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to simulate omputation on a random regular graph with slowdown only by aonstant fator on the faulty graph we would need a linear size expander insidethe faulty graph.The investigation of random regular graphs with edge faults starts with thepaper [Sp et al. 94℄. In the sueeding paper [NiSp 95℄ attention is drawn tothe preservation of expansion properties. Some suÆient onditions are given. Inwork by the �rst author [Go 97℄ a threshold result for the existene of a linear sizeomponent is proved. In [Go 98℄ we give a suÆient ondition on fault probabilityand degree suh that we an �nd a linear size expander eÆiently { a questionnot treated in the initial work on expansion [NiSp 95℄. Cruial to our result isthe notion of a k�ore: The k�ore of a given graph is the (unique) maximalsubgraph where eah node has degree at least k. In [Go 98℄ we �rst observe thatthe 3�ore of a faulty random regular graph is an expander (this follows simplyfrom randomness properties of the 3�ore). Seond, we present a simple edgedeletion algorithm whih is shown to �nd a 3�ore of linear size when d � 42and eah edge is non-faulty with probability at least 20=d.The present paper improves onsiderably on these results: We give a preisethreshold on the fault probability for the existene of a linear size k�ore forany d > k � 3. Thus improving the previous bounds for the existene ofan expanding subgraph. For example when the degree is as low as 4 and eahedge is faulty with probability < 1=9 we have a linear size 3�ore and thus anexpanding subgraph.Our proof uses a proof tehnique originally developed for [MoPi℄. It is teh-nially quite simple. This is in sharp onstrast to the previous proofs of theweaker results mentioned above relying on tehnially advaned probability the-oreti tools. This tehnique applies to a wide range of similar problems (see[MoWo℄). The tehnique was inspired by the original (more involved) proof ofthe k-ore threshold for Gn;p given in [PiSpWo 96℄.1 OutlineWe will study random regular graphs with edge faults by foussing on the on-�guration model (f.[Bo 85℄). It is well known that properties whih hold a.s.(almost surely) for a uniformly random d-regular on�guration also hold a.s.for a uniformly random d-regular simple graph. For the on�guration model, weonsider n disjoint d�element sets alled lasses; the elements of these lassesare alled opies. A on�guration is a partition of the set of all opies into2�element sets, whih are edges. Identifying lasses with verties, on�gura-tions determine multigraphs and standard graph theoreti terminology an beapplied to on�gurations. More details an be found in [Bo 85℄. We �x the de-gree d and the probability p for the rest of this paper and onsider probabilityspaes Con(n; d; p) of random on�gurations where eah edge is present withprobability p or absent with fault probability f = 1 � p. We all this spaethe spae of faulty on�gurations. An element of this spae of is best onsideredas being generated by the following probabilisti experiment onsisting of two2



stages:(1) Draw randomly a on�guration � = (W ; E) where W = W1 :[ : : : :[ Wnand jWij = d. (2) Delete eah edge of �, along with its end-opies, independentlywith fault probability f .The probability of a �xed faulty on�guration with k edges is (n � d � 2 �k)!! � (1 � p)(n�d=2)� k � pk: Given k, eah set of k edges is equally likely to our.The degree of a lass W with respet to a faulty on�guration �, Deg�(W ), isthe number of opies of W whih were not deleted. Note that edges fx ; yg withx ; y 2W ontribute with two to the degree. The degree of a opy x, Deg�(x), isthe degree of the lass to whih x belongs. The k-ore of a faulty on�gurationis the maximal subon�guration of the faulty on�guration in whih eah lasshas a degree � k. We all lasses of degree less than k light whereas lasses ofdegree at least k are heavy. By Bin(m;�) we denote the binomial distributionwith parameters m and suess probability �.We now give an overview of the proof of the following theorem whih is themain result of this paper. For d > k � 3 we onsider the real valued funtionL(�) = �=Pr[Bin(d�1; �) � k�1℄ whih we de�ne for 0 < � � 1. L(1) = 1 andL(�) goes to in�nity for � approahing 0. Moreover L(�) has a unique minimumfor 1 � � > 0. Let r(k; d) = minfL(�)j1 � lambda > 0g. For example wehave that r(3; 4) = 8=9. The de�nition of r(k; d) is, no doubt, mysterious atthis point, but we will see that it has a very natural motivation.Theorem 1. (a) If p > r(k; d) then a random � 2 Con(n; d; p) has a k�oreof linear size with high probability.(b) If p < r(k; d) then a random � 2 Con(n; d; p) has only the empty k-orewith high probability.Theorem 1 implies that the analogous result holds for the spae of faultyrandom regular graphs (obtained as: �rst draw a graph, seond delete the faultyedges). The following algorithm whih an easily be exeuted in the faulty net-work itself is at the heart of our argument.Algorithm 2. The Global AlgorithmInput: A faulty on�guration �, output: The k-ore of �.while � has light lasses do� := the modi�ation of � where all light lasses are deleted.od. Output �.Spei�ally, when we delete a lass,W , we delete (i) all opies within W , (ii)all opies of other lasses whih are paired with opies of W , (iii) W itself. Notethat it is possible for W itself to still be undeleted but to ontain no opies asthey were all deleted as a result of neighbouring lasses being deleted, or faultyedges. In this ase, of ourse, W is light and so it will be deleted on the nextiteration. At the end of the algorithm � has only lasses of degree � k, whihform the k-ore. The following notion will be used later on: A lass W of thefaulty on�guration � survives j (j � 0) rounds of the global algorithm with3



degree t i� W has not yet been deleted and has degree t after the j'th exeutionof the while-loop of the algorithm with input �. A lass simply survives if it hasnot yet been deleted.In setion 2 we analyze this algorithm when run for j � 1 exeutions ofthe loop where we set j = j(n) = plogd n throughout. We prove that thenumber of lasses surviving j � 1 rounds with degree t � k is linear in n withhigh probability when p > r(k; d) whereas the number of light lasses is o(n).(Initially this number is linear in n.) An extra argument presented in setion 4will show how to get rid of these few light lasses leaving us with a linear sizek�ore provided p > r(k; d). On the other hand, if p < r(k; d) then we showthat the expeted number of lasses surviving j � 1 rounds with any degree iso(n) and that we have no longer enough lasses to form a k�ore. This is shownin setion 3.2 Redution of the number of light lassesFor d � t � 0, and for a partiular integer j, we letXt : Con(n; d; p) ! N (1)be the number of lasses surviving j � 1 rounds of the global algorithm withdegree equal to t. As usual we an represent X = Xt as a sum of indiatorrandom variables X = XW1 + � � � + XWn ; (2)where XW assumes the value 1 when the lass W survives j � 1 rounds withdegree equal to t and 0 when this is not the ase. Then EX = n �E[XW ℄ =n � Pr[W survives with degree t℄ for W arbitrary. We determinePr[W survives with degree t℄ approximately, that is an interval of width o(1)whih inludes the probability. The probability of the event: W survives j �1 rounds with degree t, turns out to depend only on the j�environment ofW de�ned as: For a lass W the j�environment of W , j � Env�(W ), is thatsubon�guration of � whih has as lasses the lasses whose distane from Wis at most j. Here distane means the number of edges in a shortest path. Theedges of j � Env�(W ) are those indued from �.The proof of the following lemma follows with standard onditioning teh-niques observing that the j�environment of a lassW in a random on�gurationan be generated by a natural probabilisti breadth �rst generation proess (f.[Go 97℄ for details on this.) Here it is important that j only slowly goes to in�nity.Lemma 3. Let W be a �xed lass then Prfj�Env�(W ) is a treeg � 1 � o(1):Note that the lemma does not mean: Almost always the j-environment of alllasses is a tree. The de�nition of j-environment extends to faulty on�gurations4



in the obvious manner. Foussing on a j-environment whih is a tree is veryonvenient sine in a faulty on�guration, it an be thought of as a branhingproess whereby the number of hildren of the root is distributed as Bin(d; p),and the number of hildren of eah non-root as Bin(d� 1; p).The following algorithm approximates the e�et the global algorithm has ona �xed lass W , provided the j�environment of W is a tree.Algorithm 4. The Loal Algorithm.Input: A (sub-)on�guration � , whih is a j�environment of a lass W in afaulty on�guration. � is a tree with root W .� := �for i = j � 1 downto 0 doModify � as follows: Delete all light lasses in depth i of the tree �.od.The output is \W survives with degree t" ifW is not deleted and has �nal degreet. If W is deleted then the output is \W does not survive".Note that it is not possible for W to survive with degree less than k. Byround l of the algorithm we mean an exeution of the loop with i = j� l where1 � l � j. A lass in depth i where 0 � i � j survives with degree t i� it is notdeleted and has degree t after round j � i of the algorithm. Note that lassesin depth j are never deleted and so they are onsidered to always survive. Thenext lemma states in whih respet the loal algorithm approximates the globalone. The straightforward formal proof is omitted in this abridged version.Lemma 5. Let j � 1. For eah lass W and eah faulty on�guration � wherej � Env�(W ) is a tree we have: After j � 1 rounds of the global algorithm with� the lass W survives with degree t � k. , After running the loal algorithmwith j � Env�(W ) the lass W survives with degree t � k.Note that W either survives j � 1 rounds of the global algorithm and thewhole loal algorithm with the same degree t � k or does not survive the loalalgorithm in whih ase it does or does not survive j�1 global rounds, but doesertainly not survive j global rounds.We ondition the following onsiderations on the almost sure event that forj = j(n) the j�environment of the lass W in the underlying fault free on�g-uration is a tree (f. Lemma 3). We denote this environment in a random faultyon�guration by � . We turn our attention to the alulation of the survivalprobability with the loal algorithm.For i with 0 � i � j�1 let �i be the probability that a lass in level (=depth)j � i of � survives the loal algorithm applied to � . As the j-enviroment in theunderlying fault-free on�guration is a tree, the survival events of the hildrenof given lass are independent. Therefore:�0 = 1and �i = Pr[Bin(d� 1; p � �i�1) � k � 1℄: (3)And furthermore, onsidering now the root W of the j-environment, we get fort � k by analogous onsiderations:Pr[W survives the loal algorithm with degree t:℄ = Pr[Bin(d; p � �j�1) = t℄.5



We have that the sequene of the �i's is monotonially dereasing and in theinterval [0; 1℄. Hene � = �(p) = limi!1 �i is well de�ned and as all funtionsinvolved are ontinuous we get: � = Pr[Bin(d � 1; p � �) � k � 1℄. (Note thatthis is no de�nition of �, the equation is always satis�ed by � = 0.)Two further notations for subsequent usage: �t;i = �t;i(p) = Pr[Bin(d; p ��i�1) = t℄ for i � 1. Again we have that the �t;i's are monotonially dereasingand between 0 and 1 and �t = �t(p) = limi!1 �t;i: exists. Hene for our �xedlass W , onsidering j !1, we get:Pr[W survives the loal algorithm with degree t:℄ = �t;j = �t + o(1): (4)Here is where our formula for r(k; d) omes from:Lemma 6. � > 0 i� p > r(k; d).Proof. First let � > 0. As stated above we have � = Pr[Bin(d� 1; p�) � k� 1℄.Therefore Pr[Bin(d � 1; p�) � k � 1℄ > 0 and setting � = p � �, we get �=p =Pr[Bin(d� 1; �) � k � 1℄ and so p = �=Pr(Bin(d� 1; �) � k � 1) = L(�) andthe result follows.Now let p > r(k; d). Let �0 be suh that r(k; d) = L(�0). We show byindution on i that p � �i � �0. For the indution base we get: p � �0 = p >r(k; d) � �0 where the last estimate holds beause the denominator in thede�nition of L(�0) always is � 1. For the indution step we get:p ��i+1 = p �Pr[Bin(d�1; p ��i) � k�1℄ � p �Pr[Bin(d�1; �0) � k�1℄ > �0where the last but one estimate uses the indution hypothesis and the last onefollows from the assumption. utWe now return to the analysis of the global algorithm. The next orollaryfollows diretly with Lemma 3, Lemma 5, and (4).Corollary 7. Let W be a �xed lass, t � k and let j = j(n) = plogd n. Inthe spae of faulty on�gurations we have (f.(2)):Pr[XW = 1℄ = PrfW survives j(n)� 1 global rounds with degree tg= �t + o(1).Next the announed onentration result:Theorem 8. Let t � k, X = Xt be the random variable de�ned as in (1), andlet � = �t; then we have:(1) EX = � � n + o(n): (2) Almost surely jX � � � nj � o(n).Proof. (1) The laim follows from the representation of X as a sum of indiatorrandom variables (f. (2)) and with Corollary 7.(2) We show that V X = o(n2). This implies the laim with an appliationof Tshebyhe�'s inequality. We have X = XW1 + XW2 + : : : + XWn (f.(2)). This and (1) of the present theorem implies V X = E[X2℄ � (EX)2 =6



E[X2℄ � (�2 � n2 + o(n) �n). Moreover, E[X2℄ = EX + n�(n�1)�E[XU �XW ℄ =� �n + o(n) + n � (n�1) �E[XU �XW ℄, where U and W are two arbitrary distintlasses. We need to show that E[X2℄ = �2 � n2 + o(n2). This follows fromE[XU � XW ℄ = �2 + o(1) showing that the events XU = 1 and XW = 1 areasymptotially independent. This follows by onditioning on the event that thej�environments of U and W are disjoint trees and analyzing the breadth �rstgeneration proedure for the j� environment of a given lass. Again we needthat j goes only slowly to in�nity. ut3 When there is no k-oreThe proof of Theorem 1(b) is now quite simple. First we need the following fat:Lemma 9. A.s. a random member of Con(n; d; p) has no k-ore on o(n) ver-ties.Proof. The lemma follows from the fat that a random member of Con(n; d) a.s.has no subon�guration with average degree at least 3 on at most �n verties,where � = �(d) is a small positive onstant. Consider any s � �n. The number ofhoies for s lasses, 1:5s edges from amongst those lasses, and opies for theendpoint of eah edge, is at most:�ns�� �s2�1:5s�d3s:Setting M(t) = t!=(2t=2(t=2)!) to be the number of ways of pairing t opies,we have that for any suh olletion, the probability that those pairs lie in ourrandom member of Con(n; d) isM((d� 3s)n)=M(dn) < ( en )1:5s:Therefore, the expeted number of suh subon�gurations is at most:�ns�� �s2�1:5s�d3s( en )1:5s < (ens )s(e(s2=2)1:5s )1:5s( en )1:5s� (20d6sn ):5s = f(s):Therefore, if � = 1=40d6 then the expeted number of suh subon�gurations isless than Pns=2 f(s) whih is easily veri�ed to be o(1). utNow, by Lemma 6, we have for p < r(k; d) that � = 0. Therefore, as j goes toin�nity the expeted number of lasses surviving j rounds with degree at leastk is o(n) and so almost surely is o(n). With the last lemma we get Theorem 1(b). 7



4 When there is a k�oreIn this setion, we prove Theorem 1(a). So we assume that p > r(k; d). We startby showing that almost surely very few light lauses survive the �rst j(n) � 1iterations:Lemma 10. In Con(n; d; p) almost surely: The number of light lasses afterj(n)� 1 = plogd n� 1 rounds of the global algorithm is redued to o(n).Proof. The proof follows with Theorem 8 applied to j� 2 and j� 1 (whih bothgo to in�nity). utIn order to eliminate the light lasses still present after j(n)�1 global rounds,we need to know something about the distribution of the on�gurations afterj(n)� 1 rounds. As usual in similar situations the uniform distribution needs tobe preserved. For �n = (n0; n1; n2; : : : ; nd) where the sum of the ni is at mostn we let Con(�n) be the spae of all on�gurations with ni lasses onsisting ofi opies. Eah on�guration is equally likely. The following lemma is proved in[Go 98℄.Lemma 11. Conditioning the spae Con(n ; d ; p) on those on�guration whihgive a on�guration in Con(�n) after i global rounds, eah on�guration fromCon(�n) has the same probability to our after i global rounds.After running the global algorithm for j(n)�1 rounds we get by Lemma 10 aon�guration uniformly distributed in Con(�n) where n1 + n2 + :::+nk�1 = o(n)and jnt � �t �nj � o(n) for t � k with high probability. A probabilisti analysisof the following algorithm eliminating the light lasses one by one shows that weobtain a linear size k�ore with high probability.Algorithm 12.Input: A faulty on�guration �.Output: The k�ore of �.while There exist light lasses in � doChoose uniformly at random a light lass W from all light lassesand delete W and the edges inident with W .od. The lasses of degree � k are the k�ore of �.In order to perform a probabilisti analysis of this algorithm it is again im-portant that the uniform distribution is preserved. A similar result is Proposition1 in [PiSpWo 96℄ (for the ase of graphs instead of on�gurations).Lemma 13. If we apply the algorithm above to a uniformly random � 2 Con(�n),(�n �xed) for a given number of iterations we get: Conditional on the event (inCon(�n)) that the on�guration obtained, 	 , is in Con(n00; n01 n02; n03; : : : ; n0d) theon�guration 	 is a uniformly random on�guration from this spae.8



Lemma 14. We onsider probability spaes Con(�n) where the number of heavyverties is � Æ � n. In one round of Algorithm 12 one light lass disappearsand we get � k � 1 new light lasses. Let Y : Con(�n) ! N be the numberof new light lasses after one round of Algorithm 12. Let � = Pi i � ni and� = (k �nk)=�. Thus � is the probability to pik a opy of degree k when pikinguniformly at random from all opies belonging to edges.Then:(a) Pr[Y = l℄ = Pr[Bin(deg(W ); �) = l℄ + o(1).(b) EY � (k � 1) � � + o(1).The straightforward proof of this lemma is omitted due to lak of spae. Ournext step is to bound �.Lemma 15. � � (1� �)=(k � 1) for some � > 0.Proof. We will prove that when p = r(k; d) then � = 1=(k � 1). Sine � is easilyshown to be dereasing in p, this proves our lemma. Reall that r(k; d) is de�nedto be the minimum of the funtion L(�). Therefore, at L(�) = r(k; d), we haveL0(�) = 0. Di�erentiating L, we get:d�1Xi=k�1�d� 1i ��i(1��)d�1�i = d�1Xi=k�1�d� 1i ��i(1��)d�2�i(i� (d� 1)�): (5)A simple indutive proof shows that the RHS of (5) is equal to(k � 1)�d� 1k � 1��k�1(1� �)d�k: (6)Indeed, it is trivially true for k = d, and if it is true for k = r+1 then for k = rthe RHS is equal to�d� 1r � 1��r�1(1� �)d�1�r(r � 1� (d� 1)�) + r�d� 1r ��r(1� �)d�1�r= (r � 1)�d� 1r � 1��r�1(1� �)d�rSetting j = i+ 1, and multiplying by �d, the LHS of (5) omes to:dXj=k d�d� 1j � 1��j(1� �)d�j = dXj=k j�dj��j(1� �)d�j ;and (6) omes tod(k � 1)�d� 1k � 1��k(1� �)d�k = k(k � 1)�dk��k�1(1� �)d�k:Now, sine � = k�dk��k�1(1� �)d�kPdj=k j�dj��j(1� �)d�j + o(1);this establishes our lemma. ut9



Lemma 16. Algorithm 12 stops after o(n) rounds of the while loop with a linearsize k�ore with high probability (with respet to Con(�n)).Proof. We de�ne Yi to be the number of light lasses remaining after i steps ofAlgorithm 12. By assumption, Y0 = o(n). Furthermore, by Lemmas 14 and 15,we have EY1 � Y0 � 1+ (k� 1)� < Y0 � �. Furthermore, it is not hard to verifythat, sine there are �(n) lasses of degree k, then so long as i = o(n) we haveEYi+1 � Yi � 12�;and in partiular, the probability that at least ` new light verties are formedduring step i is less than the probability that the binomial variable Bin(k�1; �)is at least `.Therefore, for any t = o(n), Y0; Y1; :::; Yt is statistially dominated by a ran-dom walk de�ned as:Z0 = Y0;Zi+1 = Zi � 1 +Bin(k � 1; 1� 12�k � 1 ):Sine Zi has a drift of � 12�, it is easy to verify that with high probability, Zt = 0for some t = o(n), and thus with high probability Yt = 0 as well.If Yt = 0 then we are left with a k-ore of linear size. utClearly Lemma 16 implies Theorem 1(a).Referenes[Bo 85℄ Bela Bollobas. Random Graphs. Aademi Press. 1985.[Bo 88℄ {.The isoperimetri number of random regular graphs. European Journalof Combinatoris. 1988, 9, 241-244.[CoMaSi 95℄ Rihard Cole, Brue Maggs, Ramesh Sitaraman. Routing on Butterynetworks with random faults. In Proeedings FoCS 1995. IEEE. 558-570.[Go 97℄ Andreas Goerdt. The giant omponent threshold for random regulargraphs with edge faults. In Proeedings MFCS 1997. LNCS 1295. 279-288.[Go 98℄ {. Random regular graphs with edge faults: expansion through ores. InProeedings ISAAC 1998. LNCS 1533, 219-228.[PiSpWo 96℄ Boris Pittel, Joel Spener, Niholas Wormald. Sudden emergene of agiant k-ore in a random graph. Journal of Combinatorial Theory B67,1996,111-151.[MoPi℄ Mike Molloy and Boris Pittel. Subgraphs with average degree 3 in arandom graph. In preparation.[MoWo℄ Mike Molloy and Nik Wormald.In preparation.[Sp et al. 94℄ S. Nikoletseas, K. Palem, P. Spirakis, M. Yung. Vertex disjoint pathsand multonnetivity in random graphs: Seure network omputing. InProeedings ICALP 1994. LNCS 820. 508-519.[NiSp 95℄ Paul Spirakis and S. Nikoletseas. Expansion properties of random regulargraphs with edge faults. In Proeedings STACS 1995. LNCS 900. 421-432. 10


