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t. Random regular graphs are, at least theoreti
ally, popular
ommuni
ation networks. The reason for this is that they 
ombine low(that is 
onstant) degree with good expansion properties 
ru
ial for eÆ-
ient 
ommuni
ation and load balan
ing. When any kind of 
ommuni
a-tion network gets large one is fa
ed with the question of fault toleran
eof this network. Here we 
onsider the question: Are the expansion prop-erties of random regular graphs preserved when ea
h edge gets faultyindependently with a given fault probability? We improve previous re-sults on this problem: Expansion properties are shown to be preservedfor mu
h higher fault probabilities and lower degrees than was knownbefore. Our proofs are mu
h simpler than related proofs in this area.Introdu
tionA natural question in the theory of fault toleran
e of 
ommuni
ation networksreads: Is it possible to simulate the non-faulty network on the faulty one with awell determined slowdown? Here one assumes that the network pro
eeds in syn-
hronous steps and in ea
h step ea
h pro
essor (= node of the network) performssome lo
al 
omputation and some 
ommuni
ation steps. Ideally one would like tosimulate the non-faulty network in su
h a way that the simulation is slower onlyby a 
onstant fa
tor showing that the time is essentially un
hanged. Whereassu
h eÆ
ient simulations are known for networks with unbounded degree, likethe hyper
ube, it is still an important question whether they exist for boundeddegree networks like the butter
y [CoMaSi 95℄. Note that all of this paper refersto random faults, that is ea
h 
omponent (normally edge or node) gets faultyindependently with a given fault probability and the results only hold with highprobability meaning with probability going to 1 when the network gets large.Random regular graphs with given degree d � 3 are well known to be ex-pander graphs (with high probability) [Bo 88℄: There is a 
onstant C (< 1) su
hthat ea
h subset X of nodes has � C � jX j neighbours adja
ent to X but notbelonging to X (provided X 
ontains at most half of all verti
es). If we ever were? Author's work in part performed at the University of Toronto, supported by a grantobtained through Alasdair Urquhart.



to simulate 
omputation on a random regular graph with slowdown only by a
onstant fa
tor on the faulty graph we would need a linear size expander insidethe faulty graph.The investigation of random regular graphs with edge faults starts with thepaper [Sp et al. 94℄. In the su

eeding paper [NiSp 95℄ attention is drawn tothe preservation of expansion properties. Some suÆ
ient 
onditions are given. Inwork by the �rst author [Go 97℄ a threshold result for the existen
e of a linear size
omponent is proved. In [Go 98℄ we give a suÆ
ient 
ondition on fault probabilityand degree su
h that we 
an �nd a linear size expander eÆ
iently { a questionnot treated in the initial work on expansion [NiSp 95℄. Cru
ial to our result isthe notion of a k�
ore: The k�
ore of a given graph is the (unique) maximalsubgraph where ea
h node has degree at least k. In [Go 98℄ we �rst observe thatthe 3�
ore of a faulty random regular graph is an expander (this follows simplyfrom randomness properties of the 3�
ore). Se
ond, we present a simple edgedeletion algorithm whi
h is shown to �nd a 3�
ore of linear size when d � 42and ea
h edge is non-faulty with probability at least 20=d.The present paper improves 
onsiderably on these results: We give a pre
isethreshold on the fault probability for the existen
e of a linear size k�
ore forany d > k � 3. Thus improving the previous bounds for the existen
e ofan expanding subgraph. For example when the degree is as low as 4 and ea
hedge is faulty with probability < 1=9 we have a linear size 3�
ore and thus anexpanding subgraph.Our proof uses a proof te
hnique originally developed for [MoPi℄. It is te
h-ni
ally quite simple. This is in sharp 
onstrast to the previous proofs of theweaker results mentioned above relying on te
hni
ally advan
ed probability the-oreti
 tools. This te
hnique applies to a wide range of similar problems (see[MoWo℄). The te
hnique was inspired by the original (more involved) proof ofthe k-
ore threshold for Gn;p given in [PiSpWo 96℄.1 OutlineWe will study random regular graphs with edge faults by fo
ussing on the 
on-�guration model (
f.[Bo 85℄). It is well known that properties whi
h hold a.s.(almost surely) for a uniformly random d-regular 
on�guration also hold a.s.for a uniformly random d-regular simple graph. For the 
on�guration model, we
onsider n disjoint d�element sets 
alled 
lasses; the elements of these 
lassesare 
alled 
opies. A 
on�guration is a partition of the set of all 
opies into2�element sets, whi
h are edges. Identifying 
lasses with verti
es, 
on�gura-tions determine multigraphs and standard graph theoreti
 terminology 
an beapplied to 
on�gurations. More details 
an be found in [Bo 85℄. We �x the de-gree d and the probability p for the rest of this paper and 
onsider probabilityspa
es Con(n; d; p) of random 
on�gurations where ea
h edge is present withprobability p or absent with fault probability f = 1 � p. We 
all this spa
ethe spa
e of faulty 
on�gurations. An element of this spa
e of is best 
onsideredas being generated by the following probabilisti
 experiment 
onsisting of two2



stages:(1) Draw randomly a 
on�guration � = (W ; E) where W = W1 :[ : : : :[ Wnand jWij = d. (2) Delete ea
h edge of �, along with its end-
opies, independentlywith fault probability f .The probability of a �xed faulty 
on�guration with k edges is (n � d � 2 �k)!! � (1 � p)(n�d=2)� k � pk: Given k, ea
h set of k edges is equally likely to o

ur.The degree of a 
lass W with respe
t to a faulty 
on�guration �, Deg�(W ), isthe number of 
opies of W whi
h were not deleted. Note that edges fx ; yg withx ; y 2W 
ontribute with two to the degree. The degree of a 
opy x, Deg�(x), isthe degree of the 
lass to whi
h x belongs. The k-
ore of a faulty 
on�gurationis the maximal sub
on�guration of the faulty 
on�guration in whi
h ea
h 
lasshas a degree � k. We 
all 
lasses of degree less than k light whereas 
lasses ofdegree at least k are heavy. By Bin(m;�) we denote the binomial distributionwith parameters m and su

ess probability �.We now give an overview of the proof of the following theorem whi
h is themain result of this paper. For d > k � 3 we 
onsider the real valued fun
tionL(�) = �=Pr[Bin(d�1; �) � k�1℄ whi
h we de�ne for 0 < � � 1. L(1) = 1 andL(�) goes to in�nity for � approa
hing 0. Moreover L(�) has a unique minimumfor 1 � � > 0. Let r(k; d) = minfL(�)j1 � lambda > 0g. For example wehave that r(3; 4) = 8=9. The de�nition of r(k; d) is, no doubt, mysterious atthis point, but we will see that it has a very natural motivation.Theorem 1. (a) If p > r(k; d) then a random � 2 Con(n; d; p) has a k�
oreof linear size with high probability.(b) If p < r(k; d) then a random � 2 Con(n; d; p) has only the empty k-
orewith high probability.Theorem 1 implies that the analogous result holds for the spa
e of faultyrandom regular graphs (obtained as: �rst draw a graph, se
ond delete the faultyedges). The following algorithm whi
h 
an easily be exe
uted in the faulty net-work itself is at the heart of our argument.Algorithm 2. The Global AlgorithmInput: A faulty 
on�guration �, output: The k-
ore of �.while � has light 
lasses do� := the modi�
ation of � where all light 
lasses are deleted.od. Output �.Spe
i�
ally, when we delete a 
lass,W , we delete (i) all 
opies within W , (ii)all 
opies of other 
lasses whi
h are paired with 
opies of W , (iii) W itself. Notethat it is possible for W itself to still be undeleted but to 
ontain no 
opies asthey were all deleted as a result of neighbouring 
lasses being deleted, or faultyedges. In this 
ase, of 
ourse, W is light and so it will be deleted on the nextiteration. At the end of the algorithm � has only 
lasses of degree � k, whi
hform the k-
ore. The following notion will be used later on: A 
lass W of thefaulty 
on�guration � survives j (j � 0) rounds of the global algorithm with3



degree t i� W has not yet been deleted and has degree t after the j'th exe
utionof the while-loop of the algorithm with input �. A 
lass simply survives if it hasnot yet been deleted.In se
tion 2 we analyze this algorithm when run for j � 1 exe
utions ofthe loop where we set j = j(n) = plogd n throughout. We prove that thenumber of 
lasses surviving j � 1 rounds with degree t � k is linear in n withhigh probability when p > r(k; d) whereas the number of light 
lasses is o(n).(Initially this number is linear in n.) An extra argument presented in se
tion 4will show how to get rid of these few light 
lasses leaving us with a linear sizek�
ore provided p > r(k; d). On the other hand, if p < r(k; d) then we showthat the expe
ted number of 
lasses surviving j � 1 rounds with any degree iso(n) and that we have no longer enough 
lasses to form a k�
ore. This is shownin se
tion 3.2 Redu
tion of the number of light 
lassesFor d � t � 0, and for a parti
ular integer j, we letXt : Con(n; d; p) ! N (1)be the number of 
lasses surviving j � 1 rounds of the global algorithm withdegree equal to t. As usual we 
an represent X = Xt as a sum of indi
atorrandom variables X = XW1 + � � � + XWn ; (2)where XW assumes the value 1 when the 
lass W survives j � 1 rounds withdegree equal to t and 0 when this is not the 
ase. Then EX = n �E[XW ℄ =n � Pr[W survives with degree t℄ for W arbitrary. We determinePr[W survives with degree t℄ approximately, that is an interval of width o(1)whi
h in
ludes the probability. The probability of the event: W survives j �1 rounds with degree t, turns out to depend only on the j�environment ofW de�ned as: For a 
lass W the j�environment of W , j � Env�(W ), is thatsub
on�guration of � whi
h has as 
lasses the 
lasses whose distan
e from Wis at most j. Here distan
e means the number of edges in a shortest path. Theedges of j � Env�(W ) are those indu
ed from �.The proof of the following lemma follows with standard 
onditioning te
h-niques observing that the j�environment of a 
lassW in a random 
on�guration
an be generated by a natural probabilisti
 breadth �rst generation pro
ess (
f.[Go 97℄ for details on this.) Here it is important that j only slowly goes to in�nity.Lemma 3. Let W be a �xed 
lass then Prfj�Env�(W ) is a treeg � 1 � o(1):Note that the lemma does not mean: Almost always the j-environment of all
lasses is a tree. The de�nition of j-environment extends to faulty 
on�gurations4



in the obvious manner. Fo
ussing on a j-environment whi
h is a tree is very
onvenient sin
e in a faulty 
on�guration, it 
an be thought of as a bran
hingpro
ess whereby the number of 
hildren of the root is distributed as Bin(d; p),and the number of 
hildren of ea
h non-root as Bin(d� 1; p).The following algorithm approximates the e�e
t the global algorithm has ona �xed 
lass W , provided the j�environment of W is a tree.Algorithm 4. The Lo
al Algorithm.Input: A (sub-)
on�guration � , whi
h is a j�environment of a 
lass W in afaulty 
on�guration. � is a tree with root W .� := �for i = j � 1 downto 0 doModify � as follows: Delete all light 
lasses in depth i of the tree �.od.The output is \W survives with degree t" ifW is not deleted and has �nal degreet. If W is deleted then the output is \W does not survive".Note that it is not possible for W to survive with degree less than k. Byround l of the algorithm we mean an exe
ution of the loop with i = j� l where1 � l � j. A 
lass in depth i where 0 � i � j survives with degree t i� it is notdeleted and has degree t after round j � i of the algorithm. Note that 
lassesin depth j are never deleted and so they are 
onsidered to always survive. Thenext lemma states in whi
h respe
t the lo
al algorithm approximates the globalone. The straightforward formal proof is omitted in this abridged version.Lemma 5. Let j � 1. For ea
h 
lass W and ea
h faulty 
on�guration � wherej � Env�(W ) is a tree we have: After j � 1 rounds of the global algorithm with� the 
lass W survives with degree t � k. , After running the lo
al algorithmwith j � Env�(W ) the 
lass W survives with degree t � k.Note that W either survives j � 1 rounds of the global algorithm and thewhole lo
al algorithm with the same degree t � k or does not survive the lo
alalgorithm in whi
h 
ase it does or does not survive j�1 global rounds, but does
ertainly not survive j global rounds.We 
ondition the following 
onsiderations on the almost sure event that forj = j(n) the j�environment of the 
lass W in the underlying fault free 
on�g-uration is a tree (
f. Lemma 3). We denote this environment in a random faulty
on�guration by � . We turn our attention to the 
al
ulation of the survivalprobability with the lo
al algorithm.For i with 0 � i � j�1 let �i be the probability that a 
lass in level (=depth)j � i of � survives the lo
al algorithm applied to � . As the j-enviroment in theunderlying fault-free 
on�guration is a tree, the survival events of the 
hildrenof given 
lass are independent. Therefore:�0 = 1and �i = Pr[Bin(d� 1; p � �i�1) � k � 1℄: (3)And furthermore, 
onsidering now the root W of the j-environment, we get fort � k by analogous 
onsiderations:Pr[W survives the lo
al algorithm with degree t:℄ = Pr[Bin(d; p � �j�1) = t℄.5



We have that the sequen
e of the �i's is monotoni
ally de
reasing and in theinterval [0; 1℄. Hen
e � = �(p) = limi!1 �i is well de�ned and as all fun
tionsinvolved are 
ontinuous we get: � = Pr[Bin(d � 1; p � �) � k � 1℄. (Note thatthis is no de�nition of �, the equation is always satis�ed by � = 0.)Two further notations for subsequent usage: �t;i = �t;i(p) = Pr[Bin(d; p ��i�1) = t℄ for i � 1. Again we have that the �t;i's are monotoni
ally de
reasingand between 0 and 1 and �t = �t(p) = limi!1 �t;i: exists. Hen
e for our �xed
lass W , 
onsidering j !1, we get:Pr[W survives the lo
al algorithm with degree t:℄ = �t;j = �t + o(1): (4)Here is where our formula for r(k; d) 
omes from:Lemma 6. � > 0 i� p > r(k; d).Proof. First let � > 0. As stated above we have � = Pr[Bin(d� 1; p�) � k� 1℄.Therefore Pr[Bin(d � 1; p�) � k � 1℄ > 0 and setting � = p � �, we get �=p =Pr[Bin(d� 1; �) � k � 1℄ and so p = �=Pr(Bin(d� 1; �) � k � 1) = L(�) andthe result follows.Now let p > r(k; d). Let �0 be su
h that r(k; d) = L(�0). We show byindu
tion on i that p � �i � �0. For the indu
tion base we get: p � �0 = p >r(k; d) � �0 where the last estimate holds be
ause the denominator in thede�nition of L(�0) always is � 1. For the indu
tion step we get:p ��i+1 = p �Pr[Bin(d�1; p ��i) � k�1℄ � p �Pr[Bin(d�1; �0) � k�1℄ > �0where the last but one estimate uses the indu
tion hypothesis and the last onefollows from the assumption. utWe now return to the analysis of the global algorithm. The next 
orollaryfollows dire
tly with Lemma 3, Lemma 5, and (4).Corollary 7. Let W be a �xed 
lass, t � k and let j = j(n) = plogd n. Inthe spa
e of faulty 
on�gurations we have (
f.(2)):Pr[XW = 1℄ = PrfW survives j(n)� 1 global rounds with degree tg= �t + o(1).Next the announ
ed 
on
entration result:Theorem 8. Let t � k, X = Xt be the random variable de�ned as in (1), andlet � = �t; then we have:(1) EX = � � n + o(n): (2) Almost surely jX � � � nj � o(n).Proof. (1) The 
laim follows from the representation of X as a sum of indi
atorrandom variables (
f. (2)) and with Corollary 7.(2) We show that V X = o(n2). This implies the 
laim with an appli
ationof Ts
heby
he�'s inequality. We have X = XW1 + XW2 + : : : + XWn (
f.(2)). This and (1) of the present theorem implies V X = E[X2℄ � (EX)2 =6



E[X2℄ � (�2 � n2 + o(n) �n). Moreover, E[X2℄ = EX + n�(n�1)�E[XU �XW ℄ =� �n + o(n) + n � (n�1) �E[XU �XW ℄, where U and W are two arbitrary distin
t
lasses. We need to show that E[X2℄ = �2 � n2 + o(n2). This follows fromE[XU � XW ℄ = �2 + o(1) showing that the events XU = 1 and XW = 1 areasymptoti
ally independent. This follows by 
onditioning on the event that thej�environments of U and W are disjoint trees and analyzing the breadth �rstgeneration pro
edure for the j� environment of a given 
lass. Again we needthat j goes only slowly to in�nity. ut3 When there is no k-
oreThe proof of Theorem 1(b) is now quite simple. First we need the following fa
t:Lemma 9. A.s. a random member of Con(n; d; p) has no k-
ore on o(n) ver-ti
es.Proof. The lemma follows from the fa
t that a random member of Con(n; d) a.s.has no sub
on�guration with average degree at least 3 on at most �n verti
es,where � = �(d) is a small positive 
onstant. Consider any s � �n. The number of
hoi
es for s 
lasses, 1:5s edges from amongst those 
lasses, and 
opies for theendpoint of ea
h edge, is at most:�ns�� �s2�1:5s�d3s:Setting M(t) = t!=(2t=2(t=2)!) to be the number of ways of pairing t 
opies,we have that for any su
h 
olle
tion, the probability that those pairs lie in ourrandom member of Con(n; d) isM((d� 3s)n)=M(dn) < ( en )1:5s:Therefore, the expe
ted number of su
h sub
on�gurations is at most:�ns�� �s2�1:5s�d3s( en )1:5s < (ens )s(e(s2=2)1:5s )1:5s( en )1:5s� (20d6sn ):5s = f(s):Therefore, if � = 1=40d6 then the expe
ted number of su
h sub
on�gurations isless than Pns=2 f(s) whi
h is easily veri�ed to be o(1). utNow, by Lemma 6, we have for p < r(k; d) that � = 0. Therefore, as j goes toin�nity the expe
ted number of 
lasses surviving j rounds with degree at leastk is o(n) and so almost surely is o(n). With the last lemma we get Theorem 1(b). 7



4 When there is a k�
oreIn this se
tion, we prove Theorem 1(a). So we assume that p > r(k; d). We startby showing that almost surely very few light 
lauses survive the �rst j(n) � 1iterations:Lemma 10. In Con(n; d; p) almost surely: The number of light 
lasses afterj(n)� 1 = plogd n� 1 rounds of the global algorithm is redu
ed to o(n).Proof. The proof follows with Theorem 8 applied to j� 2 and j� 1 (whi
h bothgo to in�nity). utIn order to eliminate the light 
lasses still present after j(n)�1 global rounds,we need to know something about the distribution of the 
on�gurations afterj(n)� 1 rounds. As usual in similar situations the uniform distribution needs tobe preserved. For �n = (n0; n1; n2; : : : ; nd) where the sum of the ni is at mostn we let Con(�n) be the spa
e of all 
on�gurations with ni 
lasses 
onsisting ofi 
opies. Ea
h 
on�guration is equally likely. The following lemma is proved in[Go 98℄.Lemma 11. Conditioning the spa
e Con(n ; d ; p) on those 
on�guration whi
hgive a 
on�guration in Con(�n) after i global rounds, ea
h 
on�guration fromCon(�n) has the same probability to o

ur after i global rounds.After running the global algorithm for j(n)�1 rounds we get by Lemma 10 a
on�guration uniformly distributed in Con(�n) where n1 + n2 + :::+nk�1 = o(n)and jnt � �t �nj � o(n) for t � k with high probability. A probabilisti
 analysisof the following algorithm eliminating the light 
lasses one by one shows that weobtain a linear size k�
ore with high probability.Algorithm 12.Input: A faulty 
on�guration �.Output: The k�
ore of �.while There exist light 
lasses in � doChoose uniformly at random a light 
lass W from all light 
lassesand delete W and the edges in
ident with W .od. The 
lasses of degree � k are the k�
ore of �.In order to perform a probabilisti
 analysis of this algorithm it is again im-portant that the uniform distribution is preserved. A similar result is Proposition1 in [PiSpWo 96℄ (for the 
ase of graphs instead of 
on�gurations).Lemma 13. If we apply the algorithm above to a uniformly random � 2 Con(�n),(�n �xed) for a given number of iterations we get: Conditional on the event (inCon(�n)) that the 
on�guration obtained, 	 , is in Con(n00; n01 n02; n03; : : : ; n0d) the
on�guration 	 is a uniformly random 
on�guration from this spa
e.8



Lemma 14. We 
onsider probability spa
es Con(�n) where the number of heavyverti
es is � Æ � n. In one round of Algorithm 12 one light 
lass disappearsand we get � k � 1 new light 
lasses. Let Y : Con(�n) ! N be the numberof new light 
lasses after one round of Algorithm 12. Let � = Pi i � ni and� = (k �nk)=�. Thus � is the probability to pi
k a 
opy of degree k when pi
kinguniformly at random from all 
opies belonging to edges.Then:(a) Pr[Y = l℄ = Pr[Bin(deg(W ); �) = l℄ + o(1).(b) EY � (k � 1) � � + o(1).The straightforward proof of this lemma is omitted due to la
k of spa
e. Ournext step is to bound �.Lemma 15. � � (1� �)=(k � 1) for some � > 0.Proof. We will prove that when p = r(k; d) then � = 1=(k � 1). Sin
e � is easilyshown to be de
reasing in p, this proves our lemma. Re
all that r(k; d) is de�nedto be the minimum of the fun
tion L(�). Therefore, at L(�) = r(k; d), we haveL0(�) = 0. Di�erentiating L, we get:d�1Xi=k�1�d� 1i ��i(1��)d�1�i = d�1Xi=k�1�d� 1i ��i(1��)d�2�i(i� (d� 1)�): (5)A simple indu
tive proof shows that the RHS of (5) is equal to(k � 1)�d� 1k � 1��k�1(1� �)d�k: (6)Indeed, it is trivially true for k = d, and if it is true for k = r+1 then for k = rthe RHS is equal to�d� 1r � 1��r�1(1� �)d�1�r(r � 1� (d� 1)�) + r�d� 1r ��r(1� �)d�1�r= (r � 1)�d� 1r � 1��r�1(1� �)d�rSetting j = i+ 1, and multiplying by �d, the LHS of (5) 
omes to:dXj=k d�d� 1j � 1��j(1� �)d�j = dXj=k j�dj��j(1� �)d�j ;and (6) 
omes tod(k � 1)�d� 1k � 1��k(1� �)d�k = k(k � 1)�dk��k�1(1� �)d�k:Now, sin
e � = k�dk��k�1(1� �)d�kPdj=k j�dj��j(1� �)d�j + o(1);this establishes our lemma. ut9



Lemma 16. Algorithm 12 stops after o(n) rounds of the while loop with a linearsize k�
ore with high probability (with respe
t to Con(�n)).Proof. We de�ne Yi to be the number of light 
lasses remaining after i steps ofAlgorithm 12. By assumption, Y0 = o(n). Furthermore, by Lemmas 14 and 15,we have EY1 � Y0 � 1+ (k� 1)� < Y0 � �. Furthermore, it is not hard to verifythat, sin
e there are �(n) 
lasses of degree k, then so long as i = o(n) we haveEYi+1 � Yi � 12�;and in parti
ular, the probability that at least ` new light verti
es are formedduring step i is less than the probability that the binomial variable Bin(k�1; �)is at least `.Therefore, for any t = o(n), Y0; Y1; :::; Yt is statisti
ally dominated by a ran-dom walk de�ned as:Z0 = Y0;Zi+1 = Zi � 1 +Bin(k � 1; 1� 12�k � 1 ):Sin
e Zi has a drift of � 12�, it is easy to verify that with high probability, Zt = 0for some t = o(n), and thus with high probability Yt = 0 as well.If Yt = 0 then we are left with a k-
ore of linear size. utClearly Lemma 16 implies Theorem 1(a).Referen
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