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An n-variable Boolean formula may have anywhere from 0 to 2” satisfying 
assignments. Can a polynomial-time machine, given such a formula, reduce this 
exponential number of possibilities to a small number of possibilities? We call such 
a machine an enumerator and prove that if there is a good polynomial-time 
enumerator for # P (i.e., one where for every Boolean formula A the small set has 
at most o(lf[‘-“) numbers), then P = NP = P*’ and probabilistic polynomial time 
equals polynomial time. Furthermore, we show that #P polynomial-time Turing 
reduces to enumerating # P. fJ> 1989 Academic Press, Inc. 

1. INTRODUCTION 

The class #P consists of functions that count the accepting paths of 
some NP machine (Valiant, 1979b; Angluin, 1980; Stockmeyer, 1985; 
Wagner, 1986). Valiant proved that these functions can count the number 
of cliques of a given size, compute the permanent of a matrix, and solve 
many other counting versions of NP and P problems (Valiant, 1979b, 
1979a). P#’ is the class of languages computable by polynomial-time 
machines given an oracle from #P. 

#P questions seem computationally complex. Though they can be 
answered by brute force in PSPACE, it is not known if they are in 
the polynomial hierarchy. However, some structural relations and 
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relativizations of P#’ are known. Clearly, P#‘z~$. Angluin (1980) 
showed that there exists a relativized world in which P#pA g CPA u nr”. 
This was improved significantly by Yao, who showed, in a certain 
relativized world A, that P#pA ’ is not contained in the polynomial hierarchy 
relative to A (Yao, 1985). This result was improved by Cai, who showed 
that P#pA is not contained in the polynomial hierarchy relative to A, for 
almost all oracles A (Cai, 1986; see also Babai, 1987). Related work on cir- 
cuit complexity can also be found in Hastad (1986) and Smolensky (1987). 

The complexity of the class # P is usually studied by considering #SAT. 
Cook’s reduction (Cook, 1971; Hopcroft and Ullman, 1979) from NP 
machines to formulas can be made parsimonious (Garey and Johnson, 
1979, p. 169; Simon, 1977; Valiant, 1979b). Thus # SAT, the function map- 
ping from Boolean formulas f to their numbers of solutions Ilfll, is a 
canonical hardest #P function. We speak interchangeably of computing 
# P and # SAT, as #SAT can be computed in polynomial time if and only 
if #P can. 

Stockmeyer (1985) has analyzed the complexity of r( . )-approximating 
#SAT in the sense of approximating the value within a multiplicative 
factor--finding a function g such that 

IflQ(fN IV-II dlflh 
dlfl) 

where If I stands for the size off: He shows that, for any E, d > 0, we can 
(1 + E If I -d)-approximate #SAT in A;. This is a good bound when the 
number of solutions II f I/ is relatively small. However, for formulas with 
many solutions, the size of the set of possible values that the approximation 
admits may be exponentially large in terms of If I. 

In his paper, Stockmeyer (1985) also shows that there is a relativized 
world where for no constant k can #SAT be k-approximated even with a 
A$’ function. Though this does not prove that #SAT is hard to 
approximate, the result can be taken as evidence that we lack the 
mathematical tools needed to determine the complexity of approximating 
# SAT. 

In this paper, we consider a different approach to approximately solving 
#P problems. In an enumeration scheme one tries to reduce the number of 
possible values of llfll by giving a small list of possibilities for Ilfll. A 
function A is said to s( . )-enumerate # SAT if A(f) is a list of at most s( I f I ) 
integers between 0 and 21f’ . m which II f II appears. If A can be computed in 
polynomial time, we call it a polynomial-time s( .)-enumerator for #SAT. 
We show that the existence of a good enumerator that reduces the number 
of values substantially would imply that P = NP = Pxp, and that 
probabilistic polynomial time equals polynomial time. Thus we believe 
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“#SAT is hard to enumerate” with greater certainty than we believe 
“P # NP.” 

Though enumerators reduce the number of possible solutions to a small 
set, the values in this set may vary over a great range. Thus enumeration is 
neither strictly stronger nor strictly weaker than the type of approximation 
studied by Stockmeyer. 

Section 2 introduces our proof techniques in a simple setting. If #SAT 
has a polynomial-time k-enumerator then P = NP. Section 3 extends this 
result to show that if Enum is a function #-enumerating # SAT, a < 1, then 
p#PCpEnum . Thus exact counting polynomial-time Turing reduces to 
approximate counting. Furthermore, if Enum is also computable in P#’ (as 
is true for any useful enumerator), then we may conclude that 
P#’ = PEnurn, In particular, if #SAT has a polynomial-time na-enumerator 
(c1<1), then P=P#‘. 

These results demonstrate that efficiently enumerating #P implies 
P = NP. Thus we have structural evidence that #P cannot be easily 
enumerated. 

Our proof ues an arithmetic of formulas that extends the work of 
Papadimitriou and Zachos (1983). Section 4 presents an immediate 
consequence of this: NP#P = NP#PC1l, where [l] indicates that each 
computation path of the NP machine makes at most one oracle call. We 
invite comparison between this nk-for-one result over NP machines, and 
the recently developed theory of polynomial terseness (Amir and Gasarch, 
1988; Goldsmith, Joseph, and Young, 1987; Beige1 et al., 1987). 

2. IF #SAT CAN BE POLYNOMIAL-TIME ~-ENUMERATED THEN P=NP 

The proofs of this section and Section 3 have the same architecture. We 
develop a novel technique to repeatedly expand and prune a formula tree. 
In this section we keep the tree constantly thin. Section 3 allows trees that 
are polynomially bushy. 

This section shows that if #SAT can be polynomial-time k-enumerated 
then P = NP. First, we state a lemma which says that we can easily 
combine many small formulas into a single larger formula. This lemma 
generalizes a technique developed by Papadimitriou and Zachos (1983) in 
their proof that PNPC”gl E P#‘r’I. The single large formula has the 
property that, given its number of solutions, we can quickly determine the 
number of solutions of each of the small formulas. 

LEMMA 2.1. There are polynomial-time functions combiner and decoder 
such that for any Boolean formulas f and g, combiner(f, g) is a Boolean 
formula and decoder(f, g, Ilcombiner(f, g)ll) prints 11 f 11, 11 gll. 
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ProoJ: Let S=f(x,, . . . . x,) and g=g(y,, . . . . y,), where xl, . . . . x,, 
y,, . . . . y, are distinct. Let z and z’ be two new Boolean variables. Then 

h=(fAZ)V(?AX,A ... AX,AgAZ’) (1) 

is the desired combination, since llhjl = llfll 2”+’ + [IgIl and [IgIl d 2”. 
Q.E.D. 

We can easily extend this technique to combine three, four, or even 
polynomially many formulas. (Using Cook’s connection between formulas 
and machines, one can equivalently view this result as about counting and 
combining NP machines and accepting paths.) 

Now we show that if #SAT has a polynomial-time k-enumerator then 
P=NP. 

THEOREM 2.2. If #SAT can be polynomial-time k-enumerated then 
P=NP. 

Proof Say we are given a formula F(xi, . . . . x,) and we would like to 
know if FE SAT. We substitute variables one at a time so that we always 
have a set S of at most k partial assignments satisfying the following 
invariant: 

FE SAT o there is a satisfying assignment extending 
a partial assignment in S. (*) 

Each stage assigns a new variable and has three steps. Initially, S 
consists of the empty assignment. 

Stage i: 

1. EXPAND TREE. For each partial assignment in S, assign the 
variable xi both true and false (Fig. 1A). Applying these assignments to F, 
we have at most 2k formulas. 

2. COMBINE FORMULAS and RUN ENUMERATOR. Combine 
the 2k formulas into a single superformula as described in Lemma 2.1. Run 
our polynomial-time k-enumerator on that superformula. The enumerator 
prints at most k guesses for the number of solutions of the superformula, 
which are translated immediately to at most k vectors of guesses of the 
number of solutions of the 2k formulas. (For example, in Fig. 1B (where 
k = 3) the first guess says that the four little formulas in our superformula 
have, respectively, 7, 0, 3, and 3 solutions.) 

3. PRUNE THE TREE. Note that if FE SAT, then at least one of 
the 2k formulas is satisfiable, by the inductive hypothesis (*). Thus, if these 
k guesses are all zero vectors then the formula is unsatisfiable. If they are 
not all zero vectors, we can choose a set T of at most k columns so that 
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R FF. T .  x3.. , xn ) 

F(T.Tax~.xn) F(T.F.x3. .xn) 
PRUNED 
BRANCHES 

FIG. 1. A. The tree; B. the guess matrix; C. the pruned tree 

each nonzero row of our guess matrix (Fig. 1B) has a nonzero in a column 
in T. For example, we let T = {p 1 a row of the guess matrix has its first 
nonzero entry in column p 3. 

Now we prune the tree (Fig. 1C) by setting S to the partial assignements 
corresponding to the columns in T (there are at most k). Suppose FE SAT. 
Then by the inductive hypothesis, the correct guess is a nonzero vector, 
thus by our choice of T the correct guess has a nonzero in some column 
of T. We have assigned another variable and maintained invariant (*). 

End of Stage i. 

At the final stage all variables are assigned and we just have to look at 
our set of k complete assignments to F and see if any of them satisfies F. 
We know by (*) that F is satisfiable if and only if one of these assignments 
satislies F. Q.E.D. 

3. MAIN RESULT 

This section demonstrates that exact counting polynomial-time Turing 
reduces to enumerative counting. This strengthens the result of the previous 
section. 

THEOREM 3.1. I f  Enum is an nr-enumerator for #SAT, a < 1, then 

p#PGpEnum 



ENUMERATIVE COUNTING 39 

COROLLARY 3.2. If Enum is a na-enumerator for #SAT, a < 1 and is 
computable in P #‘, then 

p#P=pEnum 

COROLLARY 3.3. If # SAT can be polynomial-time n”-enumerated, a < 1, 
then P = P#‘. 

Since P#‘= Ppp (Gill, 1977; Simon, 1975), where PP is probabilistic 
polynomial time, the existence of good enumerators for #SAT also implies 
that probabilistic and deterministic polynomial time are equivalent. 

COROLLARY 3.4. If # SAT can be polynomial-time nr-enumerated, a < 1, 
then P = PP. 

Theorem 3.1 differs from Theorem 2.2 in two important ways. One is 
that we are satisfied with an n”-enumerator, a < 1. The more interesting 
point is that we conclude P = P#‘. We now discuss each of these 
improvements. 

3.1. How to Count Solutions 

The first major change is that we find out not only if a formula is 
satisfiable, but also how many satisfying assignments it has. We do this 
with a more rigorous analysis of the guess matrix and a refined pruning 
strategy. 

LEMMA 3.5, If #SAT can be polynomial-time k-enumerated then 
P=P#p. 

ProoJ Consider the tree pruning procedure in Theorem 2.2. Here we 
want to keep a set S of p (1 <p < k) leaves in the partially grown tree, such 
that (11 fi 11, 11 fill, . . . . II fpll ) uniquely determine (If 11, where fi is the formula 
obtained from f by the partial assignment associated with the jth leaf in S. 
(We will speak interchangeably of the jth leave in S and 4.) 

Again we substitute variables one at a time. Inductively, for the formulas 
f, , . . . . f, in S, we wish to maintain at most k vectors ui (i = 1, . . . . q, q < k) of 
dimension p, and integers s i, . . . . s,, such that the following conditions hold: 

1’ (Vi)[u, # 01, 

2” (Vi#j)[ui# uj], and 

3” f~SAT~(3i)Cui=(IlfiII,..., Ilfpll) * sillfIll. 
Notice that when the tree has fully grown, for the formulas f, , . . . . f, in S 

it can be easily checked whether some ui= (fill, . . . . II fpll ). If no such ui 
exists, then f is unsatisfiable, by 3”. If such ui exists, we know from 1” that f 
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is satisfiable, and the ui must be unique, by condition 2”. And thus by 
condition 3” we can ouput llfll =si. 

The proof is a double induction. Each stage has the same general 
structure as in the proof of Theorem 2.2. 

Initially S consists off (or, the empty assignement) and we apply our 
enumerator on 1: If the enumerator guesses all zeros, then output llfll = 0. 
Otherwise, let ui , . . . . uy be all the distinct nonzero guesses (1 <q < k), and 
si = 24, trivially. 

We inductively maintain l”, 2”, and 3” as we go along, and at each stage 
we use a second induction for the tree pruning process. 

Stage 1: 

1. EXPAND TREE. For each partial assignment in S, assign the 
variable x, both true and false. We have r new leaves, where 
26r=2 ISI <2k. 

2. COMBINE FORMULAS and RUN ENUMERATOR. Combine 
f with the formulas fi, . . ..f. associated with these new leaves. Let G be the 
resulting “superformula.” Run our polynomial-time k-enumerator for G. 
We obtain at most k guesses for the number of solutions of G. Using our 
decoder we get up to k distinct vectors, say c, . . . . u$, 1 < q’ G k, where 
c= (vfi, Vii, . ..) vir> is a guess for (Ilfll~ Ilfill, . . . . Ilf,ll >. 

3. PRUNE THE TREE. Let vi = (vii, . . . . vir ). If some vi = 0 we may 
discard c In fact, if fe SAT then at least one of the formulas in S is 
satisfiable, by inductive hypotheses 3” and lo. Thus at least one of the new 
leaves is satisfiable. Since vi= 0 cannot be a correct guess if fe SAT, 
deleting it causes no harm, in terms of maintaining l”, 2”, and 3”. 

Second, for any pair c, $, if vi = vj, we can effectively delete at least 
one of them. This is because vi# vj and vi = vi imply o^, # v;. Now 
Cvil + vi2, ...) v,- i + u,) must equal one of the u’s (call it a,) associated 
with the formulas in S (otherwise 2 as well as $ is clearly false by 3”). This 
a, must be unique by 2”; furthermore, either vio#s, or u,#s,. 

If vi0 # sI, clearly c is false; we may delete c. The same argument applies 
to vi. Without loss of generality, we are left with (‘$, . . . . <), q < k. If q = 0 
then output l/f11 = 0. In fact, if fe SAT then some $ with vi # 0 must be a 
correct guess and must have been kept. 

Let si = viO, i= 1, . . . . q, 1 d q Q k. Note that vl, . . . . v, and the s,)s satisfy 
conditions l”, 2”, and 3”. Let the guess matrix consist of vi, . . . . uy as row 
vectors. We will inductively extract at most q columns of the matrix, so 
that the q row vectors of the submatrix (the projection of vi, . . . . v, onto the 
chosen dimensions) also satisfy l”, 2”, and 3”. 

Since 3” is automatically satisfied with any subset of columns, we need 
only to maintain lo and 2”. To prune, initially let i, = min{ J’ > 1 I vlj # 0). 
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Let wr = (uul) E N’. Inductively, suppose wr, . . . . wh E Nh’ have been con- 
structed, h’ < h < q, satisfying lo and 2”. Each wi is the projection of vi onto 
the h’ chosen columns. Let wyl be the projection of rh+ 1 on these h’ 
columns. 

If w- h+ 1 = wi for some 16 is h, then this i is unique, by 2”. Also, 
wyr # 0 by lo. Now all we need to do is to distinguish wh + , from wi. But 
since uh+ 1 # ui, this is easily done by choosing one more column. (Every 

Wl > . . . . , wr+ 1 is extended one dimension to get the new wl, . . . . w,, and 
whtl.);; - wh + I # wi, for all 16 i 6 h, then we only need to ensure wyl # 0. 
Again this is easily done by extending at most one dimension, since 
vh+l f0. 

Finally, wl, . . . . wy are constructed. Set ui to wi and p to the dimension of 
wi; S consists of those new leaves corresponding to the p selected columns. 
lo, 2”, and 3” are satisfied. 

End of Stage 1. 

3.2. Dealing with Polynomial Enumerators 

Q.E.D. 

In this section we show how to combine many formulas into a super- 
formula efficiently and prune so that our tree does not blow up in width. 
This is an extension of the technique, from Section 2, of combining 
formulas. 

We now discuss how to proceed with an n”-enumerator, CI < 1. We main- 
tain a polynomially wide band as we prune down the tree. Suppose we are 
given m Boolean formulas fi, f2, . . . . f, on variables x1, x2, . . . . x,. We first 
make all the variables distinct among different f;s. This blows up the size of 
each formula by a factor of at most 1 + log m. Second, we choose m new 
variables zl, z2, . . . . z, each of size O(log m), and combine the formulas 
f, , fi, . . ..f. via the straightforward generalization of Eq. (1). Let F be the 
resulting superformula. 

We wish to bound the size of F in terms of the sizes of thefi’s. Let N be a 
bound on the sizes of each fi, Ifi1 <N. We conclude, upon examining our 
combination formula, that the size of F is bounded above by 

B(m, N) = 2mN( 1 + log m) + O(m log m). (2) 

Note that for large N, (B(2Nr + 1, N))” < N’, if a < 1 and t > 2a/( 1 -a). 
Hence, for an n”-enumerator, CI < 1, we can maintain a bushy tree of width 
N’ as we carry out the tree pruning. 

4. AN d-FOR-ONE RESULT: NP#P = NP#PC’l 

The recently developed theory of terseness asks if many queries to an 
oracle are more powerful than one query (Amir and Gasarch, 1988; 
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Goldsmith et al., 1987; Beige1 et al., 1987). Kadin has proven that if for 
some k PNPCk7 = PNpCk+‘l, then the polynomial hierarchy collapses 
(Kadin,’ 1987, 1988). On the other hand, it is easy to see that 
NPNP = NPNPC1’. We show here that NP#P = NP#pC’l. Our proof exploits 
the combination of formulas developed in Lemma 2.1, query postponement 
(Furst et al., 1984), and nondeterministic guessing. This result may be 
viewed as an &-for-one “non-NP-terseness” result. 

THEOREM 4.1. NP#P = NP#PC’l. 

Proof: Given an NP#’ machine, we make a new NP machine that 
simulates the original one, except each time an oracle call is made in the 
original machine, our new machine nondeterministically guesses an answer 
that the oracle might give. Since #P returns a numerical value, a path 
chooses one out of an exponential number of plausible answers. Each leaf 
of our new tree combines all the #P queries along its path into a single 
superformula (using a straightforward polynomial-to-one formula version 
of Lemma 2.1) and queries # P once about the superformula. The leaf then 
accepts only if its guesses of formula values were all correct and the path of 
the original NP machine that the leaf has followed accepts. Q.E.D. 

Since the construction in the above proof ensures that on every input the 
number of accepting paths of the new NP machine is identical to the num- 
ber of accepting paths of the original NP machine, the proof also applies to 
path-bounded versions of NP. In particular, the proof applies to Valiant’s 
unique polynomial time, UP, and Allender’s class FewNP+lasses that are 
closely related to cryptography and one-way functions (Valiant, 1976; 
Allender, 1986; Grollmann and Selman, 1988). 

UP is the class of languages accepted by nondeterministic polynomial- 
time Turing machines that never have more than one accepting com- 
putation path. FewNP is the class of languages accepted by nondeter- 
ministic polynomial-time Turing machines that never have more than a 
polynomial number of accepting computation paths. Relativizations are 
defined in the natural way, e.g., UP” = (L 1 there is an NP machine Ni and 
a BE %? such that L = L(Nf) and for every x, N:(x) has at most one 
accepting path ). 

COROLLARY 4.2. 1. UP#‘= UP#‘[“. 
2. FewNP#P = FewNP”pc’l. 

Another use of formula combination apears in Cai and Hemachandra 
(1987), which shows that parity polynomial time (Papadimitriou and 
Zachos, 1983) is closed under bounded truth-table reductions and contains 
FewNP (Allender, 1986). 
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5. OPEN QUESTIONS AND CONCLUSIONS 

We have seen that if #SAT can be polynomial-time n”-enumerated, 
c1< 1, many complexity classes collapse. One wonders if polynomial-time 
na-enumerability, for arbitrary a, also has consequences. We present a 
related oracle result. The following theorem is easily proved with a 
modification of the relativization techniques of Stockmeyer (1985). 

THEOREM 5.1. There is a relativized world in which no A$’ function can, 
for any k, nk-enumerate #SAT. 

We conjecture that even polynomial-time nk-enumerability implies 
P= P#‘. Though NP#P=NP#PC’l, it is an open question whether 
P#‘= P#pc’l. Our evidence on the structural consequences of 
enumerating #P shows that the fabric of complexity theory is tightly 
woven. The conjecture that #P is hard to enumerate is closely tied to the 
P = ?NP question. 
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