
A New Compressed Suffix Tree Supporting Fast
Search and Its Construction Algorithm

Using Optimal Working Space�

Dong Kyue Kim1 and Heejin Park2,��

1 School of Electrical and Computer Engineering
Pusan National University, Busan 609-735, South Korea

2 College of Information and Communications
Hanyang University, Seoul 133-791, South Korea

hjpark@hanyang.ac.kr

Abstract. The compressed suffix array and the compressed suffix tree
for a given string S are full-text index data structures occupying
O(n log |Σ|) bits where n is the length of S and Σ is the alphabet from
which symbols of S are drawn. When they were first introduced, they
were constructed from suffix arrays and suffix trees, which implies they
were not constructed in optimal O(n log |Σ|)-bit working space. Recently,
several methods were developed for constructing compressed suffix arrays
and compressed suffix trees in optimal working space. By these methods,
one can construct compressed suffix trees supporting the pattern search
in O(m′|Σ|) time where m′ = m logε n, m is the length of a pattern, and
logε n is the time to find the ith smallest suffix of S from the compressed
suffix array for any fixed 0 < ε ≤ 1. However, compressed suffix trees
supporting the pattern search in O(m′ log |Σ|) time are not constructed
by these methods.
In this paper, we present a new compressed suffix tree supporting
O(m′ log |Σ|)-time pattern search and its construction algorithm using
optimal working space. To obtain this result, we developed a new suc-
cinct representation of the suffix trees, which is different from the classic
succinct representation of parentheses encoding of the suffix trees. Our
succinct representation technique can be generally applicable to succinct
representation of other search trees.

1 Introduction

A full-text index data structure for a text incorporates the indices for all the
suffixes of the text. Two fundamental full-text index data structures are suffix
trees [26, 31] and suffix arrays [10, 25], and many efficient algorithms have been
developed for constructing suffix trees [6, 26, 31] and suffix arrays [18, 19, 22, 23].
They are used in numerous applications [14], which are exact string matching,
computing matching statistics, finding maximal repeats, finding longest common
substrings, and so on.
� This work was supported by Korea Research Foundation grant KRF-2003-03-

D00343.
�� Contact Author

A. Apostolico, M. Crochemore, and K. Park (Eds.): CPM 2005, LNCS 3537, pp. 33–44, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

34 Dong Kyue Kim and Heejin Park

There have been efforts to develop a full-text index data structure that has
the capabilities of both suffix trees and suffix arrays without requiring much
space. The enhanced suffix array due to Abouelhoda et al. [1, 2] is such an index
data structure. It consists of a pos array (suffix array), an lcp array, and a child
table. The child table stores the parent-child relationship between nodes in a
given suffix tree. Thus, on the enhanced suffix array, every algorithm developed
either on suffix trees or suffix arrays can be run with a small and systematic
modification. The only drawback of the enhanced suffix array is that the child
table supports O(m|Σ|)-time pattern search where m is the length of a pattern
and Σ is an alphabet. Recently, Kim et al. [20, 21] developed a new child table
supporting O(m log |Σ|)-time pattern search. They called the enhanced suffix
array with the new child table linearized suffix tree.

Although many useful full-text index data structures are developed, their
space consumption (O(n log n) bits for a string of length n) motivates researchers
to develop more space efficient one. Compressed suffix arrays and compressed suf-
fix trees are space efficient full-text index data structures that consume
O(n log |Σ|) bits. Munro et al. [28] developed a succinct representation of a
suffix tree topology under the name of space efficient suffix trees. Grossi and
Vitter [12, 13] developed compressed suffix arrays, which takes O(logε n) time to
find the ith lexicographically smallest suffix in the compressed suffix array for
any fixed 0 < ε ≤ 1. Ferragina and Manzini [7, 8] suggested opportunistic data
structures under the name of FM-index. Sadakane [30] modified the compressed
suffix array so that it acts as a self-indexing data structure. The compressed
suffix array and the FM-index can be further compressed by using high-order
empirical entropy of the text [9, 11].

When compressed suffix arrays and compressed suffix trees were first intro-
duced, they were constructed from suffix arrays and suffix trees, which implies
they were not constructed in optimal O(n log |Σ|)-bit working space. For con-
structing compressed suffix arrays in optimal working space, Lam et al. [24]
developed an O(n log n)-time algorithm and Hon et al. [16] developed two algo-
rithms one of which runs in O(n log log |Σ|) time and the other runs in O(n logε n)
time. For constructing compressed suffix trees, Hon et al. [15, 16] proposed an
O(n logε n)-time algorithm in optimal working space. By this method, one can
construct a compressed suffix tree supporting pattern search in O(m′|Σ|) time
where m′ = m logε n. However, compressed suffix trees supporting pattern search
in O(m′ log |Σ|) time cannot be constructed by this method.

In this paper, we present a new compressed suffix tree supporting
O(m′ log |Σ|)-time pattern search and its construction algorithm running in
O(n logε n) time using optimal O(n log |Σ|)-bit working space.

– Our compressed suffix tree consists of a compressed suffix array, a succinct
representation of lcp information, and a succinct representation of a suffix
tree topology. The compressed suffix array is the same as the one developed
by Grossi and Vitter [13] and the succinct representation of lcp information
is the same as the one developed by Sadakane [29, 30]. Our main contribution
is to present a new succinct representation of a suffix tree topology which

