
CONGRUENCES FOR THE ANDREWS spt-FUNCTION

KEN ONO

Abstract. Ramanujan-type congruences for the Andrews spt(n) partition function have been
found for prime moduli 5 ≤ ` ≤ 37 in work of Andrews [1] and Garvan [2]. We exhibit unex-
pectedly simple congruences for all ` ≥ 5. Confirming a conjecture of F. Garvan, we show that
if ` ≥ 5 is prime and

(−δ
`

)
= 1, then

spt

(
`2(`n+ δ) + 1

24

)
≡ 0 (mod `).

This gives (`− 1)/2 arithmetic progressions modulo `3 which support a mod ` congruence. This
result follows from the surprising fact that the reduction of a certain mock theta function modulo
`, for every ` ≥ 5, is an eigenform of the Hecke operator T (`2).

1. Introduction and Statement of Results

Andrews recently [1] introduced the function spt(n) which counts the number of smallest parts
among the integer partitions of n. For n = 4 we have:

4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1.

The smallest parts are underlined, and so we have that spt(4) = 10. He [1] proved the following
elegant Ramanujan-type congruences:

spt(5n+ 4) ≡ 0 (mod 5),

spt(7n+ 5) ≡ 0 (mod 7),

spt(13n+ 6) ≡ 0 (mod 13).

Recently, Folsom and the author [3] (see also [4]) confirmed conjectures of Garvan and Sellers,
and these results provide simple congruences modulo 2 and 3.

The situation is more complicated for primes ` ≥ 5. It is known that there are infinitely many
congruences of the form

spt(an+ b) ≡ 0 (mod `).

This fact follows from work of Bringmann [5] (also see [6, 7]) on N2(n), the second rank moment,
combined with earlier work of Ahlgren and the author on p(n) [8, 9, 10]. However, explicit
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examples are only known for ` ≤ 37. For example, Garvan [2] has obtained:

spt(194 · 11 · n+ 22006) ≡ 0 (mod 11),

spt(74 · 17 · n+ 243) ≡ 0 (mod 17),

spt(54 · 19 · n+ 99) ≡ 0 (mod 19),

spt(134 · 29 · n+ 18583) ≡ 0 (mod 29).

The moduli of the arithmetic progressions above involve (fourth) powers of special auxiliary
primes, a feature shared by the congruences which arise from this theory. The congruences are
constructed using these special primes, and these primes are guaranteed to exist by the theory
of odd modular `-adic Galois representations and the Chebotarev Density Theorem. To find a
congruence, one is then required to search, prime by prime, for an auxiliary prime. This task is
analogous to the simpler problem of finding the smallest prime p ≡ 1 (mod `).

We establish new universal congruences for spt(n) without relying on the existence of such
primes. For aesthetics, we define ŝ(n) and p̂(n) by:

(1.1) S(q) =
∞∑
n=0

ŝ(n)qn :=
∞∑
n=1

spt(n)q24n−1,

(1.2) P(q) =
∞∑

n=−1

p̂(n)qn :=
∞∑
n=0

p(n)q24n−1.

We obtain the following congruences relating ŝ(n), p̂(n), and the Legendre symbol
(•
`

)
.

Theorem 1.1. If ` ≥ 5 is prime, then

ŝ(`2n) ≡
(

3

`

)(
1−

(
−n
`

))
·
(
ŝ(n) +

n

12
· p̂(n)

)
(mod `).

Remark. Theorem 1.1 may be reformulated in terms of the “mock theta function”

(1.3) M(q) := S(q) +
1

12
· q d
dq
P(q) = − 1

12
· q−1 +

35

12
· q23 +

65

6
· q47 + . . . .

We refer to M(q) as a mock theta function because it is the holomorphic part of a harmonic
Maass form. Although M(q) is not an eigenform of any Hecke operators, Theorem 1.1 is equiv-
alent to the assertion, for every prime ` ≥ 5, that

M(q)|T (`2) ≡
(

3

`

)
·M(q) (mod `).

Theorem 1.1 immediately gives the following corollary.

Corollary 1.2. Suppose that ` ≥ 5 is prime. Then the following are true:

(1) If
(−n
`

)
= 1, then

ŝ(`2n) ≡ 0 (mod `).

(2) We have that

ŝ(`3n) ≡
(

3

`

)
ŝ(`n) (mod `).
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Remark. Corollary 1.2 (1) gives distinct 0 < b`(1) < · · · < b`
(
`−1
2

)
< `3 for which

spt
(
`3n+ b`(m)

)
≡ 0 (mod `).

Indeed, if
(−δ
`

)
= 1, then Corollary 1.2 (1) implies that

spt

(
`2(`n+ δ) + 1

24

)
≡ 0 (mod `).

These congruences were conjectured by F. Garvan in July 2008 [11]. Garvan’s Conjecture was
inspired by work done by T. Garrett and her students in October 2007. For ` = 11 the general
result gives the five congruences:

spt(113n+ 479) ≡ spt(113n+ 842) ≡ spt(113n+ 1084)

≡ spt(113n+ 1205) ≡ spt(113n+ 1326) ≡ 0 (mod 11).

In Section 2 we prove Theorem 1.1 and Corollary 1.2 using work of Bringmann, and of Bruinier
and the author. In Section 3 we conclude with several illuminating examples.
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2. Proofs

We assume that the reader is familiar with basic facts about modular forms and harmonic
Maass forms (for background, see [12, 13, 14]). In [1], Andrews obtained the following generating
function for spt(n):

(2.1) q
1
24S(q

1
24 ) =

∞∑
n=1

spt(n)qn =
1

(q)∞
·
∞∑
n=1

qn ·
∏n−1

m=1(1− qm)

1− qn
= q + 3q2 + 5q3 + · · · ,

where q is a formal parameter and (q)∞ =
∏∞

n=1(1− qn). If we let q := e2πiz, where z is in the
upper-half of the complex plane, then we have the following important theorem1 of Bringmann
[5] which relates this generating function to a certain harmonic Maass form.

Theorem 2.1. Define the function M(z) by

M(z) := S(q)− D(24z)

12
− i

4π
√

2
·
∫ i∞

−z

η(24τ)

(−i(τ + z))
3
2

· dτ,

where η(z) := q1/24
∏∞

n=1(1− qn) is Dedekind’s eta-function, and where

D(24z) :=
1− 24

∑∞
n=1

∑
d|n dq

24n

η(24z)
.

Then M(z) is a weight 3/2 harmonic Maass form on Γ0(576) with Nebentypus χ12(•) :=
(
12
•

)
.

1Theorem 2.1 corrects a sign error in [5].
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2.1. Producing modular forms. We use Theorem 2.1 to obtain modular forms from the
harmonic Maass form M(z). By the q-series manipulations in [1] and (1.2), it is known that

q
d

dq
P(q) = −D(24z) = −1

q
+ 23q23 + 94q47 + 213q71 + 475q95 + 833q119 + . . . .

Therefore, (1.1) and (1.3) imply that M(z) = M(q) is the holomorphic part of M(z), and so it
is a mock theta function.

For each prime ` ≥ 5, we let T (`2) be the index `2 Hecke operator for weight 3/2 harmonic
Maass forms with Nebentypus χ12. On q-series, these operators are defined by

(2.2)
(∑

a(n)qn
)
| T (`2) :=

∑(
a(`2n) +

(
3

`

)(
−n
`

)
a(n) + `a(n/`2)

)
qn.

We define M`(z) by

(2.3) M`(z) = M`(q) =
∑

a`(n)qn := M(q) | T (`2)−
(

3

`

)
(1 + `)M(q).

The following theorem is crucial to the proof of Theorem 1.1.

Theorem 2.2. Suppose that ` ≥ 5 is prime, and that

F`(z) := η(z)`
2 ·M`(z/24).

Then F`(z) is a weight (`2 + 3)/2 holomorphic modular form on SL2(Z).

Proof. The operator ξ := 2iy
3
2 · ∂

∂z
, where y = Im(z), has the property that ξ(M) = − 1

8π
·η(24z).

Since η(24z) is an eigenform of the weight 1/2 Hecke operators, Lemma 7.4 of [15] implies that
M`(z) is a weight 3/2 weakly holomorphic modular form on Γ0(576) with Nebentypus χ12. Here
we used the fact that the eigenvalue of η(24z) for the index `2 weight 1/2 Hecke operator is
χ12(`)(1 + `−1).

It is straightforward to check that M`(z) has coefficients in 1
12
Z, and has the property that

(2.4) M`(z) = − `

12
· q−`2 +

(
3

`

)
· `

12
· q−1 +

∑
n≥23

n≡23 (mod 24)

a`(n)qn.

Here we have used the fact that `2 ≡ 1 (mod 24). Therefore, it follows that

F`(24z) = η(24z)`
2

M`(z) = − `

12
+ . . .

is a weight (`2 + 3)/2 weakly holomorphic modular form on Γ0(576) with trivial Nebentypus
whose nonzero coefficients are supported on exponents which are multiples of 24. In particular,
we have that F`(z) = F`(z + 1). To prove that F`(z) is a weakly holomorphic modular form on
SL2(Z), it suffices to prove that

F`(−1/z) = z
`2+3

2 F`(z).
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To this end, let W be the Fricke involution (see Section 3.2 of [13]) which acts on weight 3/2
modular forms on Γ0(576) by

(f | W ) (z) := (
√

24 ·
√
−iz)−3 · f

(
− 1

576z

)
.

If f has Nebentypus χ, and if ` - 576 is prime, then it is well known that

f | W | T (`2) = χ(`2) · f | T (`2) | W.
If we let A`(z) := F`(24z), then this commutation relation implies that

A`

(
− 1

576z

)
= (
√

24 ·
√
−iz)3 · η

(
− 1

24z

)`2
·
(
M | T (`2) | W −

(
3

`

)
(1 + `)M | W

)
= (
√

24 ·
√
−iz)3 · η

(
− 1

24z

)`2
·
(
M | W | T (`2)−

(
3

`

)
(1 + `)M | W

)
.

Using the fact that
η(−1/z) =

√
−iz · η(z),

we then find that

A`

(
− 1

576z

)
= (
√

24 ·
√
−iz)`

2+3η(24z)`
2 ·
(
M | W | T (`2)−

(
3

`

)
(1 + `)M | W

)
.

Bringmann proves that M(z) is an eigenform of W with multiplier arising from Dedekind’s
eta-function (see Section 4 of [5]). A reformulation of her result shows that

M
(
− 1

576z

)
= −(−24iz)

3
2 · M(z).

Combining these facts, we have that

A`

(
− 1

576z

)
= (24z)

`2+3
2 · A`(z).

Letting z → z/24 gives

F`(−1/z) = A`

(
− 1

24z

)
= z

`2+3
2 · A`(z/24) = z

`2+3
2 · F`(z).

Therefore, F`(z) is a weight (`2 + 3)/2 weakly holomorphic modular form on SL2(Z). Since it is
holomorphic at infinity, it is a holomorphic modular form, and this completes the proof. �

2.2. Proof of Theorem 1.1 and Corollary 1.2. We now prove Theorem 1.1.

Proof of Theorem 1.1. By (2.4), we have that

F`(24z) = η(24z)`
2 ·M`(z) =

(
q`

2 − . . .
)
·

− `

12
q−`

2 − `

12
q−1 +

∑
n≥23

n≡23 (mod 24)

a`(n)qn

 .

Since the coefficients of M`(z) are `-integral, F`(24z) (mod `) is well defined. Moreover, it
follows that ord`(F`(24z)) ≥ `2 + 23. Here ord` denotes the smallest exponent whose coefficient
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is non-zero modulo `. Therefore, we have that ord`(F`(z)) ≥ (`2 + 23)/24. However, F`(z) is a
weight (`2 + 3)/2 holomorphic modular form on SL2(Z), and it is well known that every f in
this space with `-integral coefficients has either ord`(f) ≤ (`2 + 3)/24 or ord`(f) = +∞. This
follows from the existence of “diagonal bases” for spaces of modular forms on SL2(Z). Therefore
we have that ord`(F`(z)) = +∞, which in turn implies that M`(z) ≡ 0 (mod `). The theorem
now follows from (1.3), (2.2) and (2.3). �

Proof of Corollary 1.2. Claim (1) follows since the right hand side is 0 (mod `) in Theorem 1.1.
Claim (2) follows by replacing n by n` in Theorem 1.1 since

(−n`
`

)
= 0. �

3. Examples

Here we give examples which illustrate the results and modular forms in this paper.

3.1. Explicit formulas for M5(z) and M7(z). Here we compute the level 1 modular forms
F5(z) and F7(z) in terms of ∆(z) := η(z)24, and the usual Eisenstein series

E4(z) = 1 + 240
∞∑
n=1

∑
d|n

d3qn and E6(z) = 1− 504
∞∑
n=1

∑
d|n

d5qn.

For ` = 5, we find that

M5(z) = − 5

12
· q−25 − 5

12
· q−1 +

492205

6
· q23 + . . . ,

F5(24z) = η(24z)25 ·M5(z) = − 5

12
+ 10q24 + 81930q48 + 15943240q72 + . . . .

Theorem 2.2 implies that F5(z) is a weight 14 holomorphic modular form, and we find that

F5(z) = − 5

12
· E4(z)2E6(z) = − 5

12
+ 10q + 81930q2 + . . . .

Therefore, we have that

M5(z) = − 5

12
· E4(24z)2E6(24z)

η(24z)25
.

For ` = 7, we find that F7(z) is the weight 26 modular form

F7(z) = − 7

12
· E4(z)5E6(z) +

5215

12
·∆(z)E4(z)2E6(z),

which in turn implies that

M7(z) = − 1

12
·
(

7E4(24z)5E6(24z)− 5215∆(24z)E4(24z)2E6(24z)

η(24z)49

)
.
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3.2. Example of Corollary 1.2 (1). If ` ≥ 5 is prime, then let O`(q) be the series

O`(q) :=
∑

(−n
` )=1

ŝ(`2n)qn.

By Corollary 1.2 (1), we have that O`(q) ≡ 0 (mod `). If ` = 11, then we indeed see that

O11(q)

= 12341419218468512172110q95 + 819052154915850436964574391585q167 + · · · ≡ 0 (mod 11).

3.3. Example of Corollary 1.2 (2). If ` ≥ 5 is prime, then let

T
(1)
` (q) :=

∞∑
n=1

ŝ(`n)qn,

T
(3)
` (q) :=

∞∑
n=1

ŝ(`3n)qn.

Corollary 1.2 (2) then asserts that

T
(3)
` (q) ≡

(
3

`

)
T

(1)
` (q) (mod `).

For ` = 11, we find that(
3

11

)
· T (1)

11 (q) = 26q13 + 1048q37 + 16562q61 + · · · ≡ 4q13 + 3q37 + 7q61 + . . . (mod 11)

and that

T
(3)
11 (q) = 3421567149001730876538911832q13

+ 721427557133531761496593371848380785660101905536q37

+ 120494776849783345014198876429157577016120072623960718684904344q61 + . . .

≡ 4q13 + 3q37 + 7q61 + . . . (mod 11).
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