
78	 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY � 0 7 4 0 - 7 4 5 9 / 1 8 / $ 3 3 . 0 0 © 2 0 1 8 I E E E

Editor: Jeffrey C. Carver
University of Alabama
carver@cs.ua.edu

PRACTITIONERS’
DIGEST

Software Analysis,
Evolution, and
Reengineering, and ICT
Sustainability
Jeffrey Carver, Birgit Penzenstadler, and Alexander Serebrenik

THIS ISSUE’S ARTICLE reports
on papers from the IEEE 25th In-
ternational Conference on Software
Analysis, Evolution, and Reengi-
neering (SANER 18) and 5th Inter-
national Conference on Information
and Communications Technology
for Sustainability (ICT4S 18). Feed-
back or suggestions are welcome.
In addition, if you try or adopt any
of the practices described in the ar-
ticle, please send Jeffrey Carver and
the paper authors a note about your
experiences.

Examining Previous Results’
Reliability (SANER)
This first group of papers comes from
the Reproducibility Studies and Neg-
ative Results track at SANER. They
make the point that researchers and
practitioners must be careful about
accepting the results from one study,
no matter how well executed, because
those results might not apply in all
contexts. Replication studies are cru-
cial to increase our confidence in re-
ported results and their applicability
in different situations. Negative re-
sults are also important because they
indicate that the researchers have

tried their best and can’t make an
approach work, so others shouldn’t
waste time trying again.

“Re-evaluating Method-Level Bug
Prediction,” by Luca Pascarella and
his colleagues, describes a replica-
tion of prior research on method-
level bug prediction.1 The authors
applied the metrics used in the origi-
nal study, including standard prod-
uct metrics and process metrics, to a
different set of 13 large open-source
projects, including Ant, Eclipse JDT
(Java development tools), and Lucene.

Pascarella and his colleagues’
results showed that the previously
published techniques were useful for
predicting bugs in the current soft-
ware release but not for predicting
bugs in forthcoming releases. Ran-
dom guessing was as good as the
previous techniques. The overall
takeaways are that each task needs
an appropriate validation approach
and that standard tenfold cross-
validation might not provide confi-
dence in future predictions’ validity.
Access this paper at http://bit.ly
/PD_2018_July_1.

“Detecting Code Smells Using
Machine Learning Techniques: Are

We There Yet?,” by Dario Di Nucci
and his colleagues, presents a simi-
lar finding about a different software
engineering phenomenon.2 The au-
thors examined earlier findings that
machine-learning techniques built
with cross-project data could predict
code smells with up to 95 percent
accuracy. In the previous research,
the techniques tried to predict code
smells in isolation; that is, they fo-
cused on the methods and classes
affected by the smell, as opposed to
those unaffected by the smell. But, in
practice, those smelly methods and
classes are often a small fraction of
the overall number of methods and
classes. Those methods and classes
can often be affected by multiple
smells simultaneously.

When Di Nucci and his col-
leagues investigated these two sim-
plifying assumptions’ effects on the
overall results, they found that their
results were up to 90 percent lower
than those of the previous research.
They also found that the techniques
couldn’t properly classify whether
the code elements contained code
smells. These results again high-
light the importance of replicating

PRACTITIONERS’ DIGEST

	 JULY/AUGUST 2018 | IEEE SOFTWARE � 79

studies in realistic settings with valid
assumptions. Access this paper at
http://bit.ly/PD_2018_July_2.

“Keep It Simple: Is Deep Learn-
ing Good for Linguistic Smell De-
tection?,” by Sarah Fakhoury and
her colleagues, reports on whether
deep-learning techniques, which
have been found useful for image
recognition, can also be useful for
software engineering tasks such as
identifying linguistic antipatterns.3
This study compared convolutional
neural networks (CNNs), a deep-
learning technique, with the tradi-
tional machine-learning techniques
implemented in the Linguistic Anti-
pattern Detection (LAPD) tool.

The findings showed that LAPD,
when properly tuned with methods
such as Bayesian optimization, dra-
matically outperformed CNN. Fur-
thermore, finding the optimal LAPD
configuration took only minutes,
compared to several days for CNN.
These results suggest that you must
take care when applying approaches
from one domain to another. Re-
search results should be validated in
the context in which they’ll be ap-
plied. Access this paper at http://bit
.ly/PD_2018_July_3.

Automated Program Repair
(SANER)
The next three papers focus on au-
tomated program repair techniques,
which aim to relieve developers from
fixing numerous, often trivial bugs.
Even if these techniques can fix
only a small fraction of all defects,
the impact on developers’ effort can
greatly benefit companies.

“Mining StackOverflow for Pro-
gram Repair,” by Xuliang Liu and
Hao Zhong, discusses the SOFix tool,
which can produce patches for previ-
ously unresolved situations.4 While
studying Stack Overflow, Liu and

Zhong identified several new auto-
mated program repair techniques—
modifications that automated pro-
gram repair tools should try when
looking to fix a defect. For example,
one technique replaces a variable
with the invocation of a method with
no parameters, mimicking when a
developer confuses a variable’s name
with a method’s name. Another tem-
plate reverses the priority of two
linked binary operators, making
SOFix the only automated tool that
can fix the Math 80 bug in the De-
fects4J benchmark (a standard da-
taset for automatic program repair
taken from a number of open source
systems; https://github.com/rjust
/defects4j), by replacing int j 5 4 * n – 1
with int j 5 4 * (n – 1). Access this paper
at http://bit.ly/PD_2018_July_4.

In “Using a Probabilistic Model
to Predict Bug Fixes,” Mauricio
Soto and Claire Le Goues analyze
and classify an extensive body of
bug-fixing commits (the 100 most
recent from 500 of the most popu-
lar Java projects on GitHub).5 They
also present a probabilistic program
repair approach based on the most
frequently used repair templates. In
an evaluation on a subset of the De-
fects4J benchmark, the probabilis-
tic approach outperformed heuristic
techniques in terms of time and qual-
ity. Access this paper at http://bit
.ly/PD_2018_July_5.

“Automatically Repairing Depen-
dency-Related Build Breakage,” by
Christian Macho and his colleagues,
describes BuildMedic, a tool to re-
pair Maven builds that break owing
to dependency-related issues.6 Evalu-
ation of BuildMedic on 84 cases of
dependency-related build break-
age in 23 open source Java projects
showed that it could automatically
repair 45 of those broken builds.
In addition, 36 percent of the time,

BuildMedic performed the same fix
the human developer performed.
Access this paper at http://bit.ly/PD
_2018_July_6.

Sustainability (ICT4S)
In “An Empirical Evaluation of
Database Software Features on En-
ergy Consumption,” Sedef Akınlı
Koçak and her colleagues argue
that although software doesn’t con-
sume energy by itself, its character-
istics determine the energy required
by hardware resources.7 They ana-
lyze the energy effects of different
features of IBM DB2, a commonly
used database product. Kocak and
her colleagues executed a workload
in preconfigured software with some
features enabled or disabled and
with different numbers of users.

Using three sets of green metrics,
Kocak and her colleagues identified
which parts of the software system
consumed energy. For the CPU, the
main energy consumer was the com-
pression feature. However, when that
feature interacted with other fea-
tures, it lowered the overall energy
consumption in several scenarios.
I/O-intense activities were the other
source of high energy consumption.

The authors’ findings suggest that
you can mitigate conflicts among
software system performance, func-
tionality, and energy consumption
(which are competing goals) by com-
bining features that interact in an
energy-efficient way. An analysis of
feature interactions is worth the ef-
fort for optimizing overall energy
consumption. Access this paper at
http://bit.ly/PD_2018_July_7.

In “Empirical Evaluation of
the Energy Impact of Refactoring
Code Smells,” Roberto Verdecchia
and his colleagues explain how
they applied JDeodorant, a code
smell refactoring tool, to three

PRACTITIONERS’ DIGEST

80	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

open source Java applications based
on object-relational mapping (Cash-
Manager, JTrack, and Spring Pet-
Clinic).8 JDeodorant currently can
refactor only one code smell at a
time, so the largest application was
14 KLOC. The key finding is that
refactoring code smells can signifi-
cantly improve software energy ef-
ficiency. Specifically, refactoring the
Feature Envy and Long Methods
smells improved energy efficiency by
49 percent. Furthermore, the authors
found no correlation between estab-
lished software metrics and energy
consumption. Access this paper at
http://bit.ly/PD_2018_July_8.

References
	 1.	L. Pascarella, F. Polomba, and

A. Bacchelli, “Re-evaluating

Method-Level Bug Prediction,” Proc.

IEEE 25th Int’l Conf. Software

Analysis, Evolution, and Reengineer-

ing (SANER 18), 2018, pp. 592–601.

	 2.	D. Di Nucci et al., “Detecting Code

Smells Using Machine Learning

Techniques: Are We There Yet?,”

Proc. IEEE 25th Int’l Conf. Software

Analysis, Evolution, and Reengineer-

ing (SANER 18), 2018, pp. 612–621.

	 3.	S. Fakhoury et al., “Keep It Simple:

Is Deep Learning Good for Linguistic

Smell Detection?,” Proc. IEEE 25th

Int’l Conf. Software Analysis, Evolu-

tion, and Reengineering (SANER

18), 2018, pp. 602–611.

	 4.	X. Liu and H. Zhong, “Mining

StackOverflow for Program Repair,”

Proc. IEEE 25th Int’l Conf. Software

Analysis, Evolution, and Reengineer-

ing (SANER 18), 2018, pp. 118–129.

	 5.	M. Soto and C. Le Goues, “Using a

Probabilistic Model to Predict Bug

Fixes,” Proc. IEEE 25th Int’l Conf.

Software Analysis, Evolution, and

Reengineering (SANER 18), 2018,

pp. 221–231.

	 6.	C. Macho, S. McIntosh, and M.

Pinzger, “Automatically Repairing

Dependency-Related Build Break-

age,” Proc. IEEE 25th Int’l Conf.

Software Analysis, Evolution, and

Reengineering (SANER 18), 2018,

pp. 106–117.

	 7.	S. Akınlı Koçak et al., “An Empiri-

cal Evaluation of Database Software

Features on Energy Consumption,”

Proc. 5th Int’l Conf. Information and

Communications Technology

for Sustainability (ICT4S 18), 2018,

pp. 1–19.

	 8.	R. Verdecchia et al., “Empirical

Evaluation of the Energy Impact of

Refactoring Code Smells,” Proc. 5th

Int’l Conf. Information and Commu-

nications Technology for Sustainabil-

ity (ICT4S 18), 2018, pp. 365–383.

Read your subscriptions
through the myCS
publications portal at

http://mycs.computer.org

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

JEFFREY CARVER is a professor in the University of Alabama’s

Department of Computer Science. Contact him at carver@cs.ua

.edu.

BIRGIT PENZENSTADLER is an assistant professor of software

engineering at California State University, Long Beach. Contact her

at birgit.penzenstadler@csulb.edu.

ALEXANDER SEREBRENIK is an associate professor in

Eindhoven University of Technology’s Department of Mathematics

and Computer Science. Contact him at a.serebrenik@tue.nl.

