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Abstract

In this position paper we briefly review the developmentdngiof automated inductive
theorem provingand computer-assisted mathematical inductioiVe think that the current
low expectations on progress in this field result from a fandrrow-scope historical projec-
tion. Our main motivation is to explain—on an abstract buytéfally sufficiently descriptive

level—why we believe that future progress in the field is sutefrom human-orientedness
anddescente infinie
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1 Introduction

1.1 Subject Area

In this paper we are concerned with

e automated inductive theorem proviagd

e computer-assisted mathematical induction

Both terms refer to the task of doing mathematical inductigiin the computer. The former
term puts emphasis on the importance of strong automatippast) as found in the classical
systems NTHM [15, 16], INKA [7], and AcL2 [55] based on explicit induction. The latter and
more general term, however, is to denote newer more humanted approaches in addition,
as found in @oDLIBET [10] and other future systems baseddescente infinieNote that we
do not believe in the usefulness of the extreme represeasadf any of the two terms: Neither
mere black-box automation nor mere proof-checkers candegeful in mathematical induction.
Above that, we think that a successful system has to putggomphasis on both aspects and find
a way to be both humamndmachine-oriented.

1.2 Expectations and Importance of Future Progress

A majority of researchers in the area of computer-assisettiematical induction seem to believe
that no further progress can be expected in this area witieiméarer future. Moreover, recently,
between two talks at a conference, one of the leading Gerard@argesearchers in the field told
me that he thinks that currently it is hardly possible to gst funding for research on computer-
assisted mathematical induction.

Thus, we should ask for possible scientific reasons for theentfunding situation. We ought
to check the justification of the belief that progress in catep-assisted mathematical induction
is unlikely to occur in the nearer future.

It is, however, obviously not the case that progress in cderpssisted mathematical in-
duction is considered to be unimportant. Indeed, progmresomputer-assisted mathematical
induction is in high demand for mathematics assistancesystfor verification of software and
hardware, and for synthesis of recursive programs. Due llmaadown in progress of automated
mathematical induction in the last decade, however, ctiyréinere does not seem to be much
hope for further progress in the nearer future.

1.3 A Possible Way to Future Progress — Overall Thesis

To show a possible way to future progress is the aim of thigtipagpaper. Namely, to explain
why we are confident thatescente infiniean be the start to a new breakthrough in computer-
assisted mathematical induction.

Together withdescente infiniave present our ideas on the importancenaman-oriented
theorem provinga point of view we have been holding and furthering for mdvanta dozen
years [109, 119].



“Human-oriented theorem proving” basically means that—eleercome the current
stagnation—we have to develparadigms and systenfigr the synergetic combination and co-
operation of the human mathematician with its semanticahgth and the machine with its com-
putational strength.

Our thesis is thatlescente infinies such a paradigm.

1.4 Organization of this Paper

The paper organizes as follows. In 8§ 2 we describe the gecenskxt where and why mathema-
tics and mathematicians should win from computers. As tasae for the little hope in progress
in mathematical induction seems to be a wrong projectiomfiioe past into the future, we can-
not reasonably state what we may hope to achievhugan-orientednesand descente infinie
(84) and why the two belong together (85) before we have hdwb#d ok at the history of
computer-assisted theorem proving in 8 3. Without diving deep into technical details, after
presentinglescente infiniég 6) andexplicit induction(88 7 and 8), we then support our overall
thesis of §1.3 in 88 9 and 10, and discuss the standard alojedti § 11. Finally, we conclude
in§12.



2 Requirements Specification

From the ancient Greeks until today, mathematical theprieBons, and proofs are not devel-
oped the way they are documented. This difference is not dundyto the iterative deepening of
the development and the omission of easily reconstrucpites. Also the global order of pre-
sentation in publication more often than not differs frora tirder of development. This results
in the famouseurekasteps, which puzzle the freshmen in mathematics. The differ does not
only occur in scientific publications where tkaccinct presentation of resulisay justify this
difference, but also for the vast majority of textbooks agctuires where the objective should be

e toteach how to fingbroofs, notions, and theorems.
The conventional natural-language representation of emadtical proofs in advanced theoretical
journals with its intentional vagueness [113, §6.2] anddbid sophistication can only inform
highly educated human beings about already found proofss ddnventional representation,
however—as fascinating as it is as a summit of the abilityhef human race to communicate
deep structural knowledge effectively—does not tell muobud the

e originally applied plans and methodsmbof construction

and does not admit computers

e to check for soundnessd

¢ totake over the tedious, error-prone, computational, androgppartsof proofs.

Obviously, a computer representation that admits the filéyilhor and the support of the issues
of all above items in parallel plus the computation of

¢ different conventionahatural language presentationailored to various purposes

is in great demand and could increase the efficiency of wgrkiathematicians tremendously.



3 Short History of Computer-Assisted Theorem Proving

3.1 Formula Language and Calculi

Starting with the Cossists and Viéte in thenihd 16 century, the formula language of mathe-
matics and its semantics were adequately and rigorousheleddy the end of the ¥entury
in Peano’s ideography [77] and Freg®syrifsdrift [36].

An adequate rigorous representation that supports a wgprkethematician’sheorem prov-
ing, however, has not been found until today. But already novidimaula language of mathema-
tics and its semantics can provide a powerful interface eetwhuman and machine.

The numerous logic calculi developed during the 28ntury were mostly designed to satisfy
merely theoretical criteria, but not to follow the theor@noving procedures of working mathe-
maticians.

An important step toward human-oriented calculi was don&éshard Gentzen (1909-1945)
when he used his structural insights to refine his Naturaludgadn calculi (which were close
to natural-language mathematics) into sequent calcu]i [3@ntzen’s sequent calculus meant a
huge progress toward an adequate human-oriented regserdf a working mathematician’s
deductive proof search. Sequent and tableau calculi capier reductive (analytic, top-down,
backward) reasoning from goals to subgoals directly in #szetial calculus rules and the gen-
erative (synthetic, bottom-up, forward) reasoning fronioms to lemmas can be adequately
realized with lemmatizing versions of the Cut rule [9, 1091011] (cf. Note 10). Based on
Gentzen’s sequent calculus there has been further progtedsis direction: Free variable cal-
culi [34, 70, 111] admit to defer commitments until the statéhe proof attempt provides suf-
ficient information for a successful choice. Thereby thelptlire mathematician to follow his
proof plans more closely by overcoming premature witnesssams forced by Gentzen'’s orig-
inal calculus. Indexed formula trees [6] admit the mathécraat to focus immediately on the
crucial proofs steps and defer the problemg-afequencing ang-multiplicity [113].

3.2 Automation

Starting in the 1950s, there was great hope to automatedimeproving with the help of com-
puters and machine-oriented logic calculi. State-ofahefully-automated heorem povers of
today @ATPs, such as ¥MPIRE [83] and WALD MEISTER [17, 66]) represent a summit in the
history of creative engineering. That ATP systems will med@velop into systems that can assist
a mathematician in his daily work, however, is a general easas among their developers for
more than a dozen years now. The reason for this is the fallpwi

The automatic theorem provers’ search spaces are too hugmioplete automation
and completely different from the search spaces of the wgnkiathematicians, who
therefore can neither interact with these systems, norsiemntheir human skills to
them.

Note that this does not mean that ATP systems are uselesgalready now provide a powerful
basis for the automation in mathematics assistance sysiethsag)MEGA [92].



3.3 Proof Planning

In the end of the 1980s, the ideas to overcome the approadbamdyend in ATP were summarized
under the keyworgroof planning Besides its human-science aspects [19], the idea of proof
planning [18, 27] is to add smaller and more human-oriehigter-level search spacds the
theorem-proving systems on top of tloev level search spacex the logic calculi. In the 1990s,
the major proof-planning systemsr&TER-CIAM [18, 22], OMEGA [92], and \CIAM [20] seem

to have been led astray by the hopes that with these additeweds

1. the underlying logic calculus could be neglecteahd,

2. instead of the working mathematician himself, it wouldshéficient to get his proof plans
to the machine.

3.4 Alternative Point of View in Proof Planning

To the contrary of these hopes, we believe that progressowof ptanning and computer-assisted
mathematical theorem proving requires the further devekg of human-oriented state-of-the-
art logic calculi, which free the higher levels from unnesaey low-level commitments and admit
the mathematician to interact directly with the machinerewhen the automation of proofs fails
on the lowest logic level.

We need both high-level top-down interactive proof devakamt and bottom-up sup-
port from a state-of-the-art flexible human-oriented célsuvith strong automation.

The neglect of the logic calculus and human—machine intierats to be overcome in the system

ISAPLANNER [27, 28, 29] and in the neMMMEGA system currently under construction [9] by

using the standard calculus fABELLE/HOL [69, 70] and the new human-oriented calculus of
CORE [6], respectively.

3.5 Conclusion: Human-Oriented Automated Theorem Proving

The automatic generation of a non-trivial proof for a giveput conjecture is typically not pos-
sible today and—contrary to chess playing—will probablyarebe.

Thus, besides some rare exceptions—as the automationaifg@arch will always fail on the
lowest logic level from time to time—the only chance for autttic theorem proving to become
useful for mathematicians ssynergetic interplay between the mathematician and thehina

For this interplay, it does not suffice to compute humanradé representations of machine-
oriented proof attempts for interaction with a user integfaluring the proof search. Indeed,
experience shows that the syntactical problems have todsepted accurately and in their exact
form. Thus—to give the human user a chance to interact—tlwilog itself must behuman-
oriented



4 What Can we Hope to Achieve? And How?

After all that history of great original expectations andmeslowing progress, what can we
reasonably hope for the nearer future?

As described in §3.1 and Note 1, the formula language of madlies and its semantics
already now provides a powerful interface between humamaahine. But we still have to find
a representation of mathematical proofs supporting theesmentioned in § 2, namely: machine
assistance in and teaching of proof search, proof planaind theory development; automation
of tedious, error-prone, computational, and boring paftsroofs and checking for soundness;
and the computation of various natural language presentati

As full automation cannot succeed within the current payaxiwe have to follow the human
mathematicians, although we do not know much about therguhores and they do not know
how to explain thend.

The first steps on this way are to give the mathematician #edfsm to go his way and let
the system assist him. Not the other way round as usual! Weareinced of the following
development cycle:

¢ In a first step, informal and formal logical calculi and theusterfaces have to provide
the freedom to use all the required means in a human-origetsidn, and then,

e in a second step, we have to learn the heuristics that adm#sakiie proof search from the
mathematicians; by human learning in the beginning, hdlyelfy Artificial Intelligence
machine-learning later.

And the starting point ought to be a human-oriented, maebirented, flexible state-of-the-art
calculus [6, 111] and an administration of proof tasks in@pdata structure [9].

5 Why Mathematical Induction?

In this 85, we briefly explain why we see an affinity between hororientedness and mathema-
tical induction and why this position paper is about baéiscente infiniand human-orientedness
in parallel.

Besides some proof-theoretical peculiarities of mathearakihduction that do not really have
a practical effect, mathematical induction is the area of mathematical thequeswing where
our heuristic knowledge is best. This is the case both fordnu@escente infiniecf. 8 6) and for
machine-oriented heuristicexplicit induction cf. 8 7). As these two heuristics are completely
different in their surface structure and the progress irctpral usefulness was quite moderate
in the last decade, mathematical induction is a good areaotofor evidence for our thesis on
human-orientedness

Human-oriented procedures can overcome the current slamdof progress in
computer-assisted theorem proving. Their—even comparethachine-oriented
procedures—huge search spaces can be controlled by hearisarned from the
human mathematicians working with advanced systems.



6 Descente Infinie

In everyday mathematical practice of an advanced theatgtarnal the frequent inductive ar-
guments are hardly ever carried out explicitly. Instead, ghoof just reads something like “by
structural induction om, g.e.d.” or “by induction on(z, y) over <, g.e.d.) expecting that the
mathematically educated reader could easily expand thaf grim doubt. In contrast, very dif-
ficult inductive arguments, sometimes covering severagépaguch as the proofs of Hilberfisst
e-theorem[47, Vol. 1] or Gentzen'sHauptsatZ39], or confluence theorems such as the ones
in [46, 108, 117] still require considerable ingenuity amdl be carried out! The experienced
mathematician engineers his proof roughly according tdahewing pattern:

He starts with the conjecture and simplifies it by case amalyd/hen he realizes
that the current goal becomes similar to an instance of tigecture, he applies
the instantiated conjecture just like a lemma, but keepsimdrthat he has actually
applied an induction hypothesis. Finally, he searchesdoreswell-founded ordering
in which all the instances of the conjecture he has applieddsction hypotheses
are smaller than the original conjecture itself.

The hard tasks of proof by mathematical induction are

(Hypotheses Task)
to find the numerous induction hypotheses (as, e.g., in thef pf Gentzen’s Hauptsatz on
Cut-elimination) and

(Induction-Ordering Task)
to construct annduction orderingfor the proof, i.e. a well-founded ordering that satisfies
the ordering constraints of all these induction hypothesgsarallel. (For instance, this
was the hard part in the elimination of tagormulas in the proof of thesk-theorem in
[47, Vol. 11], and in the proof of the consistency of arithnedby thes-substitution method
in[2]).

The soundness of the above method for engineering hardtindyaroofs is easily seen when
the argument is structured as a proof by contradiction,rasgyua counterexample. For Pierre
Fermat'’s (16077—-1665) historic reinvention of the metliad thus just natural that he developed
the method itself in terms of assumed counterexamples B, 232, 67, 114]. He called ites-
cente infinie ou indéfinfeHere it is in modern language, very roughly speaking: Apgarsition

I" can be proved bygescente infinias follows:

Show that for each assumed counterexamplg tifere is a smaller counterexample
of I" w.r.t. a well-founded ordering:, which does not depend on the counterexamples.



10

There is historic evidence otescente infinideing the standard induction method in mathe-
matics: The first known occurrence déscente infinién history seems to be the proof of the
irrationality of the golden number%(1+\/5) by the Pythagorean mathematician Hippasus of
Metapontum (Italy) in the middle of thenfcentury B.C. [37]. Moreover, we find many occur-
rences ofdescente infinie the famous collection “Elements” of Euclid of Alexandfgd]. The
following eighteen centuries showed a comparatively loxglef creativity in mathematical theo-
rem proving, but after Fermat’s reinvention of the Metho®etcente Infinien the middle of the
17~ century, it remained the standard induction method of wayknathematicians until today.

At Fermat’s time, natural language was still the predominaol for expressing terms and equa-
tions in mathematical writing, and it was too early for a fatraxiomatization. Moreover, care-
fully notice that an axiomatization captures only validibut in general does neither induce a
method of proof search nor provide the data structures redjto admit both a formal treatment
and a human-oriented proof search. The formalizable logit powever, oflescente infiniean
be expressed in what is called the (second-or@ieBorem of Noetherian InductigiN), after
Emmy Noether (1882—-1935). This is not to be confused withAtkiem of Structural Induction
which is generically given for any inductively defined datiaisture, such as th&xiom of Struc-
tural Induction (S) for the natural numbers inductively defined by the constmsczero0 and
successos. Moreover, we need the definitighiVellf (<)) of well-foundedness of a relation.

(Wellf(<))  VQ. ( Jz. Q(z) = 3Im. ( Q(m) A =Fw<m. Q(w) ) )

(N) VP. (Vm. Pr) <« 3<. (A We-”](c(gv) < Yu<v. P(u) ) ) )
) VP (e Pe) = P©) A VY (Pl) < Pw) ) )

(natl) V. ( r=0V Jy. z=s(y) )

(nat2) Vo, s(z)#0

(nat3) Vr,y. (s(z)=s(y) =z=y)

Let Wellf(s) denoteWellf(A\z, y. (s(z) =vy)), which implies the well-foundedness of the ordering
of the natural numbers. The natural numbers can be specifigd isomorphism either by
(S), (nat2), and(nat3), or else byWellf(s) and(natl). The first alternative is the traditional
one, following Dedekind and named after Peano. As the igsaforP and< in (N) are often
still easy to find when the instances Brin (S) are not, the second alternative together wiih

is to be preferred in theorem proving for its usefulness degasmce. Cf. [111] for more on this.

For a more detailed discussionddscente infiniekom the historical and linguistic points of view
cf. [114, 8 2]!
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7 Explicit Induction

In the 1970s, th&chool of Explicit Inductiomvas formed by computer scientists working on the
automation of inductive theorem proving. Inspired by J./ARDbinson’s resolution method [84],
they tried to solve problems of logical inference via reduttto machine-oriented inference
systems. Instead of implementing more advanced matheshattuction techniques, they de-
cided to restrict the second-order Theorem of Noetheridndtion(N) (cf. § 6) and the induc-
tive Method ofDescente Infini¢o first-orderinduction axiomsand deductive first-order reason-
ing [111, §1.1.3].

Notice that in these induction axioms, the subformula
Vu<v. P(u)

of (N) is replaced with a conjunction of instancesit(fu) with predecessors aflike in (S). The
induction axioms of explicit induction must not contain thduction ordering<.

Furthermore, notice that although an induction axiom még tae form of a first-order instance
of the second-order Axiom of Structural Inducti¢®) (cf. 86), conceptually it is an instance
of (N) and the whole concept @xplicit inductionis a child of the computer, where&S) was
already applied by the ancient Greeks [1].

The so-called “waterfall”-method of the pioneers of thigpegach [15] refines this process into
a fascinating heuristic, and the powerful inductive theoroving system RTHM [15, 16] has
shown the success of this reduction approach already aequdra century ago. For compre-
hensive surveys on explicit induction cf. [104] and [20].. [@fL2] for a survey on the alternative
approaches of implicit and inductionless inductfon.

Boyer & Moore’s NQTHM [15, 16] and Bundy & Hutter's ripplin§[13, 23, 24, 48, 49, 51, 94] are
prime examples of practically useful automation-suppbtiteorem proving and proof planning,
respectively. Mainly associated with the development giliex induction systems such as
OYSTER-CIAM [18, 22], A\CIAM [20], and INKA [7], there was still evidence for considerable
improvements over the years until the end of the last cerfitly Since then, explicit induction
has become a standard in education invtwaFun project [105]. Today, the application-oriented
explicit induction system AL2 [55] is still undergoing some minor improvementcI® easily
outperforms even a good mathematician on the typical imekiptoof tasks that arise in his daily
work or as subtasks in software verification. These methondsgstems, however, do not seem
to scale up to hard mathematical problems prmjram synthesiéwvhere the computer-assisted
inductive proof of a property of an underspecified progratoalty is to synthesize the recursive
definitions of the program). We believe that there @iacipled reasongor this shortcoming.
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8 Why Sticking to Explicit Induction Blocks Progress

8.1 Flow of Information

Apart from sociological reasohgxplicit induction blocks progress because it does not fdmi
natural flow of informationn the sense that a decision can be delayed or a commitmeartelef
until the state of the proof attempt provides sufficient infation for a successful choice. Indeed,
explicit induction unfortunately must solve the two harsksmentioned in 8 6 (namely the Hypo-
theses Task and the Induction-Ordering Task) alrdaefprethe proof has actually started. A
proper induction axiom must be generated without any in&grom on the structural difficulties
that may arise in the proof later on. For this reason, it islfiar an explicit-induction procedure
to guess the right induction axioms for very difficult proofsadvance.

8.2 Recursion Analysis and Induction Variables

One of the most developed and fascinating applicationsurfisiec knowledge found in Artificial
Intelligence, informatics, and computer scienceeisursion analysigl5]. This is a technique
for guessing a proper induction axiom by statical analyste® syntax of the conjecture and the
recursive definitions. In this paper, we subsume under ttiemof “classical recursion analysis”
also its minor improvements [97, 98, 101, 102, 103]. Underrbtion of “recursion analysis”
we also subsumepple analysis an important extension of classical recursion analysis.

Ripple analysis is sketched already in [21, § 7] and nicebcdbed in [20, § 7.10]. On the
one hand, by rejecting recursive definitions whose unfgidwould block the application of the
induction hypothesis, ripple analysis excludes some ungiog induction axioms of classical
recursion analysis. On the other hand, by considering lesxohareductive character in addition
to the actual recursive definitions, ripple analysis can fimate useful induction axioms than
classical recursion analysis.

A requirement, however, which we put on the notion of “recumsnalysis” is that it does not
perform dynamical proof search but has a limited lookahetalthe proof, typically one rewrite
step for each term in a set of subterms that covers all oauceseofinduction variables Note
that although “induction variable” is a technical term icuesion analysis, roughly speaking, this
notion is also common among working mathematicians whey ¢hg that something is shown
“by induction ony’; for a variabley, for instance.

8.3 The Hypotheses Problem

However fascinating and highly developed recursion amalysy get, even the disciples of the
School of Explicit Induction admit the inherent limitat®wf explicit induction: In [80, p. 43],
we find not only small verification examples already showlrege limits, but also the conclusion:

Problem 8.1 ([80, p.43]) “We claim that computing the hypotheslesforethe proof is not a
solution to the problem and so the central idea for the lazthotkis to postpone the generation
of hypotheses until it is evident which hypotheses are reguor the proof.”
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This “lazy method” removes only some limitations of exdliciduction as compared ttescente
infinie. It focuses more on efficiency than on a clear separationrafejts, and there is no imple-
mentation of it available anymore. The labels “lazy indactiand “lazy hypotheses generation”
that were coined in this context are nothing but a reinvendioparts of Fermat’slescente infinie
by the explicit-induction community.

8.4 The Induction-Ordering Problems

Computer scientists from the School of Explicit Inductiaed to consider the tasks of

¢ induction (i.e. the choice of an induction axiom; e.g. byursgn analysis) and

e deduction (i.e. the rest of the proof; e.g. by standard @rder reasoning techniques or by
rippling [13, 23, 24, 48, 49, 51, 94])

to be orthogonal. Working mathematicians know that thistisng. Especially the choice of a
proper induction ordering interacts with the several cades proof in such a way that a new
proof idea tends to be in conflict with the induction orderaighe previous cases.

e On the one hand, it is standard in explicit induction to fixunotion orderings eagerly, at
the very beginning of a proof.

¢ On the other hand, fixing an induction ordering earlier thathe last steps of an induction
proof has hardly any benefit ever:

— Fordifficult proofs, this is obvious to any working mathematician.

— For simpleproofs, the simple fact that any equation has a left- andtg-hgnd side
provides us with sufficient pragmatics for searching in #raa of the search space
where the smaller induction hypotheses use to be applicatmeided that the speci-
fier has written his specifications in the standard style &eduser has activated his
lemmas for rewriting with a suitable orientation.

Problem 8.2 Explicit induction has to commit to a fixed and unchangeaftiction ordering
eagerly, at the very beginning of an induction proof. Suclommitment comes far too early
and is a typical cause of failure. Moreover, it is superfluoesause there is hardly any heuristic
benefit of committing to an induction ordering earlier tharhe last steps of an induction proof.

Besides the restriction of explicit induction to enforceesmgercomputation of induction axioms
(i.e. induction hypotheses and the related induction angs}, explicit induction by recursion
analysis has also another limitation:

Problem 8.3 Computing induction axioms by recursion analysis can oedylt in such induc-
tion orderings that are recombinations of orderings rasyfrom the recursive definitions (and
from the currently known lemmas of a reductive charactethefrelated specifications.

As a matter of fact, most of the non-trivial induction prodfs not work out with such induction
orderings. Moreover, for the case of program synthesis, avead want to be restricted to such
induction orderings. Cf. [25] for an instance of this, whéne quick-sort algorithm is to be
synthesized from the requirements specification of thergpftinction.
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9 Why Descente Infinies Promising Now

The theoretical research paper [111] provides us with tteggmtion ofdescente infiniento de-
ductive calculi. It is—to our best knowledge—the first sucdmbination in the history of logic,
which does noencodesome form of induction (as, e.g., in Gentzen’s inductiore raf [40],
or by application of the second-order Theorem of Noethehmtuction (N) (cf. 86), or the
second-order Axiom of Structural Inducti¢B) (cf. § 6), or by generation of first-order induction
axioms), but actually models the mathematical processafmearch bylescente infinigself
and directly supports it with the data structures requicedafformal treatmerit.

This integration (presented for state-of-the-art fregalde sequent and tableau calculi) is
well-suited for an efficient interplay of human interactiand automation and combines rais-
ing [68], explicit representation of dependence betweer 4F and -variables (according to
Smullyan’s classification [95]), the liberalizéerule, preservation of solutions, and unrestricted
applicability of lemmas and induction hypotheses. Moreptiee integration is natural in the
sense that it goes together well with context-improvedaesg as in [6], with modern proof
data structures as in [9], with program synthesis as in [2B4 with logical binders such as
ande &c. [41, 47, 64, 110, 116]. The semantical requirements ffier integration are satis-
fied for practically alt two-valued logics, such as clausal logic, classical firsieo logic, and
higher-order modal logic [111, Note 8].

When computer-assisted inductive theorem proving stamtége 1970s, the induction axioms
of explicit induction were the only known feasible formal ams to integrate induction into de-
ductive calculi. Today, however, we are in a better situabiecause the results of [111] provide
us with a simple, elegant, and both machine- and humantedentegration oflescente infinie
itself.

The only overhead this integration requires is to add a wegyim to each sequent or proof
goal. These weight terms stay inactive until a goal is appliedramduction hypothesis. Com-
pared to the application of a goal as lemma, this inductigpethesis application produces an
additional ordering subgoal, which asks us to show that rtkdedtion hypothesis is smaller in
some well-founded ordering than the goal it is applied to.

On a more technical level—to integratescente infinieto a given logic calculus—we need

1. to augment the goals (sequents) of the calculus with wéggins,
2. to add a lemma applicatidhto the calculus if not already present,

3. to patch the lemma application of the calculus to admitiatibn-hypothesis application,
which generates an additional ordering subgoal for sowsglbhased on the weights of in-
duction hypothesis (lemma) and goal, and

4. to solve the ordering constraints of the induction-hiapsts applications.

Typically, these requirements are easily satisfied, atjhahere may be problems with calculi
based on fixed logical frameworks.
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10 The Fundamental Practical Advantage of
Descente Infinie

As difficult mathematical proofs appear to have a semantiatre to human mathematicians,
a mathematics assistance system has to comply with natumaét proof techniques and to be
able to follow the exact order in which the human user orgamiis semantical problem solving.
Automated theorem proving works on syntactical domaingewver, which tend to be different
from the semantical ones, relatively small-scale, and @atpvely limited. For instance, if re-
cursion analysis results in a useless induction axiom, theffails completely? This does not
mean that automatic search in a calculus is useless. To tlEog an anytime sparse syntactic
search through semantically highly redundant search spasebe most helpful in parallel to the
interaction of the human user. In such a parallel approdmeh;tiot” constraints should always
be solved first. By hot” we mean constraints with solutions that are strongly iatkd by the
current state of the proof in the sense that there is a commgtep toward their solution, with-
out which the proof can hardly succeed or which makes a sacoesh more likely. Although
those constraints that are hot for a mechanic procedurererse that are crucial for a human
mathematician in the construction of the proof idea will lifedent more often than not, man
and machine can cooperate very well, provided that the @ingt can be solved in any intended
order and the effects communicated on the basis of a comnean Note that a step from either
side will typically change the set of hot constraints of thieen.

We are very well aware of the fundamental difficulties androgaestions that have to be
solved for such a cooperation of man and machine. It actealiyot be denied that there seem
to be several divergences between man and machine, e$pecial

e Automation prefers fully expanded definitions while the tamuser prefers a concise
representation with composite notions.

e The higher the automatization the more difficult the analydia failed proof attempt for
the human user.

Nevertheless, we are convinced that a cooperation of mamaotine on the basis of a common
view is a realistic goal.

Now we finally just have to mention the fundamental practedantage oflescente in-
finie as compared to encodings of some form of induction (as, ie.§entzen’s induction rule
of [40], or by application of the second-order Theorem of tieeian Induction(N) (cf. §6),
or the second-order Axiom of Structural Inducti®) (cf. 8 6), or by generation of first-order
induction axioms):

The fundamental practical advantage of our integration esacente infinie is that the
constraints of the inductive proof search can now be solegdther with all other
constraints of the whole deduction in any suitable order.

Thus, if recursion analysis shows us the proper way, we cbue $be constraints in the order
according to the heuristics of explicit induction. But arther order is also possible. And we
may delay solving the harder constraints until the statenefgroof attempt provides us with
information sufficient for a successful choice.
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11 Discussion

11.1 Paradigm Shift without Sacrifice — Really?

In blank opposition to our evaluation dfescente infinien 89 as promising, in the 1990s and
still in the beginning of the 8 millennium, some leading scientists from the explicituistion
community used to claim

(1) thatdescente infinigvould be too complicated to be useful in practice, and

(2) that the proper induction axioms could be computed Ileefbe actual proof search by a
partial inspection of the proof in a specialized preseatatlifferent from the actual proof
search with some advanced Atrtificial Intelligence techag50].

Claim (1) has already been falsified by the successful tretwfdescente infinian the theorem
prover QuoDLIBET [8, 10, 60, 61, 65, 87, 88, 89, 90, 108, 109, 111, 117]. AlthoQyoD-
LIBET does not use any induction axioms, it is competitive withlgeeling inductive theorem
prover AcL2 [55], with the practically important exception thatA2 is so efficiently imple-
mented that it can be used for both verificataord testingof software.

We believe that also Claim (2) is wrong and that we need thedfsm to solve the two hard
tasks mentioned in 8 6 (namely the Hypotheses Task and thetind-Ordering Task) in small
portions spread over the whole search of the actual proois Bélief was also confessed to by
others in [57, 84.5] and in [44, 8§ 13.4], and there is furtleaeint evidence for this in [90, §8].
Even if Claim (2) were right and the proposed procedure Bagsit would still be an uneconomic
procedure because there is no need to plan the inductiomaxith specialized tools based on a
special additional representation before searching ®attiual proof.

The deeper reasons behind the Claims (1) and (2) seem to Isergatism and the fear that
the great heuristic contributions to inductive theorenmvprg developed within the paradigm of
explicit induction could be lost. Although such losses gradal for paradigm shifts [62, 115],
the fear seems to be completely unjustified in our case:

e Theoreticallydescente infiniexcludes explicit induction.

¢ Practically, QoDLIBET has shown that in our framework déscente infinighe heuristic
knowledge ofrecursion analysisn the field of explicit induction is still applicable, indis
pensable, and at least as useful as before. We will explaiirti§ 11.3. That also rippling
probably stays as important as before is sketched in §11.4.
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Eng ift die Welt, und das Gebirn ift weit.
Leidyt beieinander wobnen die Gebanten,
Oody bart im Raume ftofen fidy die Sadyen.

— FRIEDRICH VON SCHILLER; WALLENSTEINS TOD,
2. AUFZUG, 2. AUFTRITT; WALLENSTEIN

11.2 Schism in Minds vs. Schism in Systems

Actually, the schism between explicit induction on the oaadhside andlescente infinien the
other, never really existed in the minds of most of the legdiaientists of the field, especially
not since the year 1996 [112, §4.2]. This expertise, howewes neither been published nor
communicated to the outside of the inner circle. Moreovepat@ry to the flexibility of the
minds—in the most powerful inductive theorem proverLR [55] this schism is still manifest:

Problem 11.1 (No Natural Flow of Information in ACL2)

The only way to get AL2 to use an induction ordering which is not of the kind of PeohB.3
is to add a recursive functiofi terminating over this ordering and to hint the prover to use t
ordering of its termination proof for the eager generatiba eurekainduction axiom. Note that
the functionf is typically nonsense and will be used nowhere and espgciatlin the theorem,
so that the hint to use it is really necessary.

11.3 The Role of Recursion Analysis irbescente Infinie

The cases where eager induction-hypotheses generaticeded to guide the proof into the
right direction (cf. e.g. [111, §3.3]) are so rare in pragttbat the current standard induction
heuristic of thedescente infinisystem QWODLIBET [10, 87] generates induction hypotheses only
lazily, whereas the case splits for the induction variablesdone eagerly right at the beginning
(after simplification). The possibility to be lazy even siifips recursion analysis when different
induction schemes are in conflict, because we do not have tgenieem completely: Compare
[60, §8.3] with the complicated problems of [102, 103]!

Nevertheless, recursion analysis plays an important téteia QUODLIBET and indescente in-
finiein general. Even without generating induction hypothegeédlae induction ordering eagerly,
the case analysis suggested by recursion analysis is df ggaastic value. Indeed, nothing is
more helpful than to know how to start the proof of a conjegfiafter simplification). The recur-
sion analysis irdescente infinies most useful for solving the following task of case anaysi



18

(Task of Case Analysis on Induction Variables)

Which outermost universal variables of the (simplified) jeature to are to be used as
induction variables, and which lemmas are to be used fordke analysis on the structure
of the induction variables? For instance, which lemmas efftllowing form are to be
chosen for our induction variables : nat and! : list(nat) for a natural number and a list
of natural numbers, respectively?

m=0 V dn:nat. (m=s(n))

m=0 V szlist(nat)-< B )

A Every(Prime, p)
I=nil Vv 3n:nat. 3k : list(nat). (I =cons(n, k))

I=nil Vv 3n:nat. 3k : list(nat). (I =append(k, cons(n, nil)))

Note, however, that this task is most critical for explicitluction, because the eager induction-
hypotheses generation fixes the result of this case analydimakes a later adjustment impossi-
ble. Indescente infinihowever, this task is non-critical because it serves osly beuristic hint
on how to start proof search. This is shown in the followingreple.

Example 11.2
Consider the toy example of the even-predicate on naturabeus in the clause

Even(z + z), —Even(z +y), —Even(y + 2).

When recursion analysis based a(w) +w = s(v+w) suggests a base case 0=0 and a
step case ofr=s(z’), the proof bydescente infinienay well go on with a case distinction on
2’=0 and 2'=s(z”) and actually proceed by the two base cases-60 and x=s(0) and a step
case of x=s(s(z”)). This, however, is not possible for explicit induction bég® any form of
recursion analysis. Note that the three caseg-00, >=0, and y=s(y’) A z=s(z’) provide yet
another way fodescente infinio extend the proof attempt into a successful proof.
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11.4 Rippling andDescente Infinie

Although QUODLIBET does not implementppling [13, 23, 24, 48, 49, 51, 94] yet (but applies a
less syntactically restricted search by a refined contéxéwaiting with markings [89, 90]), we
expect that the restrictions of the search space introdigegpling can be more useful in the
less restrictive framework afescente infini¢han in the more restrictive framework of explicit
induction.

When induction hypotheses are not generated eagerly tienarippling” [23] or “blowing up
of terms” [50, 51] are not required. Instead, the inducti@aniables occur as additional sinks
in the induction conclusion. On the one hand, this makediniggechnically and intuitively
simpler (esp. for destructor style recursion) and bettiéeddor human-computer interaction. On
the other hand, however, the induction variables in the losien must be somehow limited in
their character of being a sink: Unless we limit these sioksaallow wave fronts consisting of
destructors, we will have difficulties in finding a well-foded induction ordering justifying the
induction-hypothesis application.

11.5 Further Historical Limitations in Explicit Induction

Besides overcoming the must of generating induction axjatr&hould be noted that @D-
LIBET has some additional advantages over classical expliditation systems:

e The strongadmissibility restrictionsf explicit induction systems (i.e. specification only
by functional programs, requiring thesompleteness and termination proofs in advance
have shown to superfluous [10, 61, 117, 118]. (This work isgioty known to the authors
of [106, 107], but they refuse to cite it, probably to imprabe chance of publication
of [106, 107] under reviews of non-experts.)

Indeed, QQODLIBET requiresneither terminationnor completeness of specification for
the definitional parts of its specifications. Nevertheldss,definitional parts come with a
guarantee on consistency and are used for recursion amalygiother special heuristics.
Thus, overspecification can be avoided and stepwise refmeshgpecifications becomes
possible, with a guaranteed monotonicity of validity [118]

This is of practical relevance in applications. For insggno [65], Bernd Léchner (who is
not a developer but a user ofUQDL IBET) writes:

“The translation into the input language of the inductivedtem prover QOD-
LIBET was straightforward. We later realized that this is diffia@rimpossible
with several other inductive provers as these have probleithsmutual recur-
sive functions and patrtiality” .. .
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e Another advantage compared t@ with its poor user interface and its restriction to a
complete reset after failure is the following: When autaoratails, QUODLIBET typically
stops early and presents the state of the proof attempt imamoriented form, whereas
everything is lost (and only some of the developers may kndwatwo do) when explicit
induction generates a useless induction axiom (cf. Prokletin §11.2).

11.6 Conclusion

Those researchers of the explicit induction community wdadized what a strong restriction it is
to fix the induction axiom before the actual induction pragitats—the most important being [80,
81], [44], and [25]—always suffered from the wish to synikesnduction axioms. The same
holds for the synthesis of simple recursive programs froeir inductive soundness proofs [50,
57] and the more general task of instantiating meta-vaggbf the input theorem, where they
also make sense as placeholders for concrete bounds ancbsidiéions of the theorem which
only a proof can tell. Indeed, the force to commit to a fixeduictibn axiom eagerly is only
acceptable for simple proofs or simple theorems withoutrvetiables.

All'in all, we have listed powerful arguments in 88 9 and 10 aglolitted the possible counterar-
guments in this § 11.
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12 Conclusion

12.1 Human-Orientedness

As explained in 8 3.2, completely automated black-box teeoproving is approaching its con-
ceptual limits. Significant future progress requires a gigra different from the Artificial Intel-
ligence exploration of the huge search spaces of machieated misanthropic calculi. Human-
oriented theorem proving and human-oriented calculi gevhe only known alternative and
have been gaining more and more acceptance within the lashdears. The major tasks in the
intended advanced form of human-computer interaction are

¢ the further development of interface notions followinglbbidden human cognitive con-
cepts and the needs for powerful automation support, and

¢ the further improvement of the exploitation of the sematiiicformation for the syntactical
search processes.

The basic paradigm of interaction must be an anytime seamsteps that knows about the hu-
mans’ semantical strength and asks the human users foreadutueir area of competence before
getting lost in complexity. With a human-oriented maireatn integration following this para-
digm, we can make man and machine a winning team.

12.2 Descente Infinie

Induction axioms were never necessary for the working nma#ttieians and are not anymore
necessary in formalized mathematics or automated theorewving due to [111]. It now suffices
to solve the two hard tasks mentioned in 86 (namely the Hygsath Task and the Induction-
Ordering Task) in mathematics as well as in automated thepreving.

There is no need to make the generation of induction axionre flexible, because we are in
the lucky situation that weanhave the cake and eat it: Indeed, we can remove the restigctio
induction axioms put on us and improve the usefulness of ¢heistic knowledge developed
within the paradigm of explicit induction.

When recursion analysis or eager induction-hypothesesrggon show us the way, we can
take it. When they do not, we do not have to care for them. Weodbdave to find a way to walk
out of the maze of explicit induction. We can fly over it.

When a proof is completed, we can read out of it what the indn@xioms would have been.

As we do not need any induction axioms, however, we do not tagare at all whether our
induction axioms should béestructor styleor constructor styleor whatever mixed styles one
could imagine.

Moreover, notice that—as discussed in Example 11.2 of §41h8 case analysis suggested
by recursion analysis is critical for explicit inductionytiserves only as a heuristic hint on how
to start proof search idescente infinie
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Besides the recursion analysis telling us how to start afflaasides the termination check of
the induction ordering typically in the end, we do not neey sipecial procedures for induction.
Induction-hypothesis application is just a lemma appiacagenerating an additional ordering
subgoal.

Descente infini@nd explicit induction do not differ in the task (establighiinductive va-
lidity [118]) but in the way the proof search is organized.r Bonple proofs there is always a
straightforward translation between the two. The diffeeebhecomes obvious only for proofs of
difficult theorems.

The results of [111] on how to combine state-of-the-art déda with descente infiniglo-
bally without induction axioms were not available when @&ipinduction started in the 1970s.
But now that we know how to do it, sticking to explicit indumti as a must is scientifically back-
ward. Descente infini@anyway admits a simulation of explicit induction that caofgrfrom all
the heuristics gathered in this field with the additionalatages

e that—contrary to explicit induction [15, 102, 103]—confing induction axioms do not
have to be combined completely (because the major heuastievement of recursion
analysis is to tell which variables to start induction with,Example 11.2 of §11.3), and

¢ that the induction ordering may stay open until the very ehdmall cases of the proof are
known (because an earlier fixing of the induction orderinggsdly of any heuristic benefit
ever).

Both items are of great practical effect [87, 90].

12.3 Summary

While the heuristics developed within the paradigm of explduction remain the
method of choice for routine tasks, explicit induction isastacle to progress in
program synthesis and in the automation of difficult proofisere the proper induc-
tion axioms cannot be completely guessed in advance. rghitiithe paradigm of
descente infinie overcomes this obstacle without sacwfisievious achievements.
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Notes

Note 1 For instance, the basic paradigm of the human-orientedhaattx inductive theorem
prover QIODLIBET [10] is the following: The working mathematician can fee@ ttmachine
with his semantical knowledge of the domain by stating lemnaad the machine can use these
lemmas for sparse but deep proof search [87, 88, 89, 90]. Winesearch fails, the graphical user
interface presents a not too deep state of the proof whegegs® stopped to the mathematician in
a carefully designed human-oriented calculus [10, 60, &) may provide help with additional
lemmas and other hints. It should be remarked, howeverttieairactical implementation of this
paradigm is still more a task than an achievement. Cf. § 1énfane on this.

Note 2

e The OrsTER-CIAM systenjl18, 22] has to solve the very hard task of constructing @ aof
the intuitionistic Martin-Lof type theory of @STER, whereas the vast majority of mathe-
maticians and ATP engineers would use transformationsasithe one to the modal logic
S4 [43, 33, 100] to prove intuitionistic theorems.

e Proof planning in theld QMEGA systen]92] severely suffers from its commonplace natu-
ral deduction calculus, because it exports low-level taskisigher levels of abstraction;
these low-level tasks have turned out to be most problenmapcactice because they can
neither be ignored nor properly treated on the higher levels

e The A\CIAM systenj20] does not have any fixed logic level at all.

Note 3 (Teaching Proof Search Procedures in Mathematics Léares)

In the best lecture course | ever attended, every lecturenanitels professor came into the lecture
hall and asked what he is expected to teach here. “Analysiflb you know the theorem of
so-and-so?” “What is that?” “...” “No, we do not know that’h&n the emeritus gave a precise
(but often incomplete) statement of the theorem, discugsadd (after the students had a clear
idea on the meaning of the theorem!) started psezfrch The lecture | learned most presented
a proof that failed three times and was finally finished susfcdly overtime, not before patching
the theorem. But this seems to be the best universities eantgitheir mathematics students
today. (The missing systematics they had better learn froak&) An apprentice is explained
the easy procedures and shown the hard ones. Then, as we deptaiit proof search to our
students, it is probably one of the hard ones. Nevertheleskshope we will be able to do this
some time.
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Note 4 (Proof-Theoretical Peculiarities of Mathematical hduction)

The following often mentioned (cf. e.g. [20, §5]) proof-tinetical peculiarities of mathema-
tical induction do not really have a special practical dff@cinductive theorem proving, simply
because efficency problems cause the same effects alreatlyefeaase of deductive theorem
proving:

¢ As the theory of arithmetic is not enumerable ([42, 43]), pteteness of a calculus w.r.t.
the standard notion of validity cannot be achieved.

In practice, however, it does not matter whether our proité faecause our theorem will
not be enumerated ever or will not be enumerated before dideyns

e By Gentzen’s Hauptsatz on Cut elimination [39] there is nedi® invent new formulas in
a proof of a deductive theorem. Indeed, such a proof can trcted to “sub”-formulas of
the theorem under consideration. In contrast to lemmaegpn (i.e. Cut) in a deductive
proof tree, the application of induction hypotheses andaminside an inductive reason-
ing cycle cannot generally be eliminated, cf. [58]. Thus, if@uctive theorem proving,
“creativity” cannot be restricted to finding just the propestances, but may require the
invention of new lemmas and notions.

Again, in practice, however, it does not matter whether westa extend our proof search
to additional lemmas and notions for principled reason®otractability [11].

Note 5 (Implicit and Inductionless Induction)

Alternative approaches to automation of mathematicalgétido evolved from thé&nuth—Bendix
Completion Procedurand were summarized in tiszhool of Implicit Inductiorwhich comprises
Proof by Consistency (Inductionless Inductiot@scente infiniand implicit induction orderings
(term orderings). Furthermore, there is pioneering workh@ncombination of induction and co-
induction; cf. e.g. [72]. While Proof by Consistency and lmipinduction orderings seem to be
of merely theoretical interest today [112], we should aaligfdistinguishdescente infiniédrom
the mainstream work on explicit induction.

Note 6 (The Idea of Rippling)

Roughly speaking, the success in provsimpletheorems by induction automatically, can be
explained as follows: If we look upon the task of proving a gientheorem as reducing it to a
tautology, then we have more heuristic guidance when we khatwe probably have to do it by

mathematical induction: Tautologies are everywhere, leiimnduction hypothesis we are going
to apply can restrict the search space tremendously.

In a famous cartoon of Alan Bundy’s, the original theoremymbolized as a zigzagged
mountain scape and the reduced theorem after the unfoldiregorsive operators as a lake with
ripples. Instead of searching for an arbitrary tautologg,kmow that we have tget rid of the
ripplesto be able to apply an instance of the theorem as inductiontheggis, as mirrored by the
calm surface of the lake.
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Note 7 (The Sociological Aspect of Explicit Induction as Namal Science)

Another way in that explicit induction blocks scientific gress is a sociological one. The heuris-
tics to generate induction axioms in explicit induction @dardly changed since the end of the
1970s. Some minor conceptual improvements (such as [1(R, €@.) have turned out to be

contra-productive in the practical context of a highly aptied “waterfall’;, because later phases
were already optimized to patch the weaknesses of the prewines. With all the men-power

that went into explicit induction systems such &agA [7] or AcL2 [55], these systems have be-
come so well-tuned to all simple standard problems thatharslly possible to demonstrate their
shortcomings to referees within the time they are willingpend on the subject.

Besides that, to become competitive witltl® requires a common effort and years of work
with little chance for economic support or academic fundiagproval, or rewards. In spite of
this, mainly due to the idealism of Ulrich Kihler and Tobiash&idt-Samoa and a bunch of
their studentsgescente infinien QUODLIBET [10]—as explained in 88 9 and 11—has already
by now been able to outperform the formerly well-fundearmal-sciencg62, 115] School of
Explicit Induction.

Note 8 (On the Likeliness of Alternative Integrations of Descente Infinieinto State-of-the-
Art Deductive Calculi)

This integration ofdescente infiniato state-of-the-art free-variable sequent and tabledcut

is the most important scientific contribution of my life. el actually have searched the whole
conceivable space of possible combinations far beyond islticumented in [111], | am pretty
sure that [111] presents not only a most elegant combinafidescente infiniand state-of-the-
art deduction, but also the only possible one (up to isomermphthat actually models the mathe-
matical process of proof search bgscente infiniéself and directly supports it with the data
structures required for a formal treatment and doesnobdesome form of induction (as, e.g.,
in Gentzen's induction rule of [40], or by application of tbecond-order Theorem of Noetherian
Induction (N) (cf. 86), or the second-order Axiom of Structural Inducti&) (cf. §6), or by
generation of first-order induction axioms).

Note 9 (Semantical Requirements of [111])

As described in [111, §2.1.4] all we need for the soundnessipintegration otlescente infinie
into two-valued logics are the validity of

¢ the well-knownSubstitutiorfValug Lemma(as, e.g., shown for different logics in [3, Lemma 3],
[4, Lemma5401(a)], [30, p. 127], [34, p. 120], and [35, Prgipon 2.31]) and

e the trivial Explicitness Lemme@.e. the values of variables not explicitly freely occuagiin
a term or formula have no effect on the value of the term or tdapresp.) (as, e.g., shown
for different logics in [3, Lemma 2], [4, Proposition 540@hd [35, Proposition 2.30]).
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Note 10 (Lemma Application)

Lemma applicatiorworks as follows. Suppose that our proof goals consisgenfuentavhich
are just disjunctive lists of formulas. (This is the simplEsm of a sequent that will do for all
two-valued logics.) Whenalemmad,, ..., A,, isasubsequentof a sequénto be proved (i.e.
if, forall : € {1,...,m}, the formula4; is listed inI"), its application closes the branch of this
sequentgubsumption Otherwise, the conjugates of the missing formulasare added to the
child sequents (premises), one child per missing formutés dan be seen as Cuts@pplus sub-
sumption. More precisely—modulo associativity, commiuit and idempotency—a sequent
Ay, ..., Ay, B, ..., B, canbe reduced by application of the lemma, ..., A,,,C,,...,C, tO
the sequents

?lvAlv"'vAmvBlv"'an 71071417"'7147717317"'7371'

In addition, roughly speaking, any time we apply a lemma, @ instantiate its free variables
locally and arbitrarily. Cf. [111, 113] for more on this.

Note 11 (Integration of Descente Infinieinto Logical Frameworks)

Item 4 of the enumeration in § 9 is typically no problem beeauns can get along with semantical
orderings [109, Definition 13.7]. Indeed, we do not need terderings [96] anymore as was the
case with QUODLIBET’s predecessor Nicom [45].

Items 1, 2 and 3, however, do not seem to be easily achievathiéswBeLLE/HOL [69, 70],
for instance. A logical framework (such asABELLE [73, 74, 75]) can hardly mirror general
mathematical activity, but only the logic calculi known léttime of its development. This makes
progress toward human-oriented automatable calculi vigfigudt. As a convenient realization
of descente infinieloes not seem to be so easily possibleSAHELLE-based systems, a lot of
additional lemmas (or else ingenious recursive specifioqtnay be necessary as described in
81 (or else the solution) of [99]. Moreover, for the idea tport program synthesis vides-
cente infinieon the lower level of inductive theorem proving for softwasgification (cf. our 88
and [25]), the recursion facilities o6ERBELLE/HOL are insufficient: Konrad Slind’s recursion
theorems [93] require termination proofs at a too earlyestglevelopment [117].

Note 12 (Productive Use of Failure and Patching Faulty Conjetures)

Although, the failure of the proof is complete for a wronguietion axiom, from such a failure,
we might gain some insight on the proof [54] or on the conjex{81, 82]. And then we may
start another proof with different settings.
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