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In ( V -  A) theories, fermion number is broken in the presence of the 't Hooft-Polyakov 
magnetic monopole through the Adler-Bell-Jackiw anomaly. An exactly solvable zeroth-order 
approximation for evaluating Green functions of zero-angular-momentum fermions in the presence 
of a monopole is developed in the case of an SU(2) model with massless left-handed fermions. 
Within this approximation the density of the fermion-number breaking condensate is calculated. 
This density is found to be O(1), i.e. to be independent of the coupling constant and of the vacuum 
expectation value of the Higgs field. The corrections to the approximation are estimated. It is 
argued that the above effect can give rise to the strong baryon-number breaking in monopole-ferm- 
ion interactions in SU(5) grand unified theory. 

1. Introduction 

The existence of the 't Hooft-Polyakov magnetic monopoles [1] is one of the most 
interesting features of spontaneously broken gauge theories. The monopoles are 
inherent in all models with compact U(1)E M group [2], including [3, 4] grand unified 
theories [5]. Experimental observation of relic superheavy magnetic monopoles 
would provide a strong argument in favour of grand unification [6], so further 
investigation of the monopole properties is important from both theoretical and 
experimental points of view. 

Most of the known characteristics of the 't Hooft-Polyakov magnetic monopoles 
(mass, magnetic charge etc.) manifest themselves already at the classical level, the 
quantum effects giving rise to O(e 2) corrections (for a review see, e.g., [7]). The only 
known exception is the deep relationship [8-10] between the magnetic charge and 
the winding number [11] of the gauge field. In theories without massless fermions 
this results in the Witten value of the charge of the quantum dyon [8], QD = --e0/2~r, 
where 0 is the CP non-conservation angle. In the present paper we consider theories 
with massless left-handed fermions [(V - A) theories]. Our main purpose is to show 
that in these theories the above relationship leads to strong fermion-number non- 
conservation in monopole-fermion interactions. We also develop a suitable ap- 
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proximation for calculating some fermion number breaking matrix elements in the 
presence of a :monopole. 

It  is well known that in ( V -  A) theories the divergence of the (euclidean) 
fermionic current is anomalous [12], 

~ . J f  = const Sp F~. P.~ = const E ~ H  ~ , 

so that the fermion number 

N F = f J o  v d3x 

is not conserved in external fields with a non-zero winding number q, where 

1 
q = - e.~xp f Sp F.~Fxo d4x. 

32~r 2 
(1.1) 

In the vacuum sector this effect is associated with instantons [11, 13-15] and the 
fermion-number breaking amplitudes are suppressed by the factor e x p ( - c o n s t / e  2) 
as well as by negative powers of the vacuum expectation value of the Higgs field 
[13,14]. The first suppression results from the large values of action for the 
configurations with q 4 0, while the second one is due to the small value of the 
instanton size, which is cut off at the Compton length of the massive vector boson. 

Since in the presence of a monopole there exists a non-zero classical magnetic 
field, HcI4: 0, the fluctuation of the electric field can give rise to non-zero q, thus 
leading to non-zero change in the fermion number. This means that in the monopole 
sector the anomalous fermion number breaking can be associated with purely 
electromagnetic configurations which are abelian and massless. So, one expects no 
suppression factors in the fermion-number breaking amplitudes* (these arguments 
are further developed in sect. 2). In other words, one expects the anomalous fermion 
number breaking in the presence of a magnetic monopole to be strong, presumably 
O(1). This effect can have far reaching consequences, the most interesting one being 
the strong baryon-number non-conservation in fermion-monopole interactions in 
grand unified theories** [17, 18]. 

From the above arguments it is clear that the actual calculation of Green 
functions with fermion number breaking in the presence of a monopole will be 

* Note that these observations are close to those of Marciano and Pagels [16] who argued that the 
non-abelian dyons (Halve0, EClv~0) could give rise to the strong chirality breaking in quantum 
chromodynamics (see also [40]). 

** Note that this effect has nothing to do with leptoquark exchange or with the leptoquark kern of the 
SU(5) monopole. The latter was considered in ref. [3] and shown to lead to O(Mx 2) baryon-number 
breaking cross sections. 
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rather non-standard. The effect is neither perturbative (the T~t'A vertex conserves 
the fermion number) nor quasiclassical (since the factor exp(const /e  2) does not 
appear). This difficulty is also inherent in Schwinger model [19] where an exact 
solution (either operator [20,21] or functional [19]) is needed to investigate the 
chirality and fermion number breaking [21-25]. Since we are unable to obtain an 
exact solution of the spontaneously broken four-dimensional gauge theory, we are 
faced with the problem of developing a suitable zeroth-order approximation. At 
present we cannot solve this problem in general; however, the natural approximation 
does exist if we restrict ourselves to the dynamics of spherically symmetric fermions*. 
Within this approximation one assumes the relevant gauge field configurations to be 
spherically symmetric and neglects the contribution of fermions with non-zero 
angular momentum to the fermionic determinant. Under these assumptions the 
problem becomes effectively two-dimensional and one can find an exact solution 
which is quite similar to the solution of the Schwinger model. The main part  of the 
present paper is devoted to the description and solution of this approximation and 
to estimating corrections. Within this approximation it becomes possible to confirm 
the heuristic arguments of sect. 2 and find the e 2 dependence of fermion number 
breaking matrix elements in the presence of monopole. 

The paper  is organized in the following way. In sect. 2 we present heuristic 
arguments showing that fermion-number breaking amplitudes in the presence of a 
monopole are not suppressed by e x p ( - c o n s t / e  z) or negative powers of the vacuum 
expectation value of the Higgs field. These arguments are also useful in the 
investigations of the effects of anomalous non-conservation in more complicated 
cases (e.g. in the case of a chromomagnetically neutral SU(5) monopole [27]). Before 
proceeding further, in sect. 3 we summarize the relevant properties of massless 
left-handed fermions in the field of a magnetic monopole. In sect. 4 the zeroth-order 
approximation is described and solved. As an example, in sect. 5 we calculate the 
density of fermion number breaking condensate of zero-angular-momentum ferm- 
ions in the presence of a monopole and discuss the relevant gauge field configura- 
tions. In sect. 6 we study the corrections to our approximation and show that they 
are finite and small in the limit of vanishing monopole size. Sect. 7 contains some 
concluding remarks, including a discussion of the relation between the anomalous 
fermion-number breaking in the presence of a monopole and the O vacuum structure 
[28] of gauge theories as well as a preliminary consideration of the baryon-number  
breaking in monopole-fermion interactions in SU(5). Some properties of special 
functions used in this paper are listed in appendix A. Appendices B and C contain 
some technical details needed to estimate corrections to the zeroth-order approxima- 
tion. 

* Note that in the presence of a monopole the total fermionic angular momentum can be integer valued 
(see, e.g. [26] and references therein). Throughout this paper we consider the model in which it is 
indeed integer valued. 
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2. The heuristic arguments 

Throughout this paper we consider an SU(2) gauge theory with a Higgs triplet 93a 
and two left-handed fermionic doublets '~t '(~) (s = 1,2 is the "flavour" index). We 
always use the euclidean formulation of the field theory, so the action functional is 

where 

S =  SA,r + S~,, (2.1) 

S a ~ = f d t  SP F~ + a S p ( D ~ )  + 
, 2e 2 

(2.2) 

is the bosonic part and 

sA,.= - i f  d3xdt X ~(*)vL(o. + A~,) '~(s) (2.3) 
s = l , 2  

is the fermionic part of the action. Since we are interested in the monopole sector, it 
is convenient to normalize the zero-point energy so that the monopole energy is 
equal to zero, 

EMO N -~- 0. (2.4) 

According to this prescription, the last term (the monopole mass) on the r.h.s, of 
(2.2) is added to the standard bosonic part of the action of the Georgi-Glashow 
SU(2) model. The "left-handed y-matrices" are defined by the following relations, 

or, explicitly, 

(o 
~ - -  0 ' 

.yOL = 1 , "y[ = i o i ,  

a i being Pauli matrices. The matrix notation for Ag and 93, 

e -~/ a 
A~ : ~ll Al~'r , 93 =" 93a'ra , 

is used in (2.2), (2.3). 
The Higgs field 93 develops a non-zero vacuum expectation value, so that in the 

unitary gauge 

(93)vat= c~3 
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and only the third component A~ (photon) remains massless. In this gauge the 
fermionic sector consists of four massless left-handed fermions ~I'ff ) - - ~ ' )  and 
~t,~) ~ ~I,2(s) carrying the electromagnetic charge ( -  ½e) and (+  ½e), respectively (the 
lower index 1,2 is the SU(2) group one). The gauge-invariant current of s th fermion, 

has the anomalous divergence 

1 
3.J~ (~ ' -  32~r 2 e.~xoSp F.~Fxo. (2.5) 

The 't Hooft-Polyakov magnetic monopole solution is 

A~l=0, 

A~ l = eai/%n j 
1 - -F(r)  

2ir 

cp cl= c•ana(1 -- H ( r ) ) ,  (2.6) 

where r = V ~ ,  n = x/r ;  F(r)  and H(r)  obey the following boundary conditions: 

F(0) = U(0) = 1, F(ov) = H(oo) = 0, (2.7) 

F(r) and H(r)  are exponentially small at r >> c-  I /e,  r >> c-1/~. Throughout this 
paper we are primarily interested in the dynamical properties of fermions far from 
the monopole center, i.e. we assume the limit 

c --, ~ ,  F-+ 0 (2.8a) 

to be taken whenever possible (otherwise the function F(r) will be explicitly 
indicated). Note that in this limit the monopole size vanishes 

r M -~ O. (2.8b) 

Throughout this paper we treat the configuration (2.6) as a classical background 
one, though we do not assume the perturbations to be small. Thus, the generating 
functional for the fermionic Green functions in the presence of a monopole, 

zMON[~, ' ]  = (exp[f ( f fq t  -k- ~ff) d4x] ) MON 

(we omit the flavour index s whenever possible as well as the summation over s) is 
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represented by the functional integral* 

z-o-[£, ¢] = f dA. d~exp[-SA, ~ + gauge-fixing terms + ghost terms] 

x f  [I d't'(')d~(S)exp - X A , . +  ( ( ' I ' + ~ ' ) d 4 x  , (2.9) 
s = |  

with the following boundary conditions: 

A.(x, ,) - .  

q ~ ( x , t ) - - , e p C ' ( x ) ,  t - - ,+_oo.  (2.10) 

Eq. (2.5) implies [13] that the change of the sth flavour is equal up to a sign to the 
winding number of the gauge field (1.1), 

AN(S)  = - - q .  

We first show that there exist configurations of the bosonic fields, obeying the 
boundary conditions (2.10) and having q = - 1  and that, as opposed to the vacuum 
sector, in the monopole sector the action SA,~0 for these configurations can be 
arbitrarily close to zero. This means that the suppression factor exp( -cons t /e  2) 
does not appear in fermion number non-conserving matrix elements. Consider the 
configuration 

A o = ~anaao(r ,  t ) / i ,  

A i = "rananial(r ,  t ) / i  + A cl , 

~ = ~ d ,  (2.11) 

where ao( r, t )  and al( r, t )  obey 

ao( r,  + - o ¢ ) =  a, (  r,  ---+ ~ ) =  O. (2.12) 

The action functional for this configuration reads 

S~ = 4~r f ~ d r  " e 2 "I0 J - ~  d t ~ ( O t a ' - O ' a ° ) R r 2 + 2 F 2 ( a 2 + a 2 ) - '  F [ ] (2.13) 

* Hereaf ter  the s tandard  denomina to r  needed to ensure  zM°N[0 ,0 ]  = 1 [see (2.4)] is not  explicitly 

indicated for simplicity of notat ion.  
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and the winding number (1.1) reads 

q= 1 foO~dr f_ +oo dt(0,[ao(1 - F)2l_Ot[a,(l_ F)2] }, 
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(2.14) 

i.e., in virtue of (2.7) and (2.12), 

q =  1 lim f+~dtao(r ,  t). 
eft r ~ o o  cx~ 

(2.15) 

Note that the last expression can be obtained from (2.14) in the limit (2.8) only if 
ao( r, t) satisfies 

ao(r = 0, t) -- 0. (2.16) 

An explicit example of a configuration obeying (2.12), (2.16) and having q- -  - 1  is 

ao(P/r,t)= --Orp(r,t), 

al(p/r, t) = OtP( r, / ), (2.17) 

with 

1 t2 p(r,t)=½1og[Iz~(r2+t2)+l]+-~e[#2(r2+ ) + 1 ]  -~, (2.18) 

where ILl is some mass scale and e is a positive number. The value of action for the 
field (2.11), (2.17) is 

S A ~ - 5~r2 e(1 + O(e) + O( /z l /c ) )  
, 3e 2 

and can be arbitrarily small for small e and ~1, Q.E.D. 
In the vacuum sector, fermion number breaking matrix elements are also sup- 

pressed by negative powers of c [14]. This suppression occurs because the zero 
X -3/2 and the instanton fermion modes far from the instanton are proportional to .-inst 

size k i l t  is bounded from above by c - i .  Thus, it is instructive to investigate the zero 
fermion modes in the external field (2.1 l) in order to find their c dependence. For 
the sake of convenience we consider the fields a0, a~ of the form (2.17). Since the 
external field is spherically symmetric, it is natural to choose a spherically symmetric 
ansatz for the zero modes. A most general spherically symmetric fermionic field has 
the following form: 

'~°)(x, t ) = ( 8~r )-lexp( f~F(r')~, '  )X~l(x, t ), (2.19) 
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where a --- 1,2 and 1 = 1,2 are Lorentz  and gauge group indices respectively, and 

Xal( X, t) = ealXl( r, l) --iraBeBlnaX2(r, t ). (2.20) 

In t roducing the compac t  nota t ion  

we obtain  the following equat ion for the zero mode  X(°): 

[(0t dr- i ,r20r~) _1_ iq.2(~r__ i,r2 ~tlo ) _{_ F(q.l -~- iq'2)] X (0) = 0. (2.21) 

In order  that  the solution be non-singular  at r -- 0, one should impose  the bounda ry  
condi t ion 

(r  1 + ir2)X(°)(r = O) = 0 (2.22) 

(this point  will be clarified in sect. 3). The  solution of eqs. (2.21), (2.22) is 

X ( ° ) ( r , t ) = N e x p [ - - p ( r , t ) ] ( 1 ) ,  (2.23) 

where N is a normal iza t ion factor. Since the zero m o d e  (2.19), (2.23) is square 
integrable near  x = 0 in the limit (2.8), the factor  N is independent  of  c and the zero 
m o d e  is independent  of  c far  f rom the monopo le  center. This implies that  the 
f e rmion-number  breaking matr ix  elements in the presence of a monopo le  are not  
suppressed by  negative powers  of  c. No te  that, as is seen f rom (2.18), the zero mode  
has the following asymptot ic  behaviour  as r 2 + t 2 ~ oo, 

~ r - 1 ( r 2  + t 2 )-I/2, 

so that  its no rm f '~I'+ q • d4x is logari thmically divergent in the infrared region. As 
will be shown in sects. 4, 5, this fact is inessential, in complete  analogy to the 
Schwinger model  [24, 25]. 

The  nature  of  the configurat ion (2.11) is mos t  t ransparent  in the uni tary  gauge of 
ref. [29]. Performing the t ransformat ion  to this gauge, we obtain  in the limit (2.8) 

A(o~ ) = 1 7"r3ao, 

A~U) = 1 r3e 
]-r3a 1 + A n  2i ' 

q~(u) = cz3, (2.24) 
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where A D is the Dirac expression for the vector-potential of the magnetic monopole 
carrying two Dirac units of magnetic charge. From (2.24) it is clear that the 
configuration (2.11) is purely electromagnetic. Moreover, the magnetic field of this 
configuration is just the monopole one, while the electric field Ei = ( i / e ) S p  Fo~ 3 is 

E i -- 4n__2~ (O0a 1 - Ola0) 
e 

and is directed along the magnetic field, so that H E  4 = 0 (cf. sect. 1). 
Thus, the heuristic arguments of this section imply strong fermion-number break- 

ing in the presence of a monopole. Guided by the above observations, in sect. 4 we 
shall develop a suitable approximation for evaluation of spherically symmetric 
matrix elements in the presence of a monopole. Before doing this, we consider the 
massless left-handed fermions in the external field (2.11). 

3. Massless fermions in the field of a magnetic monopole 

In this section we consider the left-handed massless fermions in the external field 
(2.11) in the limit (2.8). It is convenient to introduce the operator of total angular 
momentum [26], 

M i =- - - i e i j k X  j O k -[- 1o  i -b l ' r  i . 

The operator M i commutes with the Dirac operator ~b. 

as well as with the operators ¢n and on.  The angular part of the Dirac operator. 

O .  - - i r ° ~ ( ~ k , -  n~n,)(0, + A,) --io~nk, 

commutes with ~'n and anticommutes with o n ,  

[o,n,, 0 1+ = 0. (3.1) 

It is a matter of straightforward calculation to verify the following identity: 

5~2 = M 2  " 

There exist two eigenfunctions of M with zero eigenvalue, namely e~l and T2#eatn a (a  

and l are the Lorentz and gauge group indices respectively), and 4(2J + 1) eigen- 
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functions "t'jM,~ of M 2 which can be chosen to satisfy 

M Z ~ j M ~ : J ( J +  1) '{ ' jMS~,  J :  1 ,2  . . . .  

M3~SM~ = M~SM~, ,  

C n % g s .  = 

o n ~ j g ~  = Vq'jMn~ , 

M = O ,  ml . . . . .  -+J, 

8=_+1 ,  

v = _ + l .  

The functions 9 J M ~  ( J  v~ 0) form a set of functions, which is complete in the 
subspace with J +a 0 and orthonormal on a sphere. Thus, the fermion field '4' can be 
decomposed in the following way: 

~ ( x , t ) = ~ O ) ( x , t ) +  1 ~ ]~_JMSl_u~ ~r , t )~ jMS~(O,~P  ) ,  (3.2) 
r JM8 v 

where 'I'{°~(x, t) is given by (2.19), (2.20) (but the field X need not satisfy the Dirac 
equation). It is convenient to introduce the compact notation 

uJM8 __ 1 - i'r 1 u+ l 

-2 . JM8 U-- 1 

and to rewrite the fermionic part of the action, (2.3), in the following form, 

sjM , 
J ~ 0  M,8 

where 

&:0 = - i f  drdt ~Dj=oX  , 

(3.3) 

(3.4) 

S j M  ~ ---- - i f  d r d t  f f JMSD u JM8 J8 (3.5) 

D2= 0 = O , -  ir2a 0 + ir2(O ~ -- i r2a l ) ,  

D,z,8 = 0 t - iSa 0 -- i¢2(0r -- i Sa l )  + 
s(OO71) 

(3.6) 

rl (3.7) 

[the limit (2.8) is assumed]. 
The form of the vector potential (2.11), the decomposition (3.2) and the actions 

Sj= o and SjM 8 are invariant under the following transformation: 

X -+ e i % f l X ,  

uJM8 ..9 eiSflu JM8 , 

ao --' ao + ~t~,  al ~ al + ~tfl, (3.8) 
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where /3(r, t) is some real function. The transformation (3.8) is a special case of 
gauge transformation, the gauge function 

g( x , t  ) = exp[  iran~/3( r, t)] (3.9) 

being spherically symmetric. For this gauge function to be non-singular at r = 0, the 
function/3 should vanish at the origin, 

/3(r : 0, t) = 0. (3.10) 

According to the decomposition (3.2), the functional measure in (2.9) can be 
rewritten in the following form: 

2 2 ] 
1"I rI d~ '<S)d~S):  r[ 1-[ [dx<S)dx (s) I[ du(S)JMSdff(s)Jg~ • (3.11) 

s = l  x , t  r, t s = l  J M 8  

Thus, the functional integral over fermions in the external field (2.11) reduces to an 
infinite product of functional integrals over the two-dimensional fermionic fields 
x ( r ,  t)  and uJMn(r, t)  (defined on a half-plane), the relevant action functionals being 
given by (3.4), (3.5). 

We begin the discussion of the above action functionals by deriving the Green 
function of zero-angular-momentum fermions. Since the Dirac operator (3.6) in the 
limit of a pointlike monopole is ill defined at r = 0 [30], we consider the full operator 
for the field X [cf. (2.21)], 

r~fuU = Ot _ i,r2ao + i,r2(~ r _ i,r2al ) + F r ( ¢ ,  + i t2) .  ~ J = O  (3.12) 

The Green function G(rt; r't ') obeys the following equation: 

D full G i r t  • r ' t ' )  = 6 ( r  - r') 6 ( t  - t') J = O  ~. , (3.13) 

To derive the boundary condition for G, we assume for simplicity that the function 
F is a step function, 

F ( r )  = O(r - rM) 

where r M is the monopole radius. At the end of our derivation we shall take the limit 
(2.8b). We also assume that the functions a 0 and a 1 are finite and smooth at r = 0. 
The standard arguments of the theory of differential equations lead to the following 
behaviour of G(rt; r't ')  near the origin r = 0: 

Gl(r t ;  r ' t ')  = O(1), 

G2(rt; r ' t ' )  = O( r ) ,  (3.14) 
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1-+T3 G. 
G1,2 -- 2 

From (3.12), (3.13) it follows that G(rt; r't') is continuous at r = r M and from (3.14) 
in the limit (2.8b) we obtain the following boundary condition: 

(1 -- ~'3)G(0t; r't') = O. (3.15) 

Note that in terms of the field x(r ,  t) this boundary condition corresponds to (2.22). 
Thus, in the limit (2.8) the Green function of the field X obeys the equation 

Dj=oG( rt; r't') = 6( r - r') 8( t - t') 

and the boundary condition (3.15). Generalization of the above arguments to the 
general case of an arbitrary function F(r)  is straightforward, provided F(r) rapidly 
tends to zero at r >> r M. 

It is convenient to proceed further in the temporal gauge 

o r  

A o = 0  (3.16a) 

a 0 = 0 (3.16b) 

and consider the function al(r, t) obeying the boundary condition (2.12). In this case 
G(rt; r't') can be obtained in the closed form, namely, 

G( rt; r't') = e x p [ - o ( r ,  t) + o( r', t') + iz2"/( r , t ) ] Go( rt; r't') exp[ iz2y( r', /') ] , 

where 

(3.17) 

f0 o( r ,  t) = d r "  d t " [ ~ ( r - r " , t - t " ) + ° ~ ( r + r " , t - t " ) ]  

XO,,,al(r", t") ,  

~ , ( r , t ) =  f__t Oro(r , t , )d t , , .  
0 0  

(3.18) 

(3.19) 

Here ®(r,  t) is the propagator of the two-dimensional massless scalar field (the 
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inverse two-dimensional laplacian), 

@(r, t) = ~-~log/a~(r 2 + t 2) (3.20) 

(~2 is an arbitrary mass scale [31]), and Go is the solution of the "free" equation 

( O, + i¢ 2 Or )Go( rt; r't') = 8(r - r ')  8 ( / -  t ' ) ,  

obeying the boundary condition 

(1 - ~ '3 )G0(0 / ;  r ' t ' )  = O. 

Explicitly 

Go(rt; r't') = (3 t - -  i 'r  2 3~) [@(r -- r ' ,  t -- t') + 6~(r + r ' ,  t - -  t ' ) ' r 3 ]  

1 r ( t -  , ' ) - i r2 ( r - r ' )  ( t - , ' ) - i r 2 ( r  + r') ] 
= ~  [ (-7-_7)7-~+7_~, ~ + ~-r~7)~-+~7i7~,] (3.21) 

Note that the definitions (3.18), (3.19) imply 

Oro(0, t) = 0, 7(0, t) = 0. (3.22) 

Now we turn to the discussion of the action (3.5). In this case we cannot find the 
exact Green function of the operator Dj, ~ so we develop perturbation theory around 
a 0 = a 1 -=-0. The free propagator G J corresponding to the action (3.5), obeys the 
equation 

( ~ _ i r 2 ~ r +  b(J)r ) GJ ( r t ; r ' t ' )=8 ( r - r ' )~ ( t - t ' ) '  (3.23) 

where 

b(J) = ~ 1) . 

It is straightforward to prove that the solution of (3.23) has the following form 

a J 
Ot6~b2+b ( Or~ b )6-~bb2_b 

(--Or-- b )~l~b2+b Ot6~b2_b 

where the function q~(rt; r't') obeys the equation 

I1; ( 02 + 02 + -~ )~,(r t;  r't') = 8(r-- r') ~(t-- t'). 

, (3 .24)  

(3 .25)  
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Using the properties of the Legendre function Q,,(z) listed in appendix A, one can 
verify that the solution of (3.25) is 

1 [  ( r - r ' ) 2 + ( t - t ' ) 2  ] (3.26) 
~ .( rt; r't') = -- ~-~ Qd(~) 1 + 2rr' ' 

where 

d(x) = ~ - ½. (3.27) 

The free propagator (3.24) vanishes as (r  - r ')  2 -~- ( t  - -  t ' )  2 tends to infinity as well as 
at r = 0 (see appendix A). 

To conclude this section we summarize the analogous properties of the left-handed 
fermions in an external gauge field of the form 

1 
J o = 7r3ao(r, t), 

1 
A, = 7T3n,am(r, t ) ,  

= cr  3 . (3.28) 

This field is purely electromagnetic and differs from the unitary gauge configuration 
(2.24) by the Dirac vector potential AiD. In this case the angular momentum operator 
is the standard one, 

~ i  i : - - i e i j k X  j O k q- l oi , 

and the decomposition analogous to (3.2) reads 

q ' ( x , t ) = l  E Ev;'k'~(r,t)Ct'.ks~(O,~), 
r n , k , 8  u 

where ~'~k~ are the eigenfunctions of M2, ~r3, r3 and an with the eigenvalues n - ½ 
(n = 1,2 . . . .  ), k (k = ± ½,... ,  ± ( n -  ½)), 8 (8 = ± 1) and v (v = ± 1), respectively. 
The fermionic action in the external field (3.28) can be rewritten as [cf. (3.3)] 

nk8 

where 

= - - i f  drdt 6"k~( r, t )l)n,sV"k~( r, t ), (3.29) 
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and 

ff),,,n = Ot_ iSao _ i.c2(3 ~ _ iSal ) + n "~T 1 • 

The free propagator G" corresponding to the action (3.29) can be found in the same 
way as G s, 

r 

(3.30) 

4. The zeroth-order approximation 

In this section we describe an approximation for evaluating matrix elements of 
zero-angular-momentum fermionic fields in the presence of a monopole, i.e. the 
matrix elements of the following form: 

. . .  t ¢ . - -  ~ . ?  ¢ W ( r l t l ,  ,rNtN) = < x ( r l t l ) .  . x ( r N t N ) X (  s t 1 ) . . . 2 (  6 t ; v ) )  M°N. 

Using the representations [which are inverse to (3.2), (2.19)] 

(4.1) 

x~ ~ = (8~) - ' /~  rf~,~(d~(~, t)sin ® dO d~ ,  

X~ s) = i(87r)-I /2rfe,~,na~'~])(x,  t)sin O dO d~ ,  (4.2) 

one can relate the matrix elements (4.1) to the matrix elements of the initial fields 
~(s) in the presence of a monopole. 

The functional integral representation (2.9) for the matrix elements (4.1) can be 
rewritten in the following way*: 

W ( r , t  1 . . . . .  r;vt'N) = f dA~ dcpexp[-Sa,~ - S[A, cp; rlt 1 . . . . .  r;vt'N] 

+ gauge-fixing terms + ghost terms], 

where the fields A n, ~ obey the boundary conditions (2.10) and* 

2 

e- =f II d~tS) d'~(s)e-SA'*x(rltl)-..x(rfvt'N)- 

* We  still  omi t  the s t andard  denomina to r  in  the r.h.s, of these equat ions .  
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We search for the minimum of the effective action SA. ~o + S and assume that, to the 
lowest order in e 2 and c -~, the matrix element (4.1) is 

W(rlt , . . . .  ,rfvt' u) = e x p [ -  (SA,~o + ,.~)min] • 

We also assume that the fields A ,~  realising this minimum take the form (2.11), 
where the field al(r, t) obeys the boundary condition (2.12) [we are still proceeding 
in the temporal gauge (3.16)]. Under the above assumptions the fermionic contribu- 
tion to the effective action, S, takes a particularly simple form 

= --2 ~ ~ (2J+ 1)logDet[iDjn(a,)] 
Jv~0 

N 

--21ogDet[iDj=o(a,)] + E [a(rp, t l ,)--o(r~,t~)] 
p = l  

--log exp ' tp )+ ~ ir2~P')y(r~,6) 
p ' = l  

( ,, )} × W (°) rltl , . . . ,rNtN , (4.3) 

where the operators Dj= 0 and Dj. n are defined by (3.6) and (3.7), o and , /are  defined 
by (3.18) and (3.19), and W(°~(rltl . . . . .  r;vt'u) is the "free"  (no interaction with al) 
matrix element (4.1), i,e. the Wick expansion of (4.1) with the pairing (3.21). Eq. 
(4.3) is a direct consequence of (3.2)-(3.4) and (3.17), the factor 2 in the first two 
terms on the r.h.s, of (4.3) comes from the summation over the flavour s, while the 
factor (2J  + 1) in the first term of the r.h.s, of (4.3) comes from the summation over 
the third component of angular momentum. 

Now we make another assumption which will be justified in sect. 6. We assume 
that the first term on the r.h.s, of (4.3) is negligible. Since the a~ dependences of the 
third and fourth terms in (4.3) are explicit, we only have to evaluate the second term. 
This can be done in the same way as in the Schwinger model [ 19], so we only sketch 
the derivation. It is convenient to adopt the following unified notation. By ~, 
(t = 0, 1) we denote the coordinates in the (t, r )  half-plane: 

~o = t, ~l = r,  (4.4a) 

so that 

~2 = ~,~, = r2 -k- t2, d2~= d r d t .  (4.4b) 
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The variation of the second term on the r.h.s, of (4.3) with respect to the variation of 
a 1 is 

8 ( -21ogDe t  iDj=0) = - - 2 f  d2~Sp G(~, ~) 8al(~ ) . (4.5) 

From the explicit expressions (3.17), (3.21) it follows that the contribution of the 
second (non-singular) term on the r.h.s, of (3.21) vanishes. Using the point-splitting 
regularization, 

hm 
e,~0, e ~0 

G ( ~ l e ) = e x  p i a , ( ( ) d~ ,  G ( ( , ( + e ) ,  

which is invariant under the gauge transformation (3.8), we obtain 

Sp a (~ ,  ~) = - -~a,o(r, t) ,  

where a is defined by (3.18). From (4.5) we get 

8(--2 log Det iDj=o) = 2 f drd t  8t o. 8a 1 

- - 2  fos[ (O,z+~2)o]drdt .  (4.6) 
- -  '17" 

The last expression has been obtained by integration by parts with the use of (3.22) 
[this is another way to understand the necessity of the boundary condition (3.22)]. 
Finally, from (4.6) we find 

-- 2 log Det iDj=o= - 1 fo(o  + 0,2)odrdt. (4.7) 
, / r  

In terms of the variable a, the action S~, r can be rewritten as [see (2.13); we still 
take the limit (2.8)] 

47r 2 f drd,[(O 2 + 02)0] 2. r 2 (4.8) 

so the effective action SA, ~o + S, within our approximation, is at most quadratic in o 
[the last term in (4.3) is, in fact, linear in "y and hence in o] and the quadratic part is 
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the sum of (4.7) and (4.8), 

S2(o" ) : SA,cp --  2 log Det iDs= o 

where 

= ½fo(r ,  t)Lr,,o(r, t) drdt ,  (4.9) 

where 
N 

f d r d t o j =  
p = l  

[ o( rp, ,. ) - ot t; ) ] 

N N 

+ ~ i~'2~e)7(rp, te) + ~ i'r~P')7(r ~, t'p) (4.12) 
p = l  p ' = l  

is the linear term in (4.3). To find the explicit expression for the exponential in 
(4.11), it is sufficient to determine the Green function ~(rt; r't') of the operator 
(4.10). This function obeys the following equation 

LrtP(rt; r't') = 6(r - r') 6(t - t ' ) .  (4.13) 

Since the function 

o(r, tlj ) = - f  (rt; r ' t ' ) j (r ' ,  t ' )dr '  dt ' ,  

realizing the minimum of S 2 + f jo ,  should obey the boundary condition (3.22), the 
defining equation (4.13) should be supplemented by the following boundary condi- 
tion: 

0rP(0t; r't') = 0. (4.14) 

As is clear from (3.25) and (A.15), the solution of (4.13), (4.14) is 

P( r t ;  r't') = ½er[~e:/,l,:(rt; r't') -- @(r -- r ' ,  t - -  t ') -- @(r + r ' ,  t -- t ' ) ] ,  (4.15) 

8 9  2 -- ----tO; + 0~) + ' ~ ( ~ r  ÷ O~)r2(O~ + a~) (4.10) Lr, t - -  ~ 

We conclude that, within our approximation, the matrix elements (4.1) are equal to 
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where the function ® is defined by (3.20). Eqs. (4.11)7 (4.12), (4.15) are sufficient to 
evaluate the matrix elements (4.1) within our approximation. Rather than present 
explicit expressions which are somewhat complicated, we prefer to describe the 
functional integral fit for these matrix dements. From (4.11), (4.12) and (4.15) we 
find 

W(rlt, ..... r;vt'N) =f II dX(oS)d~(~oS)dY'd~l 
r ,st , 

×exp(--S~--S,-- Sxo)X(rltl)...~((rfvt'N), (4.16) 

where the fields E, ~/and Xo are defined on a half-plane (r E [0, ~ ) ,  t ~ ( -  oo, + ~ ) )  
and obey the boundary conditions 

0,E(0, t ) :  0rT/(0, t) = (1 --T3)X0(0, t) = 0. 

The effective actions are 

(4 r2e2) S~ ½ f drdt X 0)+0 2 

S,= + ½ f drdtrl(Of + O))n, 

Sxo--f drdt ~oDj=o(a = 0)Xo, 

with Dj= o defined by (3.6), and 

with 

X(s)(r, t ) =  exp[--6 (r ,  t)+i'rzjt_Or6(r, t ') dt ']  X~o s), 

t) : [Z(r ,  t) t ) ] .  

Note that the integrals (4.16) are gaussian and the propagators of the fields E and ~/ 
are 

6"J~e2/4,2(rt; r't'), [ - - ~ ( r - -  r ' ,  t -- t ') -- 6~(r+ r', t -- t ' ) ] ,  

respectively, while the propagator of X0 is given by (3.21). Note also, that the fit 
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(4.16) is analogous to the (euclidean) functional integral counterpart of the VLS-like 
operator solution [20,21] of the ,[5 analogue [32] of the Schwinger model, trans- 
formed to the temporal gauge. In the next section we further exploit this analogy to 
discuss the fermion-number breaking in the presence of monopole. 

5. Density of the condensate of zero-angular-momentum fermions: the 
zeroth-order approximation 

This section is devoted to discussing the fermion number violating matrix element 

( f ( r l ,  tl))MoN = ~f)MON, (5.1) 

of the operator 

f (  r, t)  -~ X~'~( r, t )X~2)( r, t)  + X~21~(r, t )x~2)( r, t)  (5.2) 

in the presence of a monopole ~'. The operator (5.2) carries one unit of each flavour; 
it is invariant under the gauge transformation (3.8). 

Guided by the analogy with the Schwinger model, we begin the evaluation of (5.1) 
with the calculation of the two-point function (cf. [23], [32]) 

( f (  r,, t , ) f t (  r2, t2)) M°N ~ ~ (  r, tl; r2t2), (5.3) 

within the approximation of sect. 4. The general formula (4.11) applied to the 
function (5.3) yields 

~(r , t ,  ; r2t2) -~ exp( [ - S 2 ( o  ) - 2o(r , ,  t ,)  + 2o(r2, tz)]mi, } 

×Sp[Go(r t t , ;  rzt2)G~(r, t , ;  rzt2)] • (5.4) 

From (4.9) and (4.13) we find that the exponential in (5.4) is minimized by the 
following function 

where 

Oc(r, t)  = o - ( r ,  tit1, tl) + o +(r ,  tlrz, t z ) ,  (5.5) 

o +(r, t i t  k, t~) = w-2~(rt; rktk) , k = 1,2. (5.6) 

The function (5.5) corresponds to the following temporal gauge saddle-point field a~, 

a[ = a ] ' -  + a] '+ ,  (5.7) 

* Note tha t  (~C(I)~It(Z))MON ---- ( 4 ~ r r 2 )  - J(f)MON + contributions from higher angular momenta. That 
is why we call (5.1) the "density of the condensate of zero-angular-momentum fermions". 
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where 

art , ~(r,  ,Irk, 'k) = f'_ + OT)o=(r, , 'Irk, tk) d , '  (5.8) 

[in fact, (5.8) is the inverse of (3.18)]. From (5.4)-(5.6) within our approximation we 
obtain 

~( r l t  I ; r2t 2 ) = e x p [ - 4 @ ( r t t  , ; rzt2) + 2@( rlt , ; r l t  1 ) -4- 2@(r2t2; r2t2) ] 

XSp[Go(rl t l ;  r2t2)GT(rltl; rat2) ] . (5.9) 

Note that the function P is finite at coinciding arguments [see (4.15) and (A.14)] so 
the whole expression (5.9) is finite. Note also that (5.9) is independent of the infrared 
mass scale g2. We are interested in the asymptotic behaviour of °5 as I tl - t2[--' ~ .  
From (3.21), (4.15), (A.16) and (A.14) we find in this limit 

~(r l t ' ;  r2tz)-- !2 e x p ~ - 2 1 r + [ d (  4 @ 2 ) +  1] + 2~r+(1)}(1 + o(1)) 
16~r rlr 2 L 

where the function d(~) is defined by (3.27). Thus, 

1 ~ ( 1  + O ( e 2 ) ) .  (5.10) lim ~ ( r l t l ;  r 2 t 2 )  - -  
[ t i - t 2 t ~  1 6 q r 2 r l r 2  

To evaluate (5.1) we use the cluster property (cf. [23, 32]), 

• / ¢ t r  t ~\MON/ / 't / ' / ,  t ~\MON (5.11) lim ~(rl t l ;  r 2 t 2 ) =  \ J ~  1 1,1/ k J  \ 2 21/  , 
It, - tzl ~ a¢ 

which is valid since the monopole state is the lowest energy state with non-zero 
magnetic charge and the operator f carries zero magnetic charge [note also the 
normalization condition (2.4)]. From (5.10) and (5.11) we find 

<f(r  1, t l ) )  MON- e i0 47rr, (1 + O(e2)) ,  (5.12) 

where 0 is an unknown real parameter. Thus, the fermion number is indeed broken 
and density of the condensate of zero-angular-momentum fermions is e 2 and c 
independent. 

We wish to discuss the saddle-point field (5.7) in some detail. Before doing this it 
is convenient to perform the gauge transformation of the type of eq. (3.8) with the 
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gauge function 
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f l (r , t )=- - -Yc(r , t ) -~--  f t  i9rOc(r,t')dt'. 
o o  

(5.13) 

After this transformation the saddle-point field a c becomes 

a~,(r, t)=a~-(r,  t l r , , t l ) + a + ( r ,  tlr2,t2), , = 0 , 1 ,  (5.14) 

where 

a~ (r, t[rk, tk) = --i~ro~-(r, tlrk, tk), 

a~(r ,  tlr k, tk) = ikto ~(r, tlrk, tk). (5.15) 

In a perfect analogy to the Schwinger model [23, 32] the decomposition (5.14) implies 
that it is the field a~-(r, tire, tl) that is responsible for the non-zero value of (5.1), 
while the field a, + (r, tlr2t2) is responsible for ( f t ( r  2, t2))~°N v ~ 0. In other words, 
the neighbourhood of the configuration a~- gives the largest contribution to the 
functional integral for ( f (r l ,  tl)) M°N. Using either (2.14) or (2.15) as well as the 
explicit expression for o - ,  eq. (5.6), and asymptotics of ~ ,  eq. (A.16), one can 
calculate the winding number of .the saddle-point field corresponding to the func- 
tions a~-. One finds 

q(a~- ) ----- -- 1, 

in agreement with sect. 2. 
There is another argument of sect. 2 which is also justified within our approxima- 

tion. Using the methods developed in this context for the Schwinger model [24, 25], 
one can obtain (5.12) by direct evaluation of the functional integral (under the 
assumptions of sect. 4). One finds that the largest contribution comes indeed from 
the neighbourhood of the saddle-point field characterized by the functions a~-, and 
the zero fermion mode giving rise to non-zero value of (5.1) (cf. [24, 25]) coincides 
with (2.23) with o -  substituted for p. Since this direct evaluation is quite similar to 
the Schwinger model one and leads to no new results, we do not reproduce it here. 

6. Density of the condensate of zero-angular.momentum fermions: an 
estimate of corrections 

In this section we argue that the corrections to (5.12) are O(e 2) and /o r  O(c- ' ) .  
The sources of these corrections are: (i) the first term on the r.h.s, of (4.3), (ii) the 
contribution of the bosonic determinant to the effective action. In both cases we 
have to estimate the functional determinants in an external field of the form (2.11) 
with a, = a~ (r, t lr ,, t 1) (the gauge transformation (5.13) is assumed). 
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i°~TD~TiD,,,= ~ + +  + .. 

Fig. 1. 
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W e  begin with the first of these corrections, 

l o g D e t s ~ o i D ( a -  ) = - 2  ~] ( 2 J +  1 ) l o g D e t [ i D s , ~ ( a - ) ] .  
J~O,8 

(6.1) 

Using the results of sect. 3 we depict the summand of (6.1) in fig. 1 where the wavy 
line, the solid line and the vertex correspond to a~-(~), GJ(~, ~') and - i  f da~ , ,  
respectively [we use the compact notations of sect. 4, see eqs. (4.4)]. Here 

(, , )  
~'°= 0 1 ' 1 0 " 

From (3.24), (A. 15), (A. 16) it follows that the function GJ(~, ~') ( J  v ~ 0) vanishes at 
r = 0  as well as when ( r 2 + t 2 )  --, oo, so the series of fig. 1 is invariant under the 
gauge transformation (3.8) with the gauge function fl(~) which need not obey the 
boundary condition (3.10). Indeed, one can perform integration by parts in 

fd2~GJ(~ ', ~)~',GJ(~, ~ ) ,/3( ) 

and, in virtue of (3.23) and (6.2), one finds that this integral is equal to zero. We use 
this gauge freedom to perform the gauge transformation with the gauge function 

f l ( r ,  t) =+  arctan t -  t 1 (6.3) 
- r +  r 1 " 

After this gauge transformation, (6.1) becomes the sum of the graphs shown in fig. 1 
but with the wavy line corresponding to 

where 

and 

gt,( ~ ) ~ gt,( r, t lr l ,  t , ) ,  

6 o = - Off, ?11 = Or6, (6.4a) 

6 ( r ,  t lr , ,  t , )  = -~r[~e2/4~2(r t ;  r , t , )  - ~,o(rt; r l t , ) ] ,  (6.4b) 

1 
6J~o(rt; rl t l)  = lim ~ , ( r t ;  rl t l)  =-4-~ log 

K ~ 0  

( r - - r l ) 2 q - ( t - - t l )  2 

( r +  rl) 2 + ( t -  tl) 2 " 
(6.5) 
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Note that the boundary condition (3.15) [or, equivalently, (2.22)] is not invariant 
under the gauge transformation (6.3), so the arguments of the present section are not 
applicable to the zero-angular-momentum contribution [i.e. to the second term on 
the r.h.s, of (4.3)]. 

From (6.4) it follows that the field ~, is formally O(e2), namely 

e 2 
4,-- 4¢r a}') + O(e4),  (6.6) 

where 

a(0 ') = -- aft (0 , a~ I) = 0t O(1) , (6.7) 

o(t)(r, t lr  , , t ,) -- 0°~(rt;0x rlt ')  ~=0 . (6.8) 

Thus, (6.1) is formally O(e4). TO make this argument precise, one has to show that 
each term in the expansion 

() (e )3 e 2 2VO ) +  V ( 2 ) +  . . .  
l °gDets~oiD(  gt) = ~ (6.9) 

is finite. In the present paper we study only the O(e 4) contribution to (6.1), i.e. the 
first term on the r.h.s, of (6.9). As follows from (6.6), this contribution comes from 
the sum over J of the graphs with two external legs (see fig. 1). Its explicit expression 
is 

2 
VO)=-4f d2~d2~' ~ H,,,(~,~')a}')(~)a},l)(~'), (6.10) 

L, t '= l  

where 

H,,,(,~, ~') = ~ ( 2 J + I ) S p [ G J ( ~ , ~ ) ~ ,  , '  G g(~ , ~5)~',]' . (6.11) 
J = l  

Naively, we have to show that (6.10) is finite. However, since (6.9) is the fermionic 
determinant in an external field of the form (2.11) (with a (t) substituted for a), V (1) 
is expected to be infinite because of standard ultraviolet divergences. Thus, we have 
first to eliminate these divergences and then show that the renormalized V (~) is 
finite. 

To realize this program, we decompose the function I I ,  in the following way, 

H, ,  = II,~ g + I ' I , -  ±r'ro/2)2..,,, , (6.12) 
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where 

= ( 2 J +  
J = l  

l ~ J +  I ' G J +  1 , , --~ (~,~)t , ,  (~ ,  ~)t,] ) (6.13) 

oo 

lrI, '(~,~') = Z 2nSp[G"(~,  ' G" ' , )~,, (~ ,  ~)~,] (6.14) 
n ~ l  

I~I~,/2)(~, ~') = Sp[Gl(~, ~')t, ,8'(~',  ~)t,],  (6.15) 

and the Green functions G" are given by (3.30). Note that the three terms on the 
r.h.s, of (6.12) are separately invariant under the gauge transformation (6.3). Accord- 
ing to the decomposition (6.12), the integral (6.10) is decomposed as 

V(I)  = V(I)reg A m ~7-(1) __ 1 ~7r(1)(1/2), (6.16) 

where 

V (I)reg : -4f d 2 ~ d 2 ~  ' Z I - [ reg(~  ~ ']aO)(~')aqO(~''] 
L,L r 

(6.17) 

etc. The second term on the r.h.s, of (6.16) is just the O(a (t)2) contribution to the 
fermionic determinant in an external field (3.28) with a o) substituted for a. Thus, the 
standard ultraviolet divergences are contained in this term and its renormalized 
value is 

where 

= -- 1---~jFoO)(x,-- t)Fo~])(x ', t ' ) f I ( x - - x ' ,  t - - t ' ) d 3 x d 3 x ' d t d t  ' ,  (6.18) 
3¢r 2 

n i 
Fo(] ~ = ni (Ota~' ) -  0ra(0 ')) = - 7 ~ o ( r t ;  r , t , )  (6.19) 

is the electric field for the configuration (3.28) (the magnetic field vanishes) and the 
Fourier transform of I'I is 

I] ( p, P0) = log( p2 q_ p2 )//X2, (6.20) 

#o being the normalization point. Using (6.18)-(6.20) one can prove that I p°) is 
finite; this is done in appendix B. 
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Now we estimate the first term on the r.h.s, of (6.16). First, we have to show that 
(6.13) is integrable near ~ = ~' [the natural measure is d2~, see (6.17)]. From (3.24), 
(3.30) and (A.14) it follows that GJ(~, (') and ds(( ,  ~,) behave near ( = ( '  as 

1 S'+ (~-- ~'), 
G'(~, ~') = 2~r ( ~ _  ~,)2 " ~  O [ 1 o g ( ~  - -  ~ , ) 2 ]  , 

Os(~, ~,) = GJ(~, ~,) + O [log(~ - ~,)2]. (6.21) 

From (6.21) we find that the summand in (6.13) is integrable near ~ = ~'. From (3.26) 
and (A.5) it follows that the series (6.13) is convergent at fixed ~ ~ ~'. The proof of 
integrability of the whole II~g near ~ = ~' is more involved; it is outlined in appendix 

reg t - -  C. To proceed further, we need to specify the behaviour of 1I,, (~, ~ ) = IIr~g(rt; r't') 
at r = 0 and at ( ~ -  ~,)2 __, oc. From (3.24), (3.30) and (A.15) it follows that 

1-I[~g(rt; r't') = O(r2) ,  (6.22) 

at small r, while from (A.16) we get 

1-I reg(¢, ,~ ,  ~t) = O [ 1 / ( ~ - -  ~')  2] (6.23) 

at large (~ - ~t)2. From (6.7), (6.8) and (A.15) we find that a}l)(r) = O(log r) at small 
r, and, in view of (6.22), the integral (6.17) is convergent near r = 0 and /o r  r '  = 0. 
Eq. (A.16) leads to the following estimate of a[ 0 in the infrared region, 

a~l)(~¢) = 0(,~-2),  ,~2 ___, ~ .  

Using (6.23), it is straightforward to prove that the integral (6.17) is convergent at 
large ~2 and /o r  ~,2. Since at finite ~ and ~' the integrand of (6.17) is an integrable 
function, the above statements complete the proof of finiteness of V (1)reg. 

We are left with the third term on the r.h.s, of (6.16). Naively, it is logarithmically 
divergent because of the ( ~ -  ~,)-2 singularity of 1"I o/2) However, the structure of i t '  " 

this singularity coincides with that of the Schwinger model [19]. This is clear from 
the identity ~l(~, ~,)~,, = ~l(~, ~,)z3r3~, since the singular part of Glr 3 is just the 
two-dimensional massless fermionic propagator (cf. (6.21) and [30]), if the two- 
dimensional ,/-matrices are equal to 3', = z3~,-----(r3,-zl). It is well known that the 
polarization operator of the Schwinger model is integrable, so ~I[~,/2) is also 
integrable. This can be demonstrated explicitly with the use of the point-splitting 
regularization technique analogous to that used in sect. 4. Repeating the arguments 
which have led to the finiteness of V (l)reg, we  find that ~r(1)(l/2) is finite. Thus, the 
O(e 4) term in (6.1) is finite, which is the desired result. 
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Another source of corrections to (5.12) is the bosonic determinant in the external 
field (2.11) with a (0 substituted for a. Far from the monopole center this configura- 
tion is purely electromagnetic (see the discussion at the end of sect. 2), so the 
contributions of the Higgs field and the charged vector fields to the effective action 

O(mvector), respectively, while the electromagnetic field gives no are O(m H~ggs) and - 2 
contribution because of linearity. Near the monopole center the purely electromag- 
netic nature of the saddle-point field is lost, but the relevant spatial volume is O(r3) ,  
so the corrections from the bosonic fields vanish in the limit (2.8). 

Thus, the above arguments show that the corrections to the zeroth-order ap- 
proximation are O(e 2) or O(c 1), as has been claimed in sect. 1. We conclude that 
this approximation is reasonable at least for the evaluation of Green functions of 
fermions with zero total angular momentum, including fermion-number breaking 
Green functions. 

7. Discussion 

We would like to make some comments concerning different aspects of the above 
effect. 

7.1. RELATION TO THE 0-VACUUM STRUCTURE 

Since the vacuum structure of the gauge theories is most apparent in the temporal 
gauge (3.16a) [28], it is convenient to proceed in this gauge. The temporal gauge 
saddle-point field a~'- giving rise to a non-zero value of (5.1) is defined by (5.6), 
(5.8). From (4.15) we find that a~'- can be represented as 

a]' ( r ,  t; rl, t ,)  = rrO( t - tl ) 8 (  r - -  r, ) 

-- Or2 f t_ 6)V e2/4~z(r t ' ;  r l t  1 ) d r '  --  Ot6~ e2/4~2(rt; rl t  I ) .  (7.1) 

From (A.16) it follows 
interpolates between the 

where 

that the last term vanishes as t--,~-oo so the field at1 ' 
following two configurations: 

a~ ' - ( r ,  t = - ~ l r l )  = 0 ,  (7.2a) 

atl ' - ( r ,  t = + oo [r,) : ~r~2(rlrl), (7.2b) 

n ( r l r l )  = rrO(r - r, ) -- Orf ~_ °°@Ue2/4~r2(r, It; O, r, ) d t ' .  
OO 

The field (7.2b) is a pure gauge [see (3.8)]; from (A.15), (A.16) we find the following 
asymptotics of the gauge function ~: 

f~(0[rt) = 0 ,  •(oo [ r , )=~r .  (7.3) 
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Now we recall the fact that the gauge transformation (3.8) in terms of the initial 
fields A,, 99, 'It is just the usual gauge transformation with the gauge function (3.9). 
Thus, the saddle-point configuration (i.e. the configuration (2.11) with a t, - sub- 
stituted for a) interpolates between the fields 

A i (  t = - oo ) = A~ l, e p ( -  oo ) = q9 d ,  

A , (  t = + oo ) = gaA~lg~ ' + gaO,ga 1, 

where 

~0 ( t = "3 I- O0 ) = g f ~ o c l g ~  1 = fpcl, 

ga = exp(i~'an~a) • (7.4) 

From (7.3) we conclude that the gauge function (7.4) has just the same form as that 
considered in ref. [28] and its topological number is equal to - 1 .  This could be 
anticipated since, as has been shown in sect. 5, the saddle-point field has the winding 
number - 1  and in the temporal gauge the winding number of any configuration 
obeying { A i ( t  --- + o¢) = gauge transform of A i ( t  = - oo)}, coincides with the topo- 
logical number of the gauge transformation [9]. The same arguments as those of refs. 
[28,33] show that the vector U[ga]lM, O) (U[ga] being the operator of the gauge 
transformation with the gauge function (7.4)), which is the gauge transform of the 
perturbation theory monopole state [M,0), carries one unit of each flavour. This 
could also be anticipated, since the operator U[ga] carries one unit of each flavour, 
as follows from the considerations of refs. [28, 33]. The gauge-invariant monopole 
state is a linear superposition of the form* 

q-oo 

IM, O)=  ~ e ' " ° ( U [ g a ] ) " l M ,  O); (7.5) 
?/~ --00 

this is another way to understand the fermion-number breaking in the presence of a 
monopole. In fact, the heuristic arguments of sect. 2 are simplified in the temporal 
gauge; indeed, the unboundedness from below (by any positive number) of the 
action (2.13) can be established by the Derrick-like [34] time rescaling (for details see 
[35]). 

7.2. THE UNITARY GAUGE 

The particle content of the theory with the action (2.1) is most apparent in the 
unitary gauge. In this gauge it makes sense to consider the matrix element 

* In the theories without massless fermions, the operator U[ga] carries no superselection charge. 
Nevertheless, the representation (7.5) is valid and leads to Witten's value of the charge of quan tum 
dyon [8, 10]. 
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(£a,SXI/(+l)axtr(_2~)MON (a ,  • ~--- 1,2 are Lorentz indices, the fields 't' 4) are defined in sect. 
2). Since the operator ,t,~),I,~) carries one unit of each flavour, the non-zero 
contributions to this matrix element come from the unitary gauge configurations 
with the winding number equal to - 1 ,  in particular, from the field (2.24), (2.17) [or 
(2.24), (5.15)]. The latter contribution is proportional to the zero fermion modes in 
the external field (2.24), (2.17), namely, it is proportional to 

~pu q,u (7.6) eaB +a - B '  

where the zero mode q,u is just the zero mode (2.19), (2.23) transformed to the 
unitary gauge. Performing this gauge transformation (the corresponding gauge 
function is described, e.g., in ref. [29]) far from the monopole center, we obtain 

,t,~+=B(r,t)( sin½0e ~) 
- c o s  ½ 0  ' 

q'~-=B(r't)( c°s½0 )sin½0e i~ ' (7.7) 

where O, • are polar angles and 

B(r , t ) - - -  - -  N e p{r,t) 
8•- r 

Note that ,t '~ _ is the CP conjugate of q'~_. From (7.6), (7.7) we conclude that 
(e~aq'~)fl'{_2~)MON ~ 0, i.e. the Adler-Bell-Jackiw anomaly gives rise to flavour-non- 
conserving and fermion-number-non-conserving transitions with charge conserva- 
tion. 

7.3. BARYON-NUMBER BREAKING IN THE PRESENCE OF THE FUNDAMENTAL 
SU(5) MONOPOLE 

The fundamental monopole [3, 4] of the SU(5) grand unified theory [5] coincides 
asymptotically with the 't Hooft-Polyakov one for the SU(2) group imbedded into 
SU(5) in the following way, 

T = ½ diag(0, 0, ¢, 0). (7.8) 

This monopole is fundamental in the sense that it is characterized by minimal 
magnetic charge. With respect to SU(2) specified by (7.8), the first generation 
fermions form the following left-handed doublets (in the unitary gauge), 

(__~2 ~1 u,), (U)L e+)L' ( e -  L -- a 3 ) t '  (7.9) 

others being singlets. In (7.9) the superscripts 1,2, 3 are colour indices. 
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If U and d quarks and electrons were massless, the above arguments would be 
directly applicable to this case, so the matrix element 

(U 1 u2d3e - )MON (7.10) 

would be non-zero, and coupling-constant and unification scale independent. This 
conclusion remains unchanged if other (massive) generations are taken into account 
[17]. The matrix element (7.10) corresponds to the process 

p + monopole ~ e + +monopole  + everything, (7.11) 

and the arguments of the present paper imply that the cross section of this process is 
independent of the coupling constant and the unification scale*, i.e. it is roughly 
O(1 GeV-2).  Unfortunately, the above discussion is not quite decisive. First, 
electrons and quarks are massive. Naively, this seems to be inessential at distances 
small compared to the Compton wavelengths of electron and light quarks. However, 
in the massive case the higher order corrections could destroy the boundary 
conditions (2.22), (3.15) thus invalidating the above analysis. For example, the 
boundary conditions for fermions with extra magnetic moment [30] differ from those 
given by (2.22). Second, in the above considerations we completely ignored gluon 
self-interaction. So, further investigations are required to establish the existence of 
processes like (7.11) and to estimate the cross sections of these processes. 

The author is deeply indebted to V.A. Matveev and A.N. Tavkhelidze for 
stimulating interest and discussions, to K.G. Chetyrkin, N.V. Krasnikov, M.S. 
Serebryakov, F.V. Tkachov and V.F. Tokarev for valuable comments and to E.B. 
Bogomolny, G.V. Domogatsky, M.Yu. Khlopov, V.A. Kuzmin, V.G. Lapchinsky, 
A.D. Linde, L.B. Okun, A.M. Polyakov, M.E. Shaposhnikov and I.M. Zheleznykh 
for discussions of the results. 

Appendix A 

In this appendix we summarize some relevant properties of the special functions. 

A.I. LEGENDRE FUNCTION 

The Legendre function Q,,(x) obeys the following equation [36, 37, 38]: 

( l -x2)  dzQm 2 x ~ + m ( m +  l)Qm=O 
dx 2 

* For the discussion of some possible experimental consequences of this effect see [18]. 

(A.1) 
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Its explicit expression for m = 0 is 

x - 1  
Q0(x) = - ½ log . 

x + l  

It has the following asymptotic behaviour as x ~ 1 [38]: 

x - 1  Qm(x) = --½log 2 

From the representation [36-38] 

341 

(A.2) 

,) 
- - ; m + 3 ;  x-- 2 , 

where F(a, fl; "r; x) is the hypergeometric function, it follows that 

Qm(x ) = 2_m_lcrl/2 F(m + 1) r ( m  + 3) x - ' - l ( 1  + O ( x - 2 ) )  (A.4) 

at large x. Qm can be also expressed as [36, 38] 

r ( m  + 1) _ _ 1 ) , / 2 ]  m +  1/2 
Q m ( X )  ~--- ( l q y ) l / 2 ( X 2  --  1)--1/4 r(m +3) 

XF( '  '" x--(x2-1)l/2 ) . . . . . .  

~, 3, m + ½, 2( x2 _ 1) I/2 . 

Using the Stirling formula, 

r ( m )  = e-'~+ml°gmm-l/2(Z~r)l/2(1 + O ( r n - ' ) ) ,  

as well as the definition of the hypergeometric series, we find at large m and x fixed 

Q . , ( x )  = ( ½ ~ ) ' / 2 m - l / 2 ( x 2 -  1 ) - - l / 4 ( X  - -  (X 2-  1)'/2) ''+'/2 (A.5) 

Now we derive the asymptotic expansion of Qm(x) as m --, ~ which is uniformly 
valid at 1 < x < ~ .  We use the method described by Thorne [39] and consider the 
function y('r) defined by 

y(~.)= ( sinh-------~ ) l/2Qm(COsh~.). 

Qm(x)=2-,,-l~r,/2F(rn+l) -m-i / m l + m  
i,(m + 3 ) x F~I  +-~-, 2 

- - - - ~ ( m + l ) + ~ ( 1 ) + O [ ( x - - 1 ) l o g ( x - - 1 ) ] .  (A.3) 
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From (A.1) we obtain the following equation for y(z): 

d2y + 1 dy  
d r  2 z dr  AZY + w ( z ) y  = 0, (A.6) 

where 

A = m + ½ ,  w(r)  = ¼(sinh-2~'- r -2) .  (A.7) 

We search for the solution of (A.6) in the form of asymptotic series 

y ( r ) _ K o ( A r )  ~ T.(r) K , (A, )  ~ R.(r__~) (A.8) 
n=0 A2n A n=0 A2n ' 

where K m are modified Bessel functions. Inserting (A.8) into (A.6), we obtain the 
following recurrent relations: 

R.(~)= -~  r ; ( , ) +  +w(~' ,/.¢ \ 

r.+,(~-)=-~ R.(r) ,, + ~ + w ( ~ - ' ) R . ( , ' )  &". (A.9) 

By comparing the behaviours of y( r )  and Ko(Ar ) at small r, namely (see (A.3) and 
[36,371) 

y ( r ) =  - log  r + O(1), 

Ko(Ar) = - l o g r  + O(1), 

we find that 

T O = 1. (A.10) 

Eqs. (A.9), (A.10) are sufficient to determine the unknown functions T. and R,. 
Note that at small r 

R.=O(r), n~0, 

Tn=O('r2),  n > 0 .  

Thus, the desired expansion is 

" 'r ,,/2 ~ T,($) l K°I(m+ )'Jo:0 
_ K l [ ( m + ½ ) r  ] ~ R , ( r )  l (A.11) 

m-t -1 . : 0  ( m + ½ ) 2 " J  " 
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Note that the asymptotic expansion (A.11) is a particular case of Thorne's [39] and is 
uniformly valid in the region 0 < ¢ <  ~ .  Performing the change of variables, 
"r = z / ( m  + ½), we find another asymptotic expansion, 

Qm c o s h m + ½  = K ° ( z )  1-t ( m + l ) Z n = o  ( m + l ) 2 n J  

(m+~)2.=0 (m+~) 2"' 
(A.12) 

where 

tq, = T n = O(1), z ~ O. (A.13) 

A.2. THE FUNCTION @~(rt; r't') 

@%(rt; r ' t ' )  is defined by (3.26), (3.27). From (A.1) and (A.3) it follows that this 
function obeys (3.25). From (A.3) we find 

6 ~ ( r t ;  r ' t ' )  = ~ log 
(r  -- r ' )  2 + (t -- t ') 2 

4r 2 
+± 2~r {~[d(x+ 1)] -~(1)} 

+ O { [ ( r - - r ' ) 2 + ( t - - t ' ) Z ] l o g [ ( r - - r ' ) 2 +  ( t - -  t')2] } (A.14) 

at small ( r  - r ' )  2 + ( t  - t') 2. Eq. (A.4) yields 

@% = a(K)  rr' ] 1/d(t¢) 
r '2 + ( t  - r )  2 1 

as r--, O, (A.15) 

as well as 

r2 + t2--. og , 

~(~)- 1 r ( 1  + d ( x ) )  

2f~- F ( { + d ( x ) ) "  
(A.16) 

A.3. THE FUNCTION El(z ) 

E I ( z  ) is defined by the following relation [36]: 

= [ ~  e - z '  
El(z) ~ z' dz'. (A.17) 
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This function is analytical in the complex z plane cut along the real negative 
semiaxis. The function Ej(z)+ log z is analytical [36] in the z plane. The function 
El(z ) has the following behaviour near z = 0  [36]: 

El(z ) = --log z + +(1) + O(z ) .  (A.18) 

From the analyticity of El(z ) + log z we find 

lim ImEt(x+iS)= lim ImEl(-x+iS)+~r=O (A.19) 
8 4  + 0  8 ~  - - 0  

for real x > 0. The asymptotic expansion for E 1 -Jr" log Z at large I zl reads [36] 

El(z)+logz=e-~--~[1--1+O( 1 )] 7 ~-7 + log z. (A.20) 

Appendix B 

In this appendix we show that the integral (6.18) is finite. It is convenient to 
perform the Fourier transformation of (6.19); from (6.5) we find 

Fo~il)(P, po;rl)  = i~r i-~1 I(IPl, P0; rl) 

(without loss of generality we have chosen t t = 0), where 

or [36] 

I(IPl ,  po; r l )  ----f0 °¢ dre(r-- rl) sinlPlrr e-tp°ll'-gl 

f0o~ sin Ip l r -- dr  e - I p ° l ( r + r l )  , 
r 

I ( Ip l ,  po; rl) : - e-L°°l'{ ~r + Im E, [ - r l ( l p o l - i l p l ]  } 

--ere°It Im E1 [ r l ( lPol  + i I P l ) ]  • 

The function E l is defined by (A.17). In terms of the function I, the integral (6.18) 
reads 

= 4 fs(Ipl, po; r,)Z(Ipl,-P0, r,) 

× log[(Iv I ~ + po ~)/.~>] d I~ ld Po/Iv I ~- (B. 1) 



V.A. Rubakov / Adler-Bell-Jackiw anomaly 345 

Since the integrand is finite at Iplv~0, p2o+p2:/:O, there are three potentially 
dangerous regions, (i) p2 + p2 __+ 0, (ii) [p[ --+ 0, (iii) p2 + p2 __+ ~ .  From (A. 18) we find 

I([p[,  P0 ;rl ) = 2p0 r, arctan [P/Po [ + O( p2 + p2 ), 

so the integral (B.1) is convergent in region (i). As follows from (A.19), the integral 
(B. 1) is also convergent in region (ii). Finally, from (A.20) we get in region (iii) 

1 
1 -  (p2 +p-.,/z~) (sin(lp] r' - arctanlP/Pol) - sin(Iplr' + arctanlP/Po[))' 

so the integral (B.1) converges in this region. 

Appendix C 

In this appendix we outline the proof of integrability of the function __,,,1] -reg(~:,.~, ~') 
t Dt defined by (6.13). This function is a weighted sum over u, v, u ,  = 1,2 of 

J = l  

--  ½(G J ~ d J)  --  ½(GJ - - ,  (~J+ 1)] , 

For the sake of definiteness we consider only Vl'reg " other cases are treated in the ~ 1 1 ; 1 1 ,  

same way. Instead of proving integrability of nreg directly, we solve an equivalent ~ l l ;  11 

problem of proving the finiteness of its momenta, i.e. the finiteness of the integrals 
of the form 

f - -  ~,), ,  d2~ , (C.1) 

over some small but finite region [say (~ - ~,)2 < a2]. From (3.24) it follows that the 
integrand in (C.1) has no angular singularities, so from (6.13) we conclude that it is 
sufficient to prove that the series 

( 2 J +  1)~%k(alJ) ,  k = 0 , 1  . . . .  (C.2) 
J = l  

is convergent. Here 

c.'~,,(a I J ) =fo~(TlJ)T k+' d~', 

0 2 
(c.3) 
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and we have used the explicit expressions for G J, GJ and ~ ,  eqs. (3.24), (3.30) and 
(3.26) and performed the change of variables 

(r -- r')2 + (t -- t '): 
cosh+ 1 + 

2rr' 

We consider the case k = 0 (other cases are treated in the same way) and rewrite 
(C.3) as 

G~%o(a IJ ) --tim [ ~ ( J I 6  ) -½@(JI 8) - ½ ~ ( J +  118)], (C.4) 

where 
,a[ ~ ]2 

~ ( J l S ) = J ~  [-ff-~z Q ~ ( c o s h z ) ]  "rd'r, (c.s) 

. a r  0 ]2 
@(JIB) =J8 [ -~T QJ(c°shz)] , d , .  (C.6) 

We decompose the integral (C.5) in the following way: 

f a f ~ (~  +1/2J)...[_ fa(ldi~,/~ +,~z J)+ f~ 
--aS "t6( l~ i f J  +l/2J) aa(~[l+l/J +l/2S) 

The first integral is evaluated using (A.3); it is equal to -log(v/1 + 1/J + 1 / 2 J )  + 
O(6). From (A.5) one finds that the third integral yields a summable (with the 
weight (2J + 1)) contribution to ~ 0 .  To estimate the second integral, we perform 
the change of variables, 

" r : z / ( ~ ( ( J  + l) + l ). 

Applying the analogous procedure to the second and third terms on the r.h.s, of 
(C.4), we get 

~ o ( a i J )  : ½  log 
( j + ½ ) ( j + 3 )  

( Jf)-'~ + I) + ½) 2 

+ lim f8 ~ z ~-o z d z  Q ~  cosh ~ J ~ l ) + l  

+ + l)}, (c.7) 
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up to summable (with the weight 2 J  + 1) terms. The first term on the r.h.s, of (C.7) 
is easily estimated to be O(1/J3) .  From (A.12) we find that the second term is also 
O ( l / j 3 ) ,  so the series (C.2) is convergent for k = 0, which is the desired result. 
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