λ(Uc3). A similar argument then also yields
λ(∅c4c5) = λ(∅c4) ∪ λ(Uc5), so that we obtain the two equations:

{

{{ (l 7→ a, b), (k 7→ a, b) }} = {{ (L1 7→ A1, B1), (l 7→ a, b) }}
{{ (l 7→ a, b), (k 7→ a, b) }} = {{ (L2 7→ A2, B2), (k 7→ a, b) }}

for which a solution is given by

(L1 7→ A1, B1) = (k 7→ a, b) and (L2 7→ A2, B2) = (l 7→ a, b).

Finally, we have found a measure µ and an interpretation λ on G(B) such that λ is well-
formed and maximally compatible with µ and such that:























µ(Zǫ) = 0
µ(Uc3) = µ(Uc5) = 1
µ(∅c2) = µ(∅c4) = 1
µ(∅c1) = µ(∅c2c3) = µ(∅c4c5)
µ(∅c1) = 2























λ(Zǫ) = ∅
λ(Uc3) = λ(∅c4) = {{ (l 7→ a, b) }}
λ(Uc5) = λ(∅c2) = {{ (k 7→ a, b) }}
λ(∅c1) = λ(∅c2c3) = λ(∅c4c5)
λ(∅c1) = {{ (l 7→ a, b), (k 7→ a, b) }}

Therefore, the resource graph G(B) is structurally consistent with (µ, λ) and since B is
also logically consistent with (µ, λ), we have shown that B is an open branch.
The last step of the countermodel construction process consists in deriving a partial monoid
of heaps from the labels of BL. We proceed as follows: for all labels x ∈ BL, we define a
heap hx : Loc→ V al × V al such that:

hx(l) = (a, b) iff (l 7→ a, b) ∈ λ(x).

Then, we define M = (H, ⋆, hǫ) as the structure such that H = {hx | x ∈ BL }, knowing
that heap composition is given by the union of disjoint partial functions.

Lemma 5.3. If B is a complete branch then M = (H, ⋆, hǫ) is a SLP-model such that:

a) if B  Tφ :x, then ∃ z ∈ BL.B ⊢ z ∼ x and hz |= φ;
b) if B  Fφ :x, then ∃ z ∈ BL.B ⊢ z ∼ x and hz 6|= φ.

Proof. Firstly, let us note that condition (SC1) of Definition 4.13 implies that hx is a
function for all labels x ∈ BL while (SC4) implies that hǫ is the empty heap e. Moreover,
(SC1) and (SC3) imply that if x ◦ y ∈ BL then hx ⋆ hy = hx◦y. The two properties a) and
b) then follow by a lengthy induction on φ w.r.t. conditions of Definition 5.3.



Theorem 5.2 (completeness). If the entailment ψ |= φ holds in SLP, then there exists
a TSLP-proof of ψ |= φ.

Proof. Suppose that ψ |= φ has no TSLP-proof, then, there exists no sequence of tableaux
(Ti)1≤i≤n such that Tn is closed. Therefore, any (fair) tableau construction procedure
results in a tableau containing a complete branch B from which we can build the structure
M = (H, ⋆, hǫ). Since B�Fψ −∗ φ : ǫ, Lemma 5.3 entails that M is a SLP-model such that
hǫ 6|= ψ −∗ φ, which contradicts the fact that ψ |= φ holds in SLP.

5.3 Termination

In this section we discuss the termination of our tableau calculus for SLP. Unfortunately,
we cannot reuse the arguments given for BI [16] which rely on the possibility of reusing
the constant symbols introduced by the F−∗ and T ∗ tableau rules so that only a finite
number of atomic labels can be generated in the tableau construction process.
The fact that atomic labels may be reused is justified by the fact that BI is complete
w.r.t. Beth resource semantics and that this completeness property is preserved when the
semantics is restricted to regular valuations. A valuation is regular iff for all formulas φ,
if there exists a world m such that m |= φ then there also exists the smallest world cφ
(w.r.t. the underlying preordering on worlds) such that cφ |= φ. Let us remark that such
an argument cannot be used in the case of SL since there is no such thing as the smallest
heap that satisfies a SL formula.
Figure 7 shows a tableau for which an infinite branch B can be constructed if one only
relies on the tableau rules because B contains πα formulas in the scope of a πβ formula.
In the beginning, when Step 2 needs to expand the πβ formula

T⊤−∗ (((k 7→ c, d) −∗ (l 7→ a, b)) → (l 7→ a, b))) : c1,

the only admissible label is the empty string ǫ since c1 ◦ ǫ = c1 and c1 is obviously defined
in the resource graph of the branch.
When we reach Step 4, the expansion of the πα formula

F (k 7→ c, d) −∗ (l 7→ a, b) : c1

generates two new labels c2 and c1c2 but since c1 ◦ c2 = c1c2, the label c2 is now an
admissible choice for the expansion of the πβ formula of Step 2.
In Step 5, we perform a second expansion of the πβ formula of Step 2 with the label c2
generated in Step 4, which leads us to Step 6 where a new instance of the πα formula of
Step 4 is introduced, except that this new instance is labelled with c1c2 instead of c1.
Similarly to what happened in Step 4, when Step 7 expands the πα formula

F (k 7→ c, d) −∗ (l 7→ a, b) : c1c2,

two new labels c3 and c1c2c3 are generated. The (Saturation) condition of Definition 3.6
then also generates two new labels c1c3 and c2c3 so that c3 and c2c3 are now admissible
choices for the πβ formula of Step 2 and we clearly get in an infinite expansion loop for
the branch B.



√
1 F (⊤−∗ (((k 7→ c, d) −∗ (l 7→ a, b)) → (l 7→ a, b))) −∗ (l 7→ a, b) : ǫ

√
2,5 T⊤−∗ (((k 7→ c, d) −∗ (l 7→ a, b)) → (l 7→ a, b))) : c1

F (l 7→ a, b) : c1
hhhhhhhhhhhh

((((((((((((

F⊤ : ǫ

×

√
3 T((k 7→ c, d) −∗ (l 7→ a, b)) → (l 7→ a, b) : c1

hhhhhhhhhhh

(((((((((((√
4 F (k 7→ c, d) −∗ (l 7→ a, b) : c1

T(k 7→ c, d) : c2
F (l 7→ a, b) : c1c2

hhhhhhhh

((((((((

F⊤ : c2

×

√
6 T ((k 7→ c, d) −∗ (l 7→ a, b)) → (l 7→ a, b) : c1c2

`````̀

      √
7 F (k 7→ c, d) −∗ (l 7→ a, b) : c1c2

T(k 7→ c, d) : c3
F(l 7→ a, b) : c1c2c3

...
B

T (l 7→ a, b) : c1c2

×

T(l 7→ a, b) : c1

×

Figure7. Infinite Tableau for (k 7→ c, d) −∗ (l 7→ a, b)) → (l 7→ a, b)) |= (l 7→ a, b).

Let us now take a closer look at the infinite branch B using the specific notions of measures
and interpretations.

After Step 4, the introduction of the labelled formula T (k 7→ c, d) : c2 comes together with
the assertion Uc2 (not explicitly depicted in Figure 7) which implies that

for all measures µ on B, µ(c2) = 1.

Moreover, we can also deduce that

for all interpretations λ on B, λ(c2) ⊇ {{ (k 7→ c, d) }}.

Similarly, after Step 7 introduces T (k 7→ c, d) : c3 and the assertion Uc3 we obtain

for all measures µ and interpretations λ on B, µ(c3) = 1 and λ(c3) ⊇ {{ (k 7→ c, d) }}.

After Step 7, the following equation holds for all measures µ and all interpretations on B:

µ(c2) = µ(c3) = 1 and λ(c2c3) ⊇ λ(c2) ∪ λ(c3) ⊇ {{ (k 7→ c, d), (k 7→ c, d) }},

which contradicts both conditions (SC1) and (SC2) of Definition 4.12. Therefore, for all
measures µ on B, there exists no interpretation λ on B which is well-formed and compatible
with µ. Consequently, B cannot be structurally consistent and according to Definition 4.16,
the tableau branch B is closed after Step 7.



Taking into account the information induced by the measures and interpretations, we can
prove that our tableau method always terminate. Let us remark that in order to keep a
tableau branch B open, we need to have a measure µ and an interpretation λ on B such
that λ is well-formed and maximally compatible with µ. In the example of Figure 7, this
would require

µ(c2) = µ(c3) = 1 and λ(c2) = λ(c3) = {{ (k 7→ c, d) }}

by conditions (SC1) and (SC2) of Definition 4.12, which in turn implies B ⊢ c2 ∼ c3.
Therefore, up to the λµ-equivalence induced by (µ, λ), c2 and c3 should semantically
denote the same heap.

Theorem 5.3 (termination). TSLP terminates for all entailments ψ |= φ of SLP.

Proof. Let T be a tableau for a formula φ which contains an infinite open branch B. Since
B is open, we know from Definition 4.16 that there exists a measure µ and an interpretation
λ on B such that λ is well-formed and maximally compatible with µ.
Let us consider the quotient BL/∼ of BL by the λµ-equivalence induced by (µ, λ). It is not
difficult to see that there can only be finitely many classes in BL/∼ because:

1. the initial entailment ψ |= φ generates a finite number of signed formulas of the form
T (l 7→ a, b) and

2. if T (l 7→ a, b) :x ∈ B and T (l 7→ a, b) : y ∈ B then B ⊢ x ∼ y.

Given that an interpretation only depends on labelled formulas of the form T (l 7→ a, b) : x,
that λ is well-formed and that we begin with a finite number of signed formulas T (l 7→ a, b),
the tableau calculus TSLP cannot introduce an infinite number of disjoint label composi-
tions without contradicting condition (SC1) of Definition 4.12.

6 Extensions to Full SL

In this section we explain how our tableau calculus for SLP can be extended in order to
take into account the introduction of variables, first order quantifiers and equality. Here,
the points-to predicate 7→ associates a cell to a stack variable (as in (x 7→ a, b) where x
points to the cell (a, b)) and such variables are in the scope of the first order quantifiers so
that all the formulas we consider are closed. Moreover, we assume without loss of generality
that all variables are bound to a unique quantifier. For example, in the formula

φ = (∃x∀y∀z.(x 7→ y, z)) → (∀x∃y.(x 7→ y, y)),

the variables x and y are bound by two quantifiers (one on both sides of the additive
implication →) and should be renamed appropriately before we can proceed with the
notions presented in this section. Such a renaming results in the formula

φ′ = (∃x1∀y1∀z.(x1 7→ y1, z)) → (∀x2∃y2.(x2 7→ y2, y2)).

Since we use the letters x, y and z to denote stack variables in SL formulas we now use
the letters u, v and w for arbitrary labels.



T ∃x.ϕ(x) : (s, u)

Tϕ(X) : ([ s | x 7→ X ], u) (1)

F ∃x.ϕ(x) : (s, u)

Fϕ(t) : ([ s | x 7→ t ], u)

F ∀x.ϕ(x) : (s, u)

Fϕ(X) : ([ s | x 7→ X ], u) (1)

T∀x.ϕ(x) : (s, u)

Tϕ(t) : ([ s | x 7→ t ], u)

(1): X is a new parameter.

Figure8. Tableau Rules for the Quantifiers.

6.1 Eliminating First Order Quantifiers

Let us first note that we only have to deal with the existential quantifier since ∀x.ϕ(x)
is nothing but syntactic sugar for ¬∃x.¬ϕ(x). Given an entailment ψ |= φ between two
formulas ψ and φ,

– Loc(ψ |= φ) (Cst(ψ |= φ)) is the set of all the locations (constants) occurring in ψ |= φ;

– V al(ψ |= φ) = Loc(ψ |= φ)∪Cst(ψ |= φ) is the set of all the values occurring in ψ |= φ;

– Par(ψ |= φ) is a countable set of symbols, called parameters, that do not occur in
V al(ψ |= φ), i.e., Par(ψ |= φ) ∩ V al(ψ |= φ) = ∅;

– V P (ψ |= φ) = V al(ψ |= φ) ∪ Par(ψ |= φ).

Given a branch B in a tableau for ψ |= φ,

– Loc(B) = Loc(ψ |= φ), Cst(B) = Cst(ψ |= φ) and V al(B) = V al(ψ |= φ);

– Par(B) (⊆ Par(ψ |= φ)) denotes the set of all the parameters occurring in B;

– V P (B) = V al(B) ∪ Par(B).

In order to eliminate quantifiers, we use a standard technique that instantiates variables
with values or parameters depending on the sign S and the quantifier Q of a labelled
formula S Qx.ϕ(x) : u [14]. The corresponding tableau rules are given in Figure 6.1.
Applying a T ∃ rule in a tableau branch B then results in the introduction of a parameter
X ∈ Par(ψ |= φ) that does not already occur in Par(B). Moreover, the variable x is
bound to this new parameter X, so that the current stack s is extended in a new stack
s′ = [ s | x 7→ X ]. A key point is therefore that, compared to the propositional case, our
tableau calculus now incrementally builds a stack for each tableau branch, initially starting
with the empty stack.
Unlike F ∃, the T ∃ rule reuses either a parameter that already occurs in Par(B), or a value
that already occurs in V al(B). If neither a parameter, nor a value can be chosen because
V P (B) is empty, the F∃ rule behaves exactly as the T∃ rule w.r.t. parameter introduction
(it generates a new parameter X). Following the standard terminology of first-order logic,
T ∃ and F∀ are called δ-rules, while F∃ and T ∀ are called γ-rules. As usual, a γ-rule may
be applied to a labelled formula as many times as needed to enumerate all the values and
all the parameters occurring in a tableau branch.



√
1 F (∃x∀y.(x 7→ y, b)) −∗ (∃z.(z 7→ a, b)) : ([ ], ǫ)

√
2 T∃x∀y.(x 7→ y, b) : ([ ], c1)√
3 F ∃z.(z 7→ a, b)) : ([ ], c1)

√
4,5 T∀y.(X 7→ y, b) : ([x 7→ X ], c1)

F (X 7→ a, b) : ([ z 7→ X ], c1)

T (X 7→ b, b) : ([x 7→ X, y 7→ b ], c1)

T (X 7→ a, b) : ([x 7→ X, y 7→ a ], c1)

B

×

Figure9. Tableau for ∃x∀y.(x 7→ y, b) |= ∃z.(z 7→ a, b).

Let us note that the tableau rules for quantifier elimination only operate on the stack
component s of a generalized label (s, u) and have therefore no impact on the resource
graph of a tableau branch. Indeed, resource graphs capture the properties of the heap
structure underlying a particular SL model so that heaps are considered as the actual
resources (labels). Consequently, provided that we always take care of discarding the stack
component s of a generalized label (s, u) (thus obtaining a proper label u of SLP), all the
notions defined in Section 4 (measure, interpretation, structural and logical consistency)
lift from SLP to its first order extension without any further modification.

Figure 6.1 illustrates how quantifiers are eliminated in the tableau construction process.
Note that we use the letters X, Y and Z to denote the parameters introduced by the
elimination of the variables x, y and z.

The interesting steps are Step 4 and Step 5. In Step 4, we need to apply the T ∀ on the
labelled formula

T∀y.(X 7→ y, b) : ([x 7→ X ], c1),

which requires us to choose a value for y. Since V P (B) = { a, b,X }, we have three pos-
sibilities and we choose to instantiate y with b, which results in the introduction of the
labelled formula

T (X 7→ b, b) : ([x 7→ X, y 7→ b ], c1).

Obviously, this does not help us closing the tableau branch because the only points-to
predicate with sign F occurs in the labelled formula F (X 7→ a, b) : ([ z 7→ X ], c1) intro-
duced in Step 3. However, as T ∀ is a γ-rule, we can make a second expansion of the
labelled formula of Step 4 in order to try another choice, thus leading to Step 5 where y
is instantiated with a. Such a choice then allows us to close the tableau branch B by con-
dition (LC1) of Definition 4.15 since, discarding the stack component of the generalized
labels, we have F (X 7→ a, b) : c1 ∈ B, T (X 7→ a, b) : c1 ∈ B and B ⊢ c1 ∼ c1.



Another example is given in Figure 10 where we end up with a tableau that contains two
branches B1 and B2. B2 is closed because for all measures on B2, T⊥ : c1 ∈ B2 implies
that B2 is not logically consistent. B1 is also closed because it is not measurable (otherwise
ZUc2 ∈ G(B1) would imply µ(c2) = 0 and µ(c2) = 1) and thus not structurally consistent.

6.2 Dealing with Equality

Rather than adding new tableau rules, we deal with the equality predicate = through an
extension of the notion of logical consistency. More precisely, given a tableau branch B,
the set B= of all the labelled formulas of the form T t1 = t2 : (s, u) occurring in B induces
a renaming ρ such that:

– if t1, t2 are parameters then t1/t2 ∈ ρ (t1 is renamed as t2);
– if t1 is a parameter and t2 is a constant then t1/t2 ∈ ρ;
– if t1 is a constant and t2 is a parameter then t2/t1 ∈ ρ;

A tableau branch B is now considered logically consistent iff

1. Bρ is logically consistent according to Definition 4.15 and,
2. for all labelled formulas T t1 = t2 : (s, u) ∈ B=, considering t1 and t2 as terms in a

(purely syntactic) term-unification process,
– either S = T and t1ρ is syntactically equal to (unifies with) t2ρ (LC5),
– or S = F and t1ρ is not syntactically equal to (does not unify with) t2ρ (LC6).

Figure 11 shows how the equality predicate is handled by the tableau calculus. We even-
tually get two tableau branches B1 and B2 sharing the following resource graph:

G(B1) = G(B2) :

Zǫ ∅c1

Uc2

∅c2c3

Uc3

(X1 7→ a, Y1)

(Z1 7→ c, d)

Moreover, since B1 and B2 contain the same labelled formula

T(Y1 = Z1) : ([x1 7→ X1, y1 7→ Y1, z1 7→ Z1 ], c1)

and since Y1 and Z1 are parameters, the renamings ρ1 and ρ2 respectively induced by B1

and B2 are the same and such that:

ρ1 = ρ2 = {Y1/Z1 }.

Therefore, B1ρ1 is not logically consistent by condition (LC1) of Definition 4.15 since,
once the stack component of the generalized labels are discarded, we have

T (X1 7→ a, Y1) : c2 ∈ B1ρ1, F (X1 7→ a, Y1) : c2 ∈ B1ρ1 and B1ρ1 ⊢ c2 ∼ c2.

Similarly for B2ρ2, once Y1 is renamed as X1, we have

T (Z1 7→ c, d) : c3 ∈ B2ρ2, F (Z1 7→ c, d) : c3 ∈ B2ρ2 and B2ρ2 ⊢ c3 ∼ c3.

It then follows from Definition 4.16 that B1ρ1 and B2ρ2 are closed.



√
1 F ((∃x.I → ⊥) → ⊥) −∗ ((∃y.(y 7→ a, b) ∗ ⊤) → ⊥) : ([ ], ǫ)

√
5 T (∃x.I → ⊥) → ⊥ : ([ ], c1)√

2 F (∃y.(y 7→ a, b) ∗ ⊤) → ⊥ : ([ ], c1)

√
3 T∃y.(y 7→ a, b) ∗ ⊤ : ([ ], c1)

F⊥ : ([ ], c1)

√
4 T(Y 7→ a, b) ∗ ⊤ : ([ y 7→ Y ], c1)

as1 : c2c3 ⋄ c1

T(Y 7→ a, b) : ([ y 7→ Y ], c2)
T⊤ : ([ y 7→ Y ], c3)

````̀

     √
6 F ∃x.I → ⊥ : ([ ], c1)

√
7 F I → ⊥ : ([x 7→ a ], c1)

T I : ([x 7→ a ], c1)
F⊥ : ([x 7→ a ], c1)

B1

×

T⊥ : ([ ], c1)

B2

×

G(B1) :

Zǫ Zc1

ZUc2

Zc2c3

Zc3

G(B2) :

Zǫ ∅c1

Uc2

∅c2c3

∅c3

Figure10. Tableau for ((∃x.I → ⊥) → ⊥) |= ((∃y.(y 7→ a, b) ∗ ⊤) → ⊥).

√
1 F (∃x1y1z1.((x1 7→ a, y1) ∗ (z1 7→ c, d)) ∧ (y1 = z1)) −∗ (∃x2y2.(x2 7→ a, y2) ∗ (y2 7→ c, d)) : ([ ], ǫ)

√
2,3,4 T∃x1y1z1.((x1 7→ a, y1) ∗ (z1 7→ c, d)) ∧ (y1 = z1) : ([ ], c1)√

7,8 F ∃x2y2.(x2 7→ a, y2) ∗ (y2 7→ c, d) : ([ ], c1)

√
5 T ((X1 7→ a, Y1) ∗ (Z1 7→ c, d)) ∧ (Y1 = Z1) : ([x1 7→ X1, y1 7→ Y1, z1 7→ Z1 ], c1)

√
6 T(X1 7→ a, Y1) ∗ (Z1 7→ c, d) : ([x1 7→ X1, y1 7→ Y1, z1 7→ Z1 ], c1)

T (Y1 = Z1) : ([x1 7→ X1, y1 7→ Y1, z1 7→ Z1 ], c1)

as1 : c2c3 ⋄ c1

T(X1 7→ a, Y1) : ([x1 7→ X1, y1 7→ Y1, z1 7→ Z1 ], c2)
T (Z1 7→ c, d) : ([x1 7→ X1, y1 7→ Y1, z1 7→ Z1 ], c3)

√
9 F (X1 7→ a, Y1) ∗ (Y1 7→ c, d) : ([x2 7→ X1, y2 7→ Y1 ], c1)

rq1 : c2c3 ⋄ c1
hhhhhhhhh

(((((((((

F (X1 7→ a, Y1) : ([x2 7→ X1, y2 7→ Y1 ], c2)

B1

×

F (Y1 7→ c, d) : ([x2 7→ X1, y2 7→ Y1 ], c3)

B2

×

Figure11. Tableau for ∃x1y1z1.((x1 7→ a, y1) ∗ (z1 7→ c, d))∧ (y1 = z1) |= ∃x2y2.(x2 7→ a, y2) ∗ (y2 7→ c, d).



6.3 Decidability Issues

It is known that full SL is not decidable [9]. This undecidability result is obtained through
Trakhtenbrot’s theorem by showing that any first order formula φ with a single binary
relation R(x, y) can be faithfully encoded in SL using points-to predicates. The encoding
rd(φ) proceeds as follows (with (x →֒ a, b) being syntactic sugar for (x 7→ a, b) ∗ ⊤):

rd(φ) = (∃x. (x →֒ nil, nil)) → prd(φ)
prd(R(x, y)) = (∃z. (z →֒ x, y)) ∧ (x →֒ nil, nil) ∧ (y →֒ nil, nil)
prd(φ→ ψ) = prd(φ) → prd(ψ)
prd(⊥) = ⊥
prd(x = y) = (x = y) ∧ (x →֒ nil, nil)
prd(∃x. φ) = ∃x. ((x →֒ nil, nil) ∧ prd(φ))

Intuitively, the translation encodes the relation and its universe by heap cells and the guard
∃x. (x 7→ nil, nil) in the definition of rd ensures that the universe of a finite structure is
not empty (see [9] for further details). Even if SL is undecidable, some recent works aim
at finding particular fragments for which decidability can be obtained. For example, one
such fragment is given in [1].
A fragment for which undecidability has been established very recently [7] is the fragment
where points-to predicates are restricted so that the cells contain only one location. More
precisely, let us call SL1 the variant of SL in which the points-to predicates are of the form
x 7→ y, where y can only be bound to a location (nil being a special location).
Let us remark that the undecidability of the SL1 fragment cannot be deduced from the
proof given in [9]. Indeed, the encoding rd(φ) no longer works with the restricted form
of the points-to predicate since prd(R(x, y)) requires that the heap cells should be pairs
of values. However, this fragment seems very interesting in the context of shape analysis
where one only cares about the shape of a structure and not about the data it contains.
For example, a property such as the circularity of a list does not depend on the data
contained in the nodes of the list.

Let us analyze this decidability problem from the proof-search point of view with our new
calculus. It is clear that the undecidability of full SL entails that our tableau system TSL

does not always terminate for all inputs. For example, consider the entailment

∀x1∃y1.(x1 7→ y1) |= (∃x2∀y2.(x2 7→ y2))

for which a tableau is given on the left-hand-side of Figure 12. On the right-hand-side of
Figure 12 we give a tableau for the first-order formula

(∀x1∃y1.P (x1, y1)) → (∃x2∀y2.P (x2, y2))

where points-to predicates are replaced by an uninterpreted predicate P in order to show
the difference between TSL and the standard tableau system for first-order logic. It is clear
that if one relies only on the expansion rules, then both tableaux grow infinitely because
there are labelled formulas of type δ in the scope of labelled formulas of type γ. Since δ
labelled formulas endlessly generate fresh locations (parameters for the second tableau) to
be used with the γ labelled formulas, the tableau method cannot terminate.



√
1 F (∀x1∃y1.(x1 7→ y1)) −∗ (∃x2∀y2.(x2 7→ y2)) : ǫ (∗)

√
2,6 T∀x1∃y1.(x1 7→ y1) : c1√
3,7 F ∃x2∀y2.(x2 7→ y2) : c1

√
4 T∃y1.(k 7→ y1) : c1

√
5 F ∀y2.(k 7→ y2) : c1

T(k 7→ l1) : c1

F (k 7→ m1) : c1

√
8 T ∃y1.(l1 7→ y1) : c1
T∃y1.(m1 7→ y1) : c1

√
9 F ∀y2.(l1 7→ y2) : c1
F ∀y2.(m1 7→ y2) : c1

T(l1 7→ l2) : c1

F (l1 7→ m2) : c1

...

B1

√
1 F (∀x∃y.P (x,y)) → (∃u∀v.P (u, v))

√
2,6 T∀x1∃y1.P (x1, y1)√
3,7 F ∃x2∀y2.P (x2, y2)

√
4 T∃y1.P (k, y1)

√
5 F ∀y2.P (k, y2)

TP (k, l1)

FP (k,m1)

√
8 T∃y2.P (l1, y2)
T∃y1. P (m1, y1)

√
9 F∀y2.P (l1, y2)
F ∀y2.P (m1, y2)

TP (l1, l2)

FP (l1,m2)

...

B2

(∗) For readability we omit the stack component in the labels.

Figure12. Tableau for ∀x1∃y1.(x1 7→ y1) |= ∃x2∀y2.(x2 7→ y2).

However, after Step 4, the tableau branch B1 contains a labelled formula T (k 7→ l1) : c1
and thus also an assertion Uc1 (not explicitly shown), which necessarily implies µ(c1) = 1
for all measures µ on B1. Therefore, as soon as Step 8 is performed, B1 becomes structurally
inconsistent since we have µ(c1) = 1 and the introduction of T (l1 7→ l2) : c1 requires that all
interpretations λ on B1 should be such that {{ k, l1 }} ⊆ λL(c1), which obviously contradicts
condition (SC2) of Definition 4.12 since |λL(c1)| 6≤ µ(c1).

The previous example clearly shows that, in the case of TSL, one can sometimes make use
of the additional information conveyed by the notions of measures and interpretations to
devise termination criteria for some specific fragments.

Definition 6.1 (prefixed formula). A prefixed formula is a triple (S, φ, p), denoted
Sφ : p, such that Sφ is a signed formula and p is a word (string) over the alphabet { γ, δ }
called a prefix.

Definition 6.2 (prefix tree). Let ψ and φ be two formulas of SL1, the prefix tree for
the entailment ψ |= φ, denoted PT (ψ |= φ), is induced by the syntactic structure of ψ and
φ so that each node n in PT (ψ |= φ) is associated with a prefix pref(n) (∈ { γ, δ }∗) given
by the following (inductive) definition:



F |= : ǫ
X
X
X
XX

�
�
�
��

T ∀x1 : γ

T ∃y1 : γδ

T (x1 7→ y1) : γδ

F ∃x2 : γ

F ∀y2 : γδ

F (x2 7→ y2) : γδ

Figure13. Prefix Tree for ∀x1∃y1.(x1 7→ y1) |= ∃x2∀y2.(x2 7→ y2)

– if n is the root node, then, pref(n) = ǫ, where ǫ is the empty string,
– otherwise, let p be the parent node of n in the prefix tree

• if n is labelled with a quantifier of type γ (F ∃,T ∀), then, pref(n) = pref(p)γ;
• if n is labelled with a quantifier of type δ (T ∃,F ∀), then, pref(n) = pref(p)δ;
• otherwise, pref(n) = pref(p).

In other words, starting with the empty string ǫ at the root node and moving toward the
leaves, we append a letter γ (respectively δ) to the current prefix each time we cross a
node labelled with a quantifier of type γ (respectively δ). For example, the prefix tree for
the entailment of Figure 12 is given in Figure 13.
We write last(p) to denote the prefix obtained from a prefix p by discarding its last
letter (e.g., last(γδγ) = γδ). Moreover, given a prefixed formula F = Sφ⊙ ψ : p (where
⊙ ∈ {∧,∨,→, ∗,−∗ }), we define lsf(F ) and rsf(F ) respectively as the left and right
(prefixed) subformulas of F 7, for instance,

lsf(Fφ−∗ ψ : p) = Tφ : p and rsf(Fφ−∗ ψ : p) = Fψ : p

Definition 6.3 (path). Given two formulas ψ and φ of SL1, a set of prefixed formulas
is a path through ψ |= φ iff it can be obtained from the set {Fψ −∗ φ : ǫ } by a repeated
application of the following (path reduction) rules:

Γ, lsf(F ), rsf(F )

Γ, F

Γ,Fϕ : p

Γ,F ∃x.ϕ : last(p)

Γ,Tϕ : q

Γ,T ∃x.ϕ : last(q)

Γ, lsf(G) Γ, rsf(G)

Γ, G

Γ,Tϕ : q

Γ,T ∀x.ϕ : last(q)

Γ,Fϕ : p

Γ,F∀x.ϕ : last(p)

where F (G) is a prefixed formula of type α or πα (β or πβ), p (q) is the prefix associated
to Fϕ (Tϕ) in the prefix tree for ψ |= φ.
A path is irreducible if no path reduction rule can be applied to it. The set of all irreducible
paths through ψ |= φ is denoted Paths(ψ |= φ) 8.

Figure 14 gives an example of path reduction for the entailment of Figure 13 which results
in a set of irreducible paths Paths(ψ |= φ) = {Γ } containing only one irreducible path
Γ = {T (x1 7→ y1) : γδ, F (x2 7→ y2) : γδ }.

7 The sign of each prefixed subformula is deduced from the sign of the parent formula as described in
Figure 1 for the corresponding labelled formulas.

8 All path reduction rules are permutable and thus lead to the same set of irreducible paths.



T(x1 7→ y1) : γδ, F (x2 7→ y2) : γδ

T(x1 7→ y1) : γδ, F∀y2.(x2 7→ y2) : γδ

T(x1 7→ y1) : γδ, F ∃x2∀y2.(x2 7→ y2) : γ

T∃y1.(x1 7→ y1) : γδ, F ∃x2∀y2.(x2 7→ y2) : γ

T∀x1∃y1.(x1 7→ y1) : γ, F ∃x2∀y2.(x2 7→ y2) : γ

F ∀x1∃y1.(x1 7→ y1) −∗ ∃x2∀y2.(x2 7→ y2) : ǫ

Figure14. Path Reduction for ∀x1∃y1.(x1 7→ y1) |= ∃x2∀y2.(x2 7→ y2).

Using the notions of prefix tree and irreducible paths we can now proceed with a proof-
theoretic characterization of a decidable fragment of SL1.

Definition 6.4. Let φ and ψ be two formulas of SL1, we say that ψ |= φ is a positive
entailment iff for all paths Γ through ψ |= φ,

– Γ contains at least one positive points-to predicate, more formally, one prefixed formula
of the form T (x 7→ y) : p

– for at least one positive points-to predicate T (x 7→ y) : p in Γ, if γδ is a substring of the
prefix p, then γ is substring of the prefix q associated to the prefixed formula S Qx.ϕ : q
(Q ∈ {∃,∀ }) that binds x 9.

We can see from the prefix tree depicted in Figure 13 that the entailment

∀x1∃y1.(x1 7→ y1) |= ∃x2∀y2.(x2 7→ y2)

is a positive entailment since the only irreducible path {T (x1 7→ y1) : γδ, F (x2 7→ y2) : γδ }
through it contains a prefixed formula T (x1 7→ y1) : p such that p = γδ and the prefixed
formula T ∀x1∃y1.(x1 7→ y1) : γ that binds x1 contains γ in its prefix.

Theorem 6.1. All positive entailments ψ |= φ in SL1 are decidable.

Proof. Let B a tableau branch, µ be a measure and λ be an interpretation on B. Given that
the tableau rules for quantifier elimination do not introduce new labels but only introduce
new locations, if B grows infinitely without being closed then there must be at least one
labelled formula S1 Q1x1.ϕ1 : (s1, u1) of type δ, standing in the scope of a labelled formula
S2 Q2x2.ϕ2 : (s2, u2) of type γ, which generates an infinite set L of locations l1, l2, . . .
Since ψ |= φ is a positive entailment, any path through ψ |= φ contains at least one
prefixed formula P of the form T (x 7→ k) : p. Therefore, B can be expanded so as to
contain at least one labelled formula T (l1 7→ y1) : (s3, u3) corresponding to P for some
location y1 in L. Since Definition 6.4, implies that T (l1 7→ y1) : (s3, u3) stands in the scope
of a labelled formula of type γ, B can be expanded once again so as to contain an additional
occurrence T (l2 7→ y2) : (s4, u3) of P for some location y2 in L. It then follows that B cannot
be structurally consistent because for all measures µ on B, T (l1 7→ y1) : (s3, u3) implies
µ(u3) = 1, which contradicts condition (SC2) of Definition 4.12 since λL(u3) ⊇ {{ l1, l2 }}
implies |λL(u3)| ≥ 2 and obviously 2 6≤ 1.

9 Recall that we assume that a stack variable is bound by a exactly one quantifier.



7 Conclusions and Perspectives

Separation Logic provides an interesting formalism for the verification of programs with
pointers and allows one to express properties about data structures with shared mutable
state [17,24]. In this paper, we have studied proof-theoretic foundations for this logic and
provided a new characterization of validity in SL that is based on a theorem-proving ap-
proach from a particular tableau calculus, with labels and constraints, that builds resource
graphs from which countermodels can be extracted.
So far, most of the tools dedicated to the mechanized verification of specifications written
in SL were mainly based on a model-checking approach [2,25]. Further work will be devoted
to the implementation of our tableau calculus and to the investigation of useful extensions,
such as inductive definitions, in order to provide new tools for proving assertions in SL.
Moreover, a deeper study on combining the model-checking approach with our tableau-
based approach could be helpful in order to improve automated verification in SL. As we
can generate countermodels in case of non-validity, studying how an initial specification
can be refined in case of failure could also be very interesting.
A key feature of the present work is that provability is captured via two distinct notions:
structural and logical consistency. The former ensures that a resource graph denotes an
actual model, the latter ensures that a formula can be falsified in some model. We can
therefore distinguish whether a formula is valid for intrinsic logical reasons or because the
conditions required for a given structure to be a model in the class of SL models are too
restrictive to allow the existence of a model. This central point also makes the verification
method more modular as one could change the conditions for structural consistency in
order to match other classes of resource models. For example, one could consider resource
models for which the composition is not disjoint, or is not an aggregation.
Further works will also concern the application of the same general methodology based on
the capture of the semantic relation of entailment through resource graphs to other logics
related to SL. We can mention the affine variant of SL [17] with intuitionistic additives that
allows one to prove interesting properties about sharing, and also some spatial logics that
can be seen as extensions of BBI like the Ambient Logic [12], labelled tree models [11] or
Context Logic [8]. As model-checking techniques are the only one available for these logics,
our present contributions could be seen as a first step towards designing theorem-proving
methods and tools in the context of program verification. Finally, some comparisons with
our recent work on a separation logic for resource trees [4] (from both specification and
theorem-proving standpoints), as well as comparisons with existing works on theorem-
proving for pointer programs [18,20,23] (even if they do not deal with separation logics)
could also help us improve and refine our results.
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