
A Unifying Model Checking Approach for Safety

Properties of Parameterized Systems ⋆

Monika Maidl

LFCS, University of Edinburgh, The Kings’s Buildings, Edinburgh EH9 3JZ
Email: monika@dcs.ed.ac.uk

Abstract. We present a model checking algorithm for safety properties
that is applicable to parameterized systems and hence provides a unifying
approach of model checking for parameterized systems. By analysing the
conditions under which the proposed algorithm terminates, we obtain a
characterisation of a subclass for which this problem is decidable. The
known decidable subclasses, token rings and broadcast systems, fall in
our subclass, while the main novel feature is that global guards (in form
of unnested quantification over index variables) are allowed under certain
circumstances. The approach is illustrated by the Bakery algorithm and
the Illinois protocol.

1 Introduction

We present a model checking algorithm for safety properties that is applicable to
parameterized systems. A parameterized system is a family of systems, one for
each instantiation of the parameter, where an instantiation by n is the composi-
tion of n copies of the system, and the verification problem consists in checking
whether all instantiations fulfil a given property. Model checking for parame-
terized systems has been shown to be undecidable in general [Suz88], so the
problem can only be approached for subclasses or by semi-algorithmic methods.
Solutions based on different technical frameworks have been proposed. Since our
model checking algorithm is applicable to parameterized systems in general, it
provides a unifying method for different subclasses.

By exploring under which restrictions the algorithm terminates, we obtain a
characterisation of a class of parameterized systems for which model checking of
safety properties is decidable. The restrictions concern the way the copies com-
municate with each other: The admissible forms of communication are the very
restricted synchronisation of token rings (no information exchanged between
neighbours except “I have/have not the token”) and the anonymous synchro-
nisation of broadcast protocols. Another form of communication, using values
of variables in neighbouring copies in guards or assignments like in the Din-
ing Philosophers example, has to be excluded. Under certain restrictions, we
can however allow communication by global variables and by global guards,

⋆ This work was supported supported by the European Commission (FETproject AD-
VANCE, contract No IST-1999-29082).

(expressed by universal quantification over index variables, which run over the
instantiated copies). The latter is used e.g. in the Bakery algorithm, and in
cache coherence protocols with a global condition considered in [Del00], e.g. the
Illinois protocol, and extends the known subclasses of decidable systems. Our
algorithm terminates for both the Bakery algorithm and the cache coherence
protocols considered in [Del00], but the Bakery algorithm does not lie in the
subclass we characterise because it contains integer variables, while we restrict
considerations to system variables with finite domains. It is possible to prove
termination of our algorithm for the examples of [Del00], but the proof has to
take into account a special property of these protocols, which is described in the
last section.

As specification logic, we consider a linear time logic built over state pred-
icates that can contain index variables. We restrict ourselves to safety proper-
ties; liveness properties of broadcast protocols were shown to be undecidable in
[EFM99], so decidability of model-checking certainly does not extend to liveness
properties for the whole class we characterise.

Related Work. Model checking for parameterized systems has been addressed by
many researchers. One line of research is concerned with restrictions that, when
imposed on parameterized systems, make model checking decidable for safety
properties or even full temporal logic. The systems considered there are either
token rings, like in [EN95], or broadcast protocols, which were introduced in
[EN98] and also considered in [EFM99]; [GS92] deals with a restricted form of
broadcast protocols. Both types are subsumed by our subclass.

The approach for broadcast systems in [EN98] and [EFM99] falls under the
paradigm of using well-ordered sets for the verification of infinite-state systems
[ACJT96]. All sets that are considered are sets that are upward closed with
respect to a well order. This means that all guards of transitions have to describe
upward closed sets, which excludes certain global conditions, e.g. the one used
in the cache coherence protocol that Delzanno considered in [Del00].

Regular model checking, advocated by e.g. [KMM+97] and [BW98], is based
on representing sets of states by regular languages. Termination is obtained by
applying some form of acceleration in order to compute the transitive closure of
the transition relation [BJNT00]. Emphasis lies not on detecting decidable classes
but providing general, not necessarily exact methods to handle a large class of
systems. In this context, handling global guards was considered in [ABJN00].

Overview. First we explain the types of parameterized systems we consider. The
third section contains our model checking algorithm for ordinary systems, while
in the fourth section it is adapted to parameterized systems, and the conditions
under which the algorithm terminates are given.

2 Framework

As program notation we use concurrent state-based guarded-command systems;
a system is hence of form (V, C1, . . . , Cn, I), where V is a set of variables, Ci are

components and I is a predicate describing the initial states. A component con-
sists of a set of transitions, where guards and assignments are built over boolean
or enumerative variables or integer terms. More precisely, the terms occurring on
the right-hand side of assignments are terms of Presburger arithmetic, enumera-
tive constants or formulas of Presburger arithmetic, depending on the sort of the
left-hand side of the assignment, and guards are formulas of Presburger arith-
metic. The restriction to Presburger arithmetic, i.e. to multiplication only with
constants, guarantees decidability. A step is defined by choosing some compo-
nent and one of its transitions with a guard that is satisfied in the current state,
and performing all assignments of this transition simultaneously. As an example
of the program notation, consider Table 1, the well-known Bakery algorithm, in
a version for 2 components.

Table 1. Program text for the 2-component Bakery algorithm

V: c1, c2 : {T, W, C}, n1, n2 : NAT

I: c1 = T ∧ c2 = T ∧ n1 = 0 ∧ n2 = 0

Component 1: Component 2:

c1 = T −→

�
c1 := W

n1 := max(n1, n2) + 1

�
c1 = W ∧
(n2 = 0 ∨ n1 < n2)

−→

c1 := C

�
c1 = C −→

�
c1 := T

n1 := 0

� c2 = T −→

�
c2 := W

n2 := max(n1, n2) + 1

�
c2 = W ∧
(n1 = 0 ∨ n2 < n1)

−→

c2 := C

�
c2 = C −→

�
c2 := T

n2 := 0

�
2.1 Parameterized Systems

First we define a state language for parameterized systems.

Definition 1 (Index predicates). Index terms are of form j + k or k, where
j is an index variable and k is an integer constant.
Index predicates are defined as follows:

– Basic index predicates are quantifier-free expressions over variables that can
be indexed by index terms.

– We say that the index term j + k occurs in the index predicate p if there is
some variable y occurring in p in form y[j + k].

– If p is a basic index predicate and j1, . . . , jn are index variables s.t. all index
terms occurring in p that contain some ji have constant 0, then

∀ j1 . . . ∀ jn (a → p) and ∃ j1 · · · ∃ jn (a ∧ p)
are index predicates, where a is a conjunction of expressions of form ji 6= j+k

for an index variable j different from j1, . . . , jn, or ji 6= ji′ .
– Index predicates are closed under boolean operations.

The restriction that a quantified variable j can only occur in index terms
without constants is necessary for termination of the model checking algorithm,
more precisely to guarantee that no new index terms are generated by instanti-
ating quantifiers.

Models of index predicates with respect to n consist of a valuation v for the
occurring index variables in {0, . . . , n − 1} and of a valuation s for the sys-
tem variables, where for every indexed system variable y, s defines values for
y[0], . . . , y[n− 1]. We write s, v |=n p if s and v form a model for p with respect
to n.

A parameterized system S = (V, C[i], I) differs from an ordinary system
in that the transitions of C[i] are parameterized by the index variable i.1 Note
that we only consider systems where domains of system variables are defined
independently of the parameterization.

Accordingly, some variables of V are indexed, while the others act as global
variables. The guards of an parameterizable component C[i], are index predi-
cates, but we do not allowed quantification over index variables on the right-
hand side of assignments. This guarantees that the predicates generated during
model checking remain in the class of indexed predicates. The only index vari-
able appearing freely in transitions of C[i] is i, and on the left-hand side of an
assignment we only allow i as index term, without constant, which means that a
copy can only modify its own variables. To simplify the presentation, we assume
that quantified expressions in guards quantify over only one index variable. Our
results however also hold for the general case. The initial predicate I is a closed
index predicate.

A parameterized version of the Bakery algorithm, shown in Table 2, should
illustrate the notion of parameterized system.

Table 2. Parameterized bakery algorithm

V : c[i] : {T, W,C}, n[i] : INT

I : ∀ i (n[i] = 0 ∧ c[i] = T)

c[i] = T −→

*
c[i] := W

n[i] := (maxjn[j]) + 1

+
c[i] = W ∧ ∀j(j 6= i → n[i] < n[j] ∨ n[j] = 0) −→

D
c[i] := C

E
c[i] = C −→

*
c[i] := T

n[i] := 0

+
For a natural number n, the instantiation S[n] of a parameterized sys-

tem S is (V [n], C[0], . . . , C[n−1], I[n]), where V [n] is the set of ordinary variables

1 The proposed approach is applicable to systems composed of different parameteriz-
able components and of ordinary components.

of V together with, for every indexable variable y in V , y[0], . . . , y[n − 1], and
where for a natural number h, C[h] is obtained by replacing i by h in all indexed
expressions. All expressions are intended to be modulo n. This can be done on
the syntactic level by replacing all terms and predicates X by X mod n as fol-
lows: For a variable y and an index term i+k, y[i+k] mod n is y[(i+k) mod n];
this is extended in the usual way to terms and basic predicates. For quantified
predicates, we define

∀ j (a → p) mod n to be
∧

0≤h<n(a mod n → p[j := h] mod n) and ∃ j (a ∧
p) mod n to be

∨
0≤h<n(a mod n ∧ p[j := h] mod n).

The interpretation of (i + k) mod n under a given valuation v is the natural
one. Note that the instantiation of a parameterized system is an ordinary system
since i is the only free index variable occurring in C[i].

The following decidability result is crucial for the model checking proce-
dure we present. For satisfiability of an index predicate p, all possibilities of the
index terms in p to be equal/not equal to each other have to be considered. Such
a choice, given by a set of equations and inequations, can be expressed in Pres-
burger arithmetic, so it is decidable whether it can be fulfilled modulo some n.
For any of these choices, it suffices to check satisfiability for the smallest such n.

Theorem 1. Satisfiability of (open) index predicates is decidable.

In a specification logic for parameterized systems, it is desirable to be able
to quantify over index variables. For example, the property of mutual exclusion
in the Bakery example can be formulated as: ∀ i1 ∀ i2 (i1 6= i2 → G (c[i1] 6= C ∨
c[j2] 6= C)). More generally, we consider formulas of the form: ∀ j1 · · · ∀ jn (a →
φ), where φ is an LTL formula with index predicates as state formulas, where
j1, . . . , jn are the free index variables occurring in φ and where a is a conjunction
of inequalities ji 6= [i+]k for some index variable i.

Now we can formally state the model-checking problem for parameter-
ized systems:

S |= ∀ j1 · · · ∀ jm (a → φ) if for all n, S[n], s |=n ∀ j1 · · · ∀ jm (a → φ) mod n.

2.2 Types of Parameterized Systems

The characterisation we give of parameterized systems for which model checking
is decidable concerns mainly the communication between different copies. A
possible way of communication is to read the value of a variable of a different
copy. This is the case if on the right-hand side of an assignment or in a guard, an
expression y[i+ k] occurs, where k is not zero, and hence the transition depends
of the value of the variable y in the k-th neighbour. An example for this type
of communication is the following, a transition from the Dining Philosophers
algorithm.

c[i] = h ∧ pr[i] ∧ ¬pr[i − 1] ∧ c[i − 1] 6= e ∧ c[i + 1] 6= e −→

〈
c[i] := e
pr[i] := false

〉

While this general form of communication has to be excluded, other forms of
communication, namely that of token rings and broadcast systems are unprob-
lematic.

Both token rings and broadcast systems have a control-state, i.e. there is
a special variable c of enumerative sort Dcontrol such that the guard of every
transition is of form c[i] = d ∧ p for some index predicate p, and contains an
assignment c[i] := d′.

A token ring ([EN98]) is a control-state component C[i] for which some
transitions are marked by send and some by rec. In all transitions of C[i], only
i occurs as index term, so a copy can only read the value of its own variables.
With the execution of a rec transition, the copy acquires the token, while with
a send transition, the token is passed to the right neighbour. We require that
send and rec transitions alternate along every path through C[i]. Token rings are
not executed in a completely asynchronous fashion as the general parameterized
systems we consider here: To execute send or rec transitions, neighbouring copies
have to synchronise: For any instantiation with n and some 0 ≤ h < n, a
transition in C[h] marked by rec can only be executed in parallel with a send
transition in C[h − 1] (or C[n − 1] if h = 0 resp.), and vice versa. By Dtoken we
denote the set of control states in a token ring in which the copy “has the token”,
i.e. which are reachable by a sequence transitions such that the last marked
transition was a rec-transition. The initial state is required to be uniform in all
indices except 0, i.e. is of form P (0) ∧ ∀ j (j 6= 0 → Q(j, 0)), where P and Q are
quantifier-free expression containing only O and j, O as index terms respectively.
Furthermore, we assume that in the initial state, only process 0 has the token.

A broadcast component ([EN98]) is again a control-state component C[i],
and communication between copies is only possible in form of synchronisation.
But the copy to synchronise with is not determined but can be any other copy
that can execute a matching transition. Moreover, a broadcast synchronisation
is possible: In such a synchronisation step, all copies execute a transition. More
formally, let Σ = Σrv∪Σbc be an action alphabet, where Σrv and Σbc are disjoint
finite sets. The transitions can be marked by a! or a? for a ∈ Σrv , or by a!! or
a?? for a ∈ Σbc. The semantics of broadcast systems is as follows: A transition
marked by a! in some component can only be executed simultaneously with a
transition marked by a? in some other component and vice versa. The broadcast
actions a!! can only be executed simultaneously with an action marked by a??
in all other components, and an action marked by a?? can only be executed
in such a situation. We assume that guards of ??-transitions do not contain
quantification. (In [EN98,EFM99], the (stronger) assumption is made that for
every control state d and every a ∈ inΣbc, some a??-action is executable.)

The cache coherence protocol used as example in [Del00] can be modelled as
broadcast protocol as shown in Table 3, and provides an example of a broadcast
protocol with global guards (in broadcast transitions).

Table 3. Illinois protocol

V : c[i] : {I, E, D, S}

I : ∀ i (c[i] = I)

(rd1??), (rd2??), (w??), (rp??) c[i] = I −→
D

c[i] = I

E
(rd2 !!) c[i] = I ∧ ∃ j (c[j] = S ∨ c[j] = E) −→

D
c[i] := S

E
(rd1 !!) c[i] = I ∧ ∀ j (c[j] = I) −→

D
c[i] = E

E
(rp!!) c[i] = I −→

D
c[i] = W

E
(rd3 !) c[i] = I −→

D
c[i] = S

E
(w??), (rd1??), (rd2??) c[i] = D −→

D
c[i] = D

E
(rd3?) c[i] = D −→

D
c[i] = S

E
(rp??) c[i] = D −→

D
c[i] = I

E
c[i] = D −→

D
c[i] = I

E
(rd1??), (rd2??) c[i] = S −→

D
c[i] = S

E
(w !!) c[i] = S −→

D
c[i] := D

E
(rp??), (w??) c[i] = S −→

D
c[i] := I

E
c[i] = S −→

D
c[i] := I

E
(w??), (rd1??) c[i] = E −→

D
c[i] := E

E
(rd2??) c[i] = E −→

D
c[i] := S

E
c[i] = E −→

D
c[i] := D

E
c[i] = E −→

D
c[i] := I

E
3 Model Checking by Tree Construction

Model checking of safety linear temporal logic formulas can be restricted to
model checking of formulas of form EF p for some state predicate p by using
an automaton that accepts the bad prefixes for a safety linear temporal logic
formula ([KV99]). The fixed point approach for verifying that S satisfies EF q

uses the fact that the set of states satisfying EF q is the least fixed point of
the functional: F (X) = {s | s |= q} ∪ w̃p.S.X .2 We carry out the fixpoint
computation on predicates, i.e. we compute a state predicate which characterises
the least fixed point of F , starting with the empty predicate false. The necessary
ingredients needed to do this are:

– Decidability of implication and satisfiability for state predicates. The former
is needed to decide whether a fixed point has been reached, and the latter
for deciding whether an initial state satisfies an expression.

2 The set fwp.S.X consists of all states that have at least on successor in X.

– For a given state predicate p, a state predicate representing w̃p.S.p must be
computable.

For a program S and a given state predicate p, a predicate w̃p.S.p that repre-
sents w̃p.S.{s | s |= p} is easy to define: Let Tr(C) be the set of all transitions of
component C, where a transition is of form g −→< v0 := t0, . . . , vk := tk >, then
w̃p.S.p =

∨
C comp. of S =

∨
C comp. of S

∨
g−→<v0:=t0,...,vk:=tk>∈Tr(C)(g ∧ p[v0 :=

t0, . . . , vk := tk]), where [v0 := t0, . . . , vk := tk] denotes simultaneous substitu-
tion.

The specific feature of our algorithm is that the fixed point computation is
represented in form of a tree over IN, i.e. as set of finite sequences over IN that
is closed under prefix-formation: The root is denoted by ǫ, and e. g. 00 is the
first successor of the first successor of the root. Note that the algorithm works
directly on the program notation.

Definition 2 (Proof tree construction). Let q be a predicate of the form∧
i pi for literals pi. The proof tree T (EF q, S) is a tree over IN with labelling

l : T (EF q, S) −→ {
∧

i pi | pi literals } such that

– l(ǫ) = q and
–

∨
j l(xj) ⇔ w̃p.S.l(x).3

A node x ∈ T (EF q, S) is a leaf if one of the following conditions holds:

(i) l(x) is not satisfiable (unsuccessful leaf);

(ii) I ∧ l(x) is satisfiable (where I is the initial predicate of the system), i.e.
there is an initial state of S satisfying l(x) (successful leaf);

(iii) there is a node y ∈ T (EF q, S) such that |x| > |y| and l(x) ⇒ l(y) (unsuc-
cessful leaf).

The tree T (EF q, S) is successful if it has a successful leaf. The following
theorem states the correctness of the algorithm.

Theorem 2. (a) S |= AG (¬q) if and only if T (EF q, S) is not successful.
(b) If all sorts of variables of S are finite, then the construction of T (EF q, S)

terminates.

To illustrate the tree construction, the first steps of the proof tree construc-
tion for the 2-component Bakery algorithm are shown in Figure 1. For the root,
w̃p.S.(c1 = C ∧ c2 = C) is (c1 = W ∧ (n1 < n2 ∨ n2 = 0) ∧ c2 = C) ∨ (c1 =
C ∧ (n2 < n1 ∨ n1 = 0) ∧ c2 = W), and by transforming this into disjunctive
normal form, the four successors of the root node are obtained.

An advantage of using a tree structure to represent the least fixed point is
that the predicates labelling the nodes are relatively small and automatically
only elements of the frontier set are considered for the next iteration step. This
distinguishes the approach from other approaches to use Presburger arithmetic
for representing sets of states during the fixed point iteration [BGP97] and makes
it easier to check the Conditions (i), (ii) and (iii). Producing counterexamples is
easy since the paths in the tree form potential refutation sequences.
3 It is irrelevant for the correctness which representation in disjunctive normal form

is chosen.

c1 = C ∧ c2 = C

c1 = W ∧ n1 < n2

∧ c2 = C

c1 = T ∧

max(n1, n2) + 1 < n2

∧ c2 = C

unsat.

c1 = W

∧ n1 < n2

∧ n2 < n1

∧ c2 = W

unsat.

c1 = W

∧ n1 < n2

∧ n1 = 0

∧ c2 = W

c1 = W

∧ n2 = 0

∧ c2 = C

c1 = C

∧ n2 < n1

∧ c2 = W

c1 = C

∧ n1 = 0

∧ c2 = W

Fig. 1. Proof tree for the 2-component Bakery algorithm

4 Model Checking for Parameterized Systems

4.1 Adaption of the Tree Construction to Parameterized Systems

In order to apply the tree construction to parameterized systems, a definition of
w̃p.S.p for a parameterized system S has to be provided. For an ordinary param-
eterized system S and a given instantiation with n, and for an index predicate
p without free index variables, w̃p.S[n].p can be define as on page 8, by using
a disjunction over all components, i.e. instantiated copies of C[i]. This easily
generalises to token rings or broadcast systems by considering all possibilities of
synchronisation.

If p contains free index variables, it is possible to represent
∨

0≤h<n w̃p.C[h].p
uniformly in n by an index predicate that contains the free index variables
that occur in p. Such a representation can be obtained by computing w̃p with
respect to copies C[t], instantiated by index terms t that occur in p. We can
define w̃p.C[t].p by considering index terms as constants and use for example
the definition on page 8. This is however only correct if for all index terms t and
t′ in p, p implies t 6= t′. So it is necessary to consider all possibilities of dividing
the index terms in p in those that are equal to t and those that are not equal to
t, and to compute w̃p.C[t].p for each of those possibilities. To make this precise,
we need some notation. Let t1, . . . , tn be the free index terms (i.e. index terms
i + k such that i is free) occurring in p. For an ordinary parameterized system,
we define

– G(p)
def

= {Equ(ti1 , . . . , tik
) | {i1, . . . , ik} ⊆ {1, . . . , n}}, where

– Equ(ti1 , . . . , tik
)

def

= ti1 = ti2 ∧· · ·∧ ti1 = tik
∧

∧
r∈{1,...,n}\{i1,...,ik}

ti1 6= tr,
4,

– Equ(∅) =
∧

1≤r≤n i∗ 6= tr, where i∗ is a new index variable.

For an element g ∈ G(p), let rep(g) be tj1 or i∗ respectively. For token rings,
in addition sets of index terms that equal rep(g) + 1 or rep(g) − 1 have to be

4 Note that i + k = i + k′ can be satisfiable in some instantiation for even if k 6= k′.

selected, and for broadcast systems, a set of index terms that are interpreted as
the index of the component that is chosen for synchronisation has to be chosen.

For an element g ∈ G(q), the index predicate q〈g〉 is the result of replacing
all index terms that are required by g to be equal to rep(g), by rep(g).

So for a parameterized system S, let

w̃p.S.q
def

=
∨

g∈G(q)

(g ∧ w̃p.C[rep(g)].q〈g〉).

If guards of S contain quantified expressions, labels in the tree can contain
quantified expressions as well. We can assume that in this case, labels are of
form

P (t1, . . . , tl) ∧ ∀ j (j 6= t1, . . . , tl → Q),

where P is conjunction of literals that only contain index terms in t1, . . . , tl. This
form of labels can be obtained as follows:

Whenever a universally quantified expression appears in a successor label (as
part of a guard), it is instantiated for all free index terms that occur in the label.

Furthermore, an existentially quantified expression that appears in a label,
can be removed by introducing new index variables as follows: A label

P (t1, . . . , tl) ∧ ∃ j (a ∧ E) ∧ ∀ j (j 6= t1, . . . , tl → Q)

is replaced by the set of labels

{P (t1, . . . , tl) ∧ E[j := ti] ∧ ∀ j (j 6= t1, . . . , tl → Q) | 1 ≤ i ≤ l}

∪ {P (t1, . . . , tl) ∧ E[j := i′] ∧ ∀ j (j 6= t1, . . . , tl → Q)}

where i′ is a new index variable.
The definition of 〈g〉 has to be adapted to labels with universally quantified

expressions: In case rep(g) is the new variable i∗,

∀ j (j 6= t1, . . . , tl → Q)〈g〉 = Q[j := i∗]〈g〉 ∧ ∀ j (j 6= t1, . . . , tl, i
∗ → Q〈g〉).

Otherwise,

∀ j (j 6= t1, . . . , tl → Q)〈g〉 = ∀ j (j 6= t1, . . . , tl → Q〈g〉).

The new variable i∗ has to be introduced to represent the choice that a copy
C[h] takes a step, where none of the free index terms in the label are interpreted
as h. So after this transition, Q[j := h] has to hold. Note that if a label L does not
contain a universally quantified expression, then introducing the new variable
i∗ in some g ∈ G(p) can be omitted since for quantifier-free L, w̃p.C[i∗].L〈g〉 is
equivalent to L.

The following lemma states that w̃p.S[n].p is correctly represented by the
definition above. Note that p[{j := v(j) | j free index variable in p}] mod n

does not contain free index variables and can hence be considered as ordinary
predicate over the system variables of S[n].

Lemma 1. For all n, states s and valuations v with respect to n: There is a
valuation w of the index variables introduced in G(q) s.t. s, v + w |=n w̃p.S.q iff
there is a successor s′ of s such that s′, v |=n p mod n.

So we can now define the adaption of the proof tree construction for param-
eterized systems.

Definition 3 (Proof tree construction for parameterized systems). Let
p be an index predicate. Bpara(EF p, S) is a tree over IN with labelling

∧
i pi,

where pi is either a quantifier-free index predicate which is a literal, or a quan-
tified index predicate.

– l(ǫ) = p and
–

∨
j l(xj) = w̃p.S.l(x).

A node x ∈ Bpara(EF p, S) is a leaf if one of the following holds:

(i) l(x) is not satisfiable (unsuccessful leaf);

(ii) I ∧ l(x) is satisfiable (successful leaf);

(iii) there is a node y ∈ Bpara(EF q, S), s.t. |x| > |y| and

– l(y) does not contain a quantified expression, and ∃ l(x) → ∃ l(y) holds,
where ∃ denotes quantification over all free index variables, or

– there is a renaming σ of the free index variables in l(x) such that l(x)[{i :=
σ(i) | i}] → l(y) holds.

The second part of Condition (iii) is a special instance of ∃ l(x) → ∃ l(y).
By Theorem 1, both requirements are decidable.

4.2 Parameterized Systems for which Model Checking of Safety
Properties is Decidable

By exploring under which conditions the proof tree construction terminates, we
obtain a characterisation of parameterized systems for which model checking of
safety properties is decidable.

Termination can only be obtained by showing that Condition (iii) holds even-
tually along a path of the proof tree. Requirements for this are that domains
of system variables are finite, which we assume, and furthermore that for index
variables j, only bounded many index terms of form j + k occur in labels of the
proof tree

The latter requirement does not hold for parameterized systems C[i] in which
expressions of form i + k for k 6= 0 occur in guards or right-hand sides of as-
signments, as in the example on page 5, because such transitions can cause the
introduction of index terms i + k for unbounded many k during the tree con-
struction. In this situation, there can be infinitely many node labels that do not
imply each other. In fact, the coding of a Turing machine in [Suz88] is in terms
of systems that use (exclusively) this form of communication.

In what follows, we restrict ourselves to systems that have the property that
for every index variable j, only bounded many index terms of form j + k occur
in the labels of the tree.

Although token rings do use communication with neighbours, it is possible
to stop the tree construction at labels j + k− 2, where is k is minimal such that
i + k occurs in some guard or the property to verify.

Furthermore, the construction can be stopped at labels that have more than
one token, i.e. contain literals of form c[t] = d and c[t′] = d′ for d, d′ ∈ Dtoken ,
where c is the control-state variable of C[i]

Application of these two new termination conditions cuts off successful nodes
only if the smaller tree is already successful:

Let k1, . . . , kr be all constants (in linear ascending order) such that an index
term j + ki occurs in the root label.

Since we are only considering system variables with finite domain, we can
assume that all domains except that of the control-state variable c are boolean,
and hence assume that a label consists, besides the quantified expression, of
expressions of form:

(⋆) P−1(i + kr + 1) ∧ P (i + k1, . . . , i + kr) ∧ P 1(i + k1 − 1) ∧ · · ·Pm(i + k1 − m)

for every free index variable i, where P h(t) are conjunctions of literals that
contain only the the index term t, and P (t1, . . . , tn) is a conjunction of literals
only containing t1, . . . , tn as index terms. We can ignore labels with index terms
i + kr + k for k > 1 since it can be observed that such labels necessarily contain
several tokens.

Furthermore, it can be observed that for 1 ≤ h < m, P h contains a literal
c[i+k1−h] = d such that d 6∈ Dtoken , and that Pm contains c[i+k1−m] = d for
some d ∈ Dtoken . In the computation of w̃p for a label L, synchronising actions
have only to be considered with respect to C[i + k] and C[i + k − 1], where k is
the smallest constant k′ for which i+k′ occurs L, since for synchronising actions
involving C[i + k′] for other index terms i + k′, labels containing more than one
token are produced. This implies that the proof tree also contains a label

(⋆⋆) P−1(i + kr + 1) ∧ P (i + k1, . . . , i + kr) ∧ Pm(i + k1 − 1).

Under the restrictions on initial predicates for token rings, it follows that if some
initial state satisfies (⋆) then there is also an initial state satisfying (⋆⋆).

So after restricting to systems that have the property that for every index
variable j, only bounded many index terms of form j + k occur in the labels of
the tree, the following types of parameterized systems are left for consideration,
which we call systems with bounded index terms.

– Interleaving systems for which the index terms used in guards do not contain
constants. These systems can communicate by global variables and quantified
guards.

– Token rings; communication can be by synchronized send and receive actions
as well as by global variables and quantified guards.

– Broadcast protocols; communication can be by handshake actions or broad-
cast actions and by global variables and quantified guards.

For systems with bounded index terms that do not contain universal quantifi-
cation in guards, Condition (iii) holds eventually along each path. So we obtain
the following result, that extends the known result of [EN98,EFM99,EN95].

Theorem 3. Model checking of ∀ j1, . . . , jm (a → Gq), where q is a quantifier-
free index predicate, is decidable for systems with bounded index terms that con-
tain only existential quantification in guards.

Next we consider the case that universally quantified expressions occur in
guards. As explained above, if quantified expressions occur in labels, the repre-
sentation of the successor labels requires introduction of new index variables, and
while existential quantifiers can be removed, this is not true for universal quan-
tifiers. So if universal quantifiers occur, labels are of form P (t1, . . . , tl)∧∀ j (j 6=
t1, . . . , tl → Q), where there is no bound on the number of different index vari-
ables that can occur as t1, . . . , tl. For such labels, Condition (iii) does not need
to hold eventually, so termination of the tree construction is not guaranteed.

But it can be observed that for systems for which guards do not contain
existential quantification or global variables, introduction of new index variables
is only necessary for a bounded number, more precisely the number n of free
and existentially quantified index terms in the initial predicate of the system.
This is because if for some instantiation there is a path from an initial state to
the root labe,l then this path also exists for an instantiation with n + k copies,
where k is the number of index terms occurring in the property:

Assume s, v is a model that satisfies the initial predicate and some label L,
and let s′, v′ be the result of projecting s, v′ to the component indices h that are
used to interpret free or existentially quantified variables in the initial predicate
or the label L. Then a state satisfying the root label is reachable from s′ as
well, since without existentially quantified guard and without global variables,
the same transitions can be executed as the ones that lead from s to a state
satisfying the root label.

When only finitely many new index variables are introduced, again Condi-
tion (iii) eventually holds along a path, so we obtain:

Theorem 4. For parameterized systems with bounded index terms (but not broad-
cast protocols) that do not contain global variables and do not contain existential
quantification in guards, model checking of ∀ j1, . . . , jm (a → Gq) is decidable,
where q is an index predicate not containing global variables.

We have to exclude broadcast protocols because handshake synchronization im-
plicitely expresses existential quantification.

The Bakery algorithm provides an example of a system to which Theorem 4
can be applied: It is not necessary to introduce new index variables during the
tree construction for the Bakery example. Figure 2 displays part of this tree
construction, the full tree contains 23 nodes.

Generalising expressions We now turn to the case that universal quantification in
guards is combined with existential quantification, global variables or handshake
communication in broadcast protocols. This requires to generalise labels to sets
of labels.

Since we prove termination only for systems where system variables have
finite domain, we can restrict considerations to systems that have only boolean
variables. This means that we can assume that quantified expressions occur-
ring in guards are of form ∀ j (j 6= i → Q(j)) or ∀ j (Q(j)), i.e. the quantified
expression contains only j as free index variable.

It then follows that labels L of a proof tree are of form

P 1(I1) ∧ · · · ∧ Pn(In) ∧ ∀ j (j 6= I1, . . . , In → Q(j))

where Ij are disjoint sets of index variables, Q is a quantified expression that only
contains j as free index variable and every P h is a conjunction of literals that
contain the same index variable exclusively. P h(Ij) stands for the conjunctions
of all instantiations of P h with some i ∈ Ij .

A label

L′ = P 1(I ′1) ∧ · · · ∧ Pn(I ′n) ∧ ∀ j (j 6= I ′1, . . . , I
′
n → Q(j))

is an extension of a label

L = P 1(I1) ∧ · · · ∧ Pn(In) ∧ ∀ j (j 6= I1, . . . , In → Q(j))

if |Ij | ≤ |I ′j | for all j. Let X(L, L′) be the set containing |I ′j \Ij | many expressions
Pj for each j.

The generalisation of L′ extending L is

P 1(I1) ∧ · · · ∧ Pn(In) ∧ (X(L, L′))≥0 ∧ ∀ j (j 6= I1, . . . , In → Q(j)),

standing for the set of set of expressions that are obtained by adding X(L, L′)
some number of times to the expression.

The proof tree construction has to be adapted for labels that contain gener-
alisations: Not only quantified expressions, but also generalised expression Xn

have to be instantiated by the 〈g〉-operation.
Note that a label of form

L = P 1(I1) ∧ · · · ∧ Pn(In) ∧ (X1)
m1 ∧ · · · ∧ (Xk)mk ∧ QE

such that P i1 , . . . , P il = Xh for some i1 ∈ I1, . . . , il ∈ Il can be transformed to

P 1(I ′1) ∧ · · · ∧ Pn(I ′n) ∧ (X1)
m1 ∧ · · · ∧ (Xh)ml+1 ∧ · · · ∧ (Xk)mk ∧ QE,

where I ′j = Ij \ {i1, . . . , il}.
So for all labels L in the proof tree, we can assume that the expressions

P 1, . . . , Pn do not form a superset of any generalised expression Xn of L. This
implies that for all generalised expressions X and X ′ in a label, X is not an

extension of X ′, which means that there are only finitely many possibilities for
extensions.

Termination is guaranteed for systems with bounded index terms since if
mj ≥ m′

j for all j,

L = P 1(I1) ∧ · · · ∧ Pn(In) ∧ (X1)
m1 ∧ · · · ∧ (Xk)mk ∧ QE

implies

L = P 1(I1) ∧ · · · ∧ Pn(In) ∧ (X1)
m′

1 ∧ · · · ∧ (Xk)m′

k ∧ QE.

So we obtain:

Theorem 5. When applying all possible generalisations during the tree con-
struction for parameterized systems with bounded index terms, the construction
terminates.

However, introducing generalisations is only correct, i.e. does not lead to over-
approximation (false negatives), if all elements of a generalisation would occur
in the full tree constructed without generalisations. This is the case if between
L and L′, no universally quantified expressions were introduced by the w̃p com-
putation, and the system does not contain broadcast actions.

If there is only one quantified expressions ∀ j (j 6= i → Q(j)) (or ∀ j (Q(j))
resp.) occurring in the guards of the system, then generalisation can be restricted
to the case that between L and L′, no universally quantified expressions were
introduced by the w̃p computation, without loosing termination:

Along a path where ∀ j (j 6= i → Q(j)) is introduced infinitely often by
the w̃p computation, Condition (iii) eventually holds, since after introduction of
∀ j (j 6= i → Q(j)), for all expressions P h in a node except one, P h(i) → Q(i).
So if a node in which ∀ j (j 6= i → Q(j)) was newly introduced is extending a
previously constructed node, Condition (iii) holds.

So when restricting to systems that only contain one quantified expression,
applying generalisation in safe cases suffices to guarantee termination:

Theorem 6. For parameterized systems with bounded index terms that contain
at most one universally quantified expression in guards (which can have several
occurrences), models checking of ∀ j1, . . . , jm (a → Gq) is decidable, where q

is quantifier-free. For broadcast protocols, in addition it is required that only
handshake actions occur.

By using generalization only in cases where it does not produce an over-
approximation, i.e. if in between the labels N1 and N2 for which generalisa-
tion is introduced, no universal quantification is contained in an instantiated
guard and no w̃p-computation is with respect to a broadcast transition, it can
be shown that ∀ j1, . . . , jm (a → Gq) is decidable for the examples consid-
ered by Delzanno in [Del00]. These examples, among them the Illinois protocol
have the following characteristic: If there is a universally quantified expression
∀ j (j 6= i → (c[i] = d1 ∨ · · · ∨ c[i] = dm)) in some guard, where d1, . . . , dm are

control locations, then for every control location d 6= d1, . . . , dm there is a lo-
cal, unsynchronised transition from d to some d1, . . . , dm. This means that every
label N =

P 1(I1) ∧ · · · ∧ Pn(In) ∧ ∀ j (j 6= i → (c[i] = d1 ∨ · · · ∨ c[i] = dm))

can be generalized to N ′ =

P 1(I1)∧· · ·∧Pn(In)∧(d′1)
≤0∧· · ·∧(d′k)≤0∧∀ j (j 6= i → (c[i] = d1∨· · ·∨c[i] = dm)),

where d′1, . . . , d
′
k, d1, . . . , dm are all control locations of the protocol. But exis-

tential quantification over N ′ is equivalent to just P 1(I1) ∧ · · · ∧ Pn(In).
In the tree construction for the Illinois protocol, shown in Figure 3 for the

property ∀ j1, j2 (j1 6= j2 → G (c[j1] 6= E ∨ c[j2] 6= E)), it is however not neces-
sary to use generalisation in order to obtain termination: The nodes that contain
universal quantification are unsatisfiable. The three successor labels of the root
arise as follows: The leftmost successor is w̃p with respect to an rd1!!-action of
component C[j1], the next successor is with respect to an rd1!!-action of compo-
nent C[j2], and the third successor corresponding to an w!!-action of component
C[j3] for a new index variable j3.

5 Conclusion

We introduced an algorithm for model checking safety properties that is appli-
cable to a range of parameterised systems. Analysing under which conditions on
parameterised systems this algorithm terminates lead to an extensions of known
decidability results, and to a characterisation of a class for which termination
can be forced by allowing overapproximations. A severe restriction of the sys-
tems we considered is that quantification can only be restricted by inequalities:
so guards that contain expressions ∀ j (j < i → ..) are excluded. Systems con-
taining such guards are for example explored in [ABJN00]. How our approach
can be extended to such guards is clearly a topic for further research.

References

[ABJN00] Abdulla, P. A., Bouajjani, A., Jonsson, B. and Nilsson, M. Handling global

conditions in parameterized system verification. In: Proc. 12th Intl. Conf.

on Computer Aided Verification. 2000, LNCS 1855.
[ACJT96] Abdulla, P., Cerans, K., Jonsson, B. and Tsay, Y.-K. General decidability

theorems for infinite-state systems. In: Proc. 11th Symp. Logic in Computer

Science. 1996.
[BGP97] Bultan, T., Gerber, R. and Pugh, W. Symbolic model checking of infinite

state systems using Presburger arithmetic. In: Proc. 9th Intl. Conf. on

Computer Aided Verification. 1997, LNCS 1254.
[BJNT00] Bouajjani, A., Jonsson, B., Nilsson, M. and Touili, T. Regular model check-

ing. In: Proc. 12th Intl. Conf. on Computer Aided Verification. 2000, LNCS
1855.

j1 6= j2 ∧ c[j1] = C ∧ c[j2] = C

j1 6= j2 ∧ c[j1] = C

∧∀ j (j 6= j2 →

(n[j2] < n[j] ∨ n[j] = 0))

∧ c[j2] = W

implies 1

j1 6= j2 ∧ c[j1] = W

∧∀ j (j 6= j1 →

(n[j1] < n[j] ∨ n[j] = 0))

∧ c[j2] = C

j1 6= j2 ∧ c[j1] = W

∧∀ j (j 6= j1 ∧ j 6= j2 →

(n[j1] < n[j] ∨ n[j] = 0))

∧ n[j2] = 0∧

∀ j (j 6= j2 →

(n[j2] < n[j] ∨ n[j] = 0))

∧ c[j2] = W

j1 6= j2 ∧ c[j1] = T

∧∀ j (j 6= j1 →

((maxkn[k]) + 1 < n[j] ∨ n[j] = 0))

∧ c[j2] = C

j1 6= j2 ∧ c[j1] = T

∧∀ j (j 6= j1 ∧ j 6= j2 → n[j] = 0)

∧ n[j2] = 0

∧∀ j (j 6= j2 →

(n[j2] < n[j] ∨ n[j] = 0))

∧ c[j2] = W

j1 6= j2 ∧ c[j1] = C

∧∀ j (j 6= j1 ∧ j 6= j2 → n[j] = 0)

∧ n[j2] = 0∧

∀ j (j 6= j2 ∧ j 6= j1 →

(n[j2] < n[j] ∨ n[j] = 0))

∧ c[j2] = W

· · ·

implies 10

j1 6= j2 ∧ c[j1] = C

∀ j (j 6= j1 ∧ j 6= j2 → n[j] = 0)

∧ (maxkn[k]) + 1 = 0

∧ c[j2] = T

false

· · ·

false

j1 6= j2 ∧ c[j1] = C

∧∀ j (j 6= j1 → n[j] = 0)

∧ c[j2] = C

implies ǫ

Fig. 2. Proof tree for the parameterized bakery algorithm

j1 6= j2 ∧ c[j1] = E

∧c[j2] = E

j1 6= j2 ∧ c[j1] = I

∧c[j2] = E

∧∀ j (j 6= j1 → c[j] = I)

j1 6= j2 ∧ c[j1] = E

∧c[j2] = I

∧∀ j (j 6= j2 → c[j] = I)

j1 6= j2 6= j3 ∧ c[j1] = E

∧c[j2] = E ∧ c[j3] = S

implies root

Fig. 3. Tree construction for the Illinois protocol

[BW98] Boigelot, B. and Wolper, P. Verifying systems with infinite but regular state

space. In: Proc. 10th Intl. Conf. on Computer Aided Verification. 1998.
[Del00] Delzanno, G. Automatic verification of parameterized cache coherence pro-

tocols. In: 12th Intl. Conf. on Computer Aided Verification. 2000, LNCS
1855.

[EFM99] Esparza, J., Finkel, A. and Mayr, R. On the verification of broadcast pro-

tocols. In: Proc. 14th Symp. Logic in Computer Science. 1999.
[EN95] Emerson, E. A. and Namjoshi, K. S. Reasoning about rings. In: Proc. 22th

ACM Conf. on Principles of Programming Languages. 1995.
[EN98] Emerson, E. A. and Namjoshi, K. S. On model checking for non-

deterministic infinite-state systems. In: Proc. 13th Symp. Logic in Com-

puter Science. 1998.
[GS92] German, S. M. and Sistla, A. P. Reasoning about systems with many pro-

cesses. J. ACM, 39(3): 675–735, July 1992.
[KMM+97] Kesten, Y., Maler, O., Marcus, M., Pnueli, A. and Shahar, E. Symbolic

model checking with rich assertional languages. In: Proc. 9th Intl. Conf. on

Computer Aided Verification. 1997, LNCS 1254.
[KV99] Kupferman, O. and Vardi, M. Y. Model checking of safety properties. In:

Proc. 11th Intl. Conf. on Computer Aided Verification. 1999, LNCS 1633.
[Suz88] Suzuki, I. Proving properties of a ring of finite state machines. Information

Processing Letters, 28: 213–214, 1988.

