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Abstract. Random regular graphs are, at least theoretically, popular
communication networks. The reason for this is that they combine low
(that is constant) degree with good expansion properties crucial for effi-
cient communication and load balancing. When any kind of communica-
tion network gets large one is faced with the question of fault tolerance
of this network. Here we consider the question: Are the expansion prop-
erties of random regular graphs preserved when each edge gets faulty
independently with a given fault probability? We improve previous re-
sults on this problem: Expansion properties are shown to be preserved
for much higher fault probabilities and lower degrees than was known
before. Our proofs are much simpler than related proofs in this area.

Introduction

A natural question in the theory of fault tolerance of communication networks
reads: Is it possible to simulate the non-faulty network on the faulty one with a
well determined slowdown? Here one assumes that the network proceeds in syn-
chronous steps and in each step each processor (= node of the network) performs
some local computation and some communication steps. Ideally one would like to
simulate the non-faulty network in such a way that the simulation is slower only
by a constant factor showing that the time is essentially unchanged. Whereas
such efficient simulations are known for networks with unbounded degree, like
the hypercube, it is still an important question whether they exist for bounded
degree networks like the butterfly [CoMaSi 95]. Note that all of this paper refers
to random faults, that is each component (normally edge or node) gets faulty
independently with a given fault probability and the results only hold with high
probability meaning with probability going to 1 when the network gets large.
Random regular graphs with given degree d > 3 are well known to be ex-
pander graphs (with high probability) [Bo 88]: There is a constant C' (< 1) such
that each subset X of nodes has > C - | X| neighbours adjacent to X but not
belonging to X (provided X contains at most half of all vertices). If we ever were
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to simulate computation on a random regular graph with slowdown only by a
constant factor on the faulty graph we would need a linear size expander inside
the faulty graph.

The investigation of random regular graphs with edge faults starts with the
paper [Sp et al. 94]. In the succeeding paper [NiSp 95] attention is drawn to
the preservation of expansion properties. Some sufficient conditions are given. In
work by the first author [Go 97] a threshold result for the existence of a linear size
component is proved. In [Go 98] we give a sufficient condition on fault probability
and degree such that we can find a linear size expander efficiently — a question
not treated in the initial work on expansion [NiSp 95]. Crucial to our result is
the notion of a k—core: The k—core of a given graph is the (unique) maximal
subgraph where each node has degree at least k. In [Go 98] we first observe that
the 3—core of a faulty random regular graph is an expander (this follows simply
from randomness properties of the 3—core). Second, we present a simple edge
deletion algorithm which is shown to find a 3—core of linear size when d > 42
and each edge is non-faulty with probability at least 20/d.

The present paper improves considerably on these results: We give a precise
threshold on the fault probability for the existence of a linear size k—core for
any d > k > 3. Thus improving the previous bounds for the existence of
an expanding subgraph. For example when the degree is as low as 4 and each
edge is faulty with probability < 1/9 we have a linear size 3—core and thus an
expanding subgraph.

Our proof uses a proof technique originally developed for [MoPi]. It is tech-
nically quite simple. This is in sharp constrast to the previous proofs of the
weaker results mentioned above relying on technically advanced probability the-
oretic tools. This technique applies to a wide range of similar problems (see
[MoWo]). The technique was inspired by the original (more involved) proof of
the k-core threshold for G,, , given in [PiSpWo 96].

1 Outline

We will study random regular graphs with edge faults by focussing on the con-
figuration model (cf.[Bo 85]). It is well known that properties which hold a.s.
(almost surely) for a uniformly random d-regular configuration also hold a.s.
for a uniformly random d-regular simple graph. For the configuration model, we
consider n disjoint d—element sets called classes; the elements of these classes
are called copies. A configuration is a partition of the set of all copies into
2—element sets, which are edges. Identifying classes with vertices, configura-
tions determine multigraphs and standard graph theoretic terminology can be
applied to configurations. More details can be found in [Bo 85]. We fix the de-
gree d and the probability p for the rest of this paper and consider probability
spaces Con(n, d, p) of random configurations where each edge is present with
probability p or absent with fault probability f = 1 — p. We call this space
the space of faulty configurations. An element of this space of is best considered
as being generated by the following probabilistic experiment consisting of two



stages:

(1) Draw randomly a configuration & = (W, E) where W = W, U ... U W,
and |W;| = d. (2) Delete each edge of @, along with its end-copies, independently
with fault probability f.

The probability of a fixed faulty configuration with k edges is (n-d — 2-
) (1 — p)(md/2) =k . pk Given k, each set of k edges is equally likely to occur.
The degree of a class W with respect to a faulty configuration &, Degg (W), is
the number of copies of W which were not deleted. Note that edges {x, y} with
x,y € W contribute with two to the degree. The degree of a copy x, Degg (), is
the degree of the class to which x belongs. The k-core of a faulty configuration
is the maximal subconfiguration of the faulty configuration in which each class
has a degree > k. We call classes of degree less than k light whereas classes of
degree at least k are heavy. By Bin(m,\) we denote the binomial distribution
with parameters m and success probability A.

We now give an overview of the proof of the following theorem which is the
main result of this paper. For d > k > 3 we consider the real valued function
L(X) = A/Pr[Bin(d—1, A) > k—1] which we definefor 0 < A < 1. L(1) =1 and
L(A) goes to infinity for A approaching 0. Moreover L(A) has a unique minimum
for 1 > A > 0. Let 7(k, d) = min{L(\)|1 > lambda > 0}. For example we
have that (3, 4) = 8/9. The definition of r(k,d) is, no doubt, mysterious at
this point, but we will see that it has a very natural motivation.

Theorem 1. (a) If p > r(k,d) then a random @ € Con(n, d, p) has a k— core
of linear size with high probability.

(b) If p < r(k,d) then a random ® € Con(n, d, p) has only the empty k-core
with high probability.

Theorem 1 implies that the analogous result holds for the space of faulty
random regular graphs (obtained as: first draw a graph, second delete the faulty
edges). The following algorithm which can easily be executed in the faulty net-
work itself is at the heart of our argument.

Algorithm 2. The Global Algorithm
Input: A faulty configuration @, output: The k-core of &.

while @ has light classes do
& := the modification of @ where all light classes are deleted.
od. Output &.

Specifically, when we delete a class, W, we delete (i) all copies within W, (ii)
all copies of other classes which are paired with copies of W, (iii) W itself. Note
that it is possible for W itself to still be undeleted but to contain no copies as
they were all deleted as a result of neighbouring classes being deleted, or faulty
edges. In this case, of course, W is light and so it will be deleted on the next
iteration. At the end of the algorithm & has only classes of degree > k, which
form the k-core. The following notion will be used later on: A class W of the
faulty configuration @ survives j (j > 0) rounds of the global algorithm with



degree t iff W has not yet been deleted and has degree t after the j’th execution
of the while-loop of the algorithm with input @. A class simply survives if it has
not yet been deleted.

In section 2 we analyze this algorithm when run for j — 1 executions of
the loop where we set j = j(n) = 4/log; n throughout. We prove that the
number of classes surviving j — 1 rounds with degree ¢t > k is linear in n with
high probability when p > r(k,d) whereas the number of light classes is o(n).
(Initially this number is linear in n.) An extra argument presented in section 4
will show how to get rid of these few light classes leaving us with a linear size
k—core provided p > r(k,d). On the other hand, if p < r(k,d) then we show
that the expected number of classes surviving j — 1 rounds with any degree is
o(n) and that we have no longer enough classes to form a k—core. This is shown
in section 3.

2 Reduction of the number of light classes

For d > t > 0, and for a particular integer j, we let
X: : Con(n, d, p) - N (1)

be the number of classes surviving j — 1 rounds of the global algorithm with
degree equal to t. As usual we can represent X = X; as a sum of indicator
random variables

X:XW1+"'+XWn7 (2)

where Xy assumes the value 1 when the class W survives j — 1 rounds with
degree equal to ¢ and 0 when this is not the case. Then EX = n - E[Xw] =

n - Pr[W survives with degree t] for W arbitrary. We determine

Pr[W survives with degree t] approximately, that is an interval of width o(1)
which includes the probability. The probability of the event: W survives j —
1 rounds with degree ¢, turns out to depend only on the j—environment of
W defined as: For a class W the j—environment of W, j — Envg (W), is that
subconfiguration of @ which has as classes the classes whose distance from W
is at most j. Here distance means the number of edges in a shortest path. The
edges of j — Envg(W) are those induced from &.

The proof of the following lemma follows with standard conditioning tech-
niques observing that the j—environment of a class W in a random configuration
can be generated by a natural probabilistic breadth first generation process (cf.
[Go 97] for details on this.) Here it is important that j only slowly goes to infinity.

Lemma 3. Let W be a fized class then Pr{j — Enve (W) is a tree} > 1 — o(1).

Note that the lemma does not mean: Almost always the j-environment of all
classes is a tree. The definition of j-environment extends to faulty configurations



in the obvious manner. Focussing on a j-environment which is a tree is very
convenient since in a faulty configuration, it can be thought of as a branching
process whereby the number of children of the root is distributed as Bin(d, p),
and the number of children of each non-root as Bin(d — 1, p).

The following algorithm approximates the effect the global algorithm has on
a fixed class W, provided the j—environment of W is a tree.

Algorithm 4. The Local Algorithm.
Input: A (sub-)configuration I', which is a j—environment of a class W in a
faulty configuration. I" is a tree with root W.
¢ =T
fori = j — 1 downto 0 do
Modify @ as follows: Delete all light classes in depth i of the tree @.
od.
The output is “W survives with degree t” if W is not deleted and has final degree
t. If W is deleted then the output is “W does not survive”.

Note that it is not possible for W to survive with degree less than k. By
round [ of the algorithm we mean an execution of the loop with i = j —1[ where
1 <1< j. A class in depth i where 0 < i < j survives with degree ¢ iff it is not
deleted and has degree t after round j — 4 of the algorithm. Note that classes
in depth j are never deleted and so they are considered to always survive. The
next lemma states in which respect the local algorithm approximates the global
one. The straightforward formal proof is omitted in this abridged version.

Lemma 5. Let j > 1. For each class W and each faulty configuration & where
Jj — Envg(W) is a tree we have: After j — 1 rounds of the global algorithm with
& the class W survives with degree t > k. & After running the local algorithm
with j — Envg(W) the class W survives with degree t > k.

Note that W either survives j — 1 rounds of the global algorithm and the
whole local algorithm with the same degree ¢ > k or does not survive the local
algorithm in which case it does or does not survive j — 1 global rounds, but does
certainly not survive j global rounds.

We condition the following considerations on the almost sure event that for
j = j(n) the j—environment of the class W in the underlying fault free config-
uration is a tree (cf. Lemma 3). We denote this environment in a random faulty
configuration by I'. We turn our attention to the calculation of the survival
probability with the local algorithm.

Fori with 0 < i < j—1let ¢; be the probability that a class in level (=depth)
j — i of I' survives the local algorithm applied to I'. As the j-enviroment in the
underlying fault-free configuration is a tree, the survival events of the children
of given class are independent. Therefore:

¢o = land ¢; = Pr[Bin(d—1,p-¢i—1) > k—1]. (3)

And furthermore, considering now the root W of the j-environment, we get for
t > k by analogous considerations:
Pr[W survives the local algorithm with degree t.] = Pr[Bin(d, p- ¢;—1) = t].



We have that the sequence of the ¢;’s is monotonically decreasing and in the
interval [0, 1]. Hence ¢ = ¢(p) = lim;_, o ¢; is well defined and as all functions
involved are continuous we get: ¢ = Pr[Bin(d — 1,p- ¢) > k — 1]. (Note that
this is no definition of ¢, the equation is always satisfied by ¢ = 0.)

Two further notations for subsequent usage: A\;; = A i(p) = Pr[Bin(d, p-
¢i—1) = t] for i > 1. Again we have that the A; ;’s are monotonically decreasing
and between 0 and 1 and Ay = A;(p) = lim;_, 0 A¢ ;. exists. Hence for our fixed
class W, considering 7 — oo, we get:

Pr[W survives the local algorithm with degree t.] = Ar; = A + o(1). (4)

Here is where our formula for r(k, d) comes from:
Lemma 6. ¢ > 0 iff p > r(k,d).

Proof. First let ¢ > 0. As stated above we have ¢ = Pr[Bin(d —1,p¢) > k —1].
Therefore Pr[Bin(d — 1,p¢) > k — 1] > 0 and setting A = p- ¢, we get A/p =
Pr[Bin(d —1,A) > k— 1] and so p = A\/Pr(Bin(d —1,A\) > k—1) = L()\) and
the result follows.

Now let p > r(k,d). Let A\g be such that r(k, d) = L(\o). We show by
induction on i that p-¢; > Ag. For the induction base we get: p-¢9g = p >
r(k, d) > Ao where the last estimate holds because the denominator in the
definition of L()\g) always is < 1. For the induction step we get:
p-is1 = p-PriBin(d—1, p-¢;) > k—1] > p-Pr(Bin(d—1,%) > k—1] > Xy
where the last but one estimate uses the induction hypothesis and the last one
follows from the assumption. O

We now return to the analysis of the global algorithm. The next corollary
follows directly with Lemma 3, Lemma 5, and (4).

Corollary 7. Let W be a fized class, t > k and let j = j(n) = /loggn. In
the space of faulty configurations we have (cf.(2)):

PriXw = 1] = Pr{W survives j(n) — 1 global rounds with degree t}

= At =+ 0(1)

Next the announced concentration result:

Theorem 8. Lett > k, X = X; be the random variable defined as in (1), and
let A = A\¢; then we have:

(1) EX = X-n + o(n). (2) Almost surely | X — X-n| < o(n).

Proof. (1) The claim follows from the representation of X as a sum of indicator
random variables (cf. (2)) and with Corollary 7.

(2) We show that VX = o(n?). This implies the claim with an application
of Tschebycheft’s inequality. We have X = Xy, + Xw, + ... + Xw, (cf.
(2)). This and (1) of the present theorem implies VX = E[X?] — (EX)? =



E[X?] — (A% -n% + 0(n) -n). Moreover, E[X?] = EX +n-(n—1)-E[Xy-Xw] =
A-n+o(n) +n-(n—1)-E[Xy-Xw], where U and W are two arbitrary distinct
classes. We need to show that E[X?] = A\? - n? + o(n?). This follows from
E[Xy - Xw] = A? + o(1) showing that the events Xy = 1 and Xy = 1 are
asymptotically independent. This follows by conditioning on the event that the
j—environments of U and W are disjoint trees and analyzing the breadth first
generation procedure for the j— environment of a given class. Again we need
that 7 goes only slowly to infinity. O

3 When there is no k-core

The proof of Theorem 1(b) is now quite simple. First we need the following fact:

Lemma 9. A.s. a random member of Con(n,d,p) has no k-core on o(n) ver-
tices.

Proof. The lemma follows from the fact that a random member of Con(n, d) a.s.
has no subconfiguration with average degree at least 3 on at most en vertices,
where € = €(d) is a small positive constant. Consider any s < en. The number of
choices for s classes, 1.5s edges from amongst those classes, and copies for the
endpoint of each edge, is at most:

n (;) 3s
d’®.
(s) (1.55)
Setting M(t) = t!/(21/%(t/2)!) to be the number of ways of pairing ¢ copies,

we have that for any such collection, the probability that those pairs lie in our
random member of Con(n,d) is

M((d — 3s)n) /M (dn) < (5)1-58.

Therefore, the expected number of such subconfigurations is at most:

(1) (2 Jarn(yron < (L L LByon Ly
< (%25 g(o)

n

Therefore, if ¢ = 1/40d° then the expected number of such subconfigurations is
less than )., f(s) which is easily verified to be o(1). O

Now, by Lemma 6, we have for p < r(k, d) that ¢ = 0. Therefore, as j goes to
infinity the expected number of classes surviving j rounds with degree at least
k is o(n) and so almost surely is o(n). With the last lemma we get Theorem 1

(b).



4 When there is a k—core

In this section, we prove Theorem 1(a). So we assume that p > r(k,d). We start
by showing that almost surely very few light clauses survive the first j(n) — 1
iterations:

Lemma 10. In Con(n, d, p) almost surely: The number of light classes after
jn) =1 = y/log,;n — 1 rounds of the global algorithm is reduced to o(n).

Proof. The proof follows with Theorem 8 applied to j —2 and j — 1 (which both
go to infinity). 0

In order to eliminate the light classes still present after j(n)—1 global rounds,
we need to know something about the distribution of the configurations after
j(n) =1 rounds. As usual in similar situations the uniform distribution needs to
be preserved. For n = (ng, n1, na,...,ng) where the sum of the n; is at most
n we let Con(n) be the space of all configurations with n; classes consisting of
i copies. Each configuration is equally likely. The following lemma is proved in
[Go 98].

Lemma 11. Conditioning the space Con(n ,d,p) on those configuration which
give a configuration in Con(n) after i global rounds, each configuration from
Con(n) has the same probability to occur after i global rounds.

After running the global algorithm for j(n) — 1 rounds we get by Lemma 10 a
configuration uniformly distributed in Con(n) where ny + no +...4+ng_1 = o(n)
and |ny — A¢-n| < o(n) for ¢ > k with high probability. A probabilistic analysis
of the following algorithm eliminating the light classes one by one shows that we
obtain a linear size k—core with high probability.

Algorithm 12.

Input: A faulty configuration .

Output: The k—core of ®.

while There exist light classes in @ do
Choose uniformly at random a light class W from all light classes
and delete W and the edges incident with W.

od. The classes of degree > k are the k—core of &.

In order to perform a probabilistic analysis of this algorithm it is again im-
portant that the uniform distribution is preserved. A similar result is Proposition
1 in [PiSpWo 96] (for the case of graphs instead of configurations).

Lemma 13. If we apply the algorithm above to a uniformly random ® € Con(n),
(n fized) for a given number of iterations we get: Conditional on the event (in
Con(n)) that the configuration obtained, ¥, is in Con(ng, nj nb, ni,...,n,) the
configuration ¥ is a uniformly random configuration from this space.



Lemma 14. We consider probability spaces Con(n) where the number of heavy
vertices is > 0 - m. In one round of Algorithm 12 one light class disappears
and we get < k — 1 new light classes. Let Y : Con(n) — N be the number
of new light classes after one round of Algorithm 12. Let v = > .i-n; and
m = (k-ng)/v. Thus  is the probability to pick a copy of degree k when picking
uniformly at random from all copies belonging to edges. Then:
(a) Pr[Y = 1] = Pr[Bin(deg(W), n) = 1] + o(1).
(b)) EY <(k—1)-7 + o(1).

The straightforward proof of this lemma is omitted due to lack of space. Our
next step is to bound 7.

Lemma 15. 7 < (1 —¢)/(k —1) for some € > 0.

Proof. We will prove that when p = r(k,d) then 7 = 1/(k — 1). Since 7 is easily

shown to be decreasing in p, this proves our lemma. Recall that r(k, d) is defined

to be the minimum of the function L(\). Therefore, at L(A\) = r(k,d), we have
L'()\) = 0. Differentiating L, we get:

d—1 | i1 ~ i o
;( e 2 (7 -t - @- . 6)

i i

A simple inductive proof shows that the RHS of (5) is equal to

(k—1) (Z_ D M1 — 2k, (6)

Indeed, it is trivially true for & = d, and if it is true for £k = r + 1 then for k = r
the RHS is equal to

() ta=nr - @- o+ (f - e

=(r—1) <;l_ i) AT = N

Setting j = i + 1, and multiplying by Ad, the LHS of (5) comes to:

éd(;l_ ))\J(l — )1 :j_ikj@i))\j(l — ),

and (6) comes to

d—1 d
d(k —1) PUIC D YL =D T DY R D L D Y

k-1 k

Now, since
E(f)AR=T(1 = p)d=*
= d(k) 4 ( ) - +O(1),
Zj:k J (j)/\](l - /\)dij

this establishes our lemma. O



Lemma 16. Algorithm 12 stops after o(n) rounds of the while loop with a linear
size k— core with high probability (with respect to Con(n)).

Proof. We define Y; to be the number of light classes remaining after ¢ steps of
Algorithm 12. By assumption, Yy = o(n). Furthermore, by Lemmas 14 and 15,
we have BY; <Yy —1+ (k—1)7 < Yy — €. Furthermore, it is not hard to verify
that, since there are @(n) classes of degree k, then so long as i = o(n) we have

1
EYi1 <Yi - 36,

and in particular, the probability that at least £ new light vertices are formed
during step i is less than the probability that the binomial variable Bin(k—1, )
is at least £.
Therefore, for any ¢t = o(n), Yo, Y1, ..., Y; is statistically dominated by a ran-
dom walk defined as:
. 1-—Le
ZOZYO;Zi+1 :Z171+Blﬂ(k711 2 21

).

Since Z; has a drift of f%e, it is easy to verify that with high probability, Z; = 0
for some t = o(n), and thus with high probability Y; = 0 as well.
If Y; = 0 then we are left with a k-core of linear size. O

Clearly Lemma 16 implies Theorem 1(a).
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