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Code-Fed Omnidirectional Arrays 

Abstract-The synthesis of linear and planar arrays of desired 
omnidirectional intensity patterns is considered. A new approach that 
utilizes the relation between the array intensity pattern and the correlation 
function of the used feeding sequence, or code, is adopted. The basic 
theory of such code-fed arrays is reviewed and it is shown that almost 
omnidirectional patterns result when codes with sharp autocorrelation 
functions are used as the feeding sequences. Examples of omnidirectional 
linear and planar arrays fed with Barker codes, Kuttruff-Quadt trial and 
error two-dimensional binary codes, and nonbinary Huffman-type codes 
are presented. The results of the paper have direct applications in 
underwater communication systems, public address systems, and in 
acoustical imaging systems. They can also be easily adapted to antenna 
arrays. 

I. INTRODUCTION 
ADIATION from arrays has many important R applications. The use of arrays instead of single radiators 

makes it possible to tailor the radiation or sound intensity 
pattern to almost any desired shape, to increase the gain and 
the power-handling capability, to use electronic scanning, and 
to automatically adapt the pattern to match the changing 
environment. In this paper we consider the design of omnidi- 
rectional arrays. Starting with omnidirectional radiators, the 
source level of which falls short of satisfying a certain 
engineering purpose, we describe a method by which a 
number of these radiators can be used in an array configuration 
to increase the required source level without spoiling the 
omnidirectional nature of the pattern. 

The concept of code-fed arrays as an approach for the 
synthesis of omnidirectional arrays has been recently proposed 
by Kuttruff and Quadt [l], [2] and El-Khamy et al. [31-[5]. 
This approach is based on relating the intensity pattern of an 
array to the correlation properties of the sequence used to feed 
the array elements, henceforth referred to as the feeding code. 
This relation can be shown to be of the form of a discrete 
Fourier transform. Thus, feeding codes with sharp autocorre- 
lation functions are expected to result in almost omnidirec- 
tional patterns. The parameter considered for evaluating the 
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resultant design should not be the radiation efficiency in the 
classical sense used with directive systems because it is 
irrelevant to our present purposes. Our measure of a good 
design is a small intensity pattern variance rather than a high 
radiation efficiency. 

The dependence of the array intensity pattern on the 
autocorrelation functions of the feeding codes for linear and 
planar arrays are considered in Section 11. Exact and approxi- 
mate expressions for the average values and variances of the 
intensity patterns are also presented in the two cases of linear 
and planar arrays. 

Barker codes [6]-[8] are the optimum binary sequences for 
feeding linear omnidirectional arrays [4] since they are 
characterized by the minimum possible correlation peak-to- 
sidelobe ratios among all binary sequences of the same length. 
Their performance is discussed in Section 111. They are also 
used to feed planar arrays with one Barker code feeding the 
rows and another Barker code feeding the columns of the array 
[5].  In both cases of linear and planar arrays fed by Barker 
codes, the resulting intensity patterns are shown to be 
characterized by some sharp peaks or deep nulls superimposed 
on omnidirectional patterns. 

As two-dimensional optimum binary codes of the Barker 
type do not exist, the search for two-dimensional binary codes 
that result in the minimum possible pattern variances has been 
of interest. Kuttruff and Quadt [2] made a numerical search 
of such codes using a trial and error procedure. Their search 
was limited to array sizes not greater than 5 x 5 elements, 
which are described in Section IV. Although the performance 
of these trial and error codes compares favorably with that of 
multiplied Barker codes, they still suffer from some isolated 
peaks, nulls, and uneven intensity distributions. 

The search for code-fed linear arrays with improved 
performance compared with that of Barker-code-fed arrays has 
led to the introduction of some nonbinary sequences that are 
generated by special combinations of Barker codes with 
different lengths [3]. These codes are characterized by having 
almost zero sidelobes in their correlation functions and 
correlation properties which are similar to those of Huffman 
codes 191. Thus they are referred to as “Huffman-type 
codes.’’ A detailed description of the performance of Huff- 
man-type code-fed linear and planar arrays is presented in 
Section V. It is shown that they are characterized by very good 
omnidirectional patterns. 

The paper is concluded by a performance comparison of the 
various considered types of linear and planar arrays as well as 
a discussion of the different applications, important results, 
and possible extensions of thiswork. 

000-0384$01.00 0 1989 IEEE 
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11. BASIC THEORY OF CODE-FED ARRAYS 

A .  Linear Code-Fed Arrays 
1) Field-Code Relations for  Linear Arrays: Consider a 

linear array consisting of M isotropic elements which are 
uniformly spaced with a spacing d between any two successive 
elements. The far-field pressure pattern P(  U )  due to that array 
can be written in terms of the sequence of volume velocity 
feedings Qr of the elements; namely [lo], 

M -  1 

P ( u )  = Qr exp (-jkrdu) (1) 
r=O 

with u = sin 8, where 8 is the angle from the array broadside 
direction, and k = 2n/X, where X is the used wavelength. The 
total sound intensity Z(u) in the far field is given by the 
squared amplitude of the sound pressure; i.e., 

is the pattern. In the high frequency limit kd 9 1, V can be 
shown to be given by [l]. 

r n f O  

= 2  [ y c p ) ]  /Ck(O). 
m - l  

For binary feeding, (9) takes the form 

7 M-1 

(9) 

From (9) or (lo), it is seen that Vequals the ratio of the sum of 
the squares of the sidelobe values of CQ(m)  to the square of its 
main-lobe value. 

The upper bound of the variance for binary codes occurs for 

and hence it can be shown to be equal to the discrete Fourier 
transform of the aperiodic discrete autocorrelation function 
Ce(m) of the feeding volume velocity sequence; i.e., 

uniform feeding that "9 when Qr = 
1, so that (4) yields 

for = '9 ' 9  ' * - 

c Q ( m )  = cq (m) = f k f -  I m I (1 1) 

and hence (10) reduces to the following expression for V 
M- 1 

Z(U) = C CQ(m) exp (jkmdu) (3) 
r n = l - M  (henceforth called Vo): 

The lower bound for the variance of binary codes for M = 
2 ,  3, 4 ,  5 ,  7, 11, and 13 occurs for Barker code feeding, and 
this will be discussed in Section ILI. The lower bound for the 
variance for other values of M ,  up to M = 40, occurs for the 
binary codes described by Lindner [ 111. 

B. Planar Coded Arrays 
I )  Field-Feeding Code Relation for  Planar Arrays: 

Consider a rectangular planar array of M x N isotropic 
(6) elements uniformly spaced with spacings dl  and d2 in the x and 

y directions, respectively, as shown in Fig. 1. The far-field 

related to the two-dimensional sequence of volume velocity 
feedings Qrs of the elements [12]  as 

Iml > M -  1. 

It is clear from (4) that 

cQ( - m)= CQ(m). ( 5 )  

Hence, Z(u) can be recast into the following form: 

M- 1 

= + 'dm) 'Os (kmdu)' 
r n = l  

In the case of a binary feeding Qr = qrQ, where qr = - 1 or pressure pattern P(U9 U) due to that array is known to be 

+ 1, (6) simplifies to 

1 M -  1 

Cq(m) COS (kmdu) . (7) 

2) The Variance Formula: A good measure of the isotropy 
or uniformity of the two-dimensional pattern Z(u) of sound 
intensity among the different directions is the normalized 
variance V defined by [ I ] .  

V = ( ( Z - ( Z ) ) 2 ) / ( Z ) 2 = ( ( Z 2 ) - ( Z ) 2 ) / ( Z ) 2  (8) 

where the operator ( a )  means averaging with respect to the 
angle 8. The lower the value of Vis, the more omnidirectional 

r = O  s-0 

where u = sin 8 cos Q and U = sin 8 sin Q are the directional 
cosines of the propagation direction relative to the x and Y 
directions, and 8 and Q are the elevation and azimuthal angles 
of the propagation direction in the three-dimensional Cartesian 
coordinate system of Fig. 1. The total sound intensity 

Z(u, U)= IP(u, U) 12 (14) 

can be shown [2] ,  [13] to be equal to the two-dimensional 
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discrete Fourier transform of the two-dimensional aperiodic 
discrete autocorrelation function CQ(m,  n) of the feeding 
volume velocity matrix; i.e., t ‘  

Propagation 
d ~ r e c  t i o n  

m = l - m  n = l - N  

* exp [ jk(mdlu+nd~u)1  ( 1 5 )  

where CQ(m,  n) is given for 1 - M I m I M - 1 and 
1 - N I  n I N  - 1 by 

r=O s = o  

J 
X 

when m and n have the same sign, and by 

Fig. 1 .  Planar array configuration with M = 6 and N = 8. 

r=O s=O 
where 

when m and n have different signs. Whenever 1 m I 2 M or 
1 n 1 2 N,  the aperiodic autocorrelation CQ(m,  n )  is identi- 
cally zero. 

following identities: 
It is clear from (16) and (17) that CQ(m.  

CQ( - m ,  - n)  = c Q ( m ,  n)  

r=O 

n) satisfies the 

( 1 8 4  

and 

when m and n have the same sign, and 
As a consequence, the “multiplication of patterns” formula 
results; namely, 

I ( u ,  u ) = I o ( u ) I b ( u )  (24) 

where 

CQ( - m ,  n)  = CQ(m, - n) 

when m and n have opposite signs. Hence, 
recast into the following form: 

I ( u ,  u )=cQ(o ,  0) 

M -  I 

+ 2 CQ(m, 0) cos (kmdl U) 
m=l  

N -  1 

I b ( u ) =  Cb(n) exp (jkndzu). (26) 
n = l - N  

N -  I 

+ 2  C CQ(O, n)  COS (knd2u) 
n = l  

2) The Variance Formula: A good measure of the 
uniformity of the three-dimensional pattern I ( u ,  U) of sound 
intensity among the different directions (e, +) is the normal- 
ized variance V defined by (8), wherein the average operator 
( a )  is now interpreted to mean averaging with respect to the 
two variables 8 and (P rather than to a single variable only. It 
can be proved that [ 2 ] ,  [13]  

M - 1  N - 1  

+ 4  c CQ<m, n) cos (krndlu) cos (knd2u). 

(19) 

m=l n = l  

If the feeding Qrs of the array elements is the product of two 
independent linear codes; i.e., if 

f o r r  = 0, 1 ,  M - 1 ands  = 0, 1 ,  - 0 .  N - 1 ,  thenit 
immediately results that CQ(m,  n) is the product of the linear 
aperiodic discrete autocorrelations C u ( m )  and Cb(n); i.e., This formula means that V can be visualized as the total 

sidelobe energy of the two-dimensional discrete autocorrela- 
tion function CQ(m,  n )  divided by its main-lobe energy. In 
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view of (18), the expression (27) for V can be rewritten as 

L m = l  n =  1 

3 87 

4. 

. o + o .  I 

0 
I 

M - l  N - l  0 . 0 . 0  

o . Q . 0  

I I 

+ E E (ci(rn, n)+ Ci(rn, -.))I / Ci(0, 0). (28) -------e ---- o---.@---*---* ---_- + m  

m = l  n = l  
I I 

If the factorization relation (20) holds, then (28) simplifies to I 
I . o . o .  
I 

I 

/M-I \ /N-1 \ l .  Fig. 2. Distribution of Co(rn, n) for a fictitious two-dimensional Barker 

+ 2 (c c ; ( ~ )  ) (E c;(~) )J / c;(o)c;(o). (29) Eode with M = N = 3. ?‘he central double circle represents MN, while a 
white circle stands for 0 and a black circle represents + 1 .  

m - l  n =  1 

3) Upper and Lower Bounds for the Variance: The 
upper bound for the variance of binary codes occurs for if 
uniform feeding; i.e., when 

Q,,=l, { r = O ,  1, * * e  M-1 and 

and are both even Or both and 

VB=(2MN-M- N- 1)/M2NZ (Mb) 

if one of M and N is even while the other is odd. 

s = O ,  1, N-I}. (30) III. BARKER CODE-FED ARRAYS 

Equation (30) is a special case of (20) with a, = 1 and b, = 1. 
Hence (22) and (23) yield expressions for Ca(rn) and Cb(n) 
on the form of (11) and the following summations can be 
proved: 

N -  1 N -  I E C;(n)= ( N -  In()’=(N/6)(2N2-3N+ 1). (31b) 
n = l  n = l  

By substitution in (29), the upper bound for V (henceforth 
denoted by Vo) is obtained as 

Vo=(2M2+ 1)(2N2+ 1)/9MN- 1. (32) 

A .  Definition and Correlation Properties of Barker 
Codes 

As discussed in the previous section, and in particular 
according to (6) or (9), isotropic intensity patterns can be 
obtained by using feeding codes that possess the sharpest 
autocorrelation functions; i.e., have autocorrelation functions 
with the lowest possible sidelobe levels with respect to the 
peek value. Among the finite-length binary codes, Barker 
codes constitute an optimum set of codes in the sense that a 
Barker code has a minimum variance (9) for a specific code 
length (array length) M. That is because the sidelobe level of a 
Barker code is either 0 or 1/M of its peak value [6], [7]. There 
are eight known Barker codes, the longest among them has M 
= 13, and no Barker code of A4 > 13 is expected to exist. 
Table I lists the known Barker codes BM(r)  = { q,}, r = 0, 
. .. M - 1, together with their discrete autocorrelation 
functions. 

B. Performance in Code-Fed Linear Arrays 
Closed forms for the intensity patterns of linear arrays fed 

by Barker codes can be obtained by substituting the values of 
their autocorrelation functions in (3). The resulting expres- 
sions for the normalized intensity patterns [4] are given in 
Table I1 for M = 5 ,  7, 11, and 13. 

The variances VB of the intensity patterns of Barker code- 
fed arrays are listed in Table 111 for all known Barker codes. 
The comparison of the values of V B  with those of the upper 
bounds Vo shows that Barker code-fed arrays are characterized 

The intensity pattern of a typical Barker code-fed array 
(i.e., that for BI3)  is plotted in Fig. 3. The intensity patterns 

directions which are superimposed on otherwise omnidirec- 
for B5 and B13 are characterized by some large peaks in certain 

tional patterns, while those for B7 and B1, are characterized by 

If a two-dimensional Barker code was to exist, its variance 
(henceforth denoted by VB) would have been the minimum 
possible. Therefore, VB sets a lower bound for V .  It can be 
calculated by noting that a two-dimensional Barker code would 
have had the autocorrelation function [2] (see Fig. 2) 

CQ(O, o)=kfN (33a) 

0 for (m + n) odd 

‘ ~ ( ~ 9  n, = 1 for (rn + n)  even (33b) by intensity patterns of relatively small variances. 
and (m,  n) # (0, 0). t 

The corresponding value of V, can be shown to be given by 

VB = (2MN- M -  N)/MZN2 (34a) 
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TABLE I1 
NORMALIZED INTENSITY PATTERNS FOR BARKER CODE-FED ARRAYS 

7 (1/9.6) I 8  - sin(7kdu)/sin(kdu)l 

tion function CQ(m, n )  may have large sidelobe values on the 
two main axes, resulting in a relatively high value for the 
intensity variance. Therefore the three-dimensional pattern 
Z(u, U) suffers from sharp peaks or deep nulls [14]. Table IV 
shows two different combinations of Barker codes used for 
obtaining two-dimensional binary codes for feeding planar 
arrays. The corresponding two-dimensional autocorrelation 
functions and the pattern variances are also given. Table V 
compares the pattern variances V , ,  of several multiplied 
Barker code-fed arrays with the corresponding minimum and 
upper bounds VB and Vo. This table shows that in all cases, the 
planar arrays obtained are characterized by pattern variances 
that are much less than the upper bound but are still relatively 
high with respect to the minimum values ( V,) which can be 
approached only theoretically. 

The three-dimensional patterns of planar arrays fed by 
multiplied Barker codes have been computer generated. As a 
first example, the 19- and +-patterns for a planar array fed by 
the B5 x B5 code are shown in Fig. 4 (a)-(d) for 8 = 90°, 9 
= O", 9 = 45", and 9 = 90", respectively. The expected 
isolated peaks and the omnidirectional background are quite 
clear from these patterns. The corresponding three-dimen- 
sional pattern is given in Fig. 5. The vertical axis ( z  axis) 
gives the value of intensity, the x axis represents + = OD,  and 
the y axis represents + = 90". Any vertical plane gives the 
intensity as a function of I9 for a given value of 9. Fig. 6 shows 
another three-dimensional pattern (that for the B5 x B7 
feeding) which exhibits some isolated nulls superimposed on 
an omnidirectional background. 

11 (1/14.4) 112 - s~n(llkdu)/sin(kdu)l 

13 (1/25) [12 + sin(13kdu)/sin(kdu)l IV. KUTTRUFF-QUADT TRIAL AND ERROR CODE-FED PLANAR 
ARRAYS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

A .  Description of Kuttruff-Quadt Codes 
TABLE Ill 

VARIANCES OF INTENSITY PATTERNS FOR BARKER CODE-FED ARRAYS 
COMPARED WITH THE CORRESFQNDING UPPER BOUNDS 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
H VB vo VB'"0 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2 0.5 0.5 1.0 

3 0.2222 1.111 0.2 

4 0.25 1.75 0.1428 

5 0.16 2.4 6.667 x 

7 0.1225 3.714 3.298 x 

11 0.0824 6.364 1.294 x 

13 0.0707 7.692 9.191 x 

some deep nulls in certain directions which are superimposed 
on otherwise omnidirectional patterns. This can be explained 
by noting that the autocorrelation function C Q ( ~ )  of B5 and 
BI3  are characterized by positive sidelobes, while those of B7 
and BI1  are characterized by negative sidelobes, as seen from 
Table I. 

C. Multiplied Barker Code-Fed Planar Arrays 
An omnidirectional planar array can be excited in rows and 

columns by a linear Barker code. However, the autocorrela- 

The selection of binary codes for feeding planar arrays SO 

that they result in the best omnidirectional intensity patterns 
can be achieved by exhaustive search. For an M x N array of 
binary elements, the number of trials can be as much as 2''". 
Kuttruff and Quadt [2] have considered this task for small 
values of M and N that are no greater than 5. The largest array 
size considered by them (5  x 5 )  requires 225 = 3.5 X lo7 
trials, and hence requires a considerable amount of computer 
time. Instead of exhaustive searching, Kuttruff and Quadt [2] 
adopted a trial and error procedure to select the two- 
dimensional binary codes. From the various codes attempted, 
the one with a minimum variance for specific values of M and 
N is selected as the optimal code. Table VI gives the 
correlation properties and pattern variances for the 4 x 3 and 
5 x 5 trial and error codes [ 2 ] .  

B. Pattern Variances 

Table VI1 lists the pattern variances of planar arrays fed by 
seven Kuttruff-Quadt trial and error codes and compares them 
with the upper bound Vo and the lower bound V, for a two- 
dimensional code. For all table entries other than M x N = 2 
X 2, the variance Vis strictly greater than V,. We conjecture 
that no two-dimensional Barker code exists for all values of M 
and N such that M and/or N > 2 .  



389 EL-KHAMY et al. ; CODE-FED OMNIDIRECTIONAL ARRAYS 

TABLE IV TABLE V 
CORRELATION PROPERTIES AND PATTERN VARIANCES FOR TYPICAL COMPARISON OF THE VARIANCES OF MULTIPLIED BARKER CODE-FED 

MULTIPLIED BARKER CODES FEEDING PLANAR ARRAYS TWO-DIMENSIONAL ARRAYS (vMB) WITH THE LOWER ( v,) AND UPPER 
( V , )  BOUNDS ____-____---_------ BARKER CODE [B4xB31--------- - - - - - - - -  

V MB vO MXN VB 

2x2 0 .25  1.25 1 .25  

THE FEEOING CODE: ________________________________________--------- 
+ 1  +1 -1 t1 
+ 1  t 1  -1 +1 
-1 -1 +1 -1 3x2 0.1667 0.8333 2.167 

THE TWO-DIMENSIONAL APERIODIC CORRELATION FUNCTION: 3x3 0 .1481  0.4938 3.457 

-1 0 +1 -4 t1  0 -1 
0 0 0 0 0 0 0  

t 3  0 - 3  t 1 2  -3  0 + 3  
0 0 0 0 0 0 0  

-1 0 +1 -4 +1 0 -1 

VARIANCE = 0.52777782 

4x3 0.1111 0.5278 4.806 

4x4 0.0937 0.5625 6 .563  

5x4 0 .075  0 .45  8.35 

5x5 0.064 0.3456 10 .56  

7x5 0.0474 0 .3020  15.028 

7x7  0.035 0 .2599  21.224 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  BARKER CODE [ B S X B 5 l - - - - - - - - - - - - - - - - -  
-----__--____-____-_____________________--------- 

THE FEEDING CODE: 

+ 1  t1  +1 -1 t 1  
t 1  +1 t1 -1 t1 
t 1  t 1  + 1  -1 +1 
-1 -1 -1 + 1  -1 
t 1  +1 +1 -1 t 1  

THE TWO-DIMENSIONAL APERIODIC CORRELATION FUNCTION: 

+ 1  0 +1 0 +5 0 +1 0 +1 
0 0 0 0 0 0 0 0 0  

+1 0 +1 0 +5 0 +1 0 +1 
0 0 0 0 0 0 0 0 0 

+5 0 +5 0 +25 0 +5 0 t 5  
0 0 0 0 0 0 0 0 0  

t1 0 +1 0 +5 0 +1  0 t1 
0 0 0 0 0 0 0 0 0  

+1 0 +1 0 +5 0 +1  0 +1 

VARIANCE = 0.3456 

C.  Intensity Patterns 

The 13- and @-patterns and the three-dimensional intensity 
pattern of a 5 x 5 Kuttruff-Quadt code-fed planar array are 
given in Figs. 7 (a)-(d) and 8. These patterns show that such 
arrays give a better performance as omnidirectional arrays 
than the multiplied Barker code-fed arrays. However, the 
patterns are still characterized by some isolated peaks and 
nulls as well as by uneven intensity distributions. 

V. NONBINARY HUFFMAN-TYPE CODE-FED ARRAYS 

A. Generation of Huffman-Type Codes From Barker 
Codes 

The appearance of large peaks or deep nulls in the otherwise 
almost isotropic intensity patterns obtained by Barker codes 
feeding has led to the search for integer nonbinary codes that 
are characterized by sharper aperiodic autocorrelation func- 
tions. Such codes have been obtained by combining Barker 
codes of different lengths [3] as described below. 

Combined Barker codes can be chosen to have very sharp 
autocorrelation functions with zero sidelobes everywhere 
except at points r = f (M - 1) far from the main lobe. Such 
codes are of the Huffman-code-type in the sense that their 
autocorrelation functions resemble those of Huffman codes 
[9]. Lists of some combined Barker or Huffman-type codes 
along with their aperiodic autocorrelation functions and 
variances of the intensity patterns of linear arrays fed by these 
codes are given in Table VIII. 

If the Huffman-type code (S,) is compared with the Barker 
code of the same length (B,), it turns out that the pattern 
variance for this code is Vs7 = 2/(18)2 = 6.173 x 
which is much less than VB7 = 0.1225. As a bonus, (S7) 
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90D 

(b) ( 4  

(d) $J = 90". Scale: 1 dB/circle. 
Fig. 4. Intensity patterns of a multiplied Barker 5 X 5 code-fed planar array k ld  = kzd = 6. (a) 0 = 90". (b) $J = 0". (c) $J = 45" 

Fig. 5 .  The three-dimensional intensity pattern of a multiplied Barker 5 X 5 
code-fed planar array kld = kzd = 6 (+ 10 dB). 

TABLE V I  
CORRELATION PROPERTIES AND PATTERN VARIANCES FOR TYPICAL 

TRIAL AND ERROR CODES FEEDING PLANAR ARRAYS 
_ _ _ _ _ _ - _ _ _ _ _ _ _  TRIAL AND ERROR CODE [TE4X31-------------- 
THE FEEDING CODE: 

+1 +1 -1 -1 
+1 +1 +1 +1 
+1 -1 +1 -1 

THE TWO-DIMENSIONAL APERIODIC CORRELATION FUNCTION: 

-1 0 +1 0 +1 0 -1 
0 + 2  0 0 0 - 2  0 
-1 +2 +1 +12 +1 +2 -1 

0 - 2  0 0 0 + 2  0 
-1 0 +1 0 +1 0 -1 

VARIANCE = 0 .25  
________________________________________-----.--.---------------. 

_________-- - -  TRIAL AND ERROR CODE [TE5X51------------- 

THE FEEDING CODE: 

+1 +1 +1 +1 +1 
-1 -1 -1 +1 +1 
+1 -1 -1 +1 +1 
-1 +1 +1 -1 +1 
+1 -1 +1 -1 +1 

THE TWO-DIMENSIONAL APERIODIC CORRELATION FUNCTION: 

+1 0 +1 0 +1 0 +1 0 +1 
0 0 0 + 4  0 0 0 0 0 

+1 0 +1 0 +1 0 +1 0 +1 
0 0 0 + 4  0 - 4  0 - 4  0 

+1 0 +1 0 +25 0 +1 0 +1 
0 - 4  0 - 4  0 + 4  0 0 0 

+1 0 +1 0 +1 0 +1 0 +1 
0 0 0 0 0 + 4  0 0 0 

+1 0 +1 0 +1 0 +1 0 +1 

VARIANCE = 0.2432 

Fig. 6. The three-dimensional intensity pattern of a multiplied Barker 5 x 7 
code-fed planar array kld = k2d = 6 (+ 10 dB). 
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270 

TABLE VII 
COMPARISON OF THE VARIANCES OF THE TRIAL AND ERROR CODES 

WITH THE CORRESPONDING LOWER ( VB) AND UPPER (Vo) BOUNDS 
---_-----_______________________________- 

V 
VEl VO M x N  

2 x 2 .25 -25 1.25 

3 x 2 .1667 .3889 2.167 

4 x 2 .1563 .3750 3.125 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ~ -  

3 x 3 .1481 .3950 3.457 

4 x 3 -1111 .25 4.806 

4 x 4 .09375 .le75 6.563 

5 x 5 .064 .2432 10.56 
-----_-_________________________________-- 

-900 +90' 

(b) (4 
Fig. 7.  Intensity patterns of a trial and error 5 x 5 code-fed planar array kld = k2d = 6 .  (a) 0 = 90". (b) 4 = 0'. (c) ,#, = 45'. (d) 

4 = 90". Scale: 1 dB/circle. 

Fig. 8 .  The three-dimensional intensity pattern of a trial and error 5 x 5 
code-fed planar array k,d = k2d = 6 (+ 10 dB). 

requires six rather than seven array elements since, as seen 
from Table VIII, the central element does not need to be 
excited and hence does not need to exist at all. In that sense, 
(S7) may be thought of as a nonuniform array feeding code 
consisting of only six elements. The code ( S : )  leads to even 
more saving in the number of needed elements since it consists 
of three elements only. Its variance of 2/(6)2 = 5.555 X lo-' 
is greater than Vs7 but is much better than VB3 = 0.2222. 

B. Huffman-Type-Code-Fed Linear Arrays 
Since the pattern variances of Huffman-type codes are much 

less than those obtained by using the optimum-binary Barker 
codes, linear arrays with much improved omnidirectional 
intensity patterns are obtained by using Huffman-type codes 
feeding. These codes are nonbinary and hence are more 
difficult to realize than binary codes. However, the maximum 
number of excitation levels required by them is only four. 
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TABLE VI11 
CORRELATION PROPERTIES AND PATTERN VARIANCES FOR 

HUFFMAN-TYPE CODES FEEDING LINEAR ARRAYS 
__-____------- HUFFMAN-TYPE CODE [S5)--------------- 

(S5(r) = B5(r) +B3(r-l), 0 s r s  4) 

THE FEEDING CODE: 

+1 +2 +2 -2 +I  

THE APERIODIC CORRELATION €UNCTION: 

+1 0 0 0 +14 0 0 0 + I  

TYPICAL 

VARIANCE = 0.0010204 __________________-_____________________----------------------- 

_________-- - - -_  HUFFMN-TYPE CODE [S71- - - - - - - - - - - - - - -  

(s7(rl = B7(r) + B5(r-l) , 0 S r  5 6 )  

THE FEEDING CODE: 

+1 +2 +2 0 -2 +2 -1 

THE APERIODIC CORRELATION FUNCTION: 

-1 0 0 0 0 0 + 1 8  0 0 0 0 0 - 1  

VARIANCE = 0.00061728 ________________________________________----------------------- 

_ _ _ _ _ _ _ _ _ _ _ _ _ _  HUFFMAN-TYPE CODE [57*1---------------- 
(S. ,*(rI = B7(r) - B5(r-1) , 0 s r  ~6 ) 

THE FEEDING CODE: 

+1 0 0 -2 0 0 -1 

THE APERIODIC CORRELATION FUNCTION: 

-1 0 0 0 0 0 + 6  0 0 0 0 0 - 1  

VARIANCE = 0.00555555 
________________________________________---------------------- 

no n* 

-90' +go. 

Fig. 9. Intensity pattern of a Huffman-type code-fed array with M = 5 and 
kd = 6 .  Scale: 0.5 dB/circle. 

namely 1 and f 2 (zero indicates that no element is placed in 
the corresponding position). 

The simple form of the aperiodic correlation functions of 
Huffman-type codes makes it easy to find closed-form 
expressions for their intensity patterns through the use of (6).  
For example, the intensity patterns for linear arrays fed by the 
codes (S , )  and ( S7) are given by 

Zs,(u)=14+2 COS (41th) (35) 
and 

I s 7 ( ~ )  = 18 - 2 COS ( 6 k d ~ ) .  (36) 

These intensity patterns as plotted in Figs. 9 and 10 are 

-90' 

Fig. 10. Intensity pattern of a Huffman-type code-fed array with M = 7 and 
kd = 6 .  Scale: 1 &/circle. 

TABLE IX 
CORRELATION PROPERTIES AND PA'lTERN VARIANCES FOR TYPICAL 

MULTIPLIED HUFFMAN-TYPE CODES FEEDING PLANAR ARRAYS 
_-__-----_____ HUFFMAN-TYPE CODE [SSXS51------------ 

THE FEEDING CODE: 
+1 +2 +2 -2 +1 
+2 +4 +4 -4 +2 
+2 +4 +4 -4 +2 
-2 -4 -4 +4 -2 
+1 +2 +2 -2 +1 

THE RIO-DIMENSIONAL WERIODIC CORRELATION FUNCTION: 

+1 0 0 0 +14 0 0 0 +1 
0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0  

+14 0 0 0 +196 0 0 0 +14 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0  

+1 0 0 0 +14 0 0 0 +1 

VARIANCE = 0.0205123 
---_____________________________________--~-----------~----~~-- 

HUFFMAN-TYPE CODE [S5xS7'1----------- ___--__--_____ 

THE FEEDING CODE: 
+1 +2 +2 -2 +1 
0 0 0 0 0  
0 0 0 0 0  
-2 -4 -4 +4 -2 
0 0 0 0 0  
0 0 0 0 0  
-1 -2 -2 +2 -1 

THE TWO-DIMENSIONAL APERIODIC CORRELATION FUNCTION: 

-1 0 0 0 -14 0 0 0 -1 
0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0  
+6 0 0 0 +84 0 0 0 +6 
0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0  
-1 0 0 0 -14 0 0 0 -1 

VARIANCE - 0.0663265 ................................................................. 

almost omnidirectional and devoid of any deep nulls or sharp 
peaks such as those which characterize Barker codes patterns. 

C. Multiplied Huffman- Type-Code-Fed Planar Arrays 
Three-dimensional intensity patterns Z(U, U) of good omni- 

directional properties can be obtained by feeding arrays in 
their rows and columns by nonbinary combined Barker codes 
of the Huffman type. Examples of such two-dimensional codes 
are listed in Table IX for M x N = 5 x 5 and 5 x 7. The 
two-dimensional autocorrelation functions of these codes, as 
well as the intensity pattern variances, are also listed in Table 
Ix. 
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t90' 

(b) (d) 
Fig. 1 1 .  Intensity patterns of a Huffman-type 5 x 5 code-fed planar array k,d = k2d = 6. (a) 0 = 90". (b) @ = 0". (c) @ = 45" 

(d) @ = 90". Scale: 1 dB/circle. 

As an illustration, consider the 5 x 5 array fed in rows and 
columns by the code (&). The variance of this code is given by 
0.0205, which is much less than the corresponding value for a 
5 x 5 multiplied Barker code of V , B  = 0.3456 and that of a 
Kuttruff-Quadt binary trial and error 5 x 5 code of VKQ = 
0.2432, and is even less than the lower bound VB = 0.064 that 
is theoretically predicted for a 5 X 5 binary code. The exact 
form of the resulting intensity pattern for the multiplied 
Huffman-type 5 x 5 code-fed planar array can be directly 
obtained from (35) and the pattern multiplication formula (24) 
as 

I s ~ , s ~ ( u ,  ~ ) = [ 1 4 + 2  COS (4kdlu)l 

[ 14 + 2 COS (4kdZ~)l. (37) 

The +-pattern (with fl = 90") and the &patterns (with 9 = 
O " ,  45", and 90") for the S5 x S5 feeding code are plotted in 
Fig. 1 1  (a)-(d), while its three-dimensional pattern is plotted 
in Fig. 12. These patterns exhibit the expected highly 
omnidirectional characteristics of the Huffman-type code-fed 
arrays. 

VI. DISCUSSION AND CONCLUSIONS 
An interesting problem in array synthesis has been investi- 

gated. It deals with the use of codes with good correlation 
properties which are familiar in the design of modem pulse 
compression radar and spread spectrum communication sys- 
tems for feeding arrays to result in omnidirectional patterns. 
The designed arrays are very useful in many applications, such 
as underwater acoustical communication systems, loudspeaker 
arrays for public address systems (e.g., lecture halls, theaters, 

Fig. 12. The three-dimensional intensity pattern of a multiplied Huffman- 
type 5 x 5 code-fed planar array k,d = k2d = 6 (+ 10 dB). 

etc.), and biomedical acoustical-imaging systems. The same 
procedure can also be applied to the synthesis of omnidirec- 
tional antenna arrays. 

Table X presents a comprehensive comparison of all the 
considered types of linear code-fed arrays. In this table, the 
arrays are arranged according to the number of used elements, 
size, type, number of code discrete levels (= 2 for binary 
codes and > 2 for nonbinary codes), and finally the resultant 
pattern variance. The table indicates that for a given number of 
used elements, Huffman-type codes are characterized by the 
least variance and that Barker codes are the optimum binary 
feeding codes for linear arrays with sizes of 2, 3, 4, 5, 7,  1 1 ,  
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TABLE XI 
COMPARISON OF THE PERFORMANCE OF THE DIFFERENT CONSIDERED 

CODE-FED PLANAR ARRAYS 

# No. Of Size Type No. of Variance 
Elements Levels 

_______________---______________________------------------------------ 
1 4 2x2 Hult. Barker Codes IB2xB21 2 1.25 
2 4 2x2 Trial 6 Error Code CTE2x2I 2 0.25 
3 6 3x2 Hult. Barker Codes [B3xB21 2 0.8333 
4 6 3x2 Trial 6 Error Code CTE3x21 2 0.3889 
5 8 4x2 Trial 6 Error Code ITE4x21 2 0.375 
6 9 3x3 Hult. Barker Codes IB3xB31 2 0.4938 
7 9 3x3 Trial 6 Error Code CTE3x31 2 0.395 
8 12 4x3 Hult. Barker Codes IB4xB31 2 0.5278 
9 12 4x3 Trial 6 Error Code CTE4x3l 2 0.25 
10 15 5x3 Hult. Huffman-Type [S5xS31 6 0.066326 
11 15 5x7 HULT. Huffman-Type IS5xS7’1 6 0.066326 
12 16 4x4 Hult. Barker Codes [B4xB41 2 0.5625 
13 16 4x4 Trial 6 Error Code ITE4x41 2 0.1875 
14 18 7x3 Uult. Huffnan-Type IS7xS31 6 0.06207 
15 20 5x4 nult. Barker Codes IB5xB41 2 0.45 
16 25 5x5 Hult. Barker Codes IB5xB51 2 0.3456 
17 25 5x5 Trial 6 Error Code CTE5x51 2 0.2432 
18 25 5x5 Hult. Huffman-Type IS5xS51 5 0.0205 
19 30 5x7 Hult. Huffman-Type CS5xS71 6 0.016439 
20 35 7x5  Hult. Fmrker Codes IB7xB51 2 0.3020 
21 49 7x7 Hult. Barker Codes IB7xB71 2 0.2599 
____________________-------------------------------------------------- 

and 13. Table XI gives a comparison of all of the considered 
types of planar arrays. This table indicates that although 
Barker codes are the optimum binary feeding codes for linear 
arrays, multiplied Barker codes do not perform similarly well. 
For array sizes up to 5 x 5 ,  Kuttruff-Quadt trial and error 
codes are the best-known binary feeding codes. The table also 
indicates that multiplied nonbinary Huffman-type codes are 
the best codes (among those considered) for feeding omnidi- 
rectional planar arrays with arbitrary sizes. 

For further investigation, the authors have considered 
binary codes with good periodic correlation properties such as 
m-sequences, Hadamard matrices, and the two-dimensional 
PN codes [13], [14] as well as the whole class of nonbinary 
Huffman codes [9]. The results of the last point are very 
interesting and will be published soon [16]. Another natural 
extension of the present work that we are presently working on 
is to study the sensitivity of the omnidirectional properties of 
the intensity patterns to weighting errors and element position- 
ing errors. We hope to report our findings soon in a 
forthcoming publication. 
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