
INFORMATION AND COMPUTATION 82, 3444 (1989)

Enumerative Counting is Hard

JIN-YI CAI*

Department of Cornpurer Science, Yale University,
New Haven. Connecticut 06520

AND

LANE A. HEMACHANDRA’

Department of Computer Science, University of Rochester,

Rochester, New York 14627

An n-variable Boolean formula may have anywhere from 0 to 2” satisfying
assignments. Can a polynomial-time machine, given such a formula, reduce this
exponential number of possibilities to a small number of possibilities? We call such
a machine an enumerator and prove that if there is a good polynomial-time
enumerator for # P (i.e., one where for every Boolean formula A the small set has
at most o(lf[‘-“) numbers), then P = NP = P*’ and probabilistic polynomial time
equals polynomial time. Furthermore, we show that #P polynomial-time Turing
reduces to enumerating # P. fJ> 1989 Academic Press, Inc.

1. INTRODUCTION

The class #P consists of functions that count the accepting paths of
some NP machine (Valiant, 1979b; Angluin, 1980; Stockmeyer, 1985;
Wagner, 1986). Valiant proved that these functions can count the number
of cliques of a given size, compute the permanent of a matrix, and solve
many other counting versions of NP and P problems (Valiant, 1979b,
1979a). P#’ is the class of languages computable by polynomial-time
machines given an oracle from #P.

#P questions seem computationally complex. Though they can be
answered by brute force in PSPACE, it is not known if they are in
the polynomial hierarchy. However, some structural relations and

* Supported by a Cornell University Sage Fellowship and NSF Grants DCR-8301766 and
CCR-8709818.

+ Supported by a Fannie and John Hertz Foundation Fellowship, a Hewlett-Packard
Corporation equipment grant, and NSF Grants DCR-8301766, DCR-8520597, and
CCR-8809174. Work done while at Columbia University and Cornell University.

34
0890-5401/89 $3.00
CopyrIght t.1 1989 by Academic Press, Inc.
All rights of reproduction in any form reserved.

ENUMERATIVE COUNTING 35

relativizations of P#’ are known. Clearly, P#‘z~$. Angluin (1980)
showed that there exists a relativized world in which P#pA g CPA u nr”.
This was improved significantly by Yao, who showed, in a certain
relativized world A, that P#pA ’ is not contained in the polynomial hierarchy
relative to A (Yao, 1985). This result was improved by Cai, who showed
that P#pA is not contained in the polynomial hierarchy relative to A, for
almost all oracles A (Cai, 1986; see also Babai, 1987). Related work on cir-
cuit complexity can also be found in Hastad (1986) and Smolensky (1987).

The complexity of the class # P is usually studied by considering #SAT.
Cook’s reduction (Cook, 1971; Hopcroft and Ullman, 1979) from NP
machines to formulas can be made parsimonious (Garey and Johnson,
1979, p. 169; Simon, 1977; Valiant, 1979b). Thus # SAT, the function map-
ping from Boolean formulas f to their numbers of solutions Ilfll, is a
canonical hardest #P function. We speak interchangeably of computing
P and # SAT, as #SAT can be computed in polynomial time if and only
if #P can.

Stockmeyer (1985) has analyzed the complexity of r(.)-approximating
#SAT in the sense of approximating the value within a multiplicative
factor--finding a function g such that

IflQ(fN IV-II dlflh
dlfl)

where If I stands for the size off: He shows that, for any E, d > 0, we can
(1 + E If I -d)-approximate #SAT in A;. This is a good bound when the
number of solutions II f I/ is relatively small. However, for formulas with
many solutions, the size of the set of possible values that the approximation
admits may be exponentially large in terms of If I.

In his paper, Stockmeyer (1985) also shows that there is a relativized
world where for no constant k can #SAT be k-approximated even with a
A$’ function. Though this does not prove that #SAT is hard to
approximate, the result can be taken as evidence that we lack the
mathematical tools needed to determine the complexity of approximating
SAT.

In this paper, we consider a different approach to approximately solving
#P problems. In an enumeration scheme one tries to reduce the number of
possible values of llfll by giving a small list of possibilities for Ilfll. A
function A is said to s(.)-enumerate # SAT if A(f) is a list of at most s(I f I)
integers between 0 and 21f’ . m which II f II appears. If A can be computed in
polynomial time, we call it a polynomial-time s(.)-enumerator for #SAT.
We show that the existence of a good enumerator that reduces the number
of values substantially would imply that P = NP = Pxp, and that
probabilistic polynomial time equals polynomial time. Thus we believe

36 CAIANDHEMACHANDRA

“#SAT is hard to enumerate” with greater certainty than we believe
“P # NP.”

Though enumerators reduce the number of possible solutions to a small
set, the values in this set may vary over a great range. Thus enumeration is
neither strictly stronger nor strictly weaker than the type of approximation
studied by Stockmeyer.

Section 2 introduces our proof techniques in a simple setting. If #SAT
has a polynomial-time k-enumerator then P = NP. Section 3 extends this
result to show that if Enum is a function #-enumerating # SAT, a < 1, then
p#PCpEnum . Thus exact counting polynomial-time Turing reduces to
approximate counting. Furthermore, if Enum is also computable in P#’ (as
is true for any useful enumerator), then we may conclude that
P#’ = PEnurn, In particular, if #SAT has a polynomial-time na-enumerator
(c1<1), then P=P#‘.

These results demonstrate that efficiently enumerating #P implies
P = NP. Thus we have structural evidence that #P cannot be easily
enumerated.

Our proof ues an arithmetic of formulas that extends the work of
Papadimitriou and Zachos (1983). Section 4 presents an immediate
consequence of this: NP#P = NP#PC1l, where [l] indicates that each
computation path of the NP machine makes at most one oracle call. We
invite comparison between this nk-for-one result over NP machines, and
the recently developed theory of polynomial terseness (Amir and Gasarch,
1988; Goldsmith, Joseph, and Young, 1987; Beige1 et al., 1987).

2. IF #SAT CAN BE POLYNOMIAL-TIME ~-ENUMERATED THEN P=NP

The proofs of this section and Section 3 have the same architecture. We
develop a novel technique to repeatedly expand and prune a formula tree.
In this section we keep the tree constantly thin. Section 3 allows trees that
are polynomially bushy.

This section shows that if #SAT can be polynomial-time k-enumerated
then P = NP. First, we state a lemma which says that we can easily
combine many small formulas into a single larger formula. This lemma
generalizes a technique developed by Papadimitriou and Zachos (1983) in
their proof that PNPC”gl E P#‘r’I. The single large formula has the
property that, given its number of solutions, we can quickly determine the
number of solutions of each of the small formulas.

LEMMA 2.1. There are polynomial-time functions combiner and decoder
such that for any Boolean formulas f and g, combiner(f, g) is a Boolean
formula and decoder(f, g, Ilcombiner(f, g)ll) prints 11 f 11, 11 gll.

ENUMERATIVE COUNTING 37

ProoJ: Let S=f(x,, x,) and g=g(y,, y,), where xl, x,,
y,, y, are distinct. Let z and z’ be two new Boolean variables. Then

h=(fAZ)V(?AX,A ... AX,AgAZ’) (1)

is the desired combination, since llhjl = llfll 2”+’ + [IgIl and [IgIl d 2”.
Q.E.D.

We can easily extend this technique to combine three, four, or even
polynomially many formulas. (Using Cook’s connection between formulas
and machines, one can equivalently view this result as about counting and
combining NP machines and accepting paths.)

Now we show that if #SAT has a polynomial-time k-enumerator then
P=NP.

THEOREM 2.2. If #SAT can be polynomial-time k-enumerated then
P=NP.

Proof Say we are given a formula F(xi, x,) and we would like to
know if FE SAT. We substitute variables one at a time so that we always
have a set S of at most k partial assignments satisfying the following
invariant:

FE SAT o there is a satisfying assignment extending
a partial assignment in S. (*)

Each stage assigns a new variable and has three steps. Initially, S
consists of the empty assignment.

Stage i:

1. EXPAND TREE. For each partial assignment in S, assign the
variable xi both true and false (Fig. 1A). Applying these assignments to F,
we have at most 2k formulas.

2. COMBINE FORMULAS and RUN ENUMERATOR. Combine
the 2k formulas into a single superformula as described in Lemma 2.1. Run
our polynomial-time k-enumerator on that superformula. The enumerator
prints at most k guesses for the number of solutions of the superformula,
which are translated immediately to at most k vectors of guesses of the
number of solutions of the 2k formulas. (For example, in Fig. 1B (where
k = 3) the first guess says that the four little formulas in our superformula
have, respectively, 7, 0, 3, and 3 solutions.)

3. PRUNE THE TREE. Note that if FE SAT, then at least one of
the 2k formulas is satisfiable, by the inductive hypothesis (*). Thus, if these
k guesses are all zero vectors then the formula is unsatisfiable. If they are
not all zero vectors, we can choose a set T of at most k columns so that

38 CAIANDHEMACHANDRA

R FF. T . x3.. , xn)

F(T.Tax~.xn) F(T.F.x3. .xn)
PRUNED
BRANCHES

FIG. 1. A. The tree; B. the guess matrix; C. the pruned tree

each nonzero row of our guess matrix (Fig. 1B) has a nonzero in a column
in T. For example, we let T = {p 1 a row of the guess matrix has its first
nonzero entry in column p 3.

Now we prune the tree (Fig. 1C) by setting S to the partial assignements
corresponding to the columns in T (there are at most k). Suppose FE SAT.
Then by the inductive hypothesis, the correct guess is a nonzero vector,
thus by our choice of T the correct guess has a nonzero in some column
of T. We have assigned another variable and maintained invariant (*).

End of Stage i.

At the final stage all variables are assigned and we just have to look at
our set of k complete assignments to F and see if any of them satisfies F.
We know by (*) that F is satisfiable if and only if one of these assignments
satislies F. Q.E.D.

3. MAIN RESULT

This section demonstrates that exact counting polynomial-time Turing
reduces to enumerative counting. This strengthens the result of the previous
section.

THEOREM 3.1. I f Enum is an nr-enumerator for #SAT, a < 1, then

p#PGpEnum

ENUMERATIVE COUNTING 39

COROLLARY 3.2. If Enum is a na-enumerator for #SAT, a < 1 and is
computable in P #‘, then

p#P=pEnum

COROLLARY 3.3. If # SAT can be polynomial-time n”-enumerated, a < 1,
then P = P#‘.

Since P#‘= Ppp (Gill, 1977; Simon, 1975), where PP is probabilistic
polynomial time, the existence of good enumerators for #SAT also implies
that probabilistic and deterministic polynomial time are equivalent.

COROLLARY 3.4. If # SAT can be polynomial-time nr-enumerated, a < 1,
then P = PP.

Theorem 3.1 differs from Theorem 2.2 in two important ways. One is
that we are satisfied with an n”-enumerator, a < 1. The more interesting
point is that we conclude P = P#‘. We now discuss each of these
improvements.

3.1. How to Count Solutions

The first major change is that we find out not only if a formula is
satisfiable, but also how many satisfying assignments it has. We do this
with a more rigorous analysis of the guess matrix and a refined pruning
strategy.

LEMMA 3.5, If #SAT can be polynomial-time k-enumerated then
P=P#p.

ProoJ Consider the tree pruning procedure in Theorem 2.2. Here we
want to keep a set S of p (1 <p < k) leaves in the partially grown tree, such
that (11 fi 11, 11 fill, II fpll) uniquely determine (If 11, where fi is the formula
obtained from f by the partial assignment associated with the jth leaf in S.
(We will speak interchangeably of the jth leave in S and 4.)

Again we substitute variables one at a time. Inductively, for the formulas
f, , f, in S, we wish to maintain at most k vectors ui (i = 1, q, q < k) of
dimension p, and integers s i, s,, such that the following conditions hold:

1’ (Vi)[u, # 01,

2” (Vi#j)[ui# uj], and

3” f~SAT~(3i)Cui=(IlfiII,..., Ilfpll) * sillfIll.
Notice that when the tree has fully grown, for the formulas f, , f, in S

it can be easily checked whether some ui= (fill, II fpll). If no such ui
exists, then f is unsatisfiable, by 3”. If such ui exists, we know from 1” that f

40 CA1 AND HEMACHANDRA

is satisfiable, and the ui must be unique, by condition 2”. And thus by
condition 3” we can ouput llfll =si.

The proof is a double induction. Each stage has the same general
structure as in the proof of Theorem 2.2.

Initially S consists off (or, the empty assignement) and we apply our
enumerator on 1: If the enumerator guesses all zeros, then output llfll = 0.
Otherwise, let ui , uy be all the distinct nonzero guesses (1 <q < k), and
si = 24, trivially.

We inductively maintain l”, 2”, and 3” as we go along, and at each stage
we use a second induction for the tree pruning process.

Stage 1:

1. EXPAND TREE. For each partial assignment in S, assign the
variable x, both true and false. We have r new leaves, where
26r=2 ISI <2k.

2. COMBINE FORMULAS and RUN ENUMERATOR. Combine
f with the formulas fi,f. associated with these new leaves. Let G be the
resulting “superformula.” Run our polynomial-time k-enumerator for G.
We obtain at most k guesses for the number of solutions of G. Using our
decoder we get up to k distinct vectors, say c, u$, 1 < q’ G k, where
c= (vfi, Vii, . ..) vir> is a guess for (Ilfll~ Ilfill, Ilf,ll >.

3. PRUNE THE TREE. Let vi = (vii, vir). If some vi = 0 we may
discard c In fact, if fe SAT then at least one of the formulas in S is
satisfiable, by inductive hypotheses 3” and lo. Thus at least one of the new
leaves is satisfiable. Since vi= 0 cannot be a correct guess if fe SAT,
deleting it causes no harm, in terms of maintaining l”, 2”, and 3”.

Second, for any pair c, $, if vi = vj, we can effectively delete at least
one of them. This is because vi# vj and vi = vi imply o^, # v;. Now
Cvil + vi2, ...) v,- i + u,) must equal one of the u’s (call it a,) associated
with the formulas in S (otherwise 2 as well as $ is clearly false by 3”). This
a, must be unique by 2”; furthermore, either vio#s, or u,#s,.

If vi0 # sI, clearly c is false; we may delete c. The same argument applies
to vi. Without loss of generality, we are left with (‘$, <), q < k. If q = 0
then output l/f11 = 0. In fact, if fe SAT then some $ with vi # 0 must be a
correct guess and must have been kept.

Let si = viO, i= 1, q, 1 d q Q k. Note that vl, v, and the s,)s satisfy
conditions l”, 2”, and 3”. Let the guess matrix consist of vi, uy as row
vectors. We will inductively extract at most q columns of the matrix, so
that the q row vectors of the submatrix (the projection of vi, v, onto the
chosen dimensions) also satisfy l”, 2”, and 3”.

Since 3” is automatically satisfied with any subset of columns, we need
only to maintain lo and 2”. To prune, initially let i, = min{ J’ > 1 I vlj # 0).

ENUMERATIVE COUNTING 41

Let wr = (uul) E N’. Inductively, suppose wr, wh E Nh’ have been con-
structed, h’ < h < q, satisfying lo and 2”. Each wi is the projection of vi onto
the h’ chosen columns. Let wyl be the projection of rh+ 1 on these h’
columns.

If w- h+ 1 = wi for some 16 is h, then this i is unique, by 2”. Also,
wyr # 0 by lo. Now all we need to do is to distinguish wh + , from wi. But
since uh+ 1 # ui, this is easily done by choosing one more column. (Every

Wl > , wr+ 1 is extended one dimension to get the new wl, w,, and
whtl.);; - wh + I # wi, for all 16 i 6 h, then we only need to ensure wyl # 0.
Again this is easily done by extending at most one dimension, since
vh+l f0.

Finally, wl, wy are constructed. Set ui to wi and p to the dimension of
wi; S consists of those new leaves corresponding to the p selected columns.
lo, 2”, and 3” are satisfied.

End of Stage 1.

3.2. Dealing with Polynomial Enumerators

Q.E.D.

In this section we show how to combine many formulas into a super-
formula efficiently and prune so that our tree does not blow up in width.
This is an extension of the technique, from Section 2, of combining
formulas.

We now discuss how to proceed with an n”-enumerator, CI < 1. We main-
tain a polynomially wide band as we prune down the tree. Suppose we are
given m Boolean formulas fi, f2, f, on variables x1, x2, x,. We first
make all the variables distinct among different f;s. This blows up the size of
each formula by a factor of at most 1 + log m. Second, we choose m new
variables zl, z2, z, each of size O(log m), and combine the formulas
f, , fi,f. via the straightforward generalization of Eq. (1). Let F be the
resulting superformula.

We wish to bound the size of F in terms of the sizes of thefi’s. Let N be a
bound on the sizes of each fi, Ifi1 <N. We conclude, upon examining our
combination formula, that the size of F is bounded above by

B(m, N) = 2mN(1 + log m) + O(m log m). (2)

Note that for large N, (B(2Nr + 1, N))” < N’, if a < 1 and t > 2a/(1 -a).
Hence, for an n”-enumerator, CI < 1, we can maintain a bushy tree of width
N’ as we carry out the tree pruning.

4. AN d-FOR-ONE RESULT: NP#P = NP#PC’l

The recently developed theory of terseness asks if many queries to an
oracle are more powerful than one query (Amir and Gasarch, 1988;

42 CAIANDHEMACHANDRA

Goldsmith et al., 1987; Beige1 et al., 1987). Kadin has proven that if for
some k PNPCk7 = PNpCk+‘l, then the polynomial hierarchy collapses
(Kadin,’ 1987, 1988). On the other hand, it is easy to see that
NPNP = NPNPC1’. We show here that NP#P = NP#pC’l. Our proof exploits
the combination of formulas developed in Lemma 2.1, query postponement
(Furst et al., 1984), and nondeterministic guessing. This result may be
viewed as an &-for-one “non-NP-terseness” result.

THEOREM 4.1. NP#P = NP#PC’l.

Proof: Given an NP#’ machine, we make a new NP machine that
simulates the original one, except each time an oracle call is made in the
original machine, our new machine nondeterministically guesses an answer
that the oracle might give. Since #P returns a numerical value, a path
chooses one out of an exponential number of plausible answers. Each leaf
of our new tree combines all the #P queries along its path into a single
superformula (using a straightforward polynomial-to-one formula version
of Lemma 2.1) and queries # P once about the superformula. The leaf then
accepts only if its guesses of formula values were all correct and the path of
the original NP machine that the leaf has followed accepts. Q.E.D.

Since the construction in the above proof ensures that on every input the
number of accepting paths of the new NP machine is identical to the num-
ber of accepting paths of the original NP machine, the proof also applies to
path-bounded versions of NP. In particular, the proof applies to Valiant’s
unique polynomial time, UP, and Allender’s class FewNP+lasses that are
closely related to cryptography and one-way functions (Valiant, 1976;
Allender, 1986; Grollmann and Selman, 1988).

UP is the class of languages accepted by nondeterministic polynomial-
time Turing machines that never have more than one accepting com-
putation path. FewNP is the class of languages accepted by nondeter-
ministic polynomial-time Turing machines that never have more than a
polynomial number of accepting computation paths. Relativizations are
defined in the natural way, e.g., UP” = (L 1 there is an NP machine Ni and
a BE %? such that L = L(Nf) and for every x, N:(x) has at most one
accepting path).

COROLLARY 4.2. 1. UP#‘= UP#‘[“.
2. FewNP#P = FewNP”pc’l.

Another use of formula combination apears in Cai and Hemachandra
(1987), which shows that parity polynomial time (Papadimitriou and
Zachos, 1983) is closed under bounded truth-table reductions and contains
FewNP (Allender, 1986).

ENUMERATIVE COUNTING 43

5. OPEN QUESTIONS AND CONCLUSIONS

We have seen that if #SAT can be polynomial-time n”-enumerated,
c1< 1, many complexity classes collapse. One wonders if polynomial-time
na-enumerability, for arbitrary a, also has consequences. We present a
related oracle result. The following theorem is easily proved with a
modification of the relativization techniques of Stockmeyer (1985).

THEOREM 5.1. There is a relativized world in which no A$’ function can,
for any k, nk-enumerate #SAT.

We conjecture that even polynomial-time nk-enumerability implies
P= P#‘. Though NP#P=NP#PC’l, it is an open question whether
P#‘= P#pc’l. Our evidence on the structural consequences of
enumerating #P shows that the fabric of complexity theory is tightly
woven. The conjecture that #P is hard to enumerate is closely tied to the
P = ?NP question.

ACKNOWLEDGMENTS

We are indebted to Professor Juris Hartmanis for valuable advice and encouragement. We
thank Larry Stockmeyer and an anonymous referee for many helpful comments.

REFERENCES

AMIR, A., AND GASARCH, W. (1988) Polynomial terse sets, Inform. and Comput. 77, 37-56.
ALLENDER, E. (1986) The complexity of sparse sets in P, in “Proceedings, 1st Structure in

Complexity Theory Conference,” Lecture Notes in Computer Science Vol. 223, pp. l-11,
Springer-Verlag, New York/Berlin.

ANGLUIN, D. (1980), On counting problems and the polynomial-time hierarchy, Theoret.
Comput. Sci 12, 161-173.

BABAI, L. (1987) A random oracle separates PSPACE from the polynomial hierarchy, Inform.
Process. Left. 26, No. 1, 51-53.

BEIGEL, R., GASARCH, W.. GILL, J., AND OWINGS, J. (1987) “Terse, Superterse, and Verbose
Sets,” Technical Report TR-1806, University of Maryland, Department of Computer
Science, College Park, MD.

CAI, J. (1986), With probability one, a random oracle separates PSPACE from the
polynomial-time hierarchy, in “18th ACM Symposium on Theory of Computing, pp. 21-29.

CAI, J., AND HEMACHANDRA, L. (1987). “On the Power of Parity Polynomial Time,”
Technical Report CUCS 27487, Columbia Computer Science Department, New York,
December. (Appears in proceedings of STACS ‘89, Springer-Verlag, 1989.)

COOK, S. (1971) The complexity of theorem-proving procedures, in “3rd ACM Symposium on

Theory of Computing.” pp. 151-158.
FURST, M., SAXE, J., AND SIPSER. M. (1984). Parity, circuits, and the polynomial-time

hierarchy, Math. Systems Theory 17, 13-27.

44 CA1 AND HEMACHANDRA

GILL, J. (1977), Computational complexity of probabilistic Turing machines, SIAM J.

Cotnput. 6, No. 4, 675-695.
GAREY, M., AND JOHNSON, D. (1979), ‘Computers and Intractability: A Guide to the Theory

of NP-Completeness,” Freeman, San Francisco.
GOLDSMITH, J., JOSEPH, D., AND YOUNG. P. (1987), Self-reducible, P-selective, near-testable,

and P-cheatable sets: The effect of internal structure on the complexity of a set, in
“Proceedings, 2nd Structure in Complexity Theory Conference,” pp. S&59.

GROLLMANN, J., AND SELMAN, A. (1988) Complexity measures for public-key cryptosystems,
SIAM J. Comput. 17, 309-335.

HASTAD, J., (1986), Almost optimal lower bounds for small depths circuits, in “18th ACM
Symposium on Theory of Computing,” pp. 6-20.

HOPCROFT, J., AND ULLMAN, J. (1979), “Introduction to Automata Theory, Languages, and
Computation,” Addison-Wesley, Reading, MA.

KADIN, J. (1987) “Is One NP Question as Powerful as Two?” Technical Report TR 87-842,
Cornell University, Department of Computer Science, June.

KADIN, J. (1988), The polynomial time hierarchy collapses if the boolean heirarchy collapses,
In “Proceedings, 3rd Structure in Complexity Theory Conference,” pp. 278-292, IEEE
Computer Society Press, New York.

PAPADIMITRIOU, C., AND ZACHOS, S. (1983) Two remarks on the power of counting, in

“Proceedings, 6th GI Conference on Theoretical Computer Science,” Lecture Notes in
Computer Science Vol. 145, pp. 269-276, Springer-Verlag, New York/Berlin.

SCHBNING, U. (1986), “Complexity and Structure,” Lecture Notes in Computer Science
Vol. 211, Springer-Verlag, New York/Berlin.

SIMON, J. (1975), “On Some Central Problems in Computational Complexity,” Ph.D. thesis,
Cornell University.

SIMON, J. On the dilTerence between one and many, in “Automata, Languages, and Program-
ming (ICALP 1977) Lecture Notes in Computer Science Vol. 52, pp. 480-491. Springer-
Verfag, New York/Berlin.

SMOLENSKY, R. (1987), Algebraic methods in the theory of lower bounds for boolean circuit
complexity, in “19th ACM Symposium on Theory of Computing,” pp. 77-82, ACM,
New York.

STOCKMEYER, L. (1985), On approximation algorithms for #P, SIAM J. Compuf. 14, No. 4,

849-861.
VALIANT, L. (1976), The relative complexity of checking and evaluating, Inform. Process. Lett.

5, 20-23.
VALIANT, L. (1979a), The complexity of computing the permanent, Theoret. Compur. Scie. 8,

189-201.
VALIANT, L. (1979b), The complexity of enumeration and reliability problems, SIAM

J. Comput. 8, No. 3, 410421.
WAGNER, K. “Some Observations on the Connection Between Counting and Recursion,”

Technical Report MIP-8611, Universitat Passau, Fakultiit fur Mathematik und Informatik.
YAO, A. (1985), Separating the polynomial-time hierarchy by oracles, in “Proceedings, 26th

IEEE Symposium on Foundations of Computer Science,” pp. l-10.

