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Software Analysis, 
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THIS ISSUE’S ARTICLE reports 
on papers from the IEEE 25th In-
ternational Conference on Software 
Analysis, Evolution, and Reengi-
neering (SANER 18) and 5th Inter-
national Conference on Information 
and Communications Technology 
for Sustainability (ICT4S 18). Feed-
back or suggestions are welcome. 
In addition, if you try or adopt any 
of the practices described in the ar-
ticle, please send Jeffrey Carver and 
the paper authors a note about your 
experiences.

Examining Previous Results’ 
Reliability (SANER)
This first group of papers comes from 
the Reproducibility Studies and Neg-
ative Results track at SANER. They 
make the point that researchers and 
practitioners must be careful about 
accepting the results from one study, 
no matter how well executed, because 
those results might not apply in all 
contexts. Replication studies are cru-
cial to increase our confidence in re-
ported results and their applicability 
in different situations. Negative re-
sults are also important because they 
indicate that the researchers have 

tried their best and can’t make an 
approach work, so others shouldn’t 
waste time trying again.

“Re-evaluating Method-Level Bug  
Prediction,” by Luca Pascarella and 
his colleagues, describes a replica-
tion of prior research on method-
level bug prediction.1 The authors 
applied the metrics used in the origi-
nal study, including standard prod-
uct metrics and process metrics, to a 
different set of 13 large open-source 
projects, including Ant, Eclipse JDT 
(Java development tools), and Lucene.

Pascarella and his colleagues’ 
results showed that the previously 
published techniques were useful for 
predicting bugs in the current soft-
ware release but not for predicting 
bugs in forthcoming releases. Ran-
dom guessing was as good as the 
previous techniques. The overall 
takeaways are that each task needs 
an appropriate validation approach 
and that standard tenfold cross-
validation might not provide confi-
dence in future predictions’ validity.  
Access this paper at http://bit.ly 
/PD_2018_July_1.

“Detecting Code Smells Using 
Machine Learning Techniques: Are 

We There Yet?,” by Dario Di Nucci 
and his colleagues, presents a simi-
lar finding about a different software 
engineering phenomenon.2 The au-
thors examined earlier findings that 
machine-learning techniques built 
with cross-project data could predict 
code smells with up to 95 percent 
accuracy. In the previous research, 
the techniques tried to predict code 
smells in isolation; that is, they fo-
cused on the methods and classes 
affected by the smell, as opposed to 
those unaffected by the smell. But, in 
practice, those smelly methods and 
classes are often a small fraction of 
the overall number of methods and 
classes. Those methods and classes 
can often be affected by multiple 
smells simultaneously.

When Di Nucci and his col-
leagues investigated these two sim-
plifying assumptions’ effects on the 
overall results, they found that their 
results were up to 90 percent lower 
than those of the previous research. 
They also found that the techniques 
couldn’t properly classify whether 
the code elements contained code 
smells. These results again high-
light the importance of replicating 
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studies in realistic settings with valid 
assumptions. Access this paper at 
http://bit.ly/PD_2018_July_2.

“Keep It Simple: Is Deep Learn-
ing Good for Linguistic Smell De-
tection?,” by Sarah Fakhoury and 
her colleagues, reports on whether 
deep-learning techniques, which 
have been found useful for image 
recognition, can also be useful for 
software engineering tasks such as 
identifying linguistic antipatterns.3 
This study compared convolutional 
neural networks (CNNs), a deep-
learning technique, with the tradi-
tional machine-learning techniques 
implemented in the Linguistic Anti-
pattern Detection (LAPD) tool.

The findings showed that LAPD, 
when properly tuned with methods 
such as Bayesian optimization, dra-
matically outperformed CNN. Fur-
thermore, finding the optimal LAPD 
configuration took only minutes, 
compared to several days for CNN. 
These results suggest that you must 
take care when applying approaches 
from one domain to another. Re-
search results should be validated in 
the context in which they’ll be ap-
plied. Access this paper at http://bit 
.ly/PD_2018_July_3.

Automated Program Repair 
(SANER)
The next three papers focus on au-
tomated program repair techniques, 
which aim to relieve developers from 
fixing numerous, often trivial bugs. 
Even if these techniques can fix 
only a small fraction of all defects, 
the impact on developers’ effort can 
greatly benefit companies.

“Mining StackOverflow for Pro-
gram Repair,” by Xuliang Liu and 
Hao Zhong, discusses the SOFix tool, 
which can produce patches for previ-
ously unresolved situations.4 While 
studying Stack Overflow, Liu and 

Zhong identified several new auto-
mated program repair techniques— 
modifications that automated pro-
gram repair tools should try when 
looking to fix a defect. For example, 
one technique replaces a variable 
with the invocation of a method with 
no parameters, mimicking when a 
developer confuses a variable’s name 
with a method’s name. Another tem-
plate reverses the priority of two 
linked binary operators, making 
SOFix the only automated tool that 
can fix the Math 80 bug in the De-
fects4J benchmark (a standard da-
taset for automatic program repair 
taken from a number of open source 
systems; https://github.com/rjust 
/defects4j), by replacing int j 5 4 * n – 1 
with int j 5 4 * (n – 1). Access this paper  
at http://bit.ly/PD_2018_July_4.

In “Using a Probabilistic Model 
to Predict Bug Fixes,” Mauricio 
Soto and Claire Le Goues analyze 
and classify an extensive body of 
bug-fixing commits (the 100 most 
recent from 500 of the most popu-
lar Java projects on GitHub).5 They 
also present a probabilistic program 
repair approach based on the most 
frequently used repair templates. In 
an evaluation on a subset of the De-
fects4J benchmark, the probabilis-
tic approach outperformed heuristic 
techniques in terms of time and qual-
ity. Access this paper at http://bit 
.ly/PD_2018_July_5.

“Automatically Repairing Depen-
dency-Related Build Breakage,” by 
Christian Macho and his colleagues, 
describes BuildMedic, a tool to re-
pair Maven builds that break owing 
to dependency-related issues.6 Evalu-
ation of BuildMedic on 84 cases of 
dependency-related build break-
age in 23 open source Java projects 
showed that it could automatically 
repair 45 of those broken builds. 
In addition, 36 percent of the time, 

BuildMedic performed the same fix 
the human developer performed. 
Access this paper at http://bit.ly/PD 
_2018_July_6.

Sustainability (ICT4S)
In “An Empirical Evaluation of 
Database Software Features on En-
ergy Consumption,” Sedef Akınlı 
Koçak and her colleagues argue 
that although software doesn’t con-
sume energy by itself, its character-
istics determine the energy required 
by hardware resources.7 They ana-
lyze the energy effects of different 
features of IBM DB2, a commonly 
used database product. Kocak and 
her colleagues executed a workload 
in preconfigured software with some 
features enabled or disabled and 
with different numbers of users.

Using three sets of green metrics, 
Kocak and her colleagues identified 
which parts of the software system 
consumed energy. For the CPU, the 
main energy consumer was the com-
pression feature. However, when that 
feature interacted with other fea-
tures, it lowered the overall energy 
consumption in several scenarios. 
I/O-intense activities were the other 
source of high energy consumption.

The authors’ findings suggest that 
you can mitigate conflicts among 
software system performance, func-
tionality, and energy consumption 
(which are competing goals) by com-
bining features that interact in an 
energy-efficient way. An analysis of 
feature interactions is worth the ef-
fort for optimizing overall energy 
consumption. Access this paper at 
http://bit.ly/PD_2018_July_7.

In “Empirical Evaluation of 
the Energy Impact of Refactoring 
Code Smells,” Roberto Verdecchia  
and his colleagues explain how 
they applied JDeodorant, a code 
smell refactoring tool, to three 
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open source Java applications based  
on object-relational mapping (Cash-
Manager, JTrack, and Spring Pet-
Clinic).8 JDeodorant currently can  
refactor only one code smell at a 
time, so the largest application was 
14 KLOC. The key finding is that 
refactoring code smells can signifi-
cantly improve software energy ef-
ficiency. Specifically, refactoring the 
Feature Envy and Long Methods 
smells improved energy efficiency by 
49 percent. Furthermore, the authors 
found no correlation between estab-
lished software metrics and energy 
consumption. Access this paper at 
http://bit.ly/PD_2018_July_8.
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