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An adaptive approach is presented for noise reduction of optical fringe patterns using multivariate empirical mode
decomposition. Adjacent rows and columns of patterns are treated asmultichannel signals and are decomposed into
multiscale components. Fringe patterns are reconstructed with less noise by simply thresholding coefficients in dif-
ferent scales. The proposed approach can better concentrate localmain components of fringe signals into single scale,
compared with the conventional multiscale denoising method. A simulated pattern and an actual example are
examined. Signal-to-noise ratio (SNR) of the simulated pattern is more than doubled. © 2012 Optical Society of
America
OCIS codes: 100.2650, 120.2650.

The empirical mode decomposition (EMD) algorithm has
become an established tool for time-frequency analysis of
nonstationary signals in recent years [1]. EMD and its var-
iants are also currently used to analyze fringe patterns for
denoising, detrending, and phase retrieval. Bernini et al.
used the standard EMD to reduce noise and normalize
fringes in a digital speckle pattern [2]. Li et al. utilized
one dimensional (1D) EMD to eliminate zero spectrum
in the Fourier transform profilometry [3]. Moreover, bi-
dimensional EMD (BEMD) has been applied to analyze
speckle patterns [4] and amplitude-encoded fringe
patterns [5]. BEMD overcomes the problem of 1D imple-
mentation that ignores the correlation among rows or
columns of an image and leads to unsatisfactory results
for some fringes such as closed fringes [4].
EMD-based methods still have inherent limits in hand-

ling fringe patterns despite their good adaptability and
locality [6]. A frustrating problem with both EMD and
BEMD is the mode mixing caused by intermittent noise
in different scales of data. Noise in a fringe pattern, in
many situations, is discontinuously distributed or sub-
merged in the fringes with large amplitudes such that
separating the noise and the fringes is quite challenging.
We used a 1D ensemble EMD (EEMD) [6] for carrier
fringe analysis to alleviate this problem. Bernini et al. [7]
and Zhou et al. [8] used bidimensional EEMD for speckle
patterns. However, the implementation of EEMD re-
quires the interpolation of curves or surfaces hundreds
of times and is, therefore, extremely time-consuming.
We present in this letter a novel and adaptive method

to denoise fringe patterns using multivariate EMD
(MEMD), a newly developed signal-processing tool [9].
MEMD extends the original EMD to multichannel signals
and works as adaptive filter banks with scale alignment
of channels. The adjacent rows and columns of fringe
patterns, which are treated as multichannel signals, are
decomposed into multiscale components in the proposed
method. Fringe patterns are reconstructed with less
noise by simply thresholding coefficients in different
scales. The proposed method, compared with conven-
tional multiscale methods such as wavelets, windowed

Fourier transform, and other EMD-based approaches,
can better concentrate local main components of a fringe
signal into one scale while driving noises to other scales.
A simulated pattern, as well as an actual example, are
examined using the proposed method.

A typical implementation ofMEMDproposed in [9] gen-
erates multiple n-dimensional envelopes by taking signal
projections along different directions in n-dimensional
spaces. These projections are then averaged to obtain the
local mean. The direction vectors for taking projections
are chosen to be based on a low-discrepancy Hammersley
sequence that generates a more uniform pointset than a
spherical coordinate system. The remainder of the proce-
dure is quite similar to the standard EMD summarized in
[1] once the mean signal is defined. More specifically, a
sequence of N -dimensional vectors fv�x�gTt�1 � fv1�x�;
v2�x�;…; vN�x�g represents a multivariate signal with N
components, and hθk � fhk1; hk2;…; hkNg denotes a set of
direction vectors along the directions givenby angles θk �
fθk1; θk2;…; θk�N−1�g on an (N − 1) sphere. The proposed
multivariate extension of EMD, suitable for general non-
linear and nonstationary n-variate time series operations,
is summarized in the algorithm below:

1. Choose a suitable pointset for sampling on an
(N − 1)-sphere based on a low-discrepancy Hammersley
sequence.

2. Calculate a projection, denoted by pθk�t�, of the
input signal v�x� along the direction vector hθk , for all
k (the whole set of direction vectors), giving fpθk�x�gKk�1
as the set of projections.

3. Find the time instants fxθki g corresponding to the
maxima of the set of projected signals fpθk�x�gKk�1.

4. Interpolate �xθki ; v�xθki �� to obtain multivariate
envelope curves feθk�x�gKk�1.

5. For a set of K direction vectors, the mean m�x� of
the envelope curves is calculated as m�x� � K−1 PK

k�1
eθk�x�.

6. Extract the “detail” d�x� using d�x� � v�x� −m�x�.
If the “detail” d�x� fulfills the stoppage criterion for a mul-
tivariate intrinsic mode function (IMF), then apply the
above procedure to v�x� − d�x�, otherwise apply it to d�x�.
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The following 2D fringe pattern is considered:

I�x; y� � a�x; y� � b�x; y� cos ϕ�x; y� � n�x; y�; (1)

where I�x; y�, a�x; y�, and b�x; y� are the recorded inten-
sity, background intensity, and fringe amplitude, respec-
tively. ϕ�x; y� is the phase distribution, and n�x; y� is the
randomly distributed noise. We denote ui�x� as the ith
row of I�x; y� for a digital fringe pattern of M × N pixels.
Then, u�x� � fui−L�x�; ui−L�1�x�;…; ui�L�x�g represents
a multivariate signal with 2L� 1 components, namely,
2L� 1 rows of the fringe pattern with L as a number
between 1 and 7. Taking u�x� as the input signal of the
MEMD algorithm above, we find a set of P multivariate
IMFs fcj�x�gPj�1 and a multivariate residue r�x� so that

u�x� �
XP

j�1

cj�x� � r�x�; (2)

where cj�x� and r�x� contain 2L� 1 univariate IMFs
fcji−L�x�; cji−L�1�x�;…; cji�L�x�g and 2L� 1 univariate resi-
dues fri−L�x�; ri−L�1�x�;…; ri�L�x�g, respectively. The
component ui�x� can also be written as a sum of a group
of univariate IMFs at all levels and a univariate residue
ui�x� �

PP
j�1 c

j
i�x� � ri�x� which is different from the

standard EMD. The difference is exhibited in the follow-
ing aspects: (1) No mode-mixing. Even a weak noise in
multivariate signals can constitute a complete IMF by a
MEMD operation. The reason is that small and fast fluc-
tuations hidden in the large and the slow signals, which
could not be extracted by standard EMD, can be detected
by projecting multivariate signals along various direc-
tions of a sphere; and (2) locally adaptive filtering, which
means that local noises and main components of a signal,
such as modulated parts, are adaptively allocated to dif-
ferent IMFs. In particular, main components in any local
position will concentrate in no more than one IMF while
the whole of them may be distributed in several adjacent

IMFs, provided that the spectrum of the signal in a local
area is simpler than the spectra of the signals in the
whole field. This condition is different from wavelet
and EEMD, which usually act as fixed filter banks in the
whole space domain and possibly divide the main com-
ponent of a local position into two neighboring scales
[10]. Benefiting from these two points, SNR at every scale
is expected to be high, which allows us to easily reduce
the noise from fringe signals by merely eliminating coef-
ficients of IMFs with small amplitude as similarly done in
discrete wavelet transform (DWT).

A simulated carrier fringe pattern shown in Fig. 1(a)
is contaminated by heavy speckle noise and is used to

Fig. 1. (a) Simulated noisy fringe pattern and (b) its 115th
row signal.

Fig. 2. IMFs (levels 1 to 6) generated from (a) MEMD,
(b) EMD, and (c) EEMD. (d) DWT details decomposed by a
db9 wavelet.

Fig. 3. Denoised results of the 115th row: (a) the ideal signal
and the signals denoised by (b) MEMD, (c) EMD, (d) EEMD,
and (e) DWT.
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verify the proposed method. The SNR of the pattern is
12.8 dB, and the image size is 512 × 512 pixels. The
115th row signal, demonstrating the noise, is illustrated
in Fig. 1(b). The phase distribution is modulated by the
peak function provided by the Matlab function. Back-
ground intensity is simulated to be proportional to the
first phase derivative.
We apply the algorithm to each row of the pattern with

L � 2. For example, Fig. 2(a) presents the results of the
decomposition of MEMD on the 115th row, including six
IMFs from levels 1 to 6. The results from the standard
EMD, EEMD, and db9-based DWT are also given in
Figs. 2(b), 2(c), and 2(d), respectively. All decomposi-
tions clearly work as filter banks that filter the signal
to a decreasing frequency order. However, the MEMD ap-
proach concentrates much better the carrier components
at local positions in a single band, unlike other ap-
proaches, facilitating the identified denoising process.
Our denoising strategy starts with the calculation of

envelopes with the absolute value of the coefficients at
different levels. Second, coefficients with local envelopes
smaller than the threshold are set to zero, in contrast to
common operations like DWT, to prevent the distortion
of the carrier component. The threshold value in all le-
vels is simply determined as half the maximum amplitude
of the fringe pattern.
The ideal signal and the MEMD-denoised result are dis-

played in Figs. 3(a) and 3(b), respectively. The noise is
not only greatly reduced, but the recovered signal is also
shown to be very close to the ideal signal. The results
from the standard EMD, EEMD, and DWT are also pre-
sented for comparison in Figs. 3(c), 3(d), and 3(e), re-
spectively. Some noise evidently remains, and a large
distortion to the ideal signal occurs because SNRs at le-
vels 2 to 4 are too low for the thresholding to eliminate
majority of the noise. In the latter three methods, a level-
dependent threshold λP �

���������������
2 ln N

p
σP is employed for

better performance, where N is the signal length, and
σP is the noise level estimated by the median absolute
deviation of the coefficients at level P.

After denoising the pattern along rows, we continue
to apply the same approach to the columns for two-
dimensional denoising, which in total took nearly
2 min on a 2.66 GHz-CPU PC. The results are shown in
Fig. 4. SNR increases to 28.5 dB, more than doubled,
whereas 18.1, 19.6, and 21.5 dB SNRs are obtained for
the standard EMD, EEMD, and DWT, respectively.

A real fringe-projected pattern on a plaster model,
exhibited in Fig. 5(a), is examined, and the results are
presented in Figs. 5(b) and 5(c). The noise is found to
be well-suppressed, whereas carrier components and
transient changes such as those around the face and
the eyes are reserved to the highest degree.
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Fig. 4. Denoised fringe pattern handled first along rows and
then along columns.

Fig. 5. (Color online) (a) A real fringe-projected pattern and
(b) the denoised result. (c) The 115th row before (solid line)
and after (dotted line) denoising.
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