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Abstract

This review covers current knowledge of selenium in the environment, dietary intakes, metabolism and status,
functions in the body, thyroid hormone metabolism, antioxidant defense systems and oxidative metabolism, and
the immune system. Selenium toxicity and links between deficiency and Keshan disease and Kashin-Beck
disease are described. The relationships between selenium intake=status and various health outcomes, in par-
ticular gastrointestinal and prostate cancer, cardiovascular disease, diabetes, and male fertility, are reviewed,
and recent developments in genetics of selenoproteins are outlined. The rationale behind current dietary ref-
erence intakes of selenium is explained, and examples of differences between countries and=or expert bodies are
given. Throughout the review, gaps in knowledge and research requirements are identified. More research is
needed to improve our understanding of selenium metabolism and requirements for optimal health. Functions
of the majority of the selenoproteins await characterization, the mechanism of absorption has yet to be identified,
measures of status need to be developed, and effects of genotype on metabolism require further investigation.
The relationships between selenium intake=status and health, or risk of disease, are complex but require elu-
cidation to inform clinical practice, to refine dietary recommendations, and to develop effective public health
policies. Antioxid. Redox Signal. 14, 1337–1383.
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I. Introduction

In the last century, interest in selenium and health was
focused primarily on the potentially toxic effects of high

intakes in humans, stimulated by reports of alkali disease in
livestock raised in seleniferous areas (341). The essentiality of
selenium was demonstrated in the mid-1950s (326), when rats
fed a highly purified casein diet developed a fatal liver disease,
which was prevented by certain foods, including brewer’s
yeast; selenium was identified as the active ingredient (327).

In recent years, there has been growing interest in selenium
in relation to Keshan disease (an endemic cardiomyopathy)
and also possible protective effects against cancer and other
chronic diseases. In a large-scale supplementation trial, sele-
nium had an anticarcinogenic effect (86), and although in-
vestigations into the protective role of selenium had been
undertaken for many years before this, both in animals and
case–control studies in humans, the results were difficult to
interpret because neoplastic tissue sequesters selenium (311
cited in 402), and therefore the impact of selenium status on
the initiation and progression of various cancers could not be
evaluated.

There is a relatively narrow margin between selenium in-
takes that result in deficiency or toxicity, with health effects
being related to level of exposure and selenium status. Fur-
ther, the species of selenium is another determinant of its

health effect. This review covers the functions of selenium,
absorption and metabolism, dietary intakes and recommen-
dations, clinical deficiency disorders and toxicity, the effects
of environmental factors and genotype on selenium status,
and the relationship between selenium and health outcomes,
including cardiovascular disease (CVD), cancer, diabetes, in-
flammatory disorders, and male fertility.

II. Selenium in the Environment

A. Soil selenium

Globally, total soil selenium concentrations typically lie
within the range 0.01–2.0 mg=kg with an overall mean of
0.4 mg=kg (130). Much greater concentrations (up to
1200 mg=kg) are found in soils derived from seleniferous
parent materials, including shales, sandstones, limestones,
slate, and coal series (130, 191). Seleniferous soils are wide-
spread in parts of the United States, Canada, South America,
China, and Russia. Although parent geology is the primary
long-term determinant of selenium in soils, significant inputs
of selenium to soils occur following deposition of selenium
from natural (volcanoes, sea spray, volatilization=recycling
via biotic cycling) and anthropogenic (e.g., fossil fuel com-
bustion, sewage, and agricultural inputs such as fertilizers
and lime) sources (64, 191). Annually, fluxes of selenium to
soils from anthropogenic activities are greater than those from
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all natural sources combined. The effect can be seen in long-
term agricultural experiments, where fossil fuel combustion
practices correlate with selenium deposition to crops and soils
(157).

Crop selenium uptake is influenced greatly by the avail-
ability and chemical species of selenium in soils. Inorganic
selenium occurs in three soil-phases—fixed, adsorbed, and
soluble—and only adsorbed=soluble forms of selenium are
thought to be available for plant uptake. In addition, avail-
ability of selenate (þ6 oxidation state) and selenite (þ4) forms
to plants varies markedly, with selenate taken up much more
rapidly than selenite under most soil conditions. Until re-
cently, it was possible to quantify selenium species in different
soil phases only from soils with high adsorbed=soluble sele-
nium loads (50–9000 mg soluble selenium per kg soil) using
Hydride Generation Atomic Absorption Spectroscopy tech-
niques (351). However, anion-exchange liquid chromatogra-
phy (LC) coupled to inductively coupled plasma mass
spectrometry (ICP-MS) have enabled selenium species to be
quantified in soils of low selenium concentrations (<20mg
soluble selenium per kg soil) (351). In UK soils of low selenium
status, adsorbed=soluble selenium concentrations are gener-
ally two orders of magnitude lower than total soil selenium,
and consist primarily of selenite and organic selenium forms
(351).

B. Food sources and selenium species

The amount of selenium in the diet largely depends on
where crops are grown and cultivated, the soil=fodder to
which animals are exposed, and the actual foods consumed.
The effect of selenium species on bioavailability has been re-
viewed recently (117) and data on the selenium content of
foods are available (117, 135, 302, 372). The main food groups
providing selenium in the diet are bread and cereals, meat,
fish, eggs, and milk=dairy products (Fig. 1). Some Brazil nuts
are a particularly rich source, with selenium concentrations
ranging from *0.03–512 mg=kg fresh weight (302).

1. Bread and cereals. The selenium content of bread and
cereals can vary widely from *0.01–30 mg=kg (302). On av-
erage, bread and cereals provide a quarter of the selenium
intake in the UK (Fig. 1). The predominant species of selenium
in wheat and bread are selenomethionine (usually *55%–
85%), selenocysteine (*4%–12%), and selenate=ite (*12%–
19%) (400, 405).

2. Meat, fish, and eggs. The selenium content of meat
depends on many factors. Offal contains relatively high levels
of selenium, in particular liver and kidneys; the selenium
concentrations of kidney, liver, and heart tissue from beef
were 4.5, 0.93, and 0.55 mg=kg, respectively, whereas muscle
was in the region of 0.2 mg=kg (193). Supplementation of
cattle with selenium-enriched yeast increased muscle sele-
nium concentration to *0.6 mg=kg (193). In the United States,
the average selenium content of chicken is *0.2 mg=kg and
beef *0.25–0.3 mg=kg (372). Meat generally provides a rela-
tively large proportion of the selenium intake in omnivorous
populations, and in the UK, it provides one quarter of the total
estimated intake (Fig. 1). The predominant species of sele-
nium in edible portions of meat may be selenomethionine
(*50%–60% of total extractable selenium species) and sele-
nocysteine (20%–31% and *50% of total extractable selenium
species in chicken and lamb, respectively) (47). However, the
total content and species depends mainly on the animals’ diet.

The selenium content in fish is between 0.1 and
*5.0 mg=kg (117, 302, 310); some marine fish are relatively
high in selenium; for example, the selenium content of cod,
shark, and canned tuna is *1.5, 2.0, and 5.6 mg=kg, respec-
tively (117, 310). In the UK, the average selenium content of
fish is *0.42 mg=kg (136). The main selenium species in fish
are selenomethionine (29%–70%) and selenite=selenate (12%–
45%) (77, 117, 302) with the species profile differing between
fish species and the total selenium content.

Hens’ eggs contain from *3 to *25 mg selenium per whole
egg (224). Selenium supplementation of the hen’s diet may
increase the selenium content of eggs to 0.34–0.58 mg=kg

FIG. 1. Contribution of each
food group to total population
dietary exposure in the UK.
Adapted from data presented in
the UK Food Standards Agency
document (136).
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(232); selenium-enriched eggs are widely produced around
the world (125). The main selenium species in eggs are se-
lenocysteine, selenomethionine, and possibly selenite, with
selenomethionine and selenocysteine as the predominant
species (>50%) in egg white and egg yolk, respectively
(224).

3. Milk, dairy products, and beverages. The selenium
content of milk and dairy products varies widely; in the UK,
milk and dairy products contain *0.01–0.03 mg=kg selenium.
The predominant selenium species in cows’ milk are seleno-
cysteine and selenite (256). Supplementation of dairy cows
with selenium-enriched yeast alters the species profile in the
milk and the major species after supplementation are sele-
nocysteine, selenomethionine, and selenite (256).

4. Fruit and vegetables. Fruit and vegetables typically
contain relatively small amounts of selenium. In unenriched
vegetables with low levels of selenium, the major species
may be, for example, selenate in onions (207) or seleno-
methionine (53%), g-glutamyl-Se-methylselenocysteine (31%),
Se-methylselenocysteine (12%), and selenate (4%) in garlic
with natural selenium content of<0.5 mg=kg (207). However,
certain vegetables, such as onions, garlic, and broccoli when
grown on selenium-rich soil can accumulate selenium, re-
sulting in selenium-enrichment from <0.5 mg=kg up to 140–
300 mg=kg. The main selenium species in Se-enriched food
such as onions is g-glutamyl-Se-methylselenocysteine, ac-
counting for *63% of the species, with a relatively smaller
proportion of *10% selenate and 5% selenomethionine, plus
other species (174, 207). In Se-enriched garlic, similar to Se-
onions, g-glutamyl-Se-methylselenocysteine may be the pre-
dominant species (*73%) with also *13% selenomethionine,
4% g-glutamyl-selenomethionine, 3% Se-methylselenocys-
teine, and 2% selenate (181). Selenium-enriched broccoli
sprouts may contain predominantly Se-methylselenocysteine
(*45%) with smaller amounts (*12%–20%) of selenate and
selenomethionine, plus other species of selenium (e.g., ade-

nosylselenohomocysteine) (124). In summary, in vegetables
such as broccoli, onions, and garlic the selenium species
profile is variable depending on the total level of selenium
enrichment, the forms of selenium used for enrichment, and
the type of vegetable; predominant species in selenium-en-
riched vegetables analyzed to date are Se-methylselenocys-
teine or g-glutamyl-Se-methylselenocysteine; these forms of
selenium in foods have received attention due to purported
protection against cancer in animal models when compared
with other forms of selenium (123, 183).

5. Selenium-enriched foods. The only permitted species
of selenium added to foods for particular nutritional use in
Europe, including baby formula milk and total parental nu-
trition foods, are sodium selenate, sodium selenite, and so-
dium hydrogen selenite (127), whereas the predominant
selenium species in most natural and unenriched foods is
selenomethionine (Fig. 2). Selenium-enrichment through fer-
tilization or feeding supplements to animals changes the se-
lenium species profile in some foods, for example, eggs,
onions, garlic, and broccoli (124, 183, 207, 224), but wheat and
meat tend to retain the predominant selenium species as se-
lenomethionine (47, 405). The selenium speciation of foods
and the effect of processing and cooking on the species profile
is a priority for future research.

C. Selenium intake

1. Dietary surveys. The contribution to selenium intake
from drinking water (130) and air is insignificant, except for
individuals working in industries with an occupational ex-
posure risk (e.g., metal recovery and paint production). Diet-
ary selenium intakes can be estimated from dietary surveys,
food composition tables, market basket type surveys, and=or
composite dietary analyses. There are inherent uncertainties
in using all of these data, since dietary surveys are prone to
misreporting, and robust primary data on the selenium con-
centration of different foodstuffs are often lacking or below

FIG. 2. Species of selenium in
natural un-enriched foods, %
contribution of each type of sele-
nium to total=extractable seleni-
um. This figure was produced
from data presented in references
(47, 117, 207, 302, 400, 405) with
the percentage of total=extractable
selenium species presented for
natural un-enriched foods with
typical selenium contents (fresh
weight) for wheat, 0.1–30 mg=kg;
garlic, <0.5 mg=kg; potatoes,
0.12 mg=kg; chicken, 0.5 mg=kg;
lamb, 0.4 mg=kg; fish (cod),
1.5 mg=kg.
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technical limits of detection and=or quantification. For ex-
ample, in the UK, the most recent published dietary survey
reporting mineral intakes is the National Diet and Nutrition
Survey (NDNS) (158, 165). However, under-reporting is
*25% (307), and there can be over-reporting of foods per-
ceived to be healthy, for example, cereals and vegetables (275,
385). Food composition tables may lack robust selenium
concentration data for many food groups. For example, the
Sixth Summary Edition of McCance and Widdowson’s The
Composition of Foods contains mineral concentration data for
up to 3423 types of food and drink products (135). Of these,
selenium data are not reported for 1161 products, ‘‘trace’’ or
zero selenium is reported for 467 products, and the selenium
contents of a further 470 products are estimates. Among the
1325 products for which selenium concentration data are re-
ported, 241 products have the lowest reported selenium
concentration of 1mg=100 g, which may introduce rounding
errors. In the UK’s 2006 Total Diet Survey, a market basket
survey of 24 UK towns reported selenium concentration data
above the limit of quantification for only 7 out of 20 food
groups (136). However, subject to these caveats, it is still
possible to provide estimates of selenium intake, and even
target-specific food groups, by integrating dietary survey data
with food composition data (62).

2. Global variation in selenium intake. Individual dietary
selenium intakes across the world are estimated to range from
3 to 7000mg=day (130, 297, 300, 410). The highest levels of
intake have been recorded in seleniferous regions of China
[>4990mg=day (422)] and Venezuela (130, 298, 299). For Eu-
ropean countries where estimates are available, mean intakes
are typically <50 mg=day per person (298, 299), which is close
to or below the recommended nutrient intake level (127, 300).
In regions of relatively high selenium intake in India, intakes
were estimated to be 475 mg=day for women and 632 mg=day
for men, with >80% of the selenium intake provided by
consumption of cereals grown in high selenium soil in the
local region (164). For large areas of the world (e.g., Africa and
many parts of Asia and Latin America), dietary selenium in-
take estimates are unavailable. Examples of selenium intakes
across the world are shown in Figure 3.

With respect to selenium intake from habitual diet, the UK
is one of the countries with the lowest estimated selenium
intake (Fig. 3). The mean selenium intake from food sources
for men and women (aged 19–64) were 55 and 43mg=day,
respectively. In comparison, intakes in the United States are
much higher: the mean intake from food in the United States
was 133.5� 2.42 mg=day for men and 92.6� 1.57 mg=day for
women (370). There is a very wide variation in selenium

FIG. 3. Global variation in selenium intake. Data shown in Figure 3 were compiled from selenium intake data presented
in references (127, 137, 300, 370). Data are presented for the intakes for males (M) and females (F) where available, with the
latter shown in a lighter shade. The dotted lines represent the intake required to reach maximal plasma GPx3 and seleno-
protein P expression, at *70 and *105mg=day (174, 365).
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intake around the world, and when undertaking risk–benefit
analysis, an important task due to the narrow safe range of
selenium, it is also important to take the use of dietary sup-
plements into account.

3. Selenium intake from dietary supplements. There are
many different formulations of supplements available
worldwide with varying doses and species of selenium, and
selenium is often included in multivitamin=mineral supple-
ments. The selenium content of supplements analyzed in the
United States indicates that they provide between 10 and
200 mg=day (371). Dietary supplement use in the United States
and Europe is common, with over 50% of the population
surveyed in the United States regularly consuming dietary
supplements (289). In the UK, 35% of adults (27% of men and
41% of women) reported taking supplements, predominantly
fish oils and multivitamins=minerals (137), some containing
selenium. Denmark and Finland report 32%–60% use of
supplements, and in Poland and Spain 8%–11% of men and
10%–18% of women consume dietary supplements (127). A
recent evaluation and comparison of national intake survey
data from several countries in Europe, comparing intake from
supplements and habitual diet, estimated that the contribu-
tion from dietary supplements was between 6% and 45% of
the total estimated selenium intake for adult men and women,
with country-specific differences (127). In Finland, where se-
lenium fertilizers are mandatory, the mean estimated sele-
nium intake from the habitual diet for men and women is 79.5
and 56.1 mg=day, respectively. Consumption of dietary sup-
plements by 32% of men and 58% of women was calculated to
provide an extra 5.3 mg=day for men and 10.5 mg=day for
women (127).

The contribution of selenium-containing supplements is
likely to provide an average additional intake of 5–30 mg=day,
but obviously this will vary widely depending on habitual
diet and the content=formulation of the supplement. Also, the
absorption and metabolism of selenium depends on the se-
lenium species in the supplement as well as the dose=amount
consumed and selenium status of the individual. A substan-
tial proportion of supplements available contain one species
of selenium (mainly in multivitamin=mineral supplements),
as selenomethionine, Se-methylselenocysteine, selenite, or
selenate. However, selenium-enriched yeast is a complex
mixture of several different species of selenium and usually
contains more than four different species, including* 23%–
84% selenomethionine, 3%–21% selenocysteine, 1%–20% Se-
methylselenocysteine=g-glutamyl Se-methylselenocysteine,
0.5%–5% Se-adenosyl-selenohomocysteine,* 4% selenate,
plus other selenium species that may vary according to the
media and growth conditions of the selenium-enriched yeast
(302, 400).

III. Selenium Absorption and Metabolism

There is limited knowledge about the biochemical inter-
conversions involved in the metabolism of the different se-
lenium species in mammals, and information concerning
tissue specificity of pathways remains scant. The absorption
of selenium for assimilation and excretion through these
pathways potentially involves multiple membrane transport
mechanisms, but it is a topic that has received little attention
to date.

A. Absorption of dietary selenium

The identity of the transporter proteins responsible for the
absorption of dietary selenium remains uncertain. Membrane
transport proteins with the capacity to mediate uptake of
organic forms of selenium have been identified on the basis of
quantification of the total selenium content of Xenopus laevis
oocytes expressing individual transporters (from injected
in vitro-transcribed mRNA) and provided with different test
substrates. These studies revealed that the selenoamino acids
selenomethionine, methylselenocysteine, and selenocysteine,
but not the seleonoderivatives selenobetaine or selenocysta-
mine, are transported effectively by a suite of intestinal (and
renal) amino acids transporters, in particular by the B0 and
b0þrBAT systems (263). The SLC26 multifunctional anion
exchanger family are good candidates for intestinal selenate
transport, based on published observations concerning inhi-
bition of selenate transport in various experimental epithelial
systems by the SLC26 inhibitor, 4,40-diisothiocyano-2,20-
disulfonic acid stilbene (DIDS), and by substrates including
sulfate and oxalate (336, 406). This view is substantiated by
unpublished data demonstrating expression of several SLC26
family members in human intestine and in the intestinal cell
line Caco-2 and inhibition by selenate of sulfate uptake by
Caco-2 cells (Dianne Ford, pers. comm.).

B. The biochemical interconversion
of selenium species

Assimilation of dietary selenium into selenoproteins occurs
through a series of interconversions about which many details
are still lacking. An overview of the metabolic pathways is
given in Figure 4. For clarity, selenide (H2Se) is considered as a
central point in the metabolic interconversions of both organic
and inorganic selenium compounds. Dietary selenomethio-
nine is converted to selenocysteine (also obtained directly
from the diet, as is Se-methylselenocysteine) via the interme-
diate selenocystathionine through the action of cystathionine
b-synthase and then cystathionine g-lyase (97, 267). Seleno-
methionine released through protein catabolic processes en-
ters the process of metabolic interconversion in the same way
and, unlike selenocysteine, is incorporated nonspecifically in
place of methionine into proteins, depending on availability.
Selenocysteine b-lyase releases selenide (H2Se) from seleno-
cysteine (97, 267); an alternative route for the release of sele-
nide from selenomethionine may be through the action of gut
bacterial methionase (97). Dietary Se-methylselenocysteine
can be converted to methylselenol (CH3SeH) in a cystathione
g-lyase-catalysed reaction (287), which can in turn be de-
methylated to produce selenide (356). Selenite can be reduced
to selenide directly through the action of thioredoxin reduc-
tase (TXNRD, itself a selenoprotein) plus thioredoxin (229) or
it can react with glutathione to form selenodiglutathione
(229). Selenodiglutathione is a substrate for reduction to glu-
tathioselenol by glutathione reductase (229); glutathioselenol
then reacts with glutathione to yield selenide (229). Selenate
is, presumably, assimilated into proteins through reduction to
selenide via the same pathways; however, the mechanism for
reduction of selenate to selenite remains unclear but may in-
volve the activity of TXNRD in the presence of glutathione
and thioredoxin (229). Further steps in the assimilation of
selenide into selenoproteins involve generation of the highly
reactive selenium donor selenophosphate through the activity
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of selenophosphate synthetase (360) and then incorporation of
selenium into selenocysteyl-tRNA [Ser][Sec] through conversion
of O-phospho-l-seryl-tRNA[Ser][Sec] (141). Selenide is also the
intermediate metabolite for selenium excretion; at lower lev-
els of intake it is incorporated into selenosugar for excretion in
urine, and at higher levels of intake methyltransferases add
methyl groups sequentially to convert selenide to methylse-
lenol then dimethylselenide, which is excreted in the breath
and in the feces, then trimethylselonium, which is excreted in
the urine (210, 267).

C. Systemic transport of selenium

Plasma selenoprotein P (SePP) is the major circulating
transport form of selenium, accounting for the majority of
selenium in plasma [up to 60% (162)], and is responsive to
changes in level of dietary exposure (99, 174, 414). In humans,
full-length SePP is a glycosylated protein of 366 amino acids.
Approximately two-thirds of the molecule (amino acid resi-

dues 1–244) is folded into an N-terminal domain that includes
one selenocysteine residue, whereas the smaller C-terminal
domain includes nine selenocysteines, providing the selenium
transport capacity (67). Thiol-redox function has been attrib-
uted to the N-terminal domain, based on the presence of a
thioredoxin fold and on measured functional properties (314,
359). Truncated isoforms of SePP have been described (67)
and in humans two major forms resolve as proteins with
different molecular mass (*50 and *60 kDa) on SDS-PAGE.
The relative ratio of the two isoforms has been reported to be
influenced by genotype with respect to two single nucleotide
polymorphisms (SNPs) in the SePP gene, the effect of which
was abrogated under conditions of selenium supplementa-
tion (243). SePP synthesis is reduced under conditions of di-
etary selenium deficiency and plasma concentrations fall (67).

The phenotypic features of SePP knockout mice are con-
sistent with a role in systemic selenium transport. These fea-
tures include reduced body selenium content and reduced
concentration in some tissues, with accompanying changes in

FIG. 4. A scheme for selenium absorption, metabolism, and distribution. Tissues=cells represented are the enterocyte,
liver, kidney, brain, and testis, as labeled. The metabolic interconversions of selenium compounds shown may include
ubiquitous reactions; other reactions may be specific to particular tissues. The scheme serves to show the details of the
pathways through which selenium obtained as dietary selenocysteine, selenomethionine, Se-methylselenocysteine, selenite,
and selenite, absorbed from the intestinal lumen potentially involving transport proteins as indicated, are converted to
selenide (H2Se), and how this intermediate is incorporated into selenoproteins as selenocysteine. Enzymes catalyzing the
various steps are shown in italics. Major routes of excretion for selenosugar and the methylated metabolites (breath, feces,
and urine) are indicated. For full details, refer to the text. Incorporation of absorbed dietary selenium into secreted GPx3 is
proposed as a pathway through which dietary selenium may enter the portal circulation, to reach the liver for incorporation
into SePP. Other, unidentified mechanisms may also=alternatively transport dietary selenium to the liver. Uptake of SePP by
the testis, brain, and kidney via the apoER2 receptor and megalin is indicated. Other mechanisms for delivery of selenium
carried as SePP to tissues are unknown. Local synthesis, release, and reuptake of SePP by the brain (SePP cycle; important
under selenium-depleted conditions) is indicated. B0, amino acid transport system B0; GPx3, glutathione peroxidase 3; GS-
Se-GS, selenodiglutathione; GS-SeH, glutathioselenol; GSSG, glutathione disulfide; SeCys, selenocysteine; SeMet, seleno-
methionine; SePP, selenoprotein P.
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the activity of selenoproteins (163, 325). A noteable exception
is the thyroid gland, for which mechanisms for prioritization
of selenium supply (see section V.A.2) appear to include
SePP-independent supply of selenium (323). Although SePP
is expressed in most tissues, the current model is that SePP
synthesis in the liver incorporates selenium into SePP for
distribution to other tissues (306). Local SePP biosynthesis
appears to be important in protecting the brain against sele-
nium loss under selenium-deficient conditions (328).

Uptake of SePP from the plasma into tissues, including
testis, kidney, and brain, is emerging as a receptor-mediated
process. For example, mouse Sertoli cells were observed by
immunohistochemistry to contain SePP1-positive vesicles,
and apolipoprotein E receptor-2 (apoER2) was found to be
associated with SePP in preparations of mouse testis (273).
Another member of the lipoprotein receptor family—megalin
(Lrp2)—is believed to mediate SePP uptake from the glo-
merular filtrate in the kidney (271).

In summary, the form in which absorbed dietary selenium
enters the portal circulation appears to have received little
attention, and is likely to vary depending on the dietary
source (e.g., organic or inorganic). The scheme proposed for
the absorption and metabolic interconversion of selenium
compounds (Fig. 4) reveals multiple potential points of in-
teraction with other molecules and=or processes that may
lead to influences of selenium on health and disease and so
provide important targets for future research. Membrane
transport proteins that are involved in the absorption of die-
tary selenium should be identified, and potential interactions
with dietary components and oral pharmaceuticals investi-
gated to aid the development of dietary recommendations
and health policy. Establishing the extent to which specific
metabolic interconversions of selenium compounds are
tissue- or organ-specific, or ubiquitous, will provide a more
detailed model for selenium handling on a whole-body level,
including identification of the molecular forms in which se-
lenium is transported between the tissues; the view that SePP
produced in the liver is the major circulating from of selenium
is substantiated by robust evidence, but it is likely that other
selenoproteins, or other forms of selenium, are also important
transported forms, perhaps with some element of tissue
specificity with respect to production and uptake. Notable in
this context is the form in which selenium leaves the intestinal
enterocyte and in which it is presented to the liver, ultimately
for incorporation into SePP. While receptor-mediated endo-
cytosis, involving specific receptor molecules, is emerging as
the mechanism for uptake of SePP in specific tissues, the
mechanisms involved in delivery of selenium to the tissues in
general remains unknown. A good understanding of sele-
nium metabolism and transport on a whole-body level is es-
sential if research aimed to establish the relationships between
selenium, health, and disease is to be optimally targeted, so
these gaps in knowledge should be addressed as a matter of
priority.

IV. Selenium Status

A. Measurement of status

Methods to assess the selenium status of populations have
been reviewed extensively (23, 130, 191). In some situations,
the overall selenium status of large populations can be pre-
dicted by examining the chemical composition of the terres-

trial environment, in particular soil selenium content, and by
analyzing the selenium composition of generic foodstuffs
and dietary habits. At an individual level, selenium status can
be assessed from hair, toenail, and urinary analysis, or more
directly by assaying the selenium concentration of blood (whole
blood, plasma, serum, or erythrocyte=platelet fractions), and
bioassays of selenoproteins in different blood fractions may
provide more accurate estimates of functional=physiological
selenium status.

The analysis of selenium in hair and toenails is useful as a
long-term biomarker (23). As both tissues are easy to access
and are noninvasive, they are also suitable for fieldwork, but
samples must be prepared with care to avoid contamination.
For example, hair samples can be affected by selenium-
containing shampoo residues. Wide variation in hair selenium
concentration has been reported in populations of contrasting
selenium status in China (<0.1 to >100 mg=kg hair) (130), but
positive correlations have been found between selenium status
and toenail selenium concentrations (316). Urinary selenium
excretion can also be used to determine absorption in bio-
availability studies, or to assess compliance in intervention
studies and is a useful responsive biomarker (23).

Plasma or serum selenium is one of the most commonly
used biomarkers of selenium status, and in a meta-analysis
of 14 studies plasma selenium responded to selenium-
supplementation or selenium-depletion across all subgroups
(23). Plasma selenium is relatively easy to obtain provided
trace element-free collection tubes are available. Whole blood
selenium also responds significantly to supplementation and
is therefore also a useful biomarker. However, there are only a
limited number of studies reporting whole blood selenium, so
the interindividual heterogeneity is unclear and the length of
time needed to incorporate selenium into red blood cells
renders it less responsive than plasma to changes in selenium
intake. It is possible to assess the selenium concentration of
erythrocytes and platelets although samples require almost
immediate processing. Since much of the selenium in red
blood cells is associated with hemoglobin (144), erythrocyte
selenium is again less responsive than plasma selenium.

Although serum=plasma selenium is a useful measure of
selenium status and short-term responses to changes in in-
take, it is not ideal for assessing selenium status in popula-
tions due to the high level of interindividual heterogeneity
(23). Serum=plasma selenium is also affected by confounding
factors, including smoking, alcoholism, and some disease
states. For example, HIV=AIDS appears to lower plasma se-
lenium levels (9, 105). There is also an apparent decline in
plasma selenium in the elderly in certain populations (92, 269,
380), which may occur independently of intake, and one study
suggested that the bioavailability of selenium is influenced by
aging (269). In addition, there is a large effect of dietary se-
lenium species on plasma selenium concentrations. For ex-
ample, organic species of selenium are readily incorporated
into plasma albumin unlike inorganic species (68, 262).

Expression of individual selenoproteins may be useful
measures of selenium status (23, 174, 281). There are a total of
25 human genes that express selenoproteins (211); quantifi-
cation of a combination of the selenoproteins may be needed
to measure selenium status (111). The most commonly used
group of selenoproteins are the glutathione peroxidases;
GPx1, GPx3, and GPx4. GPx activities in plasma, erythrocytes,
and platelets generally respond to supplementation only in
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selenium-deficient populations since plasma GPx3 activity
normally plateaus with intakes �65 mg=day. The selenium
intake required to achieve maximal activity of plasma GPx
activity has been used to set dietary reference intake (DRI)
values in the United States (274) (section XI). Plasma SePP
responds in a dose-dependent way to selenium supplemen-
tation (23, 99, 162, 174, 253, 414) and may be a more sensitive
selenium status biomarker over a wider range of intake=status
than some other markers, for example, platelet GPx1 or GPx3
(174, 414); SePP concentration may reach a maximum at a
plasma selenium concentration in the region of 125 ng=ml (to
convert tomM divide by 78.96) and an intake*100mg=day (174).

B. Global variation in status

As with global estimates of selenium intake, there is very
wide geographical variation in plasma and serum selenium
concentrations (87, 130, 297, 377, 410). In areas of China in
which Keshan Disease and Kashin-Beck Disease (an endemic,
chronic, degenerative osteoarthropathy—see section VI.A)
are prevalent, serum selenium concentrations as low as *12–
20 ng=ml have been reported, whereas in seleniferous regions
of the United States, serum selenium can rise to 200 ng=ml
(410). For healthy adults, the proposed reference range is 39.5–
197.4 ng=ml (410). However, this range carries considerable
uncertainties with regard to sufficiency since maximal plasma
GPx activity occurs at plasma selenium concentrations *70–
90 ng=ml (262, 365), and maximal SePP activity occurs at a
plasma selenium concentration *120 ng=ml (174). Fordyce
reports a more conservative normal range of serum selenium
of 60–105 ng=ml (130). In a review of 65 studies published
between 1995 and 2003, serum or plasma selenium concen-
trations in European healthy adults ranged from 50.22 to
145.29 ng=ml but with the skewed range, most fell below the
mean selenium concentration of 78.96 ng=ml (1.00 mM) (377).

C. Changes in selenium status in relation
to environmental factors

Case studies from New Zealand, China, Finland, and the
UK clearly demonstrate a link between supply of selenium in
the soil-to-crop pathway and changes in selenium intake and
status among populations. In New Zealand, increased sele-
nium intakes correlated with imports of Australian wheat that
contain higher levels of selenium (366, 368, 395). In China, a
detailed geochemical analysis of areas with high incidence of
Keshan disease in the late 1990s showed that total soil sele-
nium was not inversely correlated with Keshan disease inci-
dence, as expected, but Keshan disease incidence was,
however, inversely correlated with water soluble soil sele-
nium [reviewed by Johnson et al. (191)].

In Finland, the link between the supply of selenium in the
soil-to-crop pathway and changes in selenium intake and
status among populations has been demonstrated [reviewed
by Broadley et al. (64)]. In 1983, legislation was introduced to
incorporate selenium into all multinutrient fertilizers (20, 114–
116, 297, 378, 379). The policy aimed to produce a 10-fold
selenium-enrichment of cereal grains (379). Multinutrient
fertilizer formulations were altered to include 16 mg selenium=
kg fertilizer for arable and horticultural crops and 6 mg sele-
nium=kg fertilizer for fodder crop and hay production. In-
itially, crop selenium concentrations increased by more than
10-fold and a single level of supplementation of 6 mg seleni-

um=kg fertilizer commenced in June 1990 (379). In 1998, se-
lenium supplementation was increased to 10 mg selenium=kg
fertilizer for all crops (64).

Selenium fertilizers in Finland increased crop selenium
content, dietary intakes, and the selenium status of the Finnish
population (64, 116, 297). The selenium concentration of
wheat bran increased 10-fold and fruit and vegetable crops
10-to-100-fold (114); pig muscle meat and liver increased from
0.08 and 0.49 mg=kg, respectively, in 1985 to a peak of 0.30
and 0.73 mg=kg in 1989 (379). Average selenium intakes rose
from 25 mg=day in 1975=1976 to 124 mg=day in 1989 (116).
Between 1975=6 and 1989, intake of selenium from cereals
increased from 9 to 30 mg=day, from fruit and vegetables from
0.4 to 4 mg=day, and more modest (<10-fold) increases were
reported in meat, fish, dairy products, and eggs (116). In-
creases in blood (378) and serum (392) selenium concentra-
tions were also reported, including a study of Finnish children
(<15 years), whose serum selenium increased from a mean of
69 ng=ml (range: 43–114 ng=ml) in 1985 to 100 ng=ml (range:
76–124 ng=ml) in 1986 (392). In adults, serum selenium in-
creased from 82 ng=ml (range: 49–107 ng=ml) in 1985 to 103
(range: 69–136 ng=ml) in 1986.

In the UK, there is also evidence to support an environ-
mental link between selenium supply and selenium status,
although more subtle than in Finland. Selenium intake is
relatively low, *50–60 mg per day, and some populations
may not be consuming sufficient selenium for optimal plasma
GPx3 activity or optimal SePP concentration [*100 mg=day
(174)]. The evidence for a decline in selenium intake in the UK
since the 1970–80s shows that in 1974 and 1985 estimates of
selenium intake were *60 mg=day, but by 1991, estimated
intakes of 24–31 to 60mg=day per person were reported (136,
248). In studies from 1994, 1995, 1997, and 2000, selenium
intakes ranged from 29 to 43mg=day, but in 2006 an increase to
48–58mg=day per person was reported, with the caveat that
there are analytical uncertainties for 13 out of 20 food groups
analyzed for selenium (136).

There are several reasons for the apparent decline in sele-
nium intake and status in the UK over the last 30 years (2, 49,
163, 252). Cereals, and especially wheat, comprise *30% of
the energy intake of the average UK diet (137) and the single
largest dietary change affecting selenium intake and status is
likely to be a reduction in consumption of imported milling
wheat containing higher levels of selenium in the grain, and
increased consumption of UK-grown wheat containing low
levels of grain selenium. In 1970> 5 Mt of wheat was im-
ported into the UK, mostly used for milling and human con-
sumption (Fig. 5A) (120). Of this, 2.2 Mt came from the United
States and Canada (235). Since 1990, wheat imports to UK
have averaged 1.2 Mt=year (range 0.73–1.67 Mt). In 2005, of
the 1.35 Mt=year imported to UK, 0.37 Mt was imported from
Canada and 0.10 Mt from the United States (Fig. 5B), and by
the 2007=08 season, 82% of wheat for human consumption
was reportedly being grown in the UK (64). The primary
reason for the decline in imports was the widespread adop-
tion of the Chorleywood Bread Process in the early 1960s,
which enabled UK (and other European Union, EU)-grown
milling wheat to replace higher protein content North
American–grown wheat in bread production. Subsequently,
the UK became a member of European Economic Community
(EEC) in 1973, which introduced EU import tariffs and led to a
rapid decline in non-EU sourced wheat.
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Recently, it has been shown that UK wheat grain selenium
concentration can be increased by 16–26 ng=g fresh grain, for
each gram of selenium applied per hectare (applied as sodium
selenate (Na2SeO4)) (63). The concentration of selenium in
UK-sourced wheat grain is usually 28 ng=g, with a narrow
interquartile range of�19 ng=g, n¼ 452). There has been little
apparent change since the early 1980s (2), although increased
sulfur usage may cause a decrease in selenium uptake by
wheat (352). In contrast, the selenium concentration of U.S.
-sourced wheat grain is 457 [n¼ 190; (148)] and 370 [n¼ 290;
(407)] ng=g and Canadian-sourced wheat grain is reportedly
760 ng=g (58). The higher concentration of selenium in U.S.
and Canadian wheat grain is primarily due to the higher
plant-available selenium concentrations found naturally in
soils of their wheat-growing regions and lower-yielding (i.e.,
typically more mineral dense) grain. Most soils in the UK are
naturally low in selenium (64, 130) and there is no evidence for
soil selenium depletion due to more intensive cropping (119).

However, since coal is a rich source of selenium, general re-
ductions in coal usage and desulfurization technologies may
also have reduced selenium inputs to crops (2, 157). Changes
in dietary patterns, such as decreased consumption of offal, is
a further contributing factor (191).

Rice is another staple food that affects selenium status in
certain populations. Williams et al. recently conducted a
spatially resolved analysis of variation in selenium concen-
tration in polished rice grains (403). Over 1000 samples of rice
were purchased from major rice-producing=exporting coun-
tries and there is wide variation between and within coun-
tries. For example, rice sourced from the United States and
India had average levels of selenium >30 times greater than
rice sourced from Egypt (Fig. 6). Within countries, rice sele-
nium concentration varied by up to 10-fold. Therefore, for
public health policy spatial links between geochemistry, crop
uptake, dietary intake, and plasma=serum selenium concen-
tration need to be resolved.

FIG. 5. Wheat imports to
UK. (A) Wheat imports to UK
from all sources 1961–2007.
Wheat imports to UK from all
sources 1961–2007 data ob-
tained from reference (120).
The introduction of the Chor-
leywood Bread Process in
1961 is highlighted with a
dashed line; this process en-
abled use of UK and EU
wheat in bread making in-
stead of North American
wheat. The second dashed
line represents the year when
the UK became a member of
the European Economic Com-
munity in 1973. (B) Wheat
imports to UK from United
States and Canada 1986–2005.
Wheat imports to UK from
United States and Canada
1986–2005 data obtained from
reference (120).
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V. Functions of Selenium in the Human Body

A. Thyroid hormone metabolism

The redox-protective effects of selenoproteins may be of
particular importance in the thyroid gland, whose long-lived
cells generate H2O2 (and so also reactive oxygen species
[ROS]) required for the synthesis of thyroid hormones. This
likely role is reflected in the abundance of selenium in the
thyroid gland (206) and perhaps by the high priority given to
maintaining selenium supply to the thyroid gland under
conditions where availability is restricted. Also of particular
relevance is the direct involvement of selenoenzymes,
the iodothyronine deiodinases (DIOs), in thyroid hormone
metabolism.

1. Thyroid hormone synthesis and the role of selenopro-
teins in thyroid gland function and protection. The pathway
for synthesis of the thyroid hormones tetra-iodothyronine
(T4) and 3,30,50 tri-iodothyronine (T3) is shown schematically
as Figure 7, based on evidence from a variety of sources (48,
134, 145, 322, 343), and highlighting the roles of selenopro-
teins. Expression in the thyrocyte of several selenoproteins,
including glutathione peroxidases (GPx1, GPx3 [secreted],
and GPx4), thioredoxin reductases 1 and 2 (TXNRD1 and
TXNRD2), deiodinases 1 and 2 (DIO1 and DIO2), Sep15, SePP,
and selenoproteins M and S (319) may contribute to its high
selenium content, and the ability of some of these (GPx1,
GPx3, GPx4, TXNRD1, and TXNRD2), along with intracellu-
lar catalase and peroxiredoxins, to degrade excess H2O2, may
be important in antioxidant defense and redox control (205).
An additional protective role for selenium in the thyroid
gland is indicated by the positive outcomes of clinical trials
involving selenium supplementation to reduce antibody load
in cases of autoimmune thyroiditis (257).

2. Prioritization of the selenium supply to the thyroid gland
and to DIOs. Observations made in rats fed severely selenium-
deficient diets provided early evidence that selenium supply
to the thyroid gland is prioritized. Whereas levels of GPx
activity and GPx1 mRNA became virtually undetectable in
liver and heart, mRNA levels were maintained in the thyroid
gland and activity was reduced by only 50%. Similarly, DIO
activity and DIO1 mRNA were maintained in thyroid but
reduced in liver (43). There is also evidence that the DIOs,
both in the thyroid gland and in nonthyroid tissues, are
preferentially supplied above other selenoproteins with sele-
nium to retain activity. For example, 50-deiodinase activity
and DIO1 mRNA were retained under conditions of selenium
depletion sufficient to reduce GPx activity and GPx1 mRNA
in an epithelial cell line (147). The clinical phenotype of an
abnormality in thyroid hormone metabolism resulting from
a mutation in SBP2 (selenocysteine insertion sequence
[SECIS] binding protein 2, which interacts with the 30UTR
SECIS of selenoproteins to recode the UGA [stop] codon to
facilitate selenocysteine incorporation) appeared to be
dominated by effects on DIO activity (103), perhaps reflect-
ing an important role for SBP2 in the prioritization of sele-
nium supply to the DIOs. Further evidence that functionality
of the SECIS is important in selenium prioritization more
generally includes the identification of a wide range (up to
1000-fold) in the UGA-recoding activity of different human
SECIS sequences (213).

FIG. 6. Selenium content in rice produced from different
countries. Selenium concentration of white (polished) rice from
market stores between 2005 and 2008, from countries re-
presenting 61.5% of production and 71.1% export pools glob-
ally. Redrawn from Williams et al. (403). Data are given as
percentage frequency distributions from a sample size n¼ 1092.
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3. Functions of the DIOs and their potential role in health
and disease. Thyroid hormones are important signaling
molecules with essential roles in cell function and in tissue
development and physiology; thus, perturbations in their
levels, potentially including through effects of selenium status
on their synthesis, have potential consequences for health.
While some T4 deiodination occurs in the thyroid gland, it has
been estimated that around 80% of circulating T3 is generated
through DIO activity in the peripheral tissues (345). DIO2 is
now recognized to be the deiodinase primarily responsible for
deiodination of the pro-hormone T4 at the 50 position to
generate active T3 (345). The roles of the three DIOs in inter-
conversion of the thyroid hormones, including inactivation by
5-deionidation, are shown in Figure 7.

A wealth of evidence supports the view that the relative
levels of expression of the different DIOs in specific tissues
and at specific developmental stages or in response to chal-
lenges such as tissue injury, illness, and nutritional defi-
ciency is balanced to promote appropriate control of cell
proliferation and=or differentiation through control of thy-
roid hormone activation and inactivation, as reviewed re-
cently (345). For example, compensatory increases in tissue
DIO2 activity observed in iodine deficiency or hypothy-
roidism increased local T3 production (112, 282). Adequate
selenium nutrition may thus be particularly important in
cases of hypothyroidism to facilitate increased DIO activity
in tissues for which the selenium supply is a lower priority
than for the thyroid gland.

FIG. 7. Thyroid hormone
metabolism, highlighting
roles of selenoproteins. (A)
The generation of T3 and T4 in
the thyrocyte. Apical and ba-
solateral membranes are indi-
cated, facing the colloid lumen
and plasma, respectively. The
route for passage of iodide for
thyroid hormone synthesis
from plasma to colloid lumen
is indicated, and then incor-
poration as MIT, DIT, T3, and
T4 side chains of the thyro-
globulin backbone (produced
in the ER then secreted) (thy-
roglobulin iodination) is
shown. Thyroglobulin iodin-
ation (organification of iodine)
is catalyzed by TPO and re-
quires an H2O2 cofactor, gen-
erated by Duox. Excess H2O2

is indicated as being in-
activated by secreted GPx3 or
by intracellular selenoproteins
(GPx1, GPx2, TNXRD1, and
TXNRD2). Iodinated thyro-
globulin is taken across the
apical membrane by micro-
pinocytosis, as indicated, and
then fusion of vesicles with
lysosomes leads to cathepsin-
catalyzed cleavage to release
T4 and T3, which diffuse into
the plasma, and DIT and MIT,
from which iodide is released
by dehalogenase and recycled.
The form and route through
which selenium enters the
thyrocyte is unknown, as in-
dicated. Selenoproteins are
highlighted in bold-italic text
in shaded shapes. (B) Chemi-
cal interconversions of the

major thyroid hormones and their metabolites by the DIOs. Deiodination at the 50-position is an activating step and is
catalyzed by DIO1 and DIO2. Deiodination at the 5-position is an inactivating step and is catalyzed by DIO1 and DIO3. DIO1,
iodothyronine deiodinase 1; DIO2, iodothyronine deiodinase 2; DIO3, iodothyronine deiodinase 3; DIT, diiodothyronine;
Duox, dual oxidase (thyroxidase); ER, endoplasmic reticulum; GPx1, glutathione peroxidase 1; GPx3, glutathione peroxidase
3; GPx4, glutathione peroxidase 4; MIT, monoiodothyronine; NIS, sodium-iodide symporter; TXNRD1, thioredoxin reductase
1; TXNRD2, thioredoxin reductase 2.
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Variation in DIO genes appears to influence thyroid hor-
mone metabolism and activity (283). Two SNPs in the DIO1
gene that have been associated with alterations in the ratio of
active T3 to the inactive metabolite 3,30,50 triiodothyronine
(rT3) are of particular interest because they are located in the
30UTR of the mRNA, so may [in a manner similar to SNPs in
the 30UTR regions of GPX4 and SePP (241, 243)] mediate ef-
fects through selenocysteine incorporation into DIO1, and so,
speculatively, may show an interaction with selenium status.

In conclusion, given the evidence that the nonthyroid tis-
sues have lower priority for supply with selenium under
conditions of restriction and that DIO induction may be an
important adaptive response of tissues to particular chal-
lenges, more information on the interactions and processes is
required to understand links between selenium, health, and
disease.

B. Antioxidant defense system
and oxidative metabolism

1. Glutathione peroxidases. Among the selenoproteins
are four GPxs: cytosolic GPx (GPx1), gastrointestinal-specific
GPx (GPx2), plasma GPx (GPx3), and phospholipid hydro-
peroxide GPx (GPx4). These are well-characterized major se-
lenoenzymes of the human antioxidant defense systems (230).
GPx1-3 catalyzes the reduction of hydrogen peroxide and
organic hydroperoxides, whereas GPx4 can directly reduce
phospholipid hydroperoxides and cholesterol hydroperox-
ides. GPx6 is an olfactory epithelium and embryonic tissue-
specific GPx (211). GPx1 and GPx2 have well-characterized
antioxidant functions, as indicated by the greater suscepti-
bility of mice lacking both GPx1 and 2 to an oxidative
challenge (85). Responses of transgenic mice lacking or over-
expressing GPx1 suggest novel roles for GPx1 in relation to
both reactive oxygen species and reactive nitrogen species,
and a link to insulin secretion and insulin resistance (217, 394).
GPx3 is a key antioxidant enzyme in the plasma and acts as a
functional parameter for selenium status assessment, and
GPx3 deficiency has been associated with CVD and stroke (46,
399).

GPx activity and expression have been used in many
human studies as biomarkers for selenium status (355). It has
been shown in GPx1(�=�) mice that GPx1 deficiency plays a
major role in cardiac dysfunction in angiotensin II-dependent
hypertension (18). Further, there have been attempts to cor-
relate genetic polymorphism of selenoenzymes with risk of
disease, including cancer and heart disease. A recent study
provided some evidence that SNPs in GPx1 and GPx4, and
their interaction with variants in other selenoprotein genes,
may influence colorectal cancer risk (242). In another study,
with a population that had advanced distal colorectal carci-
noma, SNPs in SEPP1 and TXNRD1 were identified to be
associated with adenoma risk but not the GPX1-4 variants
investigated (286).

2. Thioredoxin reductases. TXNRDs are involved in the
control of cellular proliferation, cell survival, and apoptosis
through the control of thioredoxin (Trx) activity and redox
state, and play a crucial role in biological response to oxida-
tive stress. Three TXNRDs have been identified in mammals:
TXNRD1 in the cytosol=nucleus, TXNRD2 in mitochondria,
and thioredoxin glutathione reductase in the testis, with the

last also possessing glutathione and glutaredoxin reductase
activity (279). TXNRD, Trx, and NADPH constitute the
thioredoxin system, a major cellular redox system present in
all living organisms (19). TXNRDs have a wide range of
substrates, including small molecules such as hydrogen per-
oxide, lipid hydroperoxides, and ascorbate, lipoic acid, ubi-
quinone, and Trx (413). ROS are a major contributing factor to
the pathogenesis of CVD. The thioredoxin system plays an
important role in scavenging ROS. Trx, glutaredoxin, perox-
iredoxin, and their isoforms are involved in interaction with
signaling pathways, thus making them attractive targets for
clinical intervention (3). TXNRD is the only known enzyme
able to reduce oxidized Trx, which regulates a plethora of
redox signaling events (153). Reduced Trx provides electrons
to ribonucleotide reductase, essential for DNA synthesis, by
converting ribonucleotide to deoxyribonucleotides. More-
over, the Trx system participates in many cellular signaling
pathways by controlling the activity of transcription factors
containing critical cysteines in their DNA-binding domains,
such as nuclear factor kappa B (NFkB), activator protein-1
(AP-1), p53, and the glucocorticoid receptor (223).

There is growing evidence that redox regulation by the
TXNRD systems plays a crucial role in the biological response
against oxidative stress and in cell proliferation, apoptosis,
and the modulation of inflammation (70, 342, 362). Trx can
bind to apoptosis signal regulating kinase 1 (ASK1) and
modulates apoptosis (223, 258, 315). TXNRD is also over-
expressed in many tumor cells and contributes to drug re-
sistance; therefore, TXNRD was considered a new target for
anticancer drugs (140). In addition to selenium, dietary phy-
tochemicals such as isothiocyanates and polyphenols can also
upregulate TXNRD and GPx2 expression in both tumor and
normal cell lines via the Keap1-Nrf2-ARE pathway (203, 220,
429).

3. Other selenoproteins involved in the antioxidant de-
fense system. Recently, it has been suggested that seleno-
proteins, including SelW, SelM, SelT, and the 15 kDa
selenoprotein, are members of a novel redox protein family
that share the common feature of containing a thioredoxin-
like fold with a CxxSec redox fold (1, 39). Further, over-
expression of SelW in cultured cells led to lower sensitivity to
challenge from hydrogen peroxide (190), suggesting that
SelW has an antioxidant function. Selenoprotein H (SelH) is a
nucleolar thioredoxin-like protein with a unique expression
pattern, and structural studies suggest that SelH is a redox-
sensing DNA binding protein (266, 278). A recent study de-
scribed a knock-out mouse deficient in selenoprotein MsrB1
(SelR) with increased levels of malondialdehyde, protein
carbonyls, protein methionine sulfoxide, and glutathione
disulfide as well as reduced levels of free and protein thiols,
indicating that MsrB1 plays an important role in redox regu-
lation (128). SePP has a purported thiol-redox function as a
member of the thioredoxin superfamily (67) and may protect
against oxidative damage (347). In addition, selenoproteins N
and K may have antioxidant roles (17, 228).

In summary, several of the selenoproteins may be involved
in the antioxidant defense system as highlighted in section
V.B. above; there are many other important functions of the
human selenoproteins such as the role of SelW and SelN
in muscle function, reviewed recently in Lescure et al. (218),
and other functions discussed throughout this review, for
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example, throughout chapter VI: clinical disorders section
below. For recent reviews focused in detail on selenoproteins,
refer to refs. (39, 230, 279, 301, 332, 433).

C. Immune system

Studies in experimental and farm animals indicate that
selenium deficiency affects both cell-mediated and humoral
components of the immune response (21, 167, 344). In hu-
mans, limited data suggest that when intakes of selenium are
sub-optimal selenium supplements can enhance immune re-
sponses (167). Low serum selenium in humans is associated
with low levels of natural killer cells (304), and selenium sup-
plementation (200mg=day) increased T-lymphocyte-driven tu-
mor lysis and lymphocyte proliferation (200). In rats, selenium
deficiency lowers levels of IgA, M, and G; selenium-deficient
lymphocytes show lower mitogen-stimulated proliferation,
and in cell culture, selenium promotes human neutrophil
function (21). Despite these observations the details of how
selenium intake influences the immune system remain poorly
understood, with the most information being available on the
effects of severe selenium deficiency and selenoprotein knock-
out in response to viral infection.

A landmark discovery in selenium biology during the past
30 years was the observation by Chinese scientists that Ke-
shan disease, a myocarditis found in selenium-deficient areas
of China, is associated with a combination of low selenium
intake and Coxsackie virus B (CVB) infection (see section
VI.A.1). Molecular hybridization and immunohistochemistry
analysis of postmortem material has shown CVB3 to be
present in the majority of Keshan diseases cases. Further,
feeding mice a selenium-deficient diet in combination with
CVB infection leads to pathological changes in the myocar-
dium similar to those found in Keshan disease (multiple ne-
crosis lesions of the myocardium and inflammatory cell
infiltration). Overall, these data demonstrate that en-
teroviruses, especially CVB, are closely associated with the
viral myocarditis of Keshan disease (107, 431).

Selenium intake has subsequently been found to affect the
progression of other viral infections in animals (34). For ex-
ample, selenium deficiency results in greater lung pathology
in mice infected with influenza virus compared with seleni-
um-adequate mice; selenium-deficient mice showed an al-
tered immune response to an infection with a virulent strain of
influenza virus and the viral genome changed to a more vir-
ulent genotype. Selenium deficiency also has a significant
impact on the morphology and influenza-induced host de-
fense responses in human airway epithelial cells (35). Porcine
circovirus type 2 replication in PK-15 cells is inhibited by DL-
selenomethionine in a concentration-dependent manner
(277). Except for Keshan disease no causal links between se-
lenium intake and viral response have been demonstrated in
humans, but selenium status and viral responses are associ-
ated. For example, selenium supplementation was shown to
modulate the response of healthy volunteers of marginally
low plasma selenium status to a disabled polio virus (65),
confirming that selenium status determines the ability to re-
spond to a viral infection. In addition, epidemiological studies
suggest a correlation between severity of AIDS and selenium
deficiency, but to date it is not clear whether this reflects a
protective role for selenium during HIV infection or an altered
nutritional selenium status as a result of the disease (31, 167,

227). Similar observations have been made with the influenza
virus. Not only does selenium status modulate responses to
influenza virus (261), but also GPx1 activity is important in
determining the response (33, 337). However, the extent to
which other selenoproteins are involved in determining the
effects of selenium status on responses to viral infection is
poorly understood, although selenium depletion was shown
in a cell culture model to affect influenza virus-induced cy-
tokine production in bronchial epithelial cells (189).

Immune responses are intimately linked to inflammatory
processes and these in turn are inter-related to production of
ROS and redox control processes. For example, ROS pro-
duction can increase expression of inflammatory cytokines
through increased NF-kB activity (369). It is possible that se-
lenium modulates inflammatory and immune processes
through redox functions. To some extent this is illustrated by
the observations that transgenic mice with a mutant Secys-
tRNA that causes depletion of all selenoproteins, but with
variations in extent between selenoprotein and tissues,
showed changes in the pattern of certain cytokines (e.g.,
interferon–g) (337). In addition, the potential importance of
redox signaling via selenoproteins is also shown by the effects
of GPx1 knockout on viral infection. However, mutant Secys-
tRNA mice failed to show differences in lung pathology after
influenza virus infection, suggesting that a basal threshold
level of GPx1 is sufficient to maintain response to the virus. It
was recently reported that the selenoprotein thioredoxin re-
ductase 1, also a key factor in redox control, can negatively
regulate the activity of the HIV-1-encoded transcriptional
activator, Tat, in human macrophages (194).

White blood cells such as lymphocytes, macrophages, and
neutrophils require ROS and pro-inflammatory molecules for
their activation, differentiation, and phagocytosis (132). Thus,
since selenoproteins may influence these signaling pathways
they may in turn be expected to be crucial for these cell
functions. For example, neutrophils require oxidative radical
production to achieve microbial killing and selenium defi-
ciency lowers the ability of neutrophils to kill ingested mi-
crobes, probably partly due to lower GPx1 activity and thus
impaired radical metabolism (21). Macrophages are key cells
in the signaling and activation of inflammatory responses, but
this action also produces ROS; therefore, it must be carefully
controlled and counteracted. Studies in which selenium-
supplemented macrophages were stimulated with LPS (a bac-
terial endotoxin) found that supplementation with selenium
suppressed TNF-a and COX-2 (cyclooxygenase-2) expression
(386). However, Carlson et al. (79) found that macrophages
without any selenoproteins still exhibited normal inflamma-
tory responses, although higher levels of ROS were seen. In a
similar experiment, mice with selenoprotein-less T-cells also
exhibited increased ROS levels, reduced numbers of mature
T-cells, and defective antibody responses (340).

Low selenium status has been associated with reduced
serum IL6 in elderly people (388), an observation that is
consistent with links between selenium, selenoproteins, and
inflammatory signaling. In addition to potential metabolic
links between GPx1, ROS, and inflammatory cytokines such
as the interleukins, results from a series of studies suggest that
selenium levels affect eicosanoid metabolism. Studies of both
severely selenium-deficient animals and selenium-deficient
cells in culture suggest that selenium supply, through its
influence on GPxs, has an inhibitory regulatory effect on
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50 lipoxygenase activity in lymphocytes (179, 397) and thus on
generation of pro-inflammatory leukotrienes. In addition,
overexpression of GPx4 in transfected basophils has also been
reported to suppress 50 lipoxygenase activity. Further evi-
dence for a metabolic link between GPx4 and leukotrienes has
come from the finding that individuals with different allelic
variants of a common SNP in the GPX4 gene (rs713041) have
been found to have different levels of 50 lipoxygenase product
in their lymphocytes (382), suggesting that lymphocyte GPx4
activity influences pro-inflammatory leukotriene activity in
lymphocytes.

A combination of severe selenium and iodine deficiency
causes a thyroid atrophy that does not respond to iodine
supplementation due to inflammatory damage to the thyroid,
and this has led to studies of selenium in thyroiditis (205).
Indeed, several clinical trials have reported that selenium
supplementation reduces inflammatory markers in patients
with autoimmune thyroiditis, and this has led to the hy-
pothesis that even a moderate selenium deficiency can be a
causative factor in autoimmune thyroid disease in patients
who have genetic susceptibility to autoimmune disorders.

In summary, there is a growing body of evidence that se-
lenium status affects immune function, in particular the
ability to respond to viral infection. The mechanisms under-
lying these effects are poorly understood but may involve
modulation of ROS and inflammatory signaling pathways
through the antioxidant and redox functions of selenopro-
teins.

VI. Clinical Disorders

A. Deficiency

1. Keshan disease. Keshan disease is an endemic car-
diomyopathy observed in selenium-deficient areas of China.
Its name originates from a severe outbreak in Keshan County,
Heilongjiang Province, China in 1935. The main clinical fea-
tures of Keshan disease are acute or chronic episodes of a
heart disorder characterized by cardiogenic shock and=or
congestive heart failure. Keshan disease can be clinically
classified into four types: acute, sub-acute, chronic, and latent.
Dilatation of the heart is commonly observed (143).

The etiology of Keshan disease is not yet fully understood.
Originally, the proposed risk factors included Coxsackie virus
(CVB), type A streptococci, and organic toxicants produced
by parasitic fungi on cereals or putrid organic substances in
water and=or soil environments. In the 1970s, the low sele-
nium status of the inhabitants in Keshan disease-endemic
areas became evident, and subsequently, the preventive effect
of selenium supplementation on Keshan disease was identi-
fied. Further improvements in selenium status were associ-
ated with a decline in Keshan disease in the endemic areas and
confirmed the link between selenium and Keshan disease.

In China, the selenium-deficient zone from the northeast to
the southwest involves 16 provinces, and historical data in-
dicated that the population at risk was >100 million. Keshan
disease surveillance has been a national program since 1990,
an important component of which is the determination of
selenium levels in Keshan disease-endemic areas (425).

The geographical distribution of topsoil selenium in China
and its relationship to Keshan disease (and Kashin-Beck dis-
ease) indicates that the selenium concentrations in topsoil of
affected areas are typically below 0.125 mg=kg. In contrast,

the concentration in areas without disease is 0.224 mg=kg, and
the excessive level is >3 mg=kg (361). Nutritional studies
showed that the mean hair selenium contents were <0.122
mg=kg in endemic areas and >0.200 mg=kg in non-Keshan
disease–endemic zones, whereas the average blood selenium
concentration of people in Keshan disease endemic areas was
no more than 253 nM (20 ng=ml). The selenium content of
muscle, heart, liver, and kidney in Keshan disease patients is
up to 10-fold lower than that in healthy subjects (143).

Recent studies suggest that genetic polymorphisms in sele-
noproteins may be associated with susceptibility to Keshan
disease. Lei et al. measured the concentration of blood selenium
and the activity and polymorphisms of cellular GPx1 in 71
Keshan disease patients and 290 controls (216). Results sug-
gested that selenium deficiency in carriers with the GPx1 leucine-
containing allele is associated with low GPx1 enzyme activity,
which may, in turn, increase the incidence of Keshan disease.

The link between selenium and Keshan disease was further
strengthened with results of a selenium supplementation trial.
Between 1974 and 1977, sodium selenite or placebo tablets
were given to children at high risk of Keshan disease. Con-
current with an increase in blood selenium concentrations in
the treated group (n¼ 6767), 17 acute and sub-acute Keshan
disease cases were reported compared with 106 in the placebo
group (n¼ 5445). After 4 years, there had been 53 deaths in the
controls, whereas only one selenium-treated subject had died
(421). Supplementation of individuals with selenium tablets
(as sodium selenite) has been effective in preventing the de-
velopment of Keshan disease (418). However, as not all peo-
ple living in the low selenium areas suffered from Keshan
disease, other causal factors such as virus infections were
proposed.

In animal studies, Bai et al. demonstrated that mice fed
grains from Keshan disease areas developed a deficiency in
selenium (28). When these mice were infected with a strain of
Coxsackie virus B4 that was isolated from a Keshan disease
victim, the mice developed severe heart pathology, whereas
mice that were fed grains from non-Keshan disease–endemic
areas developed only mild heart pathology when infected
with the virus. This study suggested that together with the
deficiency in selenium, an infection of CVB was required for
the development of Keshan disease (28). A further study
demonstrated that selenium deficiency was responsible for
driving changes in the viral genome and changing a normally
avirulent pathogen into a virulent one (36). Moreover, influ-
enza virus exhibits increased virulence toward the selenium-
deficient mice (34).

Selenium deficiency may affect expression of sele-
noenzymes such as GPX1. One study showed that 50% of
GPx1 knockout mice (GPx�=�) infected with CVB3=0 de-
veloped myocarditis, whereas infected wild-type mice
(Gpx1þ=þ) were resistant (no mice developed myocarditis)
(33). This study suggests that antioxidant protection is im-
portant for protection against CVB3-induced myocarditis.

After the isolation of enteroviruses from patients with
Keshan disease during outbreaks of the disease in selenium-
deficient rural areas of southwestern China, an association of
enterovirus infection with Keshan disease and its outbreaks in
selenium-deficient areas has been established (284). To date,
many studies strongly suggest a dual etiology that involves
both a nutritional deficiency of selenium as well as an infec-
tion with an enterovirus (34, 173).
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There is an interest in identifying potential protective dietary
compounds, for example, sulforaphane (SFN), a hydrolysis
product of glucosinolate from cruciferous vegetables that is a
potent inducer for a battery of antioxidant enzymes, including
quinone oxidoreductase, glutathione transferases, UDP-glu-
curonyltransferase, g-glutamylcysteine synthetase, heme oxy-
genase, aldo-keto reductase, thioredoxin reductase, and GPxs.
The mechanism of interactions between selenium and SFN in
antioxidant enzyme expression was mainly via Nrf2=Keap1
system (60). Sun et al. conducted a study to investigate whether
SFN can protect the myocardium of selenium-deficient mice
against viral infection and demonstrated that GPx activity in
groups given SFN was significantly higher than in the control
groups without SFN (353). Further, both the incidence and
extent of myocardium injury in viral groups with SFN were
significantly lower than those in the viral groups without
SFN. It was therefore concluded that SFN affords a degree
of protection against Coxsackie virus B3m-induced mouse
cardiomyopathy.

2. Role of selenium in Kashin-Beck disease. Kashin-
Beck disease (KBD) is an endemic, chronic, degenerative os-
teoarthropathy that is present in selenium-deficient areas in
the world, and is mainly found in a diagonal belt from
northeast to southwest China, and also in Mongolia, Siberia,
and North Korea. The disease was first described in 1848 by
Nickolay Kashin in the Bajkal area of Russia (196) and later in
1906 by Eugene Beck (32). The etiology of KBD is largely
unknown. The risk factors seem to include mycotoxins such as
Trichothecene mycotoxin (T-2) from contaminated storage
grains, and organic substances such as humic acid and fulvic
acid in drinking water, Coxsackie B3 virus infection, and de-
ficiency in trace elements, mainly selenium and iodine (348).
The original theory proposed by Russian researchers was that
KBD had been caused by a mycotoxin. However, the focus on
the disease gradually shifted to China, where the causal the-
ory was based on the effects of selenium deficiency and in-
teractions with mycotoxins (8). Among all the risk factors,
selenium was the most studied, and disturbances of seleno-
protein expression and=or function are associated with both
Keshan and Kashin-Beck diseases (204).

In the KBD-endemic areas the levels of selenium in both soil
and human biological samples are much lower than that in
areas without KBD. Ge and Yang reported that average hair
selenium concentrations in residents of KBD-endemic areas
were 1.19� 0.34 nmol=g compared with 4.81� 2.27 nmol=g
in nonendemic areas (143). Blood GPx activities were
74.0� 12.8 kU=l in endemic groups of the population and
95.6� 8.9 kU=l in nonendemic groups. Oral supplementation
of the endemic group with sodium selenite (1–2 mg=wk) for 2
months increased GPx activity to 94.0� 11.5 kU=l, indicating
that the population was selenium deficient (389). Many epi-
demiological studies conclude that KBD is mainly common in
low selenium areas where patients are in a selenium-deficient
condition, and selenium supplementation is effective at pre-
venting a worsening of metaphysis change and in promoting
repair (75, 83). For example, in the KBD region in China, se-
rum selenium concentration was on average 36–37� 17
ng=ml, compared with a similar region with no evidence of
KBD where serum selenium was *63� 15 ng=ml. A majority
(>50%) of participants in the KBD area had serum selenium
<37 ng=ml, compared with only 16% in the nondisease area

[data from 2006–reported in Shi et al. (338)]. There was 13%
prevalence of Kashin-Beck in certain regions of China (338).

In areas where severe selenium deficiency is endemic, io-
dine deficiency is also a risk factor for KBD (252) and correc-
tion of iodine deficiency should be undertaken before
selenium supplementation to avoid hypothyroidism. How-
ever, in another study, Zhang et al. studied selenium, iodine,
and fungal contamination in the Yulin District, including
three villages where KBD was endemic, whereas there were
no cases of KBD in the fourth village. Results showed that low
hair selenium concentration and presence of fungal cereal
contamination were significantly associated with an increased
risk of KBD, but low urine iodine was not (430).

T-2 is a naturally occurring mold byproduct of Fusarium sp.
fungus that is toxic to humans and animals and was found at
high levels (2.0*1549.9 ng=g) in contaminated grain (353). T-
2 toxin-containing food can lead to some pathologic changes
in the cartilage of guinea pigs that are similar to the changes
observed in KBD patients (415). Therefore, the T-2 toxin
contamination was proposed as a possible cause of KBD (424).
In support of this hypothesis, cell culture studies demon-
strated that T-2 toxin can inhibit aggrecan synthesis in human
chondrocytes, promote aggrecanases and pro-inflammatory
cytokines expression, and aggrecan degradation; selenium
can inhibit the effects of T-2 toxin (222). A previous study by
the same group showed that selenium can partly block T-2
toxin-induced apoptosis in chondrocytes (82).

In human studies, Cao et al. demonstrated that there was
significant aggrecanase-mediated proteoglycan degradation
in both adult and child KBD patients and altered CD44 me-
tabolism was also involved in KBD pathogenesis (76). Again
in a cell culture study, Wojewoda et al. found that selenium
decreased ROS generation and increased the level and activity
of antioxidant enzymes such as GPx and TXNRD (404).

So far, the contribution of any particular genotype toward
the risk of developing KDB is unknown. Recently, the associ-
ations between genetic variation in selenoprotein genes and
susceptibility to KBD were studied. The genotypic and allelic
frequency of GPx1 Pro198Leu were significantly different
between KBD patients and the control group ( p¼ 0.013,
p¼ 0.037, respectively). A significant increased KBD risk was
observed in individuals with Pro=Leu or Leu=Leu (odds ratio,
OR¼ 1.78; 95% confidence interval: 1.13*2.81) compared with
Pro=Pro. Moreover, the GPx activity in whole blood decreased
significantly in a subgroup of individuals representing
Pro=Leu and Leu=Leu compared with Pro=Pro ( p< 0.01) (416).
In contrast, in this study, no associations were found between
KBD risk and other gene polymorphisms such as TXNRD2,
SEPP1, and DIO2. Moreover, Shi et al. suggest that variants of
the chromosomal short tandem repeats D11S4094, D11S4149,
D2S338, and D2S305 might be associated with KBD (338).
Downey et al. studied the effects of skeletal selenoprotein de-
ficiency using a transgenic mouse line to trigger Trsp gene
deletions in osteochondroprogenitors (96). Trsp encodes sele-
nocysteine tRNA[Ser]Sec, which is required for the incorpora-
tion of selenocysteine residues into selenoproteins. The mutant
mice exhibited growth retardation, epiphyseal growth plate
abnormalities, and delayed skeletal ossification, as well as
marked chondronecrosis of articular, auricular, and tracheal
cartilages. Phenotypically, the mice replicated a number of the
pathological features of KBD (96), supporting the notion that
selenium deficiency is important to the development of KBD.
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Moreno-Reyes et al. reported that selenium supplementa-
tion in Tibet had no effect on established KBD, growth, or
thyroid function once iodine deficiency was corrected (251).
Therefore, it was suggested that iodine, but not selenium,
deficiency should be corrected in Tibetan children with KBD.
The results of a systematic review demonstrated no convinc-
ing evidence that selenium, vitamin A, vitamin C, or the
combination product of selenium, vitamin A, C, and E is ef-
fective in the treatment of any type of arthritis (75). A meta-
analysis of five randomized controlled trials (RCTs) and 10
non-RCTs assessed the efficacy of selenium supplementation
for prevention of KBD osteoarthropathy in children (435).
Significant effects were demonstrated and the results indi-
cated that current evidence supports the benefits of selenium
supplementation for prevention of KBD in children although
evidence was limited by potential biases and confounders.
Results from a 3-year trial in which 1064 children aged 3–10
have been given iodine and selenium and either a cocktail
of micronutrients (copper, manganese, zinc, and vitamins A,
C, and E), or a placebo are expected to be published soon
by Mathieu and colleagues, which may help resolve the
controversy.

Recent comparative microarray analysis of gene expression
profiles between primary knee osteoarthritis (OA) and KBD
demonstrated a clear difference in the gene expression profile
in cartilage from patients with KBD compared with that from
patients with OA (98), implying that there are different
mechanisms responsible for the development and progres-
sion of these two diseases (393). The genes with a lower ex-
pression in KBD than normal cartilage included chondrocyte
metabolism, ECM, DNA modification, and transcription fac-
tors, and genes with a higher expression in KBD than normal
cartilage included signaling transduction, cell cycle, and ap-
optosis. The differential gene expression specific for KBD may
indicate a specific mechanism that is responsible for the de-
struction of the articular cartilage in KBD. The data also
suggest that cartilage degeneration, apoptosis induction
pathways, and matrix metabolism might be more important
in KBD cartilage.

Finally, the development of protein chip technology has
enabled the application of high-throughput proteomics to
identify potential biomarkers for a variety of diseases, in-
cluding KBD. Wang et al. reported marked serum pro-
teomic changes in KBD using surface-enhanced laser
desorption=ionization time-of-flight mass spectrometry
(391), and it would be plausible to use this technique in
human intervention trials to examine the effect of selenium
supplementation.

B. Toxicity

Although much less common than selenium deficiency,
selenium toxicity can affect individuals as a result of over-
supplementation (234), accidental or deliberate (suicidal) in-
gestion of very high doses (215), or through high levels in the
food supply. Characteristic features of selenosis occur in
population groups exposed to unusually high levels of dietary
selenium, and include brittle hair and brittle, thickened,
stratified nails, leading to loss in some cases, along with an
odor of garlic on the breath and skin (234, 300). Additional
symptoms, including vomiting and pulmonary oedema, are a
feature of more acute selenium poisoning (215).

In Enshi, in the Chinese province of Hubei, an outbreak of
illness in which the most notable and prevalent symptoms
were loss of nails and hair reached a peak between 1961 and
1964, when it affected almost half of the population. This
condition was later diagnosed as severe selenosis, attributed to
soil with very high selenium content (422). It was identified that
the period of peak prevalence of selenosis was due to drought
causing failure of the (lower selenium) rice crop, leading to
consumption of alternative crops, with higher selenium con-
tent. Analysis of vegetables and cereals grown in the area after
the period of peak prevalence confirmed high levels of sele-
nium, which were up to 1500-fold greater than levels measured
in the same foods taken from a nearby selenium-deficient area,
where Keshan disease was endemic. Average daily intake of
selenium was estimated to be 4990mg. Analysis of samples of
human hair, blood, and urine from residents of the affected
area revealed that selenium concentrations were far in excess of
concentrations measured in samples from individuals resident
in a selenium-adequate area.

In parts of the Punjab State, in the northwestern region of
India, crops and fodder contain very high selenium levels and
selenosis is observed in cattle. Signs of selenium toxicity are
observed in people consuming locally grown food (Fig. 8)
(164). Daily intakes of selenium were estimated to be 632 and
475mg=day in men and women, respectively, and corre-
sponding values from nonseleniferous areas were 65 and
52mg=day (94). Policies to manage the situation include non-
consumption of crop produce by the farmers, dilution with
produce from nonendemic regions, and application of ma-
nures to reduce selenium accumulation in crops (95).

Levels of dietary exposure at which selenium becomes
toxic and selenosis develops are difficult to establish, because
toxicity is affected by the form in which selenium is available
in the food supply, and probably also by combination with
other dietary components and, possibly, interactions with

FIG. 8. Effects of consuming
locally grown foods from se-
lenium toxic areas in Punjab.
(A) Hair loss, (B) keratosis, and
(C) rickets. Photographs pro-
vided by Dr. N. Tejo Prakash of
Thapar University, Patiala, In-
dia, and Professors K.S. Dillon
and U.S. Sadana, Punjab Agri-
cultural University, Ludhiana,
India.
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genotype. High levels of selenium in diets based predomi-
nantly on meat sources appear to be particularly well-toler-
ated, as exemplified by the high daily selenium intake of the
Inuit of North Greenland, estimated as 193–5885mg (150). This
intake results in blood selenium concentrations in the order of
1000 mg=l (300), but is not associated with symptoms of tox-
icity. Comparison of levels of selenium in blood and urine in
the Enshi study population and also in samples from popu-
lations in South Dakota (169) revealed toxicity associated with
lower concentrations than those that result in symptoms of
selenosis in Venezuela (422), probably reflecting exposure to
dietary selenium in different forms. Suicide by exposure to
very high levels of selenium has been associated generally
with ingestion of selenite or selenate (215), an observation that
probably reflects the form of selenium in substances used in
suicide attempts, rather than necessarily being indicative of
greater toxicity of inorganic compared with organic selenium
compounds.

The mechanisms underlying selenium toxicity remain un-
known; suggested mechanisms include induction of oxidative
stress (375) and the replacement of sulfur with selenium in hair
and keratin, leading to structural defects (376). Research on this
topic, based on various in vitro and in vivo models [reviewed in
Valdiglesias et al. (375)] is complicated by likely effects on
measured outcomes of the form and dose of selenium admin-
istered and limitations with respect to extrapolating results
from in vitro assays to human exposure. The eventual evolution
of systems-biology-based approaches to describing selenium
metabolism and interactions with cells and tissues will guide
the most relevant experimental systems for understanding se-
lenium toxicity at a molecular and whole body level.

VII. Effects on Health

A. Cardiovascular disease

Selenium is essential for selenium-dependent antioxidant
enzymes such as GPxs, TXNRD, SePP, and other selenopro-
teins. Because of the antioxidant properties of selenium an-
d=or selenoenzymes, it has been hypothesized that selenium
may prevent CVD. Many observational studies investigating
the association of low selenium concentrations with cardio-
vascular outcomes and randomized trials investigating whe-
ther selenium supplements prevent coronary heart disease
(CHD) have been inconclusive.

A meta-analysis (126) synthesized results from observa-
tional studies of the association of selenium biomarkers with
CHD endpoints and from results of clinical trials of the effi-
cacy of selenium supplements in preventing CHD. The con-
clusions were that observational studies showed an inverse
association between selenium concentrations and CHD inci-
dence, although the data need further validation, whereas
randomized trials were inconclusive with respect to the effect
of selenium supplementation. Another meta-analysis of 13
prospective cohort studies found a moderate inverse rela-
tionship between plasma=serum selenium and CHD although
the interpretation of these data are complicated by potential
residual confounding and publication bias (260). Finally, a
recent report by Xun et al. examined the longitudinal associ-
ation between toenail selenium levels and subclinical ath-
erosclerosis over an 18-year period, and no associations were
observed between toenail selenium and measures of sub-
clinical atherosclerosis among young American adults (417).

Selenium supplementation does not appear to reduce the
risk of CVD in healthy individuals. Supplements of
200 mg=day in individuals free of CVD at baseline were not
significantly associated with any CVD endpoints during
7.6 years follow-up of the entire blinded phase of the Nutri-
tional Prevention of Cancer Trial (1983–1996) (350), and a
randomized, placebo-controlled trial in healthy men given
300 mg=day of selenium as high-selenium yeast for 48 weeks
suggested that selenium supplements were not likely to im-
prove endothelial function or peripheral arterial responsive-
ness in healthy North American men receiving adequate
selenium from their diets (155). Moreover, increased con-
sumption of wheat biofortified with selenium does not
modify biomarkers of cancer risk, oxidative stress, or immune
function in healthy Australian males (412).

Although it appears that selenium supplementation has no
effect on CVD risk in healthy individuals, in a very recent
AtheroGene study, low selenium concentration was associ-
ated with future cardiovascular death in patients with acute
coronary syndrome, although no effect on stable angina
pectoris (232). Further, in the selenium Therapy in Coronary
Artery disease Patients (SETCAP) Study, supplementation of
sodium selenite increased GPx1 activity in endothelial cells
and in coronary artery disease (CAD) patients. Therefore,
long-term studies are needed to demonstrate whether CAD
outcome can be improved by selenium (320). A cross-sectional
study on the association of serum selenium with the preva-
lence of peripheral arterial disease among 2062 U.S. men and
women 40 years of age or older participating in the National
Health and Nutrition Examination Survey (NHANES), 2003–
2004, suggested that the effects of selenium on athlerosclerosis
are nonlinear and may follow a U-shaped relationship (54).

In summary, the observational evidence that low selenium
concentrations are associated with cardiovascular risk should
be treated as suggestive but not definitive. There is uncer-
tainty about cause and effect; therefore, time-resolved and
prospective studies are needed in different pathological set-
tings. Further, when investigating the relationship between
selenium and disease risk, future studies need to determine
not only selenium status but also genotype in relation to se-
lenoproteins and related pathways (301).

B. Cancer

There are a multitude of studies investigating the effect of
selenium on cancer; several recent reviews focus on the po-
tential mechanisms of action using evidence from in vitro cell
culture studies and in vivo, mainly animal model, studies (187,
231, 332, 433). Proposed mechanisms of the effects of selenium
on cancer are summarized in Figure 9. They include regula-
tion of cell cycle and apoptosis, antioxidant effect through the
action of selenoproteins, in particular, GPx1, GPx4, Sep15,
SEPP1, and TXNRD1 (301, 433), modulation of angiogenesis
(231), and the extracellular matrix (79, 175), histone deacety-
lase inhibition (287), carcinogen detoxification, induction of
GSTs, alteration of DNA damage, and repair mechanisms,
and also immune system modulation (187, 231, 332, 433). How-
ever, the effects of selenium on cancer are species-specific,
dose-specific, and cancer type-specific and may be affected by
genotype and the bioavailability of selenium (Fig. 9), dis-
cussed in more detail below. In this review we discuss data
from human studies, including RCTs and epidemiological
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data, with a particular focus on the species and dose of sele-
nium in interventions and plasma=serum selenium status.

1. Total cancer incidence and mortality. Willett et al.
(401) reported an association between selenium and cancer in
which the relative risk (RR) of cancer was higher in individ-
uals with low plasma selenium concentrations (<115 ng=ml
compared with 128 to>154 ng=ml) (Fig. 10A). The Nutritional
Prevention of Cancer (NPC) trial showed a protective effect of
selenium-enriched yeast supplements (200mg=day) on total
cancer mortality (86), and also total cancer incidence, but only
for men with low plasma selenium concentrations (<121.6
ng=ml at baseline) (101). Participants with baseline plasma
selenium >121.6 ng=ml who consumed selenium-enriched
yeast 200mg=day had a trend toward elevated cancer inci-
dence (101).

In one of the large nutrition intervention trials in Linxian,
China, with over 20,000 participants, supplementation for *5
years with 15 mg b-carotene, 30 mg a-tocopherol and
50 mg=day selenium resulted in a small significant decrease in
total cancer mortality (55, 56, 390). In the SU.VI.MAX trial
(138) the antioxidant status of participants at baseline was
related to the risk of cancer in men but not women, and a large
2-year intervention study with selenium and allitridum (a
synthetic compound similar to bioactive forms in garlic) with
follow-up of cancer incidence for 5 years showed a reduced
RR of all tumors in men but not women (221). A meta-analysis
investigating the effect of antioxidant supplements on pri-
mary cancer incidence and mortality by Bardia et al. con-
cluded that selenium supplementation was associated with
reduced cancer incidence in men but not women (29).

2. Gastrointestinal cancers. A meta-analysis of five
studies published up to 2007 on the effect of selenium on
gastrointestinal cancers showed that selenium supplementa-
tion was associated with a *25%–60% reduction in gastro-
intestinal cancers (overall RR: 0.59, 95% CI: 0.46–0.75) (49);
gastrointestinal cancer included esophageal, gastric, small

intestine, colorectal, pancreatic, liver, and biliary tract (49).
The RR for esophageal cancer was 0.40, and for gastric, co-
lorectal, and hepatocellular carcinoma the RRs were 0.76, 0.48,
and 0.56, respectively.

A dietary intervention trial in China showed a significant
decrease in esophageal cancer prevalence (364), and also a
significant decrease in total mortality and gastric cancer
mortality (56, 288, 390). The reduction in esophageal cancer
mortality was observed after 10 years of supplementation in
the population group <55 years of age (288). Overall, while
the results are very striking, the anticancer effects cannot be
attributed to selenium alone since the population was also
supplemented with vitamin E and b-carotene.

Another large intervention trial in China, with over 5000
participants, investigated the effect of a combined dose of
selenium (50 mg=day as sodium selenite) and garlic com-
pound, allitridum (200 mg=day), compared with placebo
group on gastric cancer and total cancer incidence (221). The
concentration of plasma=serum selenium was not reported in
this study, and it is not known whether the effects were due
to selenium alone, allitridium alone, or the combination.
However, the intervention with selenium and allitridium for
2 years and the follow-up of cancer incidence for 5 years
following the intervention period showed that the RRs of
all tumors and gastric cancer were reduced, but in men
only (221).

As part of a large prospective study conducted in the
Netherlands (The Netherlands Cohort Study), the selenium
status (toenail selenium) of a subgroup of cases with esoph-
ageal cancer and controls (total n¼ 2750) were compared. An
inverse association between toenail selenium content and
esophageal squamous cell carcinoma and gastric cardia car-
cinoma was observed (346). The multivariable adjusted RR for
esophageal squamous cell carcinoma and gastric cancer were
0.37 (95% CI: 0.16–0.86) and 0.52 (95% CI: 0.27–1.02) respec-
tively, for the highest quartile selenium status (toenail sele-
nium>0.613mg=g) compared with the lowest quartile (toenail
selenium�0.498mg=g) (346). The blood selenium concentrations

FIG. 9. Purported mechanisms of action of selenium against cancer and key factors modulating the effect of selenium.
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and selenium intakes were not reported, but the mean intake
of selenium in the Netherlands is estimated to be relatively
low, *43 and 57 mg=day for women and men, respectively
(127).

Selenium-enriched yeast supplements (200mg=day) in the
NPC trial significantly reduced the incidence of colorectal
cancer and adenomas in participants with low baseline sele-
nium status who were current smokers (304); the mean
baseline plasma selenium concentration for all volunteers on
the study was 114 ng=ml, and only the group with baseline
plasma selenium <105.5 ng=ml had a significantly reduced
risk of colon cancer after selenium supplementation. Color-
ectal adenoma cancer patients in Norway were given a daily
supplement containing 101mg selenium, 15 mg b-carotene,
150 mg vitamin C, 75 mg vitamin E, and 1.6 g calcium for 3
years, but there was no overall effect of the supplement on the
incidence of colon polyps or the growth of adenomas. How-
ever, patients <60 years and those with lower incidence of
adenomas at inclusion potentially benefited more from the
supplement compared with the placebo (168).

Patients with colon adenomas had significantly reduced
serum selenium concentration (57� 3.97 ng=ml) and other
markers of selenium status compared with a control group
(serum selenium of 71 ng=ml) (10). Supplementation of these
patients with 500 mg=day selenite increased serum selenium
concentration to *87 ng=ml, and in the colon tissue there
were specific effects on different biomarkers; for example,
GPx increased slightly in response to supplementation.
However, markers of cancer growth and progression and
biomarkers of effect were not quantified in this study (10).
Comparing colorectal cancer tissue with normal mucosa
showed a significant reduction or even a loss of SePP mRNA
in colon cancer tissue compared with normal tissue. This re-
sult was specific for SePP since gastrointestinal GPx differed
between tumor and normal tissues, but overall was not sig-
nificantly different (12). In colon cancer there is likely to be a
differential regulation of various selenoproteins and initial
evidence points to the relative importance of SePP.

Pooled analysis of the effects of blood selenium concen-
tration on colorectal adenoma risk, from three randomized
trials, the polyp prevention trial (317), the wheat bran fiber
trial (239), and the polyp prevention study (146), as described
by Jacobs et al. (188), demonstrated that those who had plasma
selenium concentrations in the highest quartile (median
150 ng=ml) had statistically significant lower odds of devel-
oping new colorectal adenomas than those with selenium
levels in the lowest quartile (median 113 ng=ml), refer to
Figure 10B (188). The baseline blood selenium concentration
in the three studies was *130 ng=ml.

Generally, the relationship between selenium and risk of
esophageal or gastric cancer is unclear since the human
studies to date have investigated low dose selenium
(50 mg=day) with a combination of other supplements, or have
looked at the association with selenium over a relatively
narrow range of selenium status. There is, however, an indi-
cation of a protective effect of selenium against colorectal
cancer, although the dose–response has not yet been eluci-
dated.

3. Prostate cancer. A case–control study in the United
States showed that serum selenium concentrations >151
ng=ml were associated with reduced risk of prostate cancer

FIG. 10. Cancer risk over a range of blood selenium
concentrations=levels from several studies. (A) Relative risk
of cancer by quintile of serum selenium level as described by
Willet et al. (401). (B) Pooled analysis of adjusted odds ratios
for colorectal adenoma as published by Jacobs et al. (188). (C)
Odds ratios of prostate cancer by quartile of serum selenium
as described by Vogt et al. (384). (D) Adjusted odds ratios
for hepatocellular carcinoma by quintile of plasma selenium
level as described by Yu et al. (426).
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compared with serum selenium below 119 ng=ml (Fig. 10C).
The effect was also associated with serum a-tocopherol con-
centration: men with low serum a-tocopherol and high serum
selenium concentration were at decreased risk of prostate
cancer (384). A meta-analysis of epidemiological studies, in-
cluding case–control and nested case–control studies report-
ing selenium status (in toenail, serum, or plasma) and prostate
cancer incidence (n¼ 20 studies included up to 2005) shows
an inverse association between serum levels and risk of cancer
(61). Another meta-analysis of epidemiological data of sele-
nium intake and prostate cancer risk (113) indicated that the
level of selenium intake and the stage of prostate cancer were
important factors. In a comparison of studies reporting
prostate cancer risk relative to selenium intake and disease
status Etminan et al. reported that men with late stage prostate
cancer and high level of selenium intake had a pooled RR of
0.69 (95% CI: 0.48–1.01), suggesting that in this population a
relatively high selenium intake may reduce cancer risk by
*30% (113). West et al. found that for men (aged 68–74) with
aggressive prostate cancer and with estimated high intake of
selenium (in the two highest quartiles, 139–183 mg=day and
>183 mg=day) the RR was increased up to 1.8 (95% CIs were
0.7–4.3 and 0.8–4.4 respectively), compared with lower in-
takes of selenium (<106mg=day) (398). This indicates that
there is likely to be a relatively narrow range of benefit in
terms of selenium intake and chemopreventive effect, and the
optimal intake requires further elucidation in different pop-
ulations.

Selenium supplementation, together with other antioxi-
dants, decreased the risk of prostate cancer (244), but the ef-
fects were related to prostate specific antigen (PSA) score; in
men with normal PSA concentration<3 mg=l, the reduction in
prostate cancer risk was significant, whereas with PSA> 3
mg=l the supplementation was associated with slightly in-
creased risk. In the Nutritional Prevention of Cancer (NPC)
trial, baseline PSA also appeared to be linked to the effect of
selenium, the protective effect of the selenium-yeast supple-
ment being more effective for men who had baseline PSA
4 ng=ml (100). In a group of men with high-grade prostatic
intraepithelial neoplasia (PIN), daily supplementation with
200 mg selenium (as selenomethionine) plus 60 mg vitamin E
and 100 mg isoflavanoids (42 mg genistein, 22.8 mg glycitin,
and 35.2 mg daidzin) for 6 months decreased PSA concen-
tration and was associated with a trend in decreased prostate
cancer diagnosis in repeat biopsy prostate tissue (192). Un-
fortunately, the study design did not include a placebo or
control group (192) and further research is required to in-
vestigate the potential reduction in prostate cancer with the
supplementation regimen and to investigate which supple-
ment component(s) may be most effective.

More recently, the largest randomized placebo-controlled
trial to date investigating the effect of selenium (as seleno-
methionine) on prostate cancer risk, the SELECT trial (226)
did not show a reduction in prostate cancer risk for the pop-
ulation of relatively healthy men studied who consumed
200 mg=day selenomethionine supplement (n¼ 8752) com-
pared with the placebo group (n¼ 8696) over 5 years. Sup-
plementation with L-selenomethionine (200 mg=day) plus
vitamin E (400 IU=day all rac-a-tocopheryl acetate) as part of
the SELECT study, in a healthy selenium replete group, did
not reduce prostate cancer risk either (226). This can probably
be attributed to the relatively high selenium status (median

baseline plasma selenium concentration *135 ng=ml) of the
population studied, and because selenomethionine may not
be the most effective anticarcinogenic form of selenium (182,
183, 290). The NPC trial showed that selenium-enriched yeast
may be associated with a reduction in prostate cancer risk,
and this protection was confined to those men who had a low
baseline plasma selenium concentration <123.2 ng=ml (86,
100). All participants on the SELECT trial were also allowed to
consume a multivitamin tablet (containing 400 IU=day of vi-
tamin D3, plus other multivitamins) and were freely supplied
with this multivitamin (225). Other studies have shown that
multivitamin use may not protect against cancer, and may
increase the risk of certain types of cancer (214). Finally, the
World Cancer Research Fund (WCRF) meta-analyses of the
studies to date published on selenium and prostate cancer
suggest that selenium may be more effective in protecting
against aggressive prostate cancer and its progression (408),
so selenium may be beneficial for patients who already have
prostate cancer.

The effects of selenium are clearly specific to cancer type
and stage (61, 113, 408), and the relative risks and benefits of
low=replete=high selenium status should be considered
carefully. For example, the NPC trial (86) demonstrated that
200mg=day selenium-enriched yeast reduced prostate, lung,
and colon cancer risk but slightly increased the risk of skin
cancer in the cohort who had previously had skin cancer (86).
The dose is critical as illustrated by the fact that a relatively
high dose of selenium-yeast, 400mg=day, did not reduce total
cancer incidence (303), whereas 200 mg=day selenium-yeast
did (86). For selenium and prostate cancer the dose, species,
status of the population, and cancer type=grade are all im-
portant factors linked to outcome and cancer preven-
tion. From a review of the literature, it seems probable that
plasma=serum selenium between >120 and <160 ng=ml may
be associated with a protective effect; this level of plasma se-
lenium is normally achieved through consumption of *100–
150mg selenium=day. Improving our understanding of the
relationship between selenium and risk and progression of
prostate cancer and the underlying mechanisms is a current
research priority. One such interesting future research area
may surround the action of selenium on viral infection in
cancer; for example, some patient cohorts in the United States
with malignant prostate cancer have recently been found to
have xenotrophic murine leukemia virus-related (XMRV)
virus present (318). The relative importance of SePP in pros-
tate may also be a key interesting target, since SePP concen-
tration has been found to be significantly reduced in serum
(245) and SEPP1 gene expression downregulated in some
types of malignant prostate cancer compared with normal
prostate tissue (74). Studies in healthy humans show that
SePP reaches a maximum at *120–125 ng=ml plasma sele-
nium (174), and optimal selenium intake for certain popula-
tions with prostate cancer requires further determination.

4. Other cancers. Many cell culture and animal model
experiments have focused on the mechanisms of action of
selenium on breast cancer, reviewed by El-Bayoumy and
Sinha (109), but there are only a few human studies investi-
gating selenium status and breast cancer. An association be-
tween GPx1 polymorphism and breast cancer risk was
reported (295). Further, a large study investigating the as-
sociation between several polymorphisms in 10 key genes
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associated with oxidative damage repair in >4000 women
with breast cancer linked two polymorphisms in GPx4 with
increased risk of mortality (373). In a population-based case–
control study, using data from the Shanghai breast cancer
study with over 1000 participants, breast cancer risk was in-
creased in women with the manganese superoxide dismutase
(SOD2) Ala=Ala genotype compared with the Val=Val geno-
type, especially in those women who were premenopausal
and had a higher body mass index (73). In a recent study,
toenail selenium content was inversely associated with levels
of chromosome damage in BRCA1 carriers with estimated
selenium intake of 90mg=day and toenail selenium concen-
tration of 1.00 mg=g (208). The authors suggested that ‘‘sele-
nium supplementation may be beneficial for BRCA1 carriers.’’
However, any potential effect of selenium supplementation
on the reduction in chromosome damage is likely to be limited
to low intake=status populations.

A meta-analysis of epidemiological studies published on
selenium and lung cancer concluded that selenium may pro-
tect against lung cancer in low selenium regions, intake
<55mg=day and serum selenium <100 ng=ml (432).

In relation to skin cancer, a combined supplement con-
taining selenium-enriched yeast (providing a daily dose of
120 mg vitamin C, 30 mg vitamin E, 6 mg b-carotene, 100 mg
selenium and 20 mg zinc) was associated with increased in-
cidence, in particular melanoma skin cancer, in women when
compared with the placebo group over a follow-up period of
*7.5 years in the SU.VI.MAX trial (159). In patients who had a
history of skin cancer (nonmelanoma), consumption of
200 mg=day selenium-enriched yeast increased the risk of skin
cancer (squamous cell carcinoma and total melanoma skin
cancer) compared with the placebo group (86, 102). It seems
unlikely that ‘‘optimal selenium status’’ or selenium supple-
mentation regimes can offer protection against skin cancer
from the human study data to date and higher selenium status
and intakes may be associated with increased risk of skin
cancer.

A long-term intervention trial in China with selenized table
salt fortified with 15 ppm sodium selenite for over 8 years in
over 20,000 individuals showed that the incidence of primary
liver cancer decreased by 35% in the selenium-supplemented
group compared with the control nonsupplemented group
(427). Supplementation with selenium-enriched yeast
(200 mg=day) reduced the incidence of primary liver cancer in
hepatitis B surface antigen-positive individuals compared
with the placebo group (427). Hepatitis B viral infection was
prevalent in *15% of the population in the Qidong region of
China, where this intervention study was completed; those
who had hepatitis B had a 200-fold increased risk of primary
liver cancer. Selenium reduced the incidence in this popula-
tion but the exact mechanisms for this protection against liver
cancer are not known.

In a study carried out in Taiwan, men who were hepatitis B
positive and had hepatocellular carcinoma had a significantly
lower mean plasma selenium level of 131.6 ng=ml compared
with the hepatitis B negative control group (150.2 ng=ml)
(426). Among the men who had hepatitis virus infection, the
plasma selenium concentration was associated with a differ-
ence in odds ratio for hepatocellular carcinoma (Fig. 10D).
There was a decrease in hepatocellular carcinoma with an
increase in plasma selenium concentration, but the effect in
terms of cancer protection was nonlinear; >162.3 ng=ml the

number of hepatocellular carcinoma cases started to increase
and the odds ratio was on a trend upward, indicating perhaps
>160 ng=ml was above the associated protective range of
plasma selenium. Overall, men who had hepatitis virus in-
fection and plasma selenium between 150 and 160 ng=ml had
significantly less risk of developing hepatocellular carcinoma
compared with men who had plasma selenium<124.9 ng=ml.

5. Summary of selenium and cancer research, and ranges
that may offer protection. Although direct comparisons of
odds ratios, hazard ratios (HR), and relative risks for many
studies are not possible because the results are study spe-
cific, there is a consistent trend throughout several of the
human studies demonstrating potential protective effects
with plasma=serum selenium between *120–160 ng=ml and
reduced risk of some types of cancer when compared with the
low plasma selenium status, namely <120 ng=ml. Above
160 ng=ml the cancer protective effect is likely to diminish and
the risk perhaps increases for some types of cancer. Literature
from the 1950s and 1960s showed that an inappropriately
high dose range of selenium may actually increase the inci-
dence of certain types of cancer in animal models and sele-
nium used to be classed as a carcinogen in animals when used
at high exposure (84, 334). Therefore, a careful balance en-
suring selenium intakes and selenium status fall in the rel-
atively narrow base of the U-shaped risk-response curve
is critical for potential modulation of certain cancer-type-
specific risk profiles.

6. Selenium supplementation as an adjuvant therapy in
radiation or chemotherapy treatment. Initial evidence for
the role of optimal selenium status in protecting against tox-
icity and unwanted effects of chemotherapy and radiotherapy
in cancer patients seems to be promising, especially consid-
ering the often observed depleted selenium status in many
cases of cancer. Several studies have shown the potentially
protective and beneficial effects of selenium (mainly selenite)
supplementation, to protect against toxicity and side effects of
radiotherapy and chemotherapy treatments, in particular
cisplatin therapy (22, 66, 170, 434, 255). However, the effect of
selenium and other antioxidants may only be beneficial for
reducing the chemotherapy side effects for certain types of
cancer in certain combinations. For example, Weijl et al. found
no reduction in organ toxicity or other markers of toxicity
with a supplementation regimen of selenium plus vitamins C
and E (110, 396). The potential beneficial effects of selenium
supplementation and therapy treatment for cancer patients
are also likely to be selenium dose and species specific, and are
also treatment and cancer specific. For example, large super-
doses (>2000 mg=day) of selenomethionine to increase plasma
selenium to >15–20 mM in cancer patients (various types of
cancer including colorectal, small and nonsmall lung cancer,
sarcoma, and urachal) undergoing treatment with irinotecan
did not seem to provide any overall additional benefit to the
patient and did not decrease the toxicity of the treatment
(118).

In certain at-risk populations, selenium supplementation
and optimization of selenium status should be tested further
as an adjuvant to radio- and chemotherapy. The potential
mechanisms of action of selenium and radiotherapy treatment
of prostate cancer may include effects on DNA damage
pathway, cell cycle control, and antioxidant effects (357).

1358 FAIRWEATHER-TAIT ET AL.



7. Effect of genotype and polymorphisms relating to se-
lenium and cancer risk. Various SNPs in selenoprotein
genes SEPP1, GPX1, GPX4, and SEP15 have been associated
with cancer risk in humans (including lung, colorectal, head
and neck, prostate, breast, bladder, lymphoma, and liver
cancers) (section VII.F below) (160, 301, 433).

Other SNPs have also been linked to the effect of selenium
on cancer. In a case–control study investigating selenium in-
take and esophageal squamous cell carcinoma risk and the
involvement of two polymorphisms (in aldehyde dehydro-
genase-2, ALDH2 and x-ray repair cross-complementing 1,
XRCC1), the cohort with ALDH2 Lys=Lys and XRCC1
399Gln=Gln or Gln=Arg genotypes, plus low selenium intake
from the diet (<14.6 mg=day) and exposure to tobacco and
alcohol, had significantly increased risk of esophageal squa-
mous cell carcinoma (72). The population cohort studied
(n¼ 633 in total) was from a selenium-deficient region in
China (median selenium intake estimated to be 25.9 mg=day)
and where esophageal cancer has the highest worldwide in-
cidence rate (72). Nearly 60% of the patients investigated with
esophageal cancer had a selenium intake <14.6–22.1 mg=day,
and there was a lower risk of esophageal cancer in the highest
selenium intake group (�43.2 mg=day) (72).

Genetic variants of the gene encoding manganese super-
oxide dismutase (SOD2) were linked with the association of
selenium and prostate cancer risk; men who had the AA ge-
notype and higher plasma selenium concentration (>139.8
ng=ml) had a lower risk of aggressive prostate cancer (RR:
0.60, 95% CI: 0.32–1.12), whereas men with the VV or VA
genotype and higher selenium concentration (>139.8 ng=ml)
had an increased risk (RR: 1.82, 95% CI: 1.27–2.61). The overall
suggestion from this cohort study with prostate cancer pa-
tients (n¼ 489) from the United States indicated that the as-
sociation between plasma selenium concentration and
prostate cancer risk may be modified by different SOD2 ge-
notype (81). Cooper et al. (89) showed that there was an in-
teraction between SOD2 and SEPP SNPs and prostate cancer
risk in a large (n¼ 4871 in total) population case–control study
in Sweden. Men who had the SOD2Ala16þ and were ho-
mozygous for SEPP1Ala234 had a significantly higher risk of
prostate cancer and aggressive prostate cancer (OR: 1.43, 95%
CI: 1.17–1.76; OR: 1.60, 95% CI: 1.22–2.09) compared with
SOD2val16 homozygotes. This relationship between the
SOD2 and SEPP1 polymorphisms and prostate cancer risk
was more pronounced in smokers (89).

The SEPP1Ala234Thr and rs7579 polymorphisms may also
be linked to the relative abundance of the two isoforms (50
and 60 kDa forms) of selenoprotein P in plasma; the 60 kDa
form of selenoprotein P was significantly reduced in the
plasma of colorectal cancer patients compared with controls
and this was linked to SEPP1 genotype (243). In a relatively
small case–control cohort study (n¼ 80 participants in total)
investigating the effect of GPX1Pro198Leu and Sep15
1125G=A polymorphisms on selenium status and gene ex-
pression in bladder cancer patients compared with healthy
controls, the GPX1 and SEP15 polymorphisms were not as-
sociated with the gene expression levels of GPX1, GPX3,
SEP15, or SEPP or with plasma selenium concentration, but in
patients with bladder cancer SEP15 and GPX3 were correlated
with grade of cancer. The expression levels of genes GPX1,
GPX3, SEP15, and SEPP1 were significantly decreased (1.3–
2.0-fold) in leukocytes from bladder cancer patients compared

with the healthy controls (309). In a selenium supplementa-
tion trial, BRCA1 mutation carriers had increased levels of
DNA damage marker (8-oxodG) in leukocyte DNA compared
with the control group without the BRCA1 mutation, and
after supplementation with 300mg=day sodium selenite, the
DNA damage marker level significantly decreased (106).

Genetic variation in selenoprotein genes and other genes
may impact both the response to selenium and cancer
risk=outcome, which adds complexity to the relationship be-
tween selenium and cancer and requires further investigation
to pinpoint the key genetic associations and mechanisms of
effect.

C. Diabetes

The evidence supporting an effect of selenium on the risk of
diabetes is variable, occasionally conflicting, and limited to
very few human studies. Following a trial investigating the
effect of selenium supplementation (200 mg=day) on skin
cancer, subsequent analysis showed that there was an in-
creased risk of developing type 2 diabetes in the supple-
mented group (349). The participants in the trial were North
American and generally selenium replete. Supplementation
over a period of 7 years increased plasma selenium concen-
trations to *180–190 ng=ml (HR: 1.55, 95% CI: 1.03–2.33), and
it was observed that the risk for developing diabetes was
greatest in participants with the highest tertile of baseline
selenium status, >121.6 ng=ml (HR: 2.70, 95% CI: 1.30–5.61).
These findings suggest that the Upper Tolerable Intake Level
for selenium, currently set at 400 mg=day by the United States
DRI committee (274), may need to be revised, and that there
could be adverse effects associated with higher dietary intakes
that are not as overt as the typical toxicity signs associated
with selenosis (51).

Evidence from analysis of NHANES III (52) supports these
findings; the adjusted mean serum selenium concentrations
were slightly, but significantly, higher in diabetics compared
with those without the disease; comparison of the highest
(>137.66 ng=ml) with the lowest (<111.62 ng=ml) quintile
gave an odds ratio of 1.57 (95% CI: 1.16–2.13). Conversely,
recent evidence from a European population suggests that
the incidence of diabetes was greater in men with lower me-
dian plasma selenium concentrations compared with higher
concentrations (71.06 ng=ml vs. 101.86 ng=ml) (4). This study,
conducted in an elderly French population, found a sex-
specific protective effect of higher selenium status at baseline
on later occurrence of dysglycemia; that is, risk of dysglyce-
mia was significantly lower in men with plasma selenium in
the highest tertile (93.96–155.55 ng=ml) compared with those
in the lowest tertile (14.21–78.96 ng=ml) (HR: 0.48, 95% CI: 0.25–
0.92), but no significant relationship was observed in women.

Cross-sectional case–control analyses have also given
mixed results. A number of studies have found a lower sele-
nium status in diabetic patients compared with controls (202,
259), which is in contrast to the findings from the NHANES III
analysis (52, 212). Analysis of the Health Professionals Fol-
low-up Study found the prevalence of diabetes to be greater in
men with the lowest tertile of toenail selenium (OR: 0.43, 95%
CI: 0.28–0.64) compared with the highest tertile (291). The
study also analyzed men with both diabetes and CVD com-
pared with controls, but no association was found. Due to the
global variations in selenium status these studies may not be
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directly comparable, and the results may in fact indicate a U-
shaped risk curve, which could be further complicated by
other diseases associated with diabetes.

The mechanisms behind this potential U-shaped risk as-
sociation have not yet been clearly defined. In its role as an
antioxidant, particularly within the GPxs, selenium is likely to
be important in reducing oxidative stress, an important risk
factor for developing diabetes. There are also plausible sug-
gestions that selenium can influence glucose metabolism.
However, at high intakes it is also conceivable that reactive
oxygen species could be generated or selenium may accu-
mulate in the organs associated with glucose metabolism
(51). In patients with diabetes, selenium supplementation
(960 mg=day) reduced NF-kB levels to those comparable with
nondiabetic controls (121). Animal model work has also
suggested a role for selenium supplementation in reducing
some biochemical effects of diabetes. Hwang et al. (176) found
that selenium supplementation of NOD (nonobese diabetic
mice) counteracted ER stress through stimulation of PERK-
eIF2 and IRE1-JNK pathways and also activating the insulin-
signalling pathway. The study also suggested that treatment
with selenium may influence aspects of other chronic diseases
associated with diabetes, for example, by decreasing the levels
of serum markers of liver damage. SelS was first isolated (at
the time called Tanis) during work on diabetic rats and is
thought to be an important link in the relationship between
diabetes, inflammation, and CVD (387). Expression of SelS
was found to be significantly lower in diabetic rats in a fed
state compared with normal control animals and appears to
be regulated by glucose. The importance of SelS in inflam-
matory responses is described further in section VII.D.
Whatever the mechanisms responsible, current evidence im-
plies that both low and high selenium intakes could influence
the risk of diabetes, and this relationship requires further in-
vestigation through good quality human studies.

D. Inflammation and inflammatory disorders

In addition to being an important antioxidant, selenium has
anti-inflammatory properties. The underlying mechanisms
have recently been reviewed elsewhere (104). In summary,
there are a number of ways in which selenium can influence
inflammatory responses, including the inhibition of the NF-
kB cascade, which induces the production of interleukins and
tumor necrosis factor-a (TNF-a) (209). Evidence also suggests
that SelS has a key role in inflammatory responses, first
identified in diabetic rats (387). Serum amyloid A (SAA) is an
acute phase response protein produced in the liver, and SelS
has been identified as a potential receptor for the protein (387),
thus also establishing a link between selenium and CVD (as
SAA is incorporated into HDL cholesterol). Polymorphisms in
the SELS gene have been linked to variations in markers of
inflammation, with one particular variant �105G?A
showing significantly impaired expression of SelS (91).
However, a recent case–control study indicated that there is
no association between six polymorphisms in the SELS gene
and autoimmune inflammatory disorders, including arthritis
and diabetes (238). There is evidence to suggest a sex-specific
effect of selenium on inflammatory responses (324), which
may explain some of the variation in findings related to in-
flammatory disorders. There is a degree of sexual dimorphism
in the distribution of selenium throughout the organs of the

body, which could impact on selenium status and prioritiza-
tion of certain systems or tissues in times of deficiency.
However, presently little consideration is given to the effect of
sex in either animal or human experimentation (324).

Chronic inflammatory disorders are normally associated
with a decrease in selenium status, and cross-sectional case–
control studies have suggested that patients with inflamma-
tory disorders such as cystic fibrosis (247), acne (246), and
inflammatory bowel disease (268) may have a lower selenium
status than healthy controls. Therefore, supplementation with
selenium could possibly alleviate some of the symptoms of
such disorders through increasing antioxidant activity and
suppressing inflammatory conditions. Unlike the potential
preventative benefits of selenium seen for other health issues,
most of the research surrounding inflammatory disorders has
been focused on supplementation as an alternative therapy, or
treatment, for patients.

A systematic review (6) of selenium supplementation for
chronic asthma patients found only one RCT of sufficient
quality to assess the efficacy of intervention. In this study
(151) significant improvements were seen in the overall clin-
ical evaluation of patients in the supplemented group; how-
ever, these differences were not seen in the individual
parameters measured. All other assessed studies were either
not randomized or before–after trials, and therefore did not
meet the inclusion criteria for the review. The authors there-
fore concluded that although there was some indication of a
positive effect of selenium supplementation, high-quality
evidence is currently lacking. A more recent larger RCT (333)
concluded that selenium supplementation did not result in
any significant improvements in either lung function or
asthma-related quality-of-life scores.

Other studies have indicated a varied response to supple-
mentation for asthma patients. One hypothesis for the varia-
tion in intervention results is that although selenium may
have important antioxidant properties, it can also enhance the
immune reactions responsible for the allergic responses of the
disorder (167). Mouse model work has suggested that low
and high selenium status may produce smaller allergic re-
sponses than a moderate selenium status (166). This may ex-
plain some of the variation in human trial results, assuming
that patients supplemented in the various studies had diverse
selenium status at baseline. However, a large European-wide
case–control analysis of selenium levels in asthma patients
and healthy matched controls revealed no association be-
tween status and risk of the disease (71). There are, of course,
other variables to consider, such as the specific type of asthma,
population characteristics, and concurrent use of asthma
drugs, which are likely to further complicate an already in-
tricate relationship.

Selenium has also been postulated as a potential therapy
for rheumatoid arthritis (RA) patients. Like many other in-
flammatory disorders, selenium status appears to be lower in
RA patients than in controls [summarized in Tarp (363)]. A
recent systematic review of the use of antioxidants for treat-
ment of arthritis concluded that the five trials identified (for
selenium and RA) were generally of poor quality and that few
conclusions could be drawn on the efficacy of supplementa-
tion. No meta-analysis was performed because in some in-
stances data reporting was incomplete, but most of the
included studies did not report any significant effect of sele-
nium supplementation on clinical outcomes (75).
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Although there appears to be good evidence from case–
control studies suggesting lower selenium status in patients
with inflammatory conditions compared with healthy con-
trols, there is little supporting evidence from high-quality
RCTs for a therapeutic effect of selenium supplementation.
This could, in part, be explained by the dual functionality of
selenium, influencing both antioxidant and immune re-
sponses. Further high-quality interventions are required to
establish these relationships.

E. Fertility

The use of selenium supplements for fertility problems in
some domestic animal species prompted an investigation into
the relationship between selenium and impaired fertility in
both men and women, and reproductive outcomes. Much of
the current evidence has been focused on the role of selenium
in male spermatogenesis and semen quality (e.g., sperm
count, semen volume, motility, and morphology), but links
have also been made to female reproductive issues such as
pre-eclampsia and miscarriage (296). The evidence support-
ing a role for selenium in female fertility is limited, although
there are data to suggest that women with unexplained in-
fertility may have lower selenium levels in the follicular fluid
than those with explained infertility (280). A study in which
couples were assessed over a period of 5 years found that the
pregnancy rate was greatest in the mid-range of selenium
status (50); however, status was only measured in the semen
of the men, and therefore these findings require cautious in-
terpretation as the exposure of both partners would not nec-
essarily be similar.

There is a larger body of evidence supporting a potential
role for selenium, and antioxidants in general, in postcon-
ception physiology and complicated pregnancies. Infants
born to mothers with the lowest selenium status in the early
stages of pregnancy have significantly lower birthweights
than those born to mothers with higher selenium status (57).
Cross-sectional analysis suggests that women with pre-
eclampsia have both a significantly lower selenium status in
the latter stages of pregnancy and lower levels of placental
GPx at delivery than healthy pregnant women (24). Pre-
eclampsia is characterized by an increase in the usual in-
flammatory responses that occur during pregnancy. Subse-
quently, following the discovery that SelS is associated with
inflammatory responses (91), a retrospective genetic analysis
of a case–control study in Norway identified an increased risk
of pre-eclampsia in women carrying the allele associated with
impaired SelS expression (254). Miscarriage has also been
linked with selenium status; Barrington et al. (30) found that
women recently suffering a miscarriage in the first trimester of
pregnancy had significantly lower selenium status than
pregnant women at the same gestational age. A decrease in
antioxidant enzyme activity (particularly the GPxs) is attrib-
uted to the effect (428).

The relationship between selenium and male fertility has
been widely studied using animal models and cross-sectional
analyses of semen samples. However, the effect of dietary
supplementation on fertility measures has not been widely
studied through human interventions, and has thus far given
inconsistent results. Behne et al. (38) showed that the testis are
a primary target for selenium within the body (Fig. 4), and
during times of deficiency the supply of the micronutrient to

the male gonads appears to be prioritized. The selenium
content of the testis is high, and increases during puberty.
SePP is required to transport selenium, particularly to the
testis, where apoER2 is known to act as a receptor (273). In
Sepp1 knock-out mice the semen quality is severely compro-
mised, and wildtype mice fed low selenium diets show almost
identical problems, but these are reversed upon feeding a
high-selenium diet (270, 272).

The majority of selenium found within the testis is incor-
porated into the selenoprotein GPx4, which is expressed in
particularly large amounts and is now thought to have mul-
tiple roles within spermatogenesis. The selenium-containing
GPx enzymes are considered to have key antioxidant activi-
ties, scavenging and protecting cells from reactive oxygen
species. GPx4 fulfils this role within the testis, and is highly
expressed and active during the process of sperm maturation.
GPx4 also has a structural role within the mature spermato-
zoa, most of the selenium content of mature spermatozoa is
still present as GPx4; however, the activity of the enzyme is
negligible (374). During the final phases of sperm maturation,
GPx4 forms interlinking structures and comprises >50% of
the mitochondrial containing capsule of mature spermatozoa,
a unique example of a GPx enzyme forming a keratin-like
structure and subsequently losing its activity (374). The po-
sition of the capsule, in the mid-piece of the spermatozoa, is
likely to explain the structural defects commonly seen in
selenium-deficient animals, particularly the brittle and weak
connection between the head and tail regions (411). Two re-
cent animal studies that used spermatocyte-specific GPx4
knockouts or mice lacking expression of mitochondrial GPx4
both found that these mice were infertile, characterized by a
reduced number of spermatozoa plus increased abnormalities
(178, 321). Other selenoproteins present in the testis include
selenoproteins V, W, K, 15ka, and S, but the specific function
of these within the testis remains unknown (59).

Three different measures of selenium content in semen can
be made: the selenium concentration in the semen as a whole,
the concentration in the seminal plasma, and the concentra-
tion in the sperm. The choice of compartment is critical in
assessment of selenium concentration. Sperm selenium con-
tent is well regulated and does not appear to be heavily
influenced by dietary intake. Seminal plasma, however, is
largely composed of secretions from other glands (notably the
prostate) and therefore may not accurately reflect the sele-
nium present within the testis. Semen selenium takes both
measures into account, but it is, to a certain extent, dependent
upon sperm density (37).

Semen selenium values are typically about a third of the
value of blood plasma selenium (312) and extremes of semen
concentration have been associated with reduced semen
quality, particularly motility (50). Many cross-sectional ana-
lyses have been conducted to attempt to establish a relation-
ship between infertility and selenium content of semen.
Takasaki et al. (358) found no significant difference between
the selenium concentration in whole semen or seminal plasma
of fertile and infertile men, although the sperm selenium
content was significantly higher in the infertile group. The
exact proportion of semen selenium that is contributed by
sperm appears to vary, and not only according to the sperm
count. Behne et al. (37) found a correlation between the sperm
count of men seeking treatment for infertility and the contri-
bution of sperm selenium to whole semen concentrations, but
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the proportion ranged from 0% to 41% and was not in
agreement with previous studies that suggested a value of
around 15% regardless of sperm count (50).

Since the discovery of the importance of the GPxs to male
fertility, particularly GPx4, a number of cross-sectional ana-
lyses of their relevance to measures of male fertility have been
conducted. Alkan et al. (5) reported that levels of GPx in the
seminal plasma of infertile men were lower than those of
fertile men, which in turn led to higher levels of reactive ox-
ygen species. GPx4 expression is significantly lower in the
spermatozoa of some men with reduced fertility, but this only
appears to account for about a quarter of infertile men (180). A
comparison of the rescued GPx4 activity of specimens from
fertile and infertile men found the range of activity to be sig-
nificantly lower in the latter (131).

Relatively few intervention studies have been conducted,
and these have yielded mixed results. Scott et al. (330)
showed that supplementation with selenium (100mg=day, as
L-selenomethionine) improved motility after 3 months. How-
ever, the patients recruited for the trial had a low initial sele-
nium status and had low motility levels at onset of treatment.
An earlier study administering 200mg=day as either selenium-
enriched yeast or sodium selenite showed no significant effect
on semen quality measurements in either group (184). A con-
trolled feeding trial, in which men were given either high
(297mg=day) or low (13mg=day) selenium-containing diets for
99 days, found no changes in sperm selenium or androgen
levels throughout the trial (156). However, there was a sig-
nificant decrease in the fraction of motile sperm in the high-
selenium group, and an overall decrease in sperm count in both
groups. It was hypothesized that the latter could be a result of
seasonal fluctuations in sperm production. Selenium supple-
mentation with selenium-enriched yeast (247mg=day) also re-
sulted in no significant changes in testosterone levels or ratios
in a small group of healthy adult males (108).

In one of the largest intervention trials to date, Safarinejad
and Safarinejad (313) conducted a 2�2 factorial trial to study
the effects of selenium and N-acetyl-cysteine (NAC) on a
group of 468 infertile men. A dose of 100 mg of selenium=day
was administered to one group for 26 weeks, which resulted
in an increase in testosterone and all semen quality parame-
ters. Similar patterns were seen in the NAC group and the size
of effect was increased in the group receiving both types of
supplement. The authors suggest that the positive effects seen
in this trial may have been a result of the larger study groups,
the population setting (with selenium status likely to be in-
fluential), the form of selenium administered, and the specific
targeting of their study to a group of infertile men with con-
ditions most likely to respond to supplementation. A further
intervention trial by Hawkes et al. (154) supplemented healthy
men with 300mg=day selenium-enriched yeast for 48 weeks
and found no effect on testosterone levels or semen quality
measures. However, semen volume and sperm selenium de-
creased, and velocity and normal morphology increased in
both the supplemented and placebo groups. The study also
confirmed that sperm selenium levels are almost entirely
unaffected by recent dietary intakes, as the concentration in
the supplemented group did not alter despite large significant
increases in blood selenium levels.

In addition to selenium supplementation trials, a number of
studies have assessed combinations of micronutrients as a
therapy for infertility in male patients. Keske-Ammar et al.

(197) compared a combination of selenium (as ‘‘Bio-selenium,’’
225 mg=day) and vitamin E with a control of B vitamins (a
standard therapy) in infertile men. Although a significant
improvement was seen in mobility after 3 months in the vi-
tamin E-selenium group, less than half of the originally re-
cruited patients completed the study. A small study (n¼ 9)
supplementing infertile men with a combination of selenium
(100 mg=day organic selenium) and vitamin E reported sig-
nificant improvements in motility, normal morphology, and
percentage of live spermatozoa after a treatment period
compared with a baseline control period (381).

The disparity in results from intervention and observa-
tional studies makes it difficult to disentangle selenium–
semen quality relationships. The considerable natural variation
in semen parameters, even within defined fertility categories,
makes large sample sizes imperative. Further, the selenium
status of the population, form of selenium administered, and
duration of intervention all varied in the few intervention
trials conducted. Duration could be particularly important if
seasonal variations can account for large differences in semen
measures, as suggested by Hawkes et al. (156). Few studies
have actually looked at reproductive outcomes associated
with semen parameters and selenium intake. One interven-
tion trial reported a paternity rate of 11% in the supplemented
group (330), and a cohort followed up reproductive outcomes
for up to 5 years, reporting that pregnancy rate was highest in
the mid-ranges of semen selenium (50). It is clear, however,
that much is still unanswered regarding the influence of se-
lenium on male fertility and, in particular, actual reproductive
outcomes. Further high-quality interventions are required to
establish whether selenium has any discernable therapeutic
effects for male infertility, and if so in which populations
and circumstances. Evidence to date suggests that high die-
tary intakes (although below the upper safety limits) may
be as detrimental as deficiency to male fertility, and there-
fore determining the optimal range for health is all the more
pertinent.

F. Genetics of selenoproteins

Theoretically, there are three broad routes by which sele-
noprotein function can differ between individuals: first, dif-
ferent dietary intakes affect selenoprotein synthesis and
activity; second, genetic variants in a selenoprotein gene
(mutations or SNPs) lead to altered protein function or reg-
ulation; third, a combination of dietary intake and genetic
variants affect selenoprotein function. It is well established
that selenoprotein synthesis varies with dietary intake and
that there is a hierarchy in sensitivity to selenium intake (39,
42). In addition, a small number of mutations have been
identified in selenium-related genes that lead to clinical dis-
ease. For example, a mutation in the gene encoding SECIS
Binding Protein 2, SBP2, causes an amino acid change that
results in altered selenocysteine incorporation into seleno-
proteins, and as a result impaired thyroid hormone action due
to low deiodinase expression (103). Recently, newly identified
nonsense mutations in this gene have been shown to lead to a
complex syndrome that includes myopathic, thyroid, and
neurological features (122). In addition, a congenital muscular
dystrophy has been associated with a rare mutation in the
region of the selenoprotein N gene predicted to correspond to
the SECIS within the 30UTR (7). In these cases the effect of the
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rare mutation is independent of selenium intake—they give
rise to genetic diseases. In contrast, links between common
SNPs, alone or in combination with sub-optimal dietary se-
lenium, and risk of multifactorial diseases such as cancer and
heart disease remain to be established. However, over the past
few years a number of SNPs in selenoprotein or selenium-
related genes have been shown to have functional conse-
quences and thus to be worthy of study in relation to disease
risk.

Selenocysteine incorporation occurs during translation by a
mechanism that requires a specific RNA stem-loop structure
(SECIS) in the 30 untranslated region (30UTR) of the mRNAs
(39, 160); therefore, it is important to consider SNPs seleno-
protein gene regions corresponding to 30UTR sequences and
not only those in promoter or coding regions. Indeed in se-
lenoprotein genes SNPs identified as being functional have
been found in coding, promoter, and 30UTR regions.

The first coding region SNP identified in a selenoprotein
gene was rs1050450, which causes a Pro to Leu amino acid
change in GPx1 and which alters enzyme thermal stability
and enzyme activity (133). The variant has been found to alter
the relationship between plasma selenium and blood cell
GPx1 activity (185). More recently, a coding region SNP in the
SEPP1 gene (rs3877899) was identified (240), and this is pre-
dicted to cause a Thr to Ala change in the amino acid se-
quence. The SNP apparently alters SEPP function since it
leads to altered responses of blood cell GPx1, GPx4, and TR1
to selenium supplementation and also affects the proportion
of SePP isoforms in plasma (240, 243).

Reporter genes have proved useful in assessing the func-
tionality of promoter region polymorphisms in the seleno-
protein genes. For example, the promoter region of the SePP1
gene contains a TC repeat sequence, and a SNP in this se-
quence has been found to cause lower promoter activity when
linked to a reporter gene and expressed in a liver cell line (11).
More recently, eight linked variants have been identified in
the promoter region of the GPx3 gene; reporter studies have
suggested differences in promoter activity between the two
haplotypes, suggesting that there are functional variants
within these groups (383). In addition, a SNP has been found
in the promoter region of the Selenoprotein S gene at position
�105, and this variant has been found to alter both the levels
of markers of inflammation such as TNF-a and interleukin 1b
and the response to endoplasmic reticulum-related stress (91).

Reporter genes have also proved useful in exploring the
functionality of SNPs in gene regions corresponding to the
30UTR of selenoprotein mRNAs. Approximately 10 years ago
two SNPs, a C=T substitution at position 811 (rs5845) and a
G=A at position 1125 (rs5859), were found in the region of the
Sep15 gene that corresponds to the 30UTR of the mRNA, and
expression studies using the sequences linked to a reporter
gene showed that the combination of the variants influenced
read-through at a UGA codon (172). In addition, a variant in
the 30UTR region of the GPX4 gene (rs713041) has also been
found to determine selenoprotein deiodinase reporter gene
activity in transfected Caco-2 cells; the two allelic variants of this
rs713041 SNP in GPx4 promote reporter activity to differing
extents in selenium-deficient and selenium-supplemented con-
ditions (46). The C variant promotes reporter gene activity to a
greater extent and this would be expected to result from
greater selenocysteine incorporation into the deiodinase re-
porter. In addition, in vitro RNA–protein binding assays show

that transcripts corresponding to the T and C variants differ in
their ability to form RNA–protein complexes (241), with the C
variant having the stronger binding properties. Further, data
from a selenium supplementation trial showed that this SNP
affected responses of GPx4, GPx1, and GPx3 protein expres-
sion or activity in response to selenium supplementation or
withdrawal (241). In addition, a G=A variant has been found
at position 25191 in the 30UTR region of the SEPP1 gene
(rs7579) and on the basis of results from a human selenium
supplementation trial the SNP appears to be functional.
Rs7579 was found to modulate both plasma and lymphocyte
GPx activities, plasma concentrations of SePP post-
supplementation, and the proportion of SEPP isoforms found
in plasma (240).

The allele frequencies of a limited number of these SNPs
have been assessed in disease association studies [reviewed in
Hesketh (160) and Rayman (301)] and although the cohorts
analyzed have been relatively small the analyses have led to
suggestions that some of the variants may be associated with
disease risk. Variants in the family of GPx gene family have
been linked to cancer risk. The Leu variant of GPx1 (rs
1050450) has been reported to increase susceptibility to lung,
breast, and bladder cancer, possibly when combined with the
influence of either a second SNP in the gene encoding the
antioxidant defense protein manganese superoxide dismutase
or environmental factors such as alcohol consumption and
smoking (90, 171, 177, 293, 295). These studies suggest that
this allele, in combination with increased cell stress, affects
disease susceptibility.

To date, studies of the association of rs713041 (a T=C SNP in
the 30UTR of GPX4) have produced contradictory results with
one small UK study indicating that the T variant is associated
with a lower risk of colon cancer (44), but a recent larger study
in a Czech population showing that the T variant is associated
with a higher risk of colorectal cancer (CRC) (242). In addition,
results from a large association study suggest a link between
genotype at this SNP and susceptibility to breast cancer (373).
Other variants have been reported in the GPx4 gene, but there
was no clear relationship between any of these variants and
sperm viability or fertility. SNPs in the promoter region of the
GPx3 gene fall into two haplotype groups, and the group that
showed a lower activity in reporter gene assays was also
present at higher frequency in children and young adults with
arterial ischemic stroke (383).

Since SePP has a key role in selenium transport, it might be
expected that variants in this gene would influence risk of
diseases in which selenium intake has been implicated as a
determining factor. However, the evidence for such associa-
tions is limited. Initial studies suggested that neither the TC
promoter polymorphism nor the Ala-Thr SNP in SEPP1
(rs3877899) show altered allele frequencies in colorectal can-
cer patients (11, 12). However, a more recent study has
studied different SNPs in the SEPP1 gene and reported that a
combination of several SNPs in SEPP1 promoter modify risk
of colorectal adenoma (286). Recent studies have suggested
that rs7579 is associated with altered risk of CRC and
rs3877899. In combination with the rare allele for the man-
ganese superoxide dismutase SNP rs4880 affects risk of
prostate cancer in smokers (89).

An association between the combined rs5845 and rs5859
variants in Sep15 and breast cancer risk has been reported;
in addition, the genotype for rs5859 has been observed to
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influence lung cancer risk in smokers (186). Two small asso-
ciation studies have showed no evidence that the �105G?A
SNP in the promoter of SelS affects risk of ulcerative colitis or
other autoimmune inflammatory diseases (331). However, a
recent study in a Japanese population has suggested the
variant affects the risk of gastric cancer (338). In addition, a
recent association study has linked another variant in SelS (rs
34713741) to CRC risk (242).

In summary, genetic variants in regions of selenoprotein
genes corresponding to promoter, coding region, or 30UTR
have been identified and shown to cause functional changes.
To date, disease association studies of these SNPs have been
inconclusive and there is a need to carry out more extensive
studies of larger cohorts so as to incorporate analysis of an
appropriate range of SNPs to assess variation across the se-
lenoprotein pathway as a whole, and in combination with
selenium status=intake. Results of the small association
studies carried out to date suggest that such future extensive
studies will be important, especially when they consider in-
teractions between different variants and also take environ-
mental and dietary factors into account.

VIII. Selenium in Critical Illness

Selenium is generally accepted as an essential component
of total parenteral nutrition since in its absence deficiency
symptoms are observed (198, 292), and it has been shown to
have a positive effect on immune function in patients on home
parenteral nutrition for short-bowel syndrome (285).

Critically ill patients, including those with burns (40), have
reduced plasma GPx activity and selenium concentrations
(236, 237), in particular selenoprotein P (129). The magnitude
of the decrease in plasma selenium appears to reflect the se-
verity of the disease (15) and the concentration continues to
fall over time for patients in intensive care (152). There is an
accompanying increase in urinary selenium excretion (201)
although these losses are not enough to account for the re-
duction in plasma selenium concentrations, which must re-
flect the redistribution of body selenium. In the light of these
observations it has been suggested that there is a higher de-
mand for selenium in critical illness, and recommendations
made for selenium to be included in parenteral nutrition
and=or for selenium to be administered intravenously (25, 335).

The reason for the transfer of selenium from plasma into
other body compartments is not known, and the underlying
mechanisms have yet to be elucidated. In critical illness, TSH,
thyroxine, and thyroxintriodothyronine (T3) are low and re-
verse T3 is elevated (195). Although the etiology and conse-
quences of changes in thyroid hormones are unclear, it is
likely to be a direct effect of cytokines rather than selenium
insufficiency per se (142). The hierarchy in synthesis of sele-
noproteins when selenium supply is inadequate gives pref-
erence to the three iodothyronine deiodinases involved in
thyroid metabolism (45). Further, selenium supplementation
has no effect on thyroid hormone levels in critically ill patients
(16).

Excessive oxidative stress plays a key role in the develop-
ment of complications of critical illness, such as systemic
inflammatory response syndrome (SIRS). Several selenopro-
teins are enzymes involved in antioxidant defences and redox
regulation, such as the GPxs, thioredoxin reductases, and
methionine sulfoxide reductase. Sepsis is an important cause

of mortality in intensive care unit patients; infection and
endotoxemia provoke a cascade of localized and systemic
responses, including increased free radical production, cyto-
kines, and lipid peroxidation (139). It has been proposed that
low GPx activity in critically ill patients and low total, but
increased glutathione disulfide levels, plus increased free
radicals in body compartments may contribute to multiorgan
failure (149). Selenium supplementation (158–454 mg=d) was
found to increase plasma selenium and GPx activity in se-
verely septic patients in intensive care, but thyroid function
tests, C-reactive protein, and F2 isoprostanes were unaffected
(250). An intriguing hypothesis to explain the observed re-
distribution of selenium in septic shock and SIRS is that se-
lenoprotein P binds strongly to the endothelium and hence
the fall in plasma concentration, which is particularly notable
just before death (129).

High-dose selenium supplementation has been reported to
decrease mortality in septic shock, especially when using a
bolus administration, whereas studies using a continuous
administration fail to find any benefit. In septic shock patients
given high-dose selenium administration by continuous in-
fusion (selenium as sodium selenite (4000 mg on the first day,
1000 mg=day for the 9 following days) or placebo), there was
no difference in mortality rates or adverse events rates. Con-
versely, when patients with severe SIRS, sepsis, and septic
shock were given 1000 mg of selenium as sodium-selenite as a
30-min bolus injection, followed by 14 daily continuous in-
fusions of 1000 mg intravenously, or placebo, mortality rate
was reduced (14).

Heyland et al. (161) undertook a systematic review to in-
vestigate whether antioxidant supplementation (including
selenium) improved the survival of critically ill patients. Sub-
group analysis of seven studies showed a trend [RR: 0.59, 95%
CI: 0.32, 1.08 p¼ 0.09] toward lower mortality with high
dose (500–1000 mg=d) selenium supplements, either alone or
in combination with other antioxidants, but not with lower
doses (<500mg=d); there was no effect of selenium on infec-
tious complications. A Cochrane Review on the impact of
selenium supplementation in critically ill adults was pub-
lished in 2004 and updated in 2007 (27). Ten randomized trials
involving 1172 patients were included, but they were re-
ported to be generally poor quality (inadequate size and=or
methodology). The administration of intravenous sodium
selenite was not demonstrated to result in a significant re-
duction in mortality of intensive care patients. There was also
no effect on the development of infection, or number of days
on a ventilator, length of intensive care unit stay, length of
hospital stay, or quality of life. Since these systematic reviews
were published, the results of a trial examining the influence
of early antioxidant supplementation (selenium, zinc, vitamin
C, and thiamine) on clinical outcome of critically ill patients in
intensive care with conditions characterized by oxidative
stress, namely, cardiac valve or coronary bypass surgery with
postoperative complications, major trauma, and severe sub-
arachnoid hemorrhage, have been published (41). Plasma
selenium increased and C-reactive protein decreased faster in
the test versus the placebo group, but infectious complications
did not differ and length of stay in hospital was only reduced
in the trauma group.

In conclusion, despite the well-documented fall in circu-
lating selenium in critical illness, there is limited evidence
for any meaningful improvement in the outcome that can be
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attributed to selenium supplementation. A large trial (SIG-
NET) in critical care patients has recently been completed to
determine whether selenium and glutamine offer any poten-
tial to enhance host defence and thereby reduce infections and
mortality (13). Another trial (CRISIS) is currently underway,
investigating the prophylactic effect of enteral supplementa-
tion with zinc, selenium, and glutamine on nosocomial in-
fections and sepsis in critically ill children (78). When the
results of these trials are published, it will hopefully be pos-
sible to develop a transparent and robust policy for selenium
administration in critical illness.

IX. Dietary Reference Intakes

The range of intake between which selenium deficiency
and toxicity occurs is relatively narrow, with current estima-
tes suggesting that intakes below 30mg=day are inadequate
and those exceeding 900 mg=day are potentially harmful (409,
420). Globally, dietary intakes traverse both of these guide-
lines due to the influence of geochemistry on the quantity of
selenium in foods. The best known examples of the influence
of local geochemistry on selenium intakes are within China,
where there are areas with extremely low and high selenium
consumption. Much of the data pertaining to the risks of ex-
cessive and deficient intakes have been derived from these
areas.

The methodology and terminology of DRIs can be con-
fusing. Essentially, DRIs encapsulate a range of different
values recommended by expert bodies, although even the
term DRI is not exclusive, with dietary reference values and
nutrient intake values having similar definitions. Although
there have been attempts to align the terminology (199), at
present it is as diverse as the values themselves. Each set of
DRIs typically includes values equivalent to an estimated
average requirement (EAR), the mean intake level that would
meet the needs of half the population, and a recommended
dietary allowance (RDA), the intake level at which the needs
of 97.5% of the population are met (2 SDs above the EAR; Fig.
11). In addition, many bodies have issued advice on the tol-
erable upper intake level, the highest daily intake level that
poses no adverse effects to health and normally includes the
application of an uncertainty factor; some have also desig-
nated a lower level of intake, normally defined as the mini-
mum intake required to maintain proper function or prevent
deficiency symptoms.

Not only do current dietary recommendations aim to pre-
vent overt deficiency, but also, in most cases, the DRIs have
been set to achieve an optimum status. For selenium, the most
commonly used marker for deriving current recommenda-
tions is the optimization of plasma GPx3 activity. Despite this,
DRIs for selenium are diverse (Fig. 12). This variation is lar-
gely due to the selection of articles from which to derive an
evidence base, the use of varying average body weights, and
the interpolation techniques applied. The DRIs for adults
published by a selection of countries and expert bodies are
shown in Table 1. Some of the recommendations, notably the
UK (93) and the European Food Safety Authority (EFSA) (329)
DRIs, are almost 20 years old, and since then further data from
studies have become available. However, when the Nordic
Nutrition Council and the World Health Organization (WHO)
updated their recommendations in 2004 (265, 410), they con-
cluded that there was no significant new evidence to incor-

porate into their decisions and the reference values were left
unchanged, despite nearly a decade elapsing since the pre-
vious reports. Two of the most recently published recom-
mendations, WHO (410) and Australia and New Zealand
(AU=NZ) (26), are quite different, with the Recommended
Dietary Intake (RDI, RDA equivalent) of AU=NZ more than
twice the value of the equivalent Recommended Nutrient
Intake (RNI) set by WHO. The AU=NZ recommendations are
in fact more in line with those published by the UK back in
1991 (Table 1).

The choice of data for determining recommendations and
its interpretation are often specific to the country or the
committee setting the DRIs. The UK panel chose to set rec-
ommendations based on assessments of intake and status
data from dietary surveys within its own country. From these
data they concluded that, at the time of review, the whole
blood selenium concentrations within the population were
just over the 100 mg=l value suggested for optimization of GPx
activity (367); therefore, the average diet consumed by UK
residents was adequate to meet requirements. The Reference
Nutrient Intake (RNI, RDA equivalent) value was calculated
using the current intakes and set at an equivalent to 1mg=kg
per day (93), but there were insufficient data to derive an EAR.
In comparison, WHO recommendations were set on the basis
of two-thirds maximal plasma GPx3 activity rather than full
saturation (the end point used by most expert bodies) because
they saw no obvious health benefit of maximal saturation.
Further, the average body weight used by the committee was

FIG. 11. (A) Theoretical dose–response curves used in the
derivation of Dietary Reference Intakes. (B) Theoretical distri-
bution graph for determining recommended dietary allow-
ances from estimated average requirements. EAR, estimated
average requirement; RDA, recommended dietary allowance;
UL, tolerable upper intake level.
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65 kg for men, significantly less than in many Western coun-
tries, to better reflect the needs of populations in developing
countries (410). WHO set their recommendations using data
from a trial in which severely depleted individuals were
supplemented with varying amounts of selenium over time
(423).

Several other DRI committees have also used data from the
trials conducted in China by Yang et al. (423), including EFSA
(329), the Nordic Nutrition Council (265), and the Institute of
Medicine (IOM) (274). The latter, however, averaged the
suggested requirement of 41 mg=day from the Yang trial (423)
(interpolated to 52 mg=day for American males) with a study
from New Zealand (99) that suggested a figure of 38 mg=day to
arrive at their EAR of 45mg=day for adults. The panel re-
viewing the literature for the AU=NZ DRIs in 2005 (26) also
used evidence from the Duffield et al. (99) study in which New
Zealanders with low blood selenium concentrations were
selected for a supplementation trial where various doses of
selenomethionine (up to 40 mg=day) were provided, on top of

a habitual dietary intake just under 30 mg=day, for 20 weeks.
Plasma GPx3 activity only reached a plateau in the 40mg=day
supplement group, suggesting an intake of around 70mg=day
is necessary for deficient populations. However, the panel
also used evidence from a more recent trial that was con-
ducted in China and involved groups supplemented with
either selenomethionine or selenite up to doses of 66 mg=day,
plus a habitual average intake estimated as 10mg=day, also for
20 weeks (414). GPx3 activity reached a plateau in the sele-
nomethionine group at a supplemental intake of 37mg=day
and in the selenite group at 66mg=day.

Many countries and bodies have chosen not to distinguish
recommended intakes for men and women, selecting instead
just one value for adults. The IOM concludes that although
Keshan disease has been recorded in women of reproductive
age, this was only an issue in extremely deficient populations
and not currently of concern, even in China, given recent
improved intakes. The DRIs, however, are calculated on a
basis of average male body weight and therefore are more
than adequate to meet female needs (274). The majority of
differences in the gender-specific recommendations are as a
result of calculations made on average body weights. The
Japanese recommendations have assigned different values for
the Tolerable Upper Intake Level for each gender (Table 1),
which is not the practice of the majority of panels as the value
already incorporates an uncertainty factor (249). None of the
recommendations discriminate between different forms of
selenium, although this might be of relevance for upper limits.

DRI panels tend to set requirements for children and ado-
lescents by extrapolating data from the adult values on the
basis of metabolic body weight. Although far from ideal, there
is currently very limited evidence for setting EARs for these
population groups. Infants under the age of 1 year are not
covered by this method of estimation. Instead, an adequate
intake is set which is based on observations and evidence
from the literature of intakes that appear to be adequate to
meet the population needs. These estimations are usually
based on average measurements from human milk, which are
assumed to be adequate during the first year of life.

The process of setting DRIs using data from trials conducted
in populations exposed to very different selenium intakes
could potentially be misleading. There is evidence to suggest
that there is a significant adaptation to usual intakes within a

FIG. 12. Current diversity in selenium recommendations
by sex. Compiled using the EURRECA Nutri-RecQuest da-
tabase (80). Where recommendations are given as ranges, the
midpoint has been used. Recommendations for males (M)
and females (F) are shaded as dark gray or light gray bars,
respectively.

Table 1. Current Dietary Reference Intakes for Adults (mg Selenium=Day) of Selected Countries and Bodies

Country or body Year EARa RDAb ULc LId

UK (93) 1991 Not derived for selenium 60 (F), 75 (M) 450 40
USA and Canada (274) 2000 45 55 400 —
Nordic (265) 2004 30 (F), 35 (M) 40 (F), 50 (M) — 20
WHO=FAO (410) 2004 20 (F), 27 (M) 26 (F), 34 (M) 400 —
EFSA (EU) (329) 1993 40 55 450 20
AU=NZ (26) 2005 50 (F), 60 (M) 60 (F), 70 (M) 400 —
Japan (249) 2005 20 (F), 25–30 (M) 25 (F), 30–35 (M) 350 (F), 450 (M) —

aEAR, estimated average requirement (USA, UK, AU=NZ, and Japan); equivalent to AR, average requirement (EFSA, Nordic); ANR,
average normative requirement (WHO).

bRDA, recommended dietary allowance (USA, Japan); equivalent to RNI, reference nutrient intake (UK); PRI, population reference intake
(EFSA); RNI, recommended nutrient intake (WHO=FAO); RDI, recommended dietary intake (AU=NZ); RI, recommended intake (Nordic).

cUL, tolerable upper intake level (USA, Japan, WHO=FAO); equivalent to UL, upper level of intake (AU=NZ); maximum safe intake (UK, EFSA).
dLI, lower level of intake (Nordic); equivalent to LRNI, lower reference nutrient intake (UK); LTI, lowest threshold intake (EFSA).
EFSA, European Food Safety Authority.
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population, and therefore historical intakes will affect the se-
lenium balance of an individual. This theory is supported by
trials in American men (219) in whom an intake of 80mg=day
was necessary to balance losses. Conversely, Luo et al. (233)
conducted a similar study in Chinese men and estimated the
figure to be 7.4mg=day. The wide variation in these figures can
partly be attributed to differences in body weight of the sub-
jects, but also the difference in selenium body pool size.

The choice of plasma GPx3 as a biomarker for use in setting
dietary reference values is subject to debate. The two trials that
served as the basis for the AU=NZ recommendations (99, 414)
both reported that plasma selenoprotein P did not plateau in
any of their intervention groups, suggesting that it reaches a
maximum at intakes in excess of 70mg=day. The Nordic Nu-
trition Council conceded that although intakes of 30–40mg=day
appear adequate to optimize plasma GPx3, other GPxs may
require considerably higher intakes to reach a plateau (265).
The choice of biomarker has a significant impact on the refer-
ence value that is derived, as does the cut-off point chosen. A
recent systematic review of selenium biomarkers concluded
that for most measures of selenium status there are insufficient
data to determine the conditions for which different biomark-
ers are useful (23). There is also currently some debate as to
whether recommendations should be set to prevent overt de-
ficiency symptoms or to maximize optimal health. This dis-
cussion is further fuelled by evidence that suggests that intakes
higher than current recommendations may reduce the risk of
certain chronic diseases, such as cancer and CVD (see Section
VII.A, B). Currently, although many DRI expert bodies ac-
knowledge these relationships, the general conclusion is that
the evidence is not sufficient to use for deriving DRI values.

In a recent risk modeling exercise, Renwick et al. (308)
compared the data used for setting the current DRIs with
other potential, but less substantiated, health effects. In the
model, the range of intake that provided a very low (<0.001%)
risk of deficiency or toxicity, according to data used by DRI
committees, was 90–500mg=day. The potential complications
(Fig. 13) of using alternative health end-points was illustrated

by the addition of lines modeled for an anticancer effect [using
data from Clark et al. (86)] and an increased prothrombin time
effect [using data from Yang et al. (419)]. This eliminates the
safe range, and results in an overlap for beneficial and adverse
effects, thereby highlighting the complications of including
risk–benefit assessment as part of the DRI process.

A further consideration that is pertinent to DRIs is sele-
nium bioavailability. Although the bioavailability of sele-
nium compounds is generally high (compared with iron, for
example), there are marked differences in the absorption of
the organic and inorganic forms (117). The bioavailability of
different species of selenium from varying food sources is not
well defined and requires further research. In addition, the
quantity of selenium within specific foods, even those grown
in the same region, can vary considerably, and therefore a
larger error factor is sometimes applied to selenium require-
ments to counteract inconsistencies in intake.

The EURRECA Network of Excellence is a European
Commission Framework Programme 6 (FP6)–funded project
that aims to address some of the discrepancies currently evi-
dent in dietary recommendations throughout Europe. During
the first stage of the research activities current data on the
recommendations set by panels were collated and trans-
formed into an online database (80), which will be a resource
to the wider community interested in DRIs. Further work is
planned to develop a series of instruments designed to revise
and standardize the way micronutrient reference values are
derived. In addition, it is hoped that the Network will identify
areas of research that are needed to progress DRI develop-
ment, and also address the concept of personalized nutrition.
The influence of genotype on nutrient requirements is still an
emerging field, but evidence suggests that certain polymor-
phisms may alter the metabolism of dietary selenium (240,
241) (see section VII.F). One particular remit of the Network is
to pay special attention to vulnerable groups within popula-
tions. There is evidence to suggest that those on parenteral
nutrition, HIV-positive patients, alcoholics, and the chroni-
cally ill may all be at risk of poor selenium status. No DRI
panel has yet issued advice for specific population subgroups,
but it may be the first step toward a more personalized approach,
and it is increasingly evident that the identification of at risk
groups is extremely important for the development of public
health policies.

X. Conclusions and Perspectives

As outlined throughout this review a great deal of research
is needed to improve our understanding of selenium metab-
olism, which is currently rather limited compared with many
other nutrients. The mechanisms of absorption have not yet
been identified, and various roles of selenium within the body
are awaiting characterization. Robust measures of status in
relation to short- and long-term exposure and biochemical,
functional, and health outcomes need to be developed. Ex-
isting possible relationships between blood selenium con-
centration and selenium function or health effects are
summarized (Fig. 14). However, the relationship between
selenium intake=status and risk of disease is complex, as ex-
emplified by the observation that the effects of selenium
supplementation trials are cancer type specific (location of
tumor and grade=severity of disease) and specific to popula-
tions or individuals, being dependent on baseline selenium

FIG. 13. Risk modeling comparing the data used to set
the UL and RDA values with other potential effects asso-
ciated with dietary intake. Adapted with permission from
Renwick et al. (308).
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status, intake, metabolism, and genotype. The potential for
some selenium species to inhibit certain types of cancer and
their possible role as an adjuvant in cancer therapy requires
further investigation. Greater understanding of the relation-
ship between selenium and health will be assisted by a more
complete knowledge about the functions of selenoproteins
and interactions with other metabolites, which can be
achieved using a systems biology approach. The impact of
genotype, in particular polymorphisms, is a key component of
personalized nutrition=medicine, which will aid preventive
medicine and therapeutic clinical practice. Gender is another
important parameter that is all too often ignored during the
design of trials and during the analyses. Finally, and most
urgently, in view of on-going activities in the United States
and Europe to update current dietary reference intakes, bio-
markers that can be used to derive selenium requirements are
needed to refine current dietary recommendations and to
develop public health policies.
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Abbreviations Used

AIDS¼ acquired immune deficiency syndrome
AKR¼ aldo-keto reductase

ALDH2¼ aldehyde dehydrogenase 2
AP-1¼ activator protein-1

ApoER2¼ apolipoprotein E receptor 2
ASK1¼ apoptosis signal-regulating kinase 1
CAD¼ coronary artery disease
CHD¼ coronary heart disease
CNS¼ central nervous system
CRC¼ colorectal cancer
CVB¼Coxsackie virus B
CVD¼ cardiovascular disease
DIDS¼diisothiocyano-2,20-disulphonic acid

stilbene
DIO¼ iodothyronine deiodinase
DIO¼ iodothyronine deiodinase gene
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Abbreviations Used (Cont.)

DRI ¼ dietary reference intake

EAR ¼ estimated average requirement

EEC ¼ European Economic Community

EFSA ¼ European Food Safety Authority

EU ¼ European Union

EURRECA ¼ European Micronutrient
Recommendations Aligned

GCS ¼ g-glutamylcysteine synthetase

GI ¼ gastrointestinal

GPx ¼ glutathione peroxidase

GPX ¼ glutathione peroxidase gene

GST ¼ glutathione transferase

HIV ¼ human immunodeficiency virus

HO ¼ heme oxygenase

HR ¼ hazard ratio

ICP-MS ¼ inductively coupled plasma mass
spectrometry

IOM ¼ Institute of Medicine

KBD ¼ Kashin-Beck disease

LC ¼ liquid chromatography

LI ¼ lower level of intake

mnSOD ¼ manganese superoxidase dismutase

NAC ¼ N-acetyl cysteine

NDNS ¼ National Diet and Nutrition Survey

NF-kB ¼ nuclear factor kappa B

NHANES ¼ National Health and Nutrition
Examination Survey

NPC ¼ Nutritional Prevention of Cancer trial

OA ¼ osteoarthritis

OR ¼ odds ratio

PIN ¼ prostatic intraepithelial neoplasia

PSA ¼ prostate-specific antigen

QR ¼ quinone oxidoreductase
RA ¼ rheumatoid arthritis

RCT ¼ randomized controlled trial

RDA ¼ recommended dietary allowance
RNI ¼ recommended nutrient intake
ROS ¼ reactive oxygen species

RR ¼ relative risk
rT3 ¼ 3,30,50 triiodothyronine

SBP2 ¼ SECIS binding protein 2
SECIS ¼ selenocysteine insertion sequence

SelH ¼ selenoprotein H
SelM ¼ selenoprotein M
SelR ¼ selenoprotein R
SelS ¼ selenoprotein S
SelT ¼ selenoprotein T

SelW ¼ selenoprotein W
SEP15 ¼ 15 kDa selenoprotein gene

SePP ¼ selenoprotein P
SEPP ¼ selenoprotein P gene
SEPS ¼ selenoprotein S gene

SEPW ¼ selenoprotein W gene
SFN ¼ sulforaphane
SNP ¼ single nucleotide polymorphism
SOD ¼ superoxide dismutase

SOD2 ¼ manganese superoxide dismutase
gene

T-2 ¼ trichothecene mycotoxin
T3 ¼ 3,3,50 tri-iodothyronine
T4 ¼ tetra-iodothyronine or thyroxine

TNF-a ¼ tumor necrosis factor-a
Trx ¼ thioredoxin

TXNRD ¼ thioredoxin reductase
TXNRD ¼ thiredoxin reductase gene

UGT ¼ UDP-glucuronyltransferase
UL ¼ tolerable upper intake level

WCRF ¼ World Cancer Research Fund
WHO ¼ World Health Organization

XMRV ¼ Xenotropic murine leukemia
virus-related virus

XRCC1 ¼ x-ray repair cross-complementing 1
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