
ar
X

iv
:0

90
2.

32
94

v1
 [

cs
.A

I]
 1

7
F

eb
 2

00
9

SEKI

2009

Progress in Computer-Assisted
Inductive Theorem Proving

by Human-Orientedness
and Descente Infinie?

Claus-Peter Wirth
Dept. of Computer Sci., Saarland Univ.,

D–66123 Saarbrücken, Germany
wirth@logic.at

SEKI-Working-Paper SWP-2006-01S
E
K

I-W
or

ki
ng

-P
ap

er
IS

S
N

18
60

-5
93

1

U
N

IV
E

R
S

IT
ÄT

D
E

S
S

A
A

R
LA

N
D

E
S

FA
C

H
R

IC
H

T
U

N
G

IN
F

O
R

M
AT

IK
D

–6
61

23
S

A
A

R
B

R
Ü

C
K

E
N

G
E

R
M

A
N

Y
W

W
W

:h
t
t
p
:
/
/
w
w
w
.
a
g
s
.
u
n
i
-
s
b
.
d
e
/

http://arXiv.org/abs/0902.3294v1

This SEKI-Working-Paper was internally reviewed by:

Dieter Hutter
DFKI GmbH, Stuhlsatzenhausweg 3, D–66123 Saarbrücken, Germany
E-mail: hutter@dfki.de
WWW: http://www.dfki.de/~hutter

Peter Padawitz
Informatik, Universität Dortmund, D–44221 Dortmund, Germany
E-mail: peter.padawitz@udo.edu
WWW: http://fldit-www.cs.uni-dortmund.de/~peter

Tobias Schmidt-Samoa
Fachbereich Informatik, Universität Kaiserslautern, Postfach 3049, D–67653 Kaiserslautern, Ger-
many
E-mail: t.samoa@netcologne.de
WWW: http://agent.informatik.uni-kl.de/mitarbeiter/schmidt-samoa

Editor of SEKI series:

Claus-Peter Wirth
Brandenburger Str. 42, D–65582 Diez, Germany
E-mail: wirth@logic.at
WWW: http://www.ags.uni-sb.de/~cp

Progress in Computer-Assisted
Inductive Theorem Proving

by Human-Orientedness
andDescente Infinie?

Claus-Peter Wirth
Dept. of Computer Sci., Saarland Univ., D–66123 Saarbrücken, Germany

wirth@logic.at

Searchable Online Edition

Submitted March 21, 2006

First Print Edition August 25, 2006

Very Minor Improvements July 16, 2008

Abstract

In this position paper we briefly review the development history of automated inductive
theorem provingandcomputer-assisted mathematical induction. We think that the current
low expectations on progress in this field result from a faulty narrow-scope historical projec-
tion. Our main motivation is to explain—on an abstract but hopefully sufficiently descriptive
level—why we believe that future progress in the field is to result from human-orientedness
anddescente infinie.

2

Contents

1 Introduction 3

2 Requirements Specification 5

3 Short History of Computer-Assisted Theorem Proving 6

4 What Can we Hope to Achieve? And How? 8

5 Why Mathematical Induction? 8

6 Descente Infinie 9

7 Explicit Induction 11

8 Why Sticking to Explicit Induction Blocks Progress 12

9 Why Descente Infinieis Promising Now 14

10 The Fundamental Practical Advantage ofDescente Infinie 15

11 Discussion 16

12 Conclusion 21

Acknowledgements 22

Notes 23

References 27

3

1 Introduction

1.1 Subject Area

In this paper we are concerned with

• automated inductive theorem provingand

• computer-assisted mathematical induction.

Both terms refer to the task of doing mathematical inductionwith the computer. The former
term puts emphasis on the importance of strong automation support, as found in the classical
systems NQTHM [15, 16], INKA [7], and ACL2 [55] based on explicit induction. The latter and
more general term, however, is to denote newer more human-oriented approaches in addition,
as found in QUODL IBET [10] and other future systems based ondescente infinie. Note that we
do not believe in the usefulness of the extreme representatives of any of the two terms: Neither
mere black-box automation nor mere proof-checkers can be too useful in mathematical induction.
Above that, we think that a successful system has to put strong emphasis on both aspects and find
a way to be both human-andmachine-oriented.

1.2 Expectations and Importance of Future Progress

A majority of researchers in the area of computer-assisted mathematical induction seem to believe
that no further progress can be expected in this area within the nearer future. Moreover, recently,
between two talks at a conference, one of the leading German senior researchers in the field told
me that he thinks that currently it is hardly possible to get any funding for research on computer-
assisted mathematical induction.

Thus, we should ask for possible scientific reasons for the current funding situation. We ought
to check the justification of the belief that progress in computer-assisted mathematical induction
is unlikely to occur in the nearer future.

It is, however, obviously not the case that progress in computer-assisted mathematical in-
duction is considered to be unimportant. Indeed, progress in computer-assisted mathematical
induction is in high demand for mathematics assistance systems, for verification of software and
hardware, and for synthesis of recursive programs. Due to a slow-down in progress of automated
mathematical induction in the last decade, however, currently there does not seem to be much
hope for further progress in the nearer future.

1.3 A Possible Way to Future Progress — Overall Thesis

To show a possible way to future progress is the aim of this position paper. Namely, to explain
why we are confident thatdescente infiniecan be the start to a new breakthrough in computer-
assisted mathematical induction.

Together withdescente infiniewe present our ideas on the importance ofhuman-oriented
theorem proving, a point of view we have been holding and furthering for more than a dozen
years [109, 119].

4

“Human-oriented theorem proving” basically means that—toovercome the current
stagnation—we have to developparadigms and systemsfor the synergetic combination and co-
operation of the human mathematician with its semantical strength and the machine with its com-
putational strength.

Our thesis is thatdescente infinieis such a paradigm.

1.4 Organization of this Paper

The paper organizes as follows. In § 2 we describe the generalcontext where and why mathema-
tics and mathematicians should win from computers. As the reason for the little hope in progress
in mathematical induction seems to be a wrong projection from the past into the future, we can-
not reasonably state what we may hope to achieve byhuman-orientednessanddescente infinie
(§ 4) and why the two belong together (§ 5) before we have had a short look at the history of
computer-assisted theorem proving in § 3. Without diving too deep into technical details, after
presentingdescente infinie(§ 6) andexplicit induction(§§ 7 and 8), we then support our overall
thesis of § 1.3 in §§ 9 and 10, and discuss the standard objections in § 11. Finally, we conclude
in § 12.

5

2 Requirements Specification

From the ancient Greeks until today, mathematical theories, notions, and proofs are not devel-
oped the way they are documented. This difference is not onlydue to the iterative deepening of
the development and the omission of easily reconstructibleparts. Also the global order of pre-
sentation in publication more often than not differs from the order of development. This results
in the famouseurekasteps, which puzzle the freshmen in mathematics. The difference does not
only occur in scientific publications where thesuccinct presentation of resultsmay justify this
difference, but also for the vast majority of textbooks and lectures where the objective should be

• to teach how to findproofs, notions, and theorems.

The conventional natural-language representation of mathematical proofs in advanced theoretical
journals with its intentional vagueness [113, § 6.2] and hidden sophistication can only inform
highly educated human beings about already found proofs. This conventional representation,
however—as fascinating as it is as a summit of the ability of the human race to communicate
deep structural knowledge effectively—does not tell much about the

• originally applied plans and methods ofproof construction

and does not admit computers

• to check for soundnessand

• to take over the tedious, error-prone, computational, and boring partsof proofs.

Obviously, a computer representation that admits the flexibility for and the support of the issues
of all above items in parallel plus the computation of

• different conventionalnatural language presentationstailored to various purposes

is in great demand and could increase the efficiency of working mathematicians tremendously.

6

3 Short History of Computer-Assisted Theorem Proving

3.1 Formula Language and Calculi

Starting with the Cossists and Viète in the 15th and 16th century, the formula language of mathe-
matics and its semantics were adequately and rigorously modeled by the end of the 19th century
in Peano’s ideography [77] and Frege’sBegri��s�rift [36].

An adequate rigorous representation that supports a working mathematician’stheorem prov-
ing, however, has not been found until today. But already now theformula language of mathema-
tics and its semantics can provide a powerful interface between human and machine.1

The numerous logic calculi developed during the 20th century were mostly designed to satisfy
merely theoretical criteria, but not to follow the theorem-proving procedures of working mathe-
maticians.

An important step toward human-oriented calculi was done byGerhard Gentzen (1909–1945)
when he used his structural insights to refine his Natural Deduction calculi (which were close
to natural-language mathematics) into sequent calculi [39]. Gentzen’s sequent calculus meant a
huge progress toward an adequate human-oriented representation of a working mathematician’s
deductive proof search. Sequent and tableau calculi capture the reductive (analytic, top-down,
backward) reasoning from goals to subgoals directly in the essential calculus rules and the gen-
erative (synthetic, bottom-up, forward) reasoning from axioms to lemmas can be adequately
realized with lemmatizing versions of the Cut rule [9, 10, 109, 111] (cf. Note 10). Based on
Gentzen’s sequent calculus there has been further progressinto this direction: Free variable cal-
culi [34, 70, 111] admit to defer commitments until the stateof the proof attempt provides suf-
ficient information for a successful choice. Thereby they help the mathematician to follow his
proof plans more closely by overcoming premature witness decisions forced by Gentzen’s orig-
inal calculus. Indexed formula trees [6] admit the mathematician to focus immediately on the
crucial proofs steps and defer the problems ofβ-sequencing andγ-multiplicity [113].

3.2 Automation

Starting in the 1950s, there was great hope to automate theorem proving with the help of com-
puters and machine-oriented logic calculi. State-of-the-art fully-automated theorem provers of
today (ATPs, such as VAMPIRE [83] and WALD MEISTER [17, 66]) represent a summit in the
history of creative engineering. That ATP systems will never develop into systems that can assist
a mathematician in his daily work, however, is a general concensus among their developers for
more than a dozen years now. The reason for this is the following:

The automatic theorem provers’ search spaces are too huge for complete automation
and completely different from the search spaces of the working mathematicians, who
therefore can neither interact with these systems, nor transfer their human skills to
them.

Note that this does not mean that ATP systems are useless. They already now provide a powerful
basis for the automation in mathematics assistance systemssuch asΩMEGA [92].

7

3.3 Proof Planning

In the end of the 1980s, the ideas to overcome the approachingdead end in ATP were summarized
under the keywordproof planning. Besides its human-science aspects [19], the idea of proof
planning [18, 27] is to add smaller and more human-orientedhigher-level search spacesto the
theorem-proving systems on top of thelow level search spacesof the logic calculi. In the 1990s,
the major proof-planning systems OYSTER-CLAM [18, 22], ΩMEGA [92], andλCLAM [20] seem
to have been led astray by the hopes that with these additional levels

1. the underlying logic calculus could be neglected,2 and,

2. instead of the working mathematician himself, it would besufficient to get his proof plans
to the machine.

3.4 Alternative Point of View in Proof Planning

To the contrary of these hopes, we believe that progress in proof planning and computer-assisted
mathematical theorem proving requires the further development of human-oriented state-of-the-
art logic calculi, which free the higher levels from unnecessary low-level commitments and admit
the mathematician to interact directly with the machine, even when the automation of proofs fails
on the lowest logic level.

We need both high-level top-down interactive proof development and bottom-up sup-
port from a state-of-the-art flexible human-oriented calculus with strong automation.

The neglect of the logic calculus and human–machine interaction is to be overcome in the system
ISAPLANNER [27, 28, 29] and in the newΩMEGA system currently under construction [9] by
using the standard calculus of ISABELLE/HOL [69, 70] and the new human-oriented calculus of
CORE [6], respectively.

3.5 Conclusion: Human-Oriented Automated Theorem Proving

The automatic generation of a non-trivial proof for a given input conjecture is typically not pos-
sible today and—contrary to chess playing—will probably never be.

Thus, besides some rare exceptions—as the automation of proof search will always fail on the
lowest logic level from time to time—the only chance for automatic theorem proving to become
useful for mathematicians isa synergetic interplay between the mathematician and the machine.

For this interplay, it does not suffice to compute human-oriented representations of machine-
oriented proof attempts for interaction with a user interface during the proof search. Indeed,
experience shows that the syntactical problems have to be presented accurately and in their exact
form. Thus—to give the human user a chance to interact—the calculus itself must behuman-
oriented.

8

4 What Can we Hope to Achieve? And How?

After all that history of great original expectations and down-slowing progress, what can we
reasonably hope for the nearer future?

As described in § 3.1 and Note 1, the formula language of mathematics and its semantics
already now provides a powerful interface between human andmachine. But we still have to find
a representation of mathematical proofs supporting the issues mentioned in § 2, namely: machine
assistance in and teaching of proof search, proof planning,and theory development; automation
of tedious, error-prone, computational, and boring parts of proofs and checking for soundness;
and the computation of various natural language presentations.

As full automation cannot succeed within the current paradigm, we have to follow the human
mathematicians, although we do not know much about their procedures and they do not know
how to explain them.3

The first steps on this way are to give the mathematician the freedom to go his way and let
the system assist him. Not the other way round as usual! We areconvinced of the following
development cycle:

• In a first step, informal and formal logical calculi and the user interfaces have to provide
the freedom to use all the required means in a human-orienteddesign, and then,

• in a second step, we have to learn the heuristics that admit a feasible proof search from the
mathematicians; by human learning in the beginning, hopefully by Artificial Intelligence
machine-learning later.

And the starting point ought to be a human-oriented, machine-oriented, flexible state-of-the-art
calculus [6, 111] and an administration of proof tasks in a proof data structure [9].

5 Why Mathematical Induction?

In this § 5, we briefly explain why we see an affinity between human-orientedness and mathema-
tical induction and why this position paper is about bothdescente infinieand human-orientedness
in parallel.

Besides some proof-theoretical peculiarities of mathematical induction that do not really have
a practical effect,4 mathematical induction is the area of mathematical theoremproving where
our heuristic knowledge is best. This is the case both for human (descente infinie, cf. § 6) and for
machine-oriented heuristics (explicit induction, cf. § 7). As these two heuristics are completely
different in their surface structure and the progress in practical usefulness was quite moderate
in the last decade, mathematical induction is a good area to look for evidence for our thesis on
human-orientedness:

Human-oriented procedures can overcome the current slowdown of progress in
computer-assisted theorem proving. Their—even compared to machine-oriented
procedures—huge search spaces can be controlled by heuristics learned from the
human mathematicians working with advanced systems.

9

6 Descente Infinie

In everyday mathematical practice of an advanced theoretical journal the frequent inductive ar-
guments are hardly ever carried out explicitly. Instead, the proof just reads something like “by
structural induction onn, q.e.d.” or “by induction on(x, y) over<, q.e.d.”, expecting that the
mathematically educated reader could easily expand the proof if in doubt. In contrast, very dif-
ficult inductive arguments, sometimes covering several pages, such as the proofs of Hilbert’sfirst
ε-theorem[47, Vol. II] or Gentzen’sHauptsatz[39], or confluence theorems such as the ones
in [46, 108, 117] still require considerable ingenuity andwill be carried out! The experienced
mathematician engineers his proof roughly according to thefollowing pattern:

He starts with the conjecture and simplifies it by case analysis. When he realizes
that the current goal becomes similar to an instance of the conjecture, he applies
the instantiated conjecture just like a lemma, but keeps in mind that he has actually
applied an induction hypothesis. Finally, he searches for some well-founded ordering
in which all the instances of the conjecture he has applied asinduction hypotheses
are smaller than the original conjecture itself.

The hard tasks of proof by mathematical induction are

(Hypotheses Task)
to find the numerous induction hypotheses (as, e.g., in the proof of Gentzen’s Hauptsatz on
Cut-elimination) and

(Induction-Ordering Task)
to construct aninduction orderingfor the proof, i.e. a well-founded ordering that satisfies
the ordering constraints of all these induction hypothesesin parallel. (For instance, this
was the hard part in the elimination of theε-formulas in the proof of the 1stε-theorem in
[47, Vol. II], and in the proof of the consistency of arithmetic by theε-substitution method
in [2]).

The soundness of the above method for engineering hard induction proofs is easily seen when
the argument is structured as a proof by contradiction, assuming a counterexample. For Pierre
Fermat’s (1607?–1665) historic reinvention of the method,it is thus just natural that he developed
the method itself in terms of assumed counterexamples [12, 26, 32, 67, 114]. He called it “des-
cente infinie ou indéfinie”. Here it is in modern language, very roughly speaking: A proposition
Γ can be proved bydescente infinieas follows:

Show that for each assumed counterexample ofΓ there is a smaller counterexample
ofΓ w.r.t. a well-founded ordering<, which does not depend on the counterexamples.

10

There is historic evidence ondescente infiniebeing the standard induction method in mathe-
matics: The first known occurrence ofdescente infiniein history seems to be the proof of the
irrationality of the golden number1

2
(1+

√
5) by the Pythagorean mathematician Hippasus of

Metapontum (Italy) in the middle of the 5th century B.C. [37]. Moreover, we find many occur-
rences ofdescente infiniein the famous collection “Elements” of Euclid of Alexandria[31]. The
following eighteen centuries showed a comparatively low level of creativity in mathematical theo-
rem proving, but after Fermat’s reinvention of the Method ofDescente Infiniein the middle of the
17th century, it remained the standard induction method of working mathematicians until today.

At Fermat’s time, natural language was still the predominant tool for expressing terms and equa-
tions in mathematical writing, and it was too early for a formal axiomatization. Moreover, care-
fully notice that an axiomatization captures only validity, but in general does neither induce a
method of proof search nor provide the data structures required to admit both a formal treatment
and a human-oriented proof search. The formalizable logic part, however, ofdescente infiniecan
be expressed in what is called the (second-order)Theorem of Noetherian Induction(N), after
Emmy Noether (1882–1935). This is not to be confused with theAxiom of Structural Induction,
which is generically given for any inductively defined data structure, such as theAxiom of Struc-
tural Induction(S) for the natural numbers inductively defined by the constructors zero0 and
successors. Moreover, we need the definition(Wellf(<)) of well-foundedness of a relation<.

(Wellf(<)) ∀Q.
(

∃x. Q(x) ⇒ ∃m.
(

Q(m) ∧ ¬∃w<m. Q(w)
)

)

(N) ∀P.

(

∀x. P (x) ⇐ ∃<.

(

∀v.
(

P (v) ⇐ ∀u<v. P (u)
)

∧ Wellf(<)

))

(S) ∀P.
(

∀x. P (x) ⇐ P (0) ∧ ∀y.
(

P (s(y)) ⇐ P (y)
)

)

(nat1) ∀x.
(

x = 0 ∨ ∃y. x = s(y)
)

(nat2) ∀x. s(x) 6= 0

(nat3) ∀x, y. (s(x) = s(y) ⇒ x = y)

Let Wellf(s) denoteWellf(λx, y. (s(x) = y)), which implies the well-foundedness of the ordering
of the natural numbers. The natural numbers can be specified up to isomorphism either by
(S), (nat2), and(nat3), or else byWellf(s) and(nat1). The first alternative is the traditional
one, following Dedekind and named after Peano. As the instances forP and< in (N) are often
still easy to find when the instances forP in (S) are not, the second alternative together with(N)
is to be preferred in theorem proving for its usefulness and elegance. Cf. [111] for more on this.

For a more detailed discussion ofdescente infiniefrom the historical and linguistic points of view
cf. [114, § 2]!

11

7 Explicit Induction

In the 1970s, theSchool of Explicit Inductionwas formed by computer scientists working on the
automation of inductive theorem proving. Inspired by J. Alan Robinson’s resolution method [84],
they tried to solve problems of logical inference via reduction to machine-oriented inference
systems. Instead of implementing more advanced mathematical induction techniques, they de-
cided to restrict the second-order Theorem of Noetherian Induction(N) (cf. § 6) and the induc-
tive Method ofDescente Infinieto first-orderinduction axiomsand deductive first-order reason-
ing [111, § 1.1.3].

Notice that in these induction axioms, the subformula

∀u<v. P (u)

of (N) is replaced with a conjunction of instances ofP (u) with predecessors ofv like in (S). The
induction axioms of explicit induction must not contain theinduction ordering<.

Furthermore, notice that although an induction axiom may take the form of a first-order instance
of the second-order Axiom of Structural Induction(S) (cf. § 6), conceptually it is an instance
of (N) and the whole concept ofexplicit inductionis a child of the computer, whereas(S) was
already applied by the ancient Greeks [1].

The so-called “waterfall”-method of the pioneers of this approach [15] refines this process into
a fascinating heuristic, and the powerful inductive theorem proving system NQTHM [15, 16] has
shown the success of this reduction approach already a quarter of a century ago. For compre-
hensive surveys on explicit induction cf. [104] and [20]. Cf. [112] for a survey on the alternative
approaches of implicit and inductionless induction.5

Boyer & Moore’s NQTHM [15, 16] and Bundy & Hutter’s rippling6 [13, 23, 24, 48, 49, 51, 94] are
prime examples of practically useful automation-supported theorem proving and proof planning,
respectively. Mainly associated with the development of explicit induction systems such as
OYSTER-CLAM [18, 22], λCLAM [20], and INKA [7], there was still evidence for considerable
improvements over the years until the end of the last century[52]. Since then, explicit induction
has become a standard in education in theXERIFUN project [105]. Today, the application-oriented
explicit induction system ACL2 [55] is still undergoing some minor improvements. ACL2 easily
outperforms even a good mathematician on the typical inductive proof tasks that arise in his daily
work or as subtasks in software verification. These methods and systems, however, do not seem
to scale up to hard mathematical problems andprogram synthesis(where the computer-assisted
inductive proof of a property of an underspecified program actually is to synthesize the recursive
definitions of the program). We believe that there areprincipled reasonsfor this shortcoming.

12

8 Why Sticking to Explicit Induction Blocks Progress

8.1 Flow of Information

Apart from sociological reasons,7 explicit induction blocks progress because it does not admit a
natural flow of informationin the sense that a decision can be delayed or a commitment deferred,
until the state of the proof attempt provides sufficient information for a successful choice. Indeed,
explicit induction unfortunately must solve the two hard tasks mentioned in § 6 (namely the Hypo-
theses Task and the Induction-Ordering Task) alreadybeforethe proof has actually started. A
proper induction axiom must be generated without any information on the structural difficulties
that may arise in the proof later on. For this reason, it is hard for an explicit-induction procedure
to guess the right induction axioms for very difficult proofsin advance.

8.2 Recursion Analysis and Induction Variables

One of the most developed and fascinating applications of heuristic knowledge found in Artificial
Intelligence, informatics, and computer science isrecursion analysis[15]. This is a technique
for guessing a proper induction axiom by statical analysis of the syntax of the conjecture and the
recursive definitions. In this paper, we subsume under the notion of “classical recursion analysis”
also its minor improvements [97, 98, 101, 102, 103]. Under the notion of “recursion analysis”
we also subsumeripple analysis, an important extension of classical recursion analysis.

Ripple analysis is sketched already in [21, § 7] and nicely described in [20, § 7.10]. On the
one hand, by rejecting recursive definitions whose unfolding would block the application of the
induction hypothesis, ripple analysis excludes some unpromising induction axioms of classical
recursion analysis. On the other hand, by considering lemmas of a reductive character in addition
to the actual recursive definitions, ripple analysis can findmore useful induction axioms than
classical recursion analysis.

A requirement, however, which we put on the notion of “recursion analysis” is that it does not
perform dynamical proof search but has a limited lookahead into the proof, typically one rewrite
step for each term in a set of subterms that covers all occurrences ofinduction variables. Note
that although “induction variable” is a technical term in recursion analysis, roughly speaking, this
notion is also common among working mathematicians when they say that something is shown
“by induction ony ”, for a variabley, for instance.

8.3 The Hypotheses Problem

However fascinating and highly developed recursion analysis may get, even the disciples of the
School of Explicit Induction admit the inherent limitations of explicit induction: In [80, p. 43],
we find not only small verification examples already showing these limits, but also the conclusion:

Problem 8.1 ([80, p. 43]) “We claim that computing the hypothesesbeforethe proof is not a
solution to the problem and so the central idea for the lazy method is to postpone the generation
of hypotheses until it is evident which hypotheses are required for the proof.”

13

This “lazy method” removes only some limitations of explicit induction as compared todescente
infinie. It focuses more on efficiency than on a clear separation of concepts, and there is no imple-
mentation of it available anymore. The labels “lazy induction” and “lazy hypotheses generation”
that were coined in this context are nothing but a reinvention of parts of Fermat’sdescente infinie
by the explicit-induction community.

8.4 The Induction-Ordering Problems

Computer scientists from the School of Explicit Induction used to consider the tasks of

• induction (i.e. the choice of an induction axiom; e.g. by recursion analysis) and

• deduction (i.e. the rest of the proof; e.g. by standard first-order reasoning techniques or by
rippling [13, 23, 24, 48, 49, 51, 94])

to be orthogonal. Working mathematicians know that this is wrong. Especially the choice of a
proper induction ordering interacts with the several casesof a proof in such a way that a new
proof idea tends to be in conflict with the induction orderingof the previous cases.

• On the one hand, it is standard in explicit induction to fix induction orderings eagerly, at
the very beginning of a proof.

• On the other hand, fixing an induction ordering earlier than in the last steps of an induction
proof has hardly any benefit ever:

– Fordifficult proofs, this is obvious to any working mathematician.

– For simpleproofs, the simple fact that any equation has a left- and a right-hand side
provides us with sufficient pragmatics for searching in thatarea of the search space
where the smaller induction hypotheses use to be applicable; provided that the speci-
fier has written his specifications in the standard style and the user has activated his
lemmas for rewriting with a suitable orientation.

Problem 8.2 Explicit induction has to commit to a fixed and unchangeable induction ordering
eagerly, at the very beginning of an induction proof. Such a commitment comes far too early
and is a typical cause of failure. Moreover, it is superfluousbecause there is hardly any heuristic
benefit of committing to an induction ordering earlier than in the last steps of an induction proof.

Besides the restriction of explicit induction to enforce aneagercomputation of induction axioms
(i.e. induction hypotheses and the related induction orderings), explicit induction by recursion
analysis has also another limitation:

Problem 8.3 Computing induction axioms by recursion analysis can only result in such induc-
tion orderings that are recombinations of orderings resulting from the recursive definitions (and
from the currently known lemmas of a reductive character) ofthe related specifications.

As a matter of fact, most of the non-trivial induction proofsdo not work out with such induction
orderings. Moreover, for the case of program synthesis, we do not want to be restricted to such
induction orderings. Cf. [25] for an instance of this, wherethe quick-sort algorithm is to be
synthesized from the requirements specification of the sorting function.

14

9 Why Descente Infinieis Promising Now

The theoretical research paper [111] provides us with the integration ofdescente infinieinto de-
ductive calculi. It is—to our best knowledge—the first such combination in the history of logic,
which does notencodesome form of induction (as, e.g., in Gentzen’s induction rule of [40],
or by application of the second-order Theorem of NoetherianInduction (N) (cf. § 6), or the
second-order Axiom of Structural Induction(S) (cf. § 6), or by generation of first-order induction
axioms), but actually models the mathematical process of proof search bydescente infinieitself
and directly supports it with the data structures required for a formal treatment.8

This integration (presented for state-of-the-art free-variable sequent and tableau calculi) is
well-suited for an efficient interplay of human interactionand automation and combines rais-
ing [68], explicit representation of dependence between free γ- and δ-variables (according to
Smullyan’s classification [95]), the liberalizedδ-rule, preservation of solutions, and unrestricted
applicability of lemmas and induction hypotheses. Moreover, the integration is natural in the
sense that it goes together well with context-improved reasoning as in [6], with modern proof
data structures as in [9], with program synthesis as in [25],and with logical binders such asλ
and ε &c. [41, 47, 64, 110, 116]. The semantical requirements for the integration are satis-
fied for practically all9 two-valued logics, such as clausal logic, classical first-order logic, and
higher-order modal logic [111, Note 8].

When computer-assisted inductive theorem proving startedin the 1970s, the induction axioms
of explicit induction were the only known feasible formal means to integrate induction into de-
ductive calculi. Today, however, we are in a better situation because the results of [111] provide
us with a simple, elegant, and both machine- and human-oriented integration ofdescente infinie
itself.

The only overhead this integration requires is to add a weight term to each sequent or proof
goal. These weight terms stay inactive until a goal is applied as an induction hypothesis. Com-
pared to the application of a goal as lemma, this induction-hypothesis application produces an
additional ordering subgoal, which asks us to show that the induction hypothesis is smaller in
some well-founded ordering than the goal it is applied to.

On a more technical level—to integratedescente infinieinto a given logic calculus—we need

1. to augment the goals (sequents) of the calculus with weight terms,

2. to add a lemma application10 to the calculus if not already present,

3. to patch the lemma application of the calculus to admit induction-hypothesis application,
which generates an additional ordering subgoal for soundness based on the weights of in-
duction hypothesis (lemma) and goal, and

4. to solve the ordering constraints of the induction-hypothesis applications.

Typically, these requirements are easily satisfied, although there may be problems with calculi
based on fixed logical frameworks.11

15

10 The Fundamental Practical Advantage of
Descente Infinie

As difficult mathematical proofs appear to have a semanticalnature to human mathematicians,
a mathematics assistance system has to comply with natural human proof techniques and to be
able to follow the exact order in which the human user organizes his semantical problem solving.
Automated theorem proving works on syntactical domains, however, which tend to be different
from the semantical ones, relatively small-scale, and comparatively limited. For instance, if re-
cursion analysis results in a useless induction axiom, the proof fails completely.12 This does not
mean that automatic search in a calculus is useless. To the contrary, an anytime sparse syntactic
search through semantically highly redundant search spaces can be most helpful in parallel to the
interaction of the human user. In such a parallel approach, the “hot” constraints should always
be solved first. By “hot” we mean constraints with solutions that are strongly indicated by the
current state of the proof in the sense that there is a committing step toward their solution, with-
out which the proof can hardly succeed or which makes a success much more likely. Although
those constraints that are hot for a mechanic procedure and those that are crucial for a human
mathematician in the construction of the proof idea will be different more often than not, man
and machine can cooperate very well, provided that the constraints can be solved in any intended
order and the effects communicated on the basis of a common view. Note that a step from either
side will typically change the set of hot constraints of the other.

We are very well aware of the fundamental difficulties and open questions that have to be
solved for such a cooperation of man and machine. It actuallycannot be denied that there seem
to be several divergences between man and machine, especially:

• Automation prefers fully expanded definitions while the human user prefers a concise
representation with composite notions.

• The higher the automatization the more difficult the analysis of a failed proof attempt for
the human user.

Nevertheless, we are convinced that a cooperation of man andmachine on the basis of a common
view is a realistic goal.

Now we finally just have to mention the fundamental practicaladvantage ofdescente in-
finie as compared to encodings of some form of induction (as, e.g.,in Gentzen’s induction rule
of [40], or by application of the second-order Theorem of Noetherian Induction(N) (cf. § 6),
or the second-order Axiom of Structural Induction(S) (cf. § 6), or by generation of first-order
induction axioms):

The fundamental practical advantage of our integration of descente infinie is that the
constraints of the inductive proof search can now be solved together with all other
constraints of the whole deduction in any suitable order.

Thus, if recursion analysis shows us the proper way, we can solve the constraints in the order
according to the heuristics of explicit induction. But any other order is also possible. And we
may delay solving the harder constraints until the state of the proof attempt provides us with
information sufficient for a successful choice.

16

11 Discussion

11.1 Paradigm Shift without Sacrifice — Really?

In blank opposition to our evaluation ofdescente infiniein § 9 as promising, in the 1990s and
still in the beginning of the 3rd millennium, some leading scientists from the explicit-induction
community used to claim

(1) thatdescente infiniewould be too complicated to be useful in practice, and

(2) that the proper induction axioms could be computed before the actual proof search by a
partial inspection of the proof in a specialized presentation different from the actual proof
search with some advanced Artificial Intelligence techniques [50].

Claim (1) has already been falsified by the successful treatment ofdescente infiniein the theorem
prover QUODL IBET [8, 10, 60, 61, 65, 87, 88, 89, 90, 108, 109, 111, 117]. Although QUOD-
L IBET does not use any induction axioms, it is competitive with theleading inductive theorem
prover ACL2 [55], with the practically important exception that ACL2 is so efficiently imple-
mented that it can be used for both verificationand testingof software.

We believe that also Claim (2) is wrong and that we need the freedom to solve the two hard
tasks mentioned in § 6 (namely the Hypotheses Task and the Induction-Ordering Task) in small
portions spread over the whole search of the actual proof. This belief was also confessed to by
others in [57, § 4.5] and in [44, § 13.4], and there is further recent evidence for this in [90, § 8].
Even if Claim (2) were right and the proposed procedure feasible, it would still be an uneconomic
procedure because there is no need to plan the induction axiom with specialized tools based on a
special additional representation before searching for the actual proof.

The deeper reasons behind the Claims (1) and (2) seem to be conservatism and the fear that
the great heuristic contributions to inductive theorem proving developed within the paradigm of
explicit induction could be lost. Although such losses are typical for paradigm shifts [62, 115],
the fear seems to be completely unjustified in our case:

• Theoretically,descente infinieincludes explicit induction.

• Practically, QUODL IBET has shown that in our framework ofdescente infinie, the heuristic
knowledge ofrecursion analysisin the field of explicit induction is still applicable, indis-
pensable, and at least as useful as before. We will explain this in § 11.3. That also rippling
probably stays as important as before is sketched in § 11.4.

17Eng i� die Welt, und da� Gehirn i� weit.Lei�t beieinander wohnen die Gedanken,Do� hart im Raume �o�en si� die Sa�en.
— FRIEDRICH VON SCHILLER; WALLENSTEINS TOD,

2. AUFZUG, 2. AUFTRITT; WALLENSTEIN

11.2 Schism in Minds vs. Schism in Systems

Actually, the schism between explicit induction on the one hand side anddescente infinieon the
other, never really existed in the minds of most of the leading scientists of the field, especially
not since the year 1996 [112, § 4.2]. This expertise, however, has neither been published nor
communicated to the outside of the inner circle. Moreover—contrary to the flexibility of the
minds—in the most powerful inductive theorem prover ACL2 [55] this schism is still manifest:

Problem 11.1 (No Natural Flow of Information in ACL2)
The only way to get ACL2 to use an induction ordering which is not of the kind of Problem 8.3
is to add a recursive functionf terminating over this ordering and to hint the prover to use the
ordering of its termination proof for the eager generation of a eurekainduction axiom. Note that
the functionf is typically nonsense and will be used nowhere and especially not in the theorem,
so that the hint to use it is really necessary.

11.3 The Rôle of Recursion Analysis inDescente Infinie

The cases where eager induction-hypotheses generation is needed to guide the proof into the
right direction (cf. e.g. [111, § 3.3]) are so rare in practice that the current standard induction
heuristic of thedescente infiniesystem QUODL IBET [10, 87] generates induction hypotheses only
lazily, whereas the case splits for the induction variablesare done eagerly right at the beginning
(after simplification). The possibility to be lazy even simplifies recursion analysis when different
induction schemes are in conflict, because we do not have to merge them completely: Compare
[60, § 8.3] with the complicated problems of [102, 103]!

Nevertheless, recursion analysis plays an important rôle also in QUODL IBET and indescente in-
finie in general. Even without generating induction hypotheses and the induction ordering eagerly,
the case analysis suggested by recursion analysis is of great heuristic value. Indeed, nothing is
more helpful than to know how to start the proof of a conjecture (after simplification). The recur-
sion analysis indescente infinieis most useful for solving the following task of case analysis:

18

(Task of Case Analysis on Induction Variables)

Which outermost universal variables of the (simplified) conjecture to are to be used as
induction variables, and which lemmas are to be used for the case analysis on the structure
of the induction variables? For instance, which lemmas of the following form are to be
chosen for our induction variablesm : nat andl : list(nat) for a natural number and a list
of natural numbers, respectively?

m = 0 ∨ ∃n : nat. (m = s(n))

m = 0 ∨ ∃p : list(nat).

(

m =
∏

p

∧ Every(Prime, p)

)

l = nil ∨ ∃n : nat. ∃k : list(nat). (l = cons(n, k))

l = nil ∨ ∃n : nat. ∃k : list(nat). (l = append(k, cons(n, nil)))

Note, however, that this task is most critical for explicit induction, because the eager induction-
hypotheses generation fixes the result of this case analysisand makes a later adjustment impossi-
ble. Indescente infinie, however, this task is non-critical because it serves only as a heuristic hint
on how to start proof search. This is shown in the following example.

Example 11.2
Consider the toy example of the even-predicate on natural numbers in the clause

Even(x + z), ¬Even(x + y), ¬Even(y + z).

When recursion analysis based ons(v) +w = s(v + w) suggests a base case ofx=0 and a
step case ofx=s(x′), the proof bydescente infiniemay well go on with a case distinction on
x′=0 and x′=s(x′′) and actually proceed by the two base cases ofx=0 and x=s(0) and a step
case of x=s(s(x′′)). This, however, is not possible for explicit induction based on any form of
recursion analysis. Note that the three cases ofy=0, z=0, and y=s(y′) ∧ z=s(z′) provide yet
another way fordescente infinieto extend the proof attempt into a successful proof.

19

11.4 Rippling andDescente Infinie

Although QUODL IBET does not implementrippling [13, 23, 24, 48, 49, 51, 94] yet (but applies a
less syntactically restricted search by a refined contextual rewriting with markings [89, 90]), we
expect that the restrictions of the search space introducedby rippling can be more useful in the
less restrictive framework ofdescente infiniethan in the more restrictive framework of explicit
induction.

When induction hypotheses are not generated eagerly, “creational rippling” [23] or “blowing up
of terms” [50, 51] are not required. Instead, the induction variables occur as additional sinks
in the induction conclusion. On the one hand, this makes rippling technically and intuitively
simpler (esp. for destructor style recursion) and better suited for human-computer interaction. On
the other hand, however, the induction variables in the conclusion must be somehow limited in
their character of being a sink: Unless we limit these sinks to swallow wave fronts consisting of
destructors, we will have difficulties in finding a well-founded induction ordering justifying the
induction-hypothesis application.

11.5 Further Historical Limitations in Explicit Induction

Besides overcoming the must of generating induction axioms, it should be noted that QUOD-
L IBET has some additional advantages over classical explicit-induction systems:

• The strongadmissibility restrictionsof explicit induction systems (i.e. specification only
by functional programs, requiring theircompleteness and termination proofs in advance)
have shown to superfluous [10, 61, 117, 118]. (This work is provably known to the authors
of [106, 107], but they refuse to cite it, probably to improvethe chance of publication
of [106, 107] under reviews of non-experts.)

Indeed, QUODL IBET requiresneither terminationnor completeness of specification for
the definitional parts of its specifications. Nevertheless,the definitional parts come with a
guarantee on consistency and are used for recursion analysis and other special heuristics.
Thus, overspecification can be avoided and stepwise refinement of specifications becomes
possible, with a guaranteed monotonicity of validity [118].

This is of practical relevance in applications. For instance, in [65], Bernd Löchner (who is
not a developer but a user of QUODL IBET) writes:

“The translation into the input language of the inductive theorem prover QUOD-
L IBET was straightforward. We later realized that this is difficult or impossible
with several other inductive provers as these have problemswith mutual recur-
sive functions and partiality” . . .

20

• Another advantage compared to ACL2 with its poor user interface and its restriction to a
complete reset after failure is the following: When automation fails, QUODL IBET typically
stops early and presents the state of the proof attempt in a human-oriented form, whereas
everything is lost (and only some of the developers may know what to do) when explicit
induction generates a useless induction axiom (cf. Problem11.1 in § 11.2).

11.6 Conclusion

Those researchers of the explicit induction community who realized what a strong restriction it is
to fix the induction axiom before the actual induction proofsstarts—the most important being [80,
81], [44], and [25]—always suffered from the wish to synthesize induction axioms. The same
holds for the synthesis of simple recursive programs from their inductive soundness proofs [50,
57] and the more general task of instantiating meta-variables of the input theorem, where they
also make sense as placeholders for concrete bounds and sideconditions of the theorem which
only a proof can tell. Indeed, the force to commit to a fixed induction axiom eagerly is only
acceptable for simple proofs or simple theorems without meta-variables.

All in all, we have listed powerful arguments in §§ 9 and 10 andrebutted the possible counterar-
guments in this § 11.

21

12 Conclusion

12.1 Human-Orientedness

As explained in § 3.2, completely automated black-box theorem proving is approaching its con-
ceptual limits. Significant future progress requires a paradigm different from the Artificial Intel-
ligence exploration of the huge search spaces of machine-oriented misanthropic calculi. Human-
oriented theorem proving and human-oriented calculi provide the only known alternative and
have been gaining more and more acceptance within the last dozen years. The major tasks in the
intended advanced form of human-computer interaction are

• the further development of interface notions following both hidden human cognitive con-
cepts and the needs for powerful automation support, and

• the further improvement of the exploitation of the semantical information for the syntactical
search processes.

The basic paradigm of interaction must be an anytime search process that knows about the hu-
mans’ semantical strength and asks the human users for advice in their area of competence before
getting lost in complexity. With a human-oriented main-stream integration following this para-
digm, we can make man and machine a winning team.

12.2 Descente Infinie

Induction axioms were never necessary for the working mathematicians and are not anymore
necessary in formalized mathematics or automated theorem proving due to [111]. It now suffices
to solve the two hard tasks mentioned in § 6 (namely the Hypotheses Task and the Induction-
Ordering Task) in mathematics as well as in automated theorem proving.

There is no need to make the generation of induction axioms more flexible, because we are in
the lucky situation that wecanhave the cake and eat it: Indeed, we can remove the restrictions
induction axioms put on us and improve the usefulness of the heuristic knowledge developed
within the paradigm of explicit induction.

When recursion analysis or eager induction-hypotheses generation show us the way, we can
take it. When they do not, we do not have to care for them. We do not have to find a way to walk
out of the maze of explicit induction. We can fly over it.

When a proof is completed, we can read out of it what the induction axioms would have been.

As we do not need any induction axioms, however, we do not haveto care at all whether our
induction axioms should bedestructor styleor constructor styleor whatever mixed styles one
could imagine.

Moreover, notice that—as discussed in Example 11.2 of § 11.3—the case analysis suggested
by recursion analysis is critical for explicit induction, but serves only as a heuristic hint on how
to start proof search indescente infinie.

22

Besides the recursion analysis telling us how to start off and besides the termination check of
the induction ordering typically in the end, we do not need any special procedures for induction.
Induction-hypothesis application is just a lemma application generating an additional ordering
subgoal.

Descente infinieand explicit induction do not differ in the task (establishing inductive va-
lidity [118]) but in the way the proof search is organized. For simple proofs there is always a
straightforward translation between the two. The difference becomes obvious only for proofs of
difficult theorems.

The results of [111] on how to combine state-of-the-art deduction with descente infinieglo-
bally without induction axioms were not available when explicit induction started in the 1970s.
But now that we know how to do it, sticking to explicit induction as a must is scientifically back-
ward. Descente infinieanyway admits a simulation of explicit induction that can profit from all
the heuristics gathered in this field with the additional advantages

• that—contrary to explicit induction [15, 102, 103]—conflicting induction axioms do not
have to be combined completely (because the major heuristicachievement of recursion
analysis is to tell which variables to start induction with,cf. Example 11.2 of § 11.3), and

• that the induction ordering may stay open until the very end when all cases of the proof are
known (because an earlier fixing of the induction ordering ishardly of any heuristic benefit
ever).

Both items are of great practical effect [87, 90].

12.3 Summary

While the heuristics developed within the paradigm of explicit induction remain the
method of choice for routine tasks, explicit induction is anobstacle to progress in
program synthesis and in the automation of difficult proofs,where the proper induc-
tion axioms cannot be completely guessed in advance. Shifting to the paradigm of
descente infinie overcomes this obstacle without sacrificing previous achievements.

Acknowledgements

I would like to thank Dieter Hutter and Peter Padawitz for some very helpful advice, and Tobias
Schmidt-Samoa for many fruitful discussions and a long listof most profound critical suggestions
for this paper. Moreover, it is a pleasure to thank Tobias forthe wonderful years we shared
working on QUODL IBET anddescente infinie.

23

Notes

Note 1 For instance, the basic paradigm of the human-oriented automated inductive theorem
prover QUODL IBET [10] is the following: The working mathematician can feed the machine
with his semantical knowledge of the domain by stating lemmas, and the machine can use these
lemmas for sparse but deep proof search [87, 88, 89, 90]. Whenthis search fails, the graphical user
interface presents a not too deep state of the proof where progress stopped to the mathematician in
a carefully designed human-oriented calculus [10, 60, 109]who may provide help with additional
lemmas and other hints. It should be remarked, however, thatthe practical implementation of this
paradigm is still more a task than an achievement. Cf. § 10 formore on this.

Note 2

• The OYSTER-CLAM system[18, 22] has to solve the very hard task of constructing proofs in
the intuitionistic Martin-Löf type theory of OYSTER, whereas the vast majority of mathe-
maticians and ATP engineers would use transformations suchas the one to the modal logic
S4 [43, 33, 100] to prove intuitionistic theorems.

• Proof planning in theold ΩMEGA system[92] severely suffers from its commonplace natu-
ral deduction calculus, because it exports low-level tasksto higher levels of abstraction;
these low-level tasks have turned out to be most problematicin practice because they can
neither be ignored nor properly treated on the higher levels.

• TheλCLAM system[20] does not have any fixed logic level at all.

Note 3 (Teaching Proof Search Procedures in Mathematics Lectures)
In the best lecture course I ever attended, every lecture an emeritus professor came into the lecture
hall and asked what he is expected to teach here. “Analysis II!” “Do you know the theorem of
so-and-so?” “What is that?” “. . . ” “No, we do not know that!” Then the emeritus gave a precise
(but often incomplete) statement of the theorem, discussedit, and (after the students had a clear
idea on the meaning of the theorem!) started proofsearch. The lecture I learned most presented
a proof that failed three times and was finally finished successfully overtime, not before patching
the theorem. But this seems to be the best universities can give to their mathematics students
today. (The missing systematics they had better learn from books.) An apprentice is explained
the easy procedures and shown the hard ones. Then, as we do notexplain proof search to our
students, it is probably one of the hard ones. Nevertheless,I do hope we will be able to do this
some time.

24

Note 4 (Proof-Theoretical Peculiarities of Mathematical Induction)

The following often mentioned (cf. e.g. [20, § 5]) proof-theoretical peculiarities of mathema-
tical induction do not really have a special practical effect on inductive theorem proving, simply
because efficency problems cause the same effects already for the case of deductive theorem
proving:

• As the theory of arithmetic is not enumerable ([42, 43]), completeness of a calculus w.r.t.
the standard notion of validity cannot be achieved.

In practice, however, it does not matter whether our proof fails because our theorem will
not be enumerated ever or will not be enumerated before doomsday.

• By Gentzen’s Hauptsatz on Cut elimination [39] there is no need to invent new formulas in
a proof of a deductive theorem. Indeed, such a proof can be restricted to “sub”-formulas of
the theorem under consideration. In contrast to lemma application (i.e. Cut) in a deductive
proof tree, the application of induction hypotheses and lemmas inside an inductive reason-
ing cycle cannot generally be eliminated, cf. [58]. Thus, for inductive theorem proving,
“creativity” cannot be restricted to finding just the properinstances, but may require the
invention of new lemmas and notions.

Again, in practice, however, it does not matter whether we have to extend our proof search
to additional lemmas and notions for principled reasons or for tractability [11].

Note 5 (Implicit and Inductionless Induction)
Alternative approaches to automation of mathematical induction evolved from theKnuth–Bendix
Completion Procedureand were summarized in theSchool of Implicit Induction, which comprises
Proof by Consistency (Inductionless Induction),descente infinieand implicit induction orderings
(term orderings). Furthermore, there is pioneering work onthe combination of induction and co-
induction; cf. e.g. [72]. While Proof by Consistency and implicit induction orderings seem to be
of merely theoretical interest today [112], we should carefully distinguishdescente infiniefrom
the mainstream work on explicit induction.

Note 6 (The Idea of Rippling)

Roughly speaking, the success in provingsimpletheorems by induction automatically, can be
explained as follows: If we look upon the task of proving a simple theorem as reducing it to a
tautology, then we have more heuristic guidance when we knowthat we probably have to do it by
mathematical induction: Tautologies are everywhere, but the induction hypothesis we are going
to apply can restrict the search space tremendously.

In a famous cartoon of Alan Bundy’s, the original theorem is symbolized as a zigzagged
mountain scape and the reduced theorem after the unfolding of recursive operators as a lake with
ripples. Instead of searching for an arbitrary tautology, we know that we have toget rid of the
ripplesto be able to apply an instance of the theorem as induction hypothesis, as mirrored by the
calm surface of the lake.

25

Note 7 (The Sociological Aspect of Explicit Induction as Normal Science)

Another way in that explicit induction blocks scientific progress is a sociological one. The heuris-
tics to generate induction axioms in explicit induction have hardly changed since the end of the
1970s. Some minor conceptual improvements (such as [102, 103], e.g.) have turned out to be
contra-productive in the practical context of a highly optimized “waterfall”, because later phases
were already optimized to patch the weaknesses of the previous ones. With all the men-power
that went into explicit induction systems such as INKA [7] or ACL2 [55], these systems have be-
come so well-tuned to all simple standard problems that it ishardly possible to demonstrate their
shortcomings to referees within the time they are willing tospend on the subject.

Besides that, to become competitive with ACL2 requires a common effort and years of work
with little chance for economic support or academic funding, approval, or rewards. In spite of
this, mainly due to the idealism of Ulrich Kühler and Tobias Schmidt-Samoa and a bunch of
their students,descente infiniein QUODL IBET [10]—as explained in §§ 9 and 11—has already
by now been able to outperform the formerly well-fundednormal-science[62, 115] School of
Explicit Induction.

Note 8 (On the Likeliness of Alternative Integrations of Descente Infinieinto State-of-the-
Art Deductive Calculi)

This integration ofdescente infinieinto state-of-the-art free-variable sequent and tableau calculi
is the most important scientific contribution of my life. Since I actually have searched the whole
conceivable space of possible combinations far beyond whatis documented in [111], I am pretty
sure that [111] presents not only a most elegant combinationof descente infinieand state-of-the-
art deduction, but also the only possible one (up to isomorphism) that actually models the mathe-
matical process of proof search bydescente infinieitself and directly supports it with the data
structures required for a formal treatment and does notencodesome form of induction (as, e.g.,
in Gentzen’s induction rule of [40], or by application of thesecond-order Theorem of Noetherian
Induction (N) (cf. § 6), or the second-order Axiom of Structural Induction(S) (cf. § 6), or by
generation of first-order induction axioms).

Note 9 (Semantical Requirements of [111])

As described in [111, § 2.1.4] all we need for the soundness ofour integration ofdescente infinie
into two-valued logics are the validity of

• the well-knownSubstitution[Value] Lemma(as, e.g., shown for different logics in [3, Lemma 3],
[4, Lemma 5401(a)], [30, p. 127], [34, p. 120], and [35, Proposition 2.31]) and

• the trivialExplicitness Lemma(i.e. the values of variables not explicitly freely occurring in
a term or formula have no effect on the value of the term or formula, resp.) (as, e.g., shown
for different logics in [3, Lemma 2], [4, Proposition 5400],and [35, Proposition 2.30]).

26

Note 10 (Lemma Application)

Lemma applicationworks as follows. Suppose that our proof goals consist ofsequentswhich
are just disjunctive lists of formulas. (This is the simplest form of a sequent that will do for all
two-valued logics.) When a lemmaA1, . . . , Am is a subsequent of a sequentΓ to be proved (i.e.
if, for all i ∈ {1, . . . , m}, the formulaAi is listed inΓ), its application closes the branch of this
sequent (subsumption). Otherwise, the conjugates of the missing formulasCi are added to the
child sequents (premises), one child per missing formula. This can be seen as Cuts onCi plus sub-
sumption. More precisely—modulo associativity, commutativity, and idempotency—a sequent
A1, . . . , Am, B1, . . . , Bn can be reduced by application of the lemmaA1, . . . , Am, C1, . . . , Cp to
the sequents

C1, A1, . . . , Am, B1, . . . , Bn · · · Cp, A1, . . . , Am, B1, . . . , Bn.

In addition, roughly speaking, any time we apply a lemma, we can instantiate its free variables
locally and arbitrarily. Cf. [111, 113] for more on this.

Note 11 (Integration ofDescente Infinieinto Logical Frameworks)

Item 4 of the enumeration in § 9 is typically no problem because we can get along with semantical
orderings [109, Definition 13.7]. Indeed, we do not need termorderings [96] anymore as was the
case with QUODL IBET’s predecessor UNICOM [45].

Items 1, 2 and 3, however, do not seem to be easily achievable with ISABELLE/HOL [69, 70],
for instance. A logical framework (such as ISABELLE [73, 74, 75]) can hardly mirror general
mathematical activity, but only the logic calculi known at the time of its development. This makes
progress toward human-oriented automatable calculi very difficult. As a convenient realization
of descente infiniedoes not seem to be so easily possible in ISABELLE-based systems, a lot of
additional lemmas (or else ingenious recursive specification) may be necessary as described in
§ 1 (or else the solution) of [99]. Moreover, for the idea to support program synthesis viades-
cente infinieon the lower level of inductive theorem proving for softwareverification (cf. our § 8
and [25]), the recursion facilities of ISABELLE/HOL are insufficient: Konrad Slind’s recursion
theorems [93] require termination proofs at a too early stage of development [117].

Note 12 (Productive Use of Failure and Patching Faulty Conjectures)
Although, the failure of the proof is complete for a wrong induction axiom, from such a failure,
we might gain some insight on the proof [54] or on the conjecture [81, 82]. And then we may
start another proof with different settings.

27

References

[1] Fabio Acerbi (2000).Plato: Parmenides 149a7–c3. A Proof by Complete Induction?.
Archive for History of Exact Sciences55, pp. 57–76, Springer.

[2] Wilhelm Ackermann (1940).Zur Widerspruchsfreiheit der Zahlentheorie.Mathema-
tische Annalen117, pp. 163–194. Received Aug. 15, 1939.http://dz-srv1.
sub.uni-goettingen.de/sub/digbib/loader?did=D37625 (July23,
2007).

[3] Peter B. Andrews (1972).General Models, Descriptions, and Choice in Type Theory.J.
Symbolic Logic37, pp. 385–394.

[4] Peter B. Andrews (2002).An Introduction to Mathematical Logic and Type Theory: To
Truth Through Proof.2nd ed. (1st ed. 1986), Academic Press (Elsevier).

[5] Günter Asser (ed.) (1990).Guiseppe Peano — Arbeiten zur Analysis und zur mathemati-
schen Logik.Teubner-Archiv zur Mathematik, Vol. 13, B. G. Teubner Verlagsgesellschaft,
Leipzig.

[6] Serge Autexier (2003).Hierarchical Contextual Reasoning.Ph.D. thesis. Saarland Univ..

[7] Serge Autexier, Dieter Hutter, Heiko Mantel, Axel Schairer (1999). INKA 5.0 — A Logical
Voyager.16th CADE 1999, LNAI 1632, pp. 207–211, Springer.

[8] Serge Autexier, Christoph Benzmüller, Chad E. Brown, Armin Fiedler, Dieter Hutter,
Andreas Meier, Martin Pollet, Tobias Schmidt-Samoa, Jörg Siekmann, Georg Rock,
Werner Stephan, Marc Wagner, Claus-Peter Wirth (2004).Mathematics Assistance Sys-
tems.Lecture course at Saarland Univ., WS 2004/5.http://www.ags.uni-sb.
de/~omega/teach/MAS0405/ (April15,2005).

[9] Serge Autexier, Christoph Benzmüller, Dominik Dietrich, Andreas Meier, Claus-Peter
Wirth (2006).A Generic Modular Data Structure for Proof Attempts Alternating on Ideas
and Granularity.4th MKM 2005, LNAI 3863, pp. 126–142, Springer.http://www.
ags.uni-sb.de/~cp/p/pds/welcome.html (July22,2005).

[10] Jürgen Avenhaus, Ulrich Kühler, Tobias Schmidt-Samoa, Claus-Peter Wirth (2003).How
to Prove Inductive Theorems?QUODL IBET!. 19th CADE 2003, LNAI 2741, pp. 328–
333, Springer. http://www.ags.uni-sb.de/~cp/p/quodlibet/welcome.
html (July23,2003).

[11] Matthias Baaz, Alexander Leitsch (1995).Methods of Functional Extension.Collegium
Logicum, Annals of the Kurt Gödel Society, Vol. 1, pp. 87–122, Springer.

[12] Klaus Barner (2001).Das Leben Fermats.DMV-Mitteilungen 3/2001, pp. 12–26.

[13] David Basin, Toby Walsh (1996).A Calculus for and Termination of Rippling.J. Automa-
ted Reasoning16, pp. 147–180, Kluwer (Springer).

[14] Susanne Biundo, Birgit Hummel, Dieter Hutter, Christoph Walther (1986).The Karlsruhe
Induction Theorem Proving System.8th CADE 1986, LNCS 230, pp. 672–674, Springer.

[15] Robert S. Boyer, J S. Moore (1979).A Computational Logic.Academic Press (Elsevier).

[16] Robert S. Boyer, J S. Moore (1988).A Computational Logic Handbook.Academic Press.

28

[17] Arnim Buch, Thomas Hillenbrand (1996). WALD MEISTER: Development of a High Per-
formance Completion-Based Theorem Prover.SEKI-Report SR–96–01, FB Informatik,
Univ. Kaiserslautern.

[18] Alan Bundy (1988).The use of Explicit Plans to Guide Inductive Proofs.DAI Re-
search Paper No. 349, Dept. Artificial Intelligence, Univ. Edinburgh. Short version in:
9th CADE 1988, LNAI 310, pp. 111–120, Springer.

[19] Alan Bundy (1989).A Science of Reasoning.DAI Research Paper No. 445, Dept. Artificial
Intelligence, Univ. Edinburgh. Also in: [63], pp. 178–198.

[20] Alan Bundy (1999).The Automation of Proof by Mathematical Induction.Informatics
Research Report No. 2, Division of Informatics, Univ. Edinburgh. Also in: [85], Vol. 1,
pp. 845–911.

[21] Alan Bundy, Frank van Harmelen, Jane Hesketh, Alan Smaill, Andrew Stevens (1989).A
Rational Reconstruction and Extension of Recursion Analysis. In: N. S. Sridharan (ed.).
Proc. 11th Int. Joint Conf. on Artificial Intelligence (IJCAI), pp. 359–365, Morgan Kaufman
(Elsevier).

[22] Alan Bundy, Frank van Harmelen, C. Horn, Alan Smaill (1990).The Oyster-Clam System.
10th CADE 1990, LNAI 449, pp. 647–648, Springer.

[23] Alan Bundy, Andrew Stevens, Frank van Harmelen, AndrewIreland, Alan Smaill (1991).
Rippling: A Heuristic for Guiding Inductive Proofs.DAI Research Paper No. 567, Dept.
Artificial Intelligence, Univ. Edinburgh. Also in: Artificial Intelligence (1993)62(2),
pp. 185–253.

[24] Alan Bundy, Dieter Hutter, David Basin, Andrew Ireland(2005).Rippling: Meta-Level
Guidance for Mathematical Reasoning.Cambridge Univ. Press.

[25] Alan Bundy, Lucas Dixon, Jeremy Gow, Jacques Fleuriot (2006).Constructing Induction
Rules for Deductive Synthesis Proofs.Electronic Notes in Theoretical Computer Sci.153,
pp. 3–21, Elsevier.

[26] Paolo Bussotti (2006).From Fermat to Gauß: indefinite descent and methods of reduction
in number theory.Algorismus55, Dr. Erwin Rauner Verlag, Augsburg.

[27] Louise A. Dennis, Mateja Jamnik, Martin Pollet (2005).On the Comparison of Proof Plan-
ning SystemsλCLAM, ΩMEGA and ISAPLANNER. Electronic Notes in Theoretical Com-
puter Sci.151, pp. 93–110, Elsevier.

[28] Lucas Dixon (2005).Interactive and Hierarchical Tracing of Techniques inISA-
PLANNER. Accepted for presentation at: Workshop on User Interfaces for Theorem
Provers (UITP 2005).http://homepages.inf.ed.ac.uk/ldixon/papers/
uitp-05-traces/isaptracing.ps.gz (Aug.11,2005).

[29] Lucas Dixon, Jacques Fleuriot (2003). ISAPLANNER: A Prototype Proof Planner inIS-
ABELLE. 19th CADE 2003, LNAI 2741, pp. 279–283, Springer.

[30] Herbert B. Enderton (1973).A Mathematical Introduction to Logic.2nd printing, Academic
Press (Elsevier).

[31] Euclid of Alexandria (ca. 300 B.C.).Elements.English translation: Thomas L.
Heath (ed.).The Thirteen Books of Euclid’s Elements. Cambridge Univ. Press, 1908.

29

Web version: http://www.perseus.tufts.edu/cgi-bin/ptext?doc=
Perseus:text:1999.01.0086 (Aug.15,2006).. Alternative English web ver-
sion: D. E. Joyce (ed.).Euclid’s Elements. Dept. Math. & Comp. Sci., Clark Univ.,
Worcester, MA. http://aleph0.clarku.edu/~djoyce/java/elements/
Euclid.html (March24,2003).

[32] Pierre Fermat (1891ff.).Œuvres de Fermat.Paul Tannery, Charles Henry (eds.),
Gauthier-Villars, Paris. http://fr.wikisource.org/wiki/%C5%92uvres_
de_Fermat (Aug.15,2006).

[33] Melvin Fitting (1983).Proof Methods for Modal and Intuitionistic Logics.D. Reidel, Dor-
drecht.

[34] Melvin Fitting (1996).First-Order Logic and Automated Theorem Proving.2nd extd. ed.
(1st ed. 1990), Springer.

[35] Melvin Fitting (2002).Types, Tableaus, and Gödel’s God.Kluwer (Springer).

[36] Gottlob Frege (1879).Begriffsschrift, eine der arithmetischen nachgebildete Formel-
sprache des reinen Denkens.Verlag von L. Nebert, Halle an der Saale.

[37] Kurt von Fritz (1945).The Discovery of Incommensurability by Hippasus of Metapontum.
Annals of Mathematics46, pp. 242–264. German translationDie Entdeckung der Inkom-
mensurabilität durch Hippasos von Metapontin: Oscar Becker (ed.).Zur Geschichte der
griechischen Mathematik, pp. 271–308, Wissenschaftliche Buchgesellschaft, Darmstadt,
1965.

[38] Dov M. Gabbay, C. J. Hogger, J. Alan Robinson (eds.) (1993ff.). Handbook of Logic in
Artificial Intelligence and Logic Programming.Clarendon Press.

[39] Gerhard Gentzen (1934f.).Untersuchungen über das logische Schließen.Mathematische
Zeitschrift39, pp. 176-210, 405–431.

[40] Gerhard Gentzen (1938).Die gegenwärtige Lage in der mathematischen Grundlagen-
forschung – Neue Fassung des Widerspruchsfreiheitsbeweises für die reine Zahlentheorie.
Forschungen zur Logik und zur Grundlegung der exakten Wissenschaften, Folge 4, Leip-
zig.

[41] Martin Giese, Wolfgang Ahrendt (1999).Hilbert’s ε-Terms in Automated Theorem Prov-
ing. 8th TABLEAUX 1999, LNAI 1617, pp. 171–185, Springer.

[42] Kurt Gödel (1931).Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme I.Monatshefte für Mathematik und Physik38, pp. 173–198.

[43] Kurt Gödel (1986ff.).Collected Works.Solomon Feferman (ed.), Oxford Univ. Press.

[44] Jeremy Gow (2004).The Dynamic Creation of Induction Rules Using Proof Planning.
Ph.D. thesis, School of Informatics, Univ. Edinburgh.

[45] Bernhard Gramlich, Wolfgang Lindner (1991).A Guide toUNICOM, an Inductive Theorem
Prover Based on Rewriting and Completion Techniques.SEKI-Report SR–91–17 (SFB),
FB Informatik, Univ. Kaiserslautern.http://agent.informatik.uni-kl.de/
seki/1991/Lindner.SR-91-17.ps.gz (May09,2000).

30

[46] Bernhard Gramlich, Claus-Peter Wirth (1996).Confluence of Terminating Conditional
Term Rewriting Systems Revisited.7th RTA 1996, LNCS 1103, pp. 245–259, Springer.
http://ags.uni-sb.de/~cp/p/rta96/welcome.html (Aug.05,2001).

[47] David Hilbert, Paul Bernays (1968/70).Grundlagen der Mathematik.2nd rev. ed. (1st ed.
1934/39), Springer.

[48] Dieter Hutter (1990).Guiding Inductive Proofs.10th CADE 1990, LNAI 449, pp. 147–161,
Springer.

[49] Dieter Hutter (1991).Mustergesteuerte Strategien für das Beweisen von Gleichungen.
Ph.D. thesis, Univ. Karlsruhe.

[50] Dieter Hutter (1994). Synthesis of Induction Orderings for Existence Proofs.
12th CADE 1994, LNAI 814, pp. 29–41, Springer.

[51] Dieter Hutter (1997).Colouring Terms to Control Equational Reasoning.J. Automated
Reasoning18, pp. 399–442, Kluwer (Springer).

[52] Dieter Hutter, Alan Bundy (1999).The Design of the CADE-16 Inductive Theorem Prover
Contest.16th CADE 1999, LNAI 1632, pp. 374–377, Springer.

[53] Dieter Hutter, Werner Stephan (eds.) (2005).Mechanizing Mathematical Reasoning:
Essays in Honor of Jörg Siekmann on the Occasion of His 60th Birthday.LNAI 2605, Sprin-
ger.

[54] Andrew Ireland, Alan Bundy (1994).Productive Use of Failure in Inductive Proof.DAI
Research Paper No. 716, Dept. Artificial Intelligence, Univ. Edinburgh. Also in: J. Auto-
mated Reasoning (1996)16(1-2), pp. 79–111, Kluwer (Springer).

[55] Matt Kaufmann, Panagiotis Manolios, J S. Moore (2000).Computer-Aided Reasoning: An
Approach.Kluwer (Springer).

[56] Hubert C. Kennedy (1973).Selected works of Guiseppe Peano.George Allen & Unwin,
London.

[57] Ina Kraan, David Basin, Alan Bundy (1995).Middle-Out Reasoning for Synthesis and
Induction.DAI Research Paper No. 729, Dept. Artificial Intelligence, Univ. Edinburgh.
Also in: J. Automated Reasoning (1996)16(1–2), pp. 113–145, Kluwer (Springer).

[58] Georg Kreisel (1965).Mathematical Logic.In: [86], Vol. III, pp. 95–195.

[59] Hans-Jörg Kreowski, Ugo Montanari, Fernando Orejas, Grzegorz Rozenberg, Gabriele
Taentzer (eds.) (2005).Formal Methods in Software and Systems Modeling, Essays Dedi-
cated to Hartmut Ehrig, on the Occasion of His 60th Birthday.LNCS 3393, Springer.

[60] Ulrich Kühler (2000).A Tactic-Based Inductive Theorem Prover for Data Types with
Partial Operations.Ph.D. thesis, Infix, Akademische Verlagsgesellschaft Aka GmbH,
Sankt Augustin, Berlin. http://www.ags.uni-sb.de/~cp/p/kuehlerdiss/
welcome.html (July23,2005).

[61] Ulrich Kühler, Claus-Peter Wirth (1996).Conditional Equational Specifications of Data
Types with Partial Operations for Inductive Theorem Proving. SEKI-Report SR–96–11,
FB Informatik, Univ. Kaiserslautern. Short version in: 8th RTA 1997, LNCS 1232, pp. 38–
52, Springer. http://www.ags.uni-sb.de/~cp/p/rta97/welcome.html
(Aug.05,2001).

31

[62] Thomas S. Kuhn (1962).The Structure of Scientific Revolutions.Univ. Chicago Press.

[63] Jean-Louis Lassez, Gordon D. Plotkin (eds.) (1991).Computational Logic — Essays in
Honor of J. Alan Robinson.MIT Press.

[64] Al(bert) C. Leisenring (1969).Mathematical Logic and Hilbert’sε-Symbol.Gordon and
Breach, New York.

[65] Bernd Löchner (2006).Things to know when implementing LPO.Int. J. Artificial Intelli-
gence Tools (2006)15(1), pp. 53–79. Short version in: Geoff Sutcliffe, Stephan Schulz,
T. Tammet (eds.). Proc. 1st Workshop on Empirically Successful First Order Reasoning
(ESFOR’04), 2004.

[66] Bernd Löchner (2006).Advances in Equational Theorem Proving — Architecture, Al-
gorithms, and Redundancy Avoidance.Ph.D. thesis, Univ. Kaiserslautern.http://
kluedo.ub.uni-kl.de/volltexte/2006/1969/ (Aug.25,2006).

[67] Michael Sean Mahoney (1994).The Mathematical Career of PierredeFermat 1601–1665.
2nd rev. ed. (1st ed. 1973), Princeton Univ. Press.

[68] Dale A. Miller (1992).Unification under a Mixed Prefix.J. Symbolic Computation14,
pp. 321–358, Academic Press (Elsevier).

[69] Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel (2000). ISABELLE’s Logics: HOL.
Web only. http://isabelle.in.tum.de/PSV2000/doc/logics-HOL.pdf
(Sept.11,2005).

[70] Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel (2002). ISABELLE/HOL — A Proof
Assistant for Higher-Order Logic.LNCS 2283, Springer.

[71] P. Odifreddi (ed.) (1990).Logic and Computer Science.Academic Press (Elsevier).

[72] Peter Padawitz (2005).Expander2.In: [59], pp. 236–258.

[73] Lawrence C. Paulson (1989).The Foundation of a Generic Theorem Prover.J. Automated
Reasoning5, pp. 363–397, Kluwer (Springer).

[74] Lawrence C. Paulson (1990). ISABELLE: The Next 700 Theorem Provers.In: [71],
pp. 361–386.

[75] Lawrence C. Paulson (2004).The ISABELLE Reference Manual.With Contribu-
tions by Tobias Nipkow and Markus Wenzel, April 20, 2004. Webonly. http:
//www.cl.cam.ac.uk/Research/HVG/Isabelle/dist/packages/
Isabelle/doc/ref.pdf (Sept.13,2005).

[76] Guiseppe Peano (ed.) (1884).Angelo Genocchi — Calcolo differenziale e principii di cal-
colo integrale.Fratelli Bocca, Torino. German translation: [79].

[77] Guiseppe Peano (1896f.).Studii di Logica Matematica.Atti della Reale Accademia delle
Scienze di Torino — Classe di Scienze Morali, Storiche e Filologiche e Classe di Scienze
Fisiche, Matematiche e Naturali32, pp. 565–583. Also in: Atti della Reale Accademia
delle Scienze di Torino — Classe di Scienze Fisiche, Matematiche e Naturali32, pp. 361–
397. English translationStudies in Mathematical Logicin: [56], pp. 190–205. German
translation: [78].

32

[78] Guiseppe Peano (1899).Über mathematische Logik.German translation of [77]. In: [79],
Appendix 1. Facsimile also in: [5], pp. 10–26.

[79] Guiseppe Peano (ed.) (1899).Angelo Genocchi — Differentialrechnung und Grundzüge
der Integralrechnung.German translation of [76], B. G. Teubner Verlagsgesellschaft, Leip-
zig.

[80] Martin Protzen (1994).Lazy Generation of Induction Hypotheses.12th CADE 1994,
LNAI 814, pp. 42–56, Springer.

[81] Martin Protzen (1995).Lazy Generation of Induction Hypotheses and Patching Faulty
Conjectures.Ph.D. thesis, Infix, Akademische Verlagsgesellschaft Aka GmbH, Sankt Au-
gustin, Berlin.

[82] Martin Protzen (1996).Patching Faulty Conjectures.13th CADE 1996, LNAI 1104, pp. 77–
91, Springer.

[83] Alexander Riazanov, Andrei Voronkov (2001).Vampire 1.1 (System Description).
1st IJCAR 2001, LNAI 2083, pp. 376–380, Springer.

[84] J. Alan Robinson (1965).A Machine-Oriented Logic based on the Resolution Principle.
In: [91], Vol. 1, pp. 397–415.

[85] J. Alan Robinson, Andrei Voronkov (eds.) (2001).Handbook of Automated Reasoning.
Elsevier.

[86] T. L. Saaty (ed.) (1965).Lectures on Modern Mathematics.John Wiley & Sons, New York.

[87] Tobias Schmidt-Samoa (2004).The New Standard Tactics of the Inductive Theorem
Prover QUODL IBET. SEKI-Report SR–2004–01, ISSN 1437-4447.http://www.
ags.uni-sb.de/~cp/p/sr200401/welcome.html (April15,2005).

[88] Tobias Schmidt-Samoa (2006).An Even Closer Integration of Linear Arithmetic into In-
ductive Theorem Proving.Electronic Notes in Theoretical Computer Sci.151, pp. 3–20,
Elsevier. http://www.elsevier.com/locate/entcs (Aug.20,2006).

[89] Tobias Schmidt-Samoa (2006).Flexible Heuristics for Simplification with Conditional
Lemmas by Marking Formulas as Forbidden, Mandatory, Obligatory, and Generous.J. Ap-
plied Non-Classical Logics16(1–2), pp. 209–239. http://www.ags.uni-sb.de/
~cp/p/jancl/welcome.html (March08,2006).

[90] Tobias Schmidt-Samoa (2006).Flexible Heuristic Control for Combining Automa-
tion and User-Interaction in Inductive Theorem Proving.Ph.D. thesis, Univ. Kaisers-
lautern. http://www.ags.uni-sb.de/~cp/p/samoadiss/welcome.html
(July30,2006).

[91] Jörg Siekmann, Graham Wrightson (eds.) (1983).Automation of Reasoning.Springer.

[92] Jörg Siekmann, Christoph Benzmüller, Vladimir Brezhnev, Lassaad Cheikhrouhou, Armin
Fiedler, Andreas Franke, Helmut Horacek, Michaël Kohlhase, Andreas Meier, Erica
Melis, Markus Moschner, Immanuël Normann, Martin Pollet, Volker Sorge, Carsten
Ullrich, Claus-Peter Wirth, Jürgen Zimmer (2002).Proof Development withΩMEGA.
18th CADE 2002, LNAI 2392, pp. 144–149, Springer.http://www.ags.uni-sb.
de/~cp/p/omega/welcome.html (July23,2003).

33

[93] Konrad Slind (1996).Function Definition in Higher-Order Logic.9th TPHOLs 1996,
LNCS 1125, pp. 381–397, Springer.

[94] Alan Smaill, Ian Green (1996).Higher-Order Annotated Terms for Proof Search.9th

TPHOLs 1996, LNCS 1125, pp. 399–413, Springer.

[95] Raymond M. Smullyan (1968).First-Order Logic.Springer.

[96] Joachim Steinbach (1995).Simplification Orderings — History of Results.Fundamenta
Informaticae24, pp. 47–87.

[97] Andrew Stevens (1988).A Rational Reconstruction of Boyer and Moore’s Technique for
Constructing Induction Formulas.Y. Kodratoff (ed.).8th European Conf. on Artificial In-
telligence (ECAI 1988), pp. 565–570, Pitman Publ..

[98] Andrew Stevens (1990).An Improved Method for the Mechanization of Inductive Proof.
Ph.D. thesis, Dept. Artificial Intelligence, Univ. Edinburgh.

[99] Christian Urban, Christine Tasson (2005).Nominal Techniques inISABELLE/HOL.
20th CADE 2005, LNAI 3632, pp. 38–53, Springer.

[100] Lincoln A. Wallen (1990).Automated Proof Search in Non-Classical Logics.MIT Press.

[101] Christoph Walther (1988).Argument-Bounded Algorithms as a Basis for Automated Ter-
mination Proofs.9th CADE 1988, LNAI 310, pp. 601–622, Springer.

[102] Christoph Walther (1992).Computing Induction Axioms.3rd LPAR 1992, LNAI 624,
pp. 381–392, Springer.

[103] Christoph Walther (1993).Combining Induction Axioms by Machine.In: Ruzena Bajcsy
(ed.). Proc. 13th Int. Joint Conf. on Artificial Intelligence (IJCAI), pp. 95–101, Morgan
Kaufman (Elsevier).

[104] Christoph Walther (1994).Mathematical Induction.In: [38], Vol. 2, pp. 127–228.

[105] Christoph Walther, Stephan Schweizer (2003).About XERIFUN. 19th CADE 2003,
LNAI 2741, pp. 322–327, Springer.

[106] Christoph Walther, Stephan Schweizer (2005).Automated Termination Analysis of Incom-
pletely Defined Programs.11th LPAR 2004, LNAI 3452, pp. 332–346, Springer.

[107] Christoph Walther, Stephan Schweizer (2005).Reasoning about Incompletely Defined Pro-
grams.12th LPAR 2005, LNAI 3835, pp. 427–442, Springer.

[108] Claus-Peter Wirth (1995).Syntactic Confluence Criteria for Positive/Negative-Condi-
tional Term Rewriting Systems.SEKI-Report SR–95–09 (SFB), FB Informatik, Univ. Kai-
serslautern. http://www.ags.uni-sb.de/~cp/p/sr9509/welcome.html
(Aug.05,2001).

[109] Claus-Peter Wirth (1997).Positive/Negative-Conditional Equations: A Constructor-Based
Framework for Specification and Inductive Theorem Proving.Ph.D. thesis, Verlag Dr. Ko-
vač, Hamburg. http://www.ags.uni-sb.de/~cp/p/diss/welcome.html
(Aug.05,2001).

[110] Claus-Peter Wirth (2002).A New Indefinite Semantics for Hilbert’s epsilon.11th TAB-
LEAUX 2002, LNAI 2381, pp. 298–314, Springer.http://www.ags.uni-sb.de/
~cp/p/epsi/welcome.html (Feb.04,2002).

34

[111] Claus-Peter Wirth (2004).Descente Infinie + Deduction.Logic J. of the IGPL12, pp. 1–96,
Oxford Univ. Press. http://www.ags.uni-sb.de/~cp/p/d/welcome.html
(Sept.12,2003).

[112] Claus-Peter Wirth (2005).History and Future of Implicit and Inductionless Induction:
Beware the old jade and the zombie!.In: [53], pp. 192–203. http://www.ags.
uni-sb.de/~cp/p/zombie/welcome.html (Dec.02,2002).

[113] Claus-Peter Wirth (2006).lim +, δ+, and Non-Permutability ofβ-Steps.SEKI-Report
SR–2005–01, ISSN 1437-4447, rev. ed. of July 30, 2006.http://www.ags.
uni-sb.de/~cp/p/nonpermut/welcome.html (July30,2006).

[114] Claus-Peter Wirth (2006).A Self-Contained Discussion of Fermat’s Only Explicitly
Known Proof by Descente Infinie.SEKI-Working-Paper SWP–2006–02, ISSN 1860-5931.
http://www.ags.uni-sb.de/~cp/p/fermatsproof/welcome.html
(Aug.25,2006).

[115] Claus-Peter Wirth (2007).Thomas S. Kuhn: The Structure of Scientific Revolu-
tions — Zweisprachige Auszüge mit Deutschem Kommentar.SEKI-Working-Paper
SWP–2007–01, ISSN 1860-5931.http://www.ags.uni-sb.de/~cp/p/kuhn
(June20,2008).

[116] Claus-Peter Wirth (2008).Hilbert’s epsilon as an Operator of Indefinite Committed
Choice. J. Applied Logic, Elsevier,http://dx.doi.org/10.1016/j.jal.
2007.07.009. http://www.ags.uni-sb.de/~cp/p/epsi (Oct.15,
2007).

[117] Claus-Peter Wirth (2008).Shallow Confluence of Conditional Term Rewriting Sys-
tems.J. Symbolic Computation, Elsevier,http://dx.doi.org/10.1016/j.jsc.
2008.05.005. http://www.ags.uni-sb.de/~cp/p/shallow/welcome.
html (May31,2008).

[118] Claus-Peter Wirth, Bernhard Gramlich (1994).On Notions of Inductive Validity for First-
Order Equational Clauses.12th CADE 1994, LNAI 814, pp. 162–176, Springer.http:
//www.ags.uni-sb.de/~cp/p/cade94/welcome.html (Aug.05,2001).

[119] Claus-Peter Wirth, Christoph Benzmüller, Armin Fiedler, Andreas Meier, Serge Autex-
ier, Martin Pollet, Carsten Schürmann (2003).Human-Oriented Theorem Proving —
Foundations and Applications.Lecture course at Saarland Univ., WS 2003/4.http:
//www.ags.uni-sb.de/~cp/teaching/hotp (Sept.12,2003).

