On a Packing and Covering Problem

Vojtěch Rödl

Let positive integers $r<k<N$ and a family \mathscr{F} of k-element subsets of $\{1,2, \ldots, N\}$ be given. We say that \mathscr{F} is r-dense if any r-element subset of $\{1,2, \ldots, N\}$ is contained in at least one member of \mathscr{F}. On the other hand we say that \mathscr{F}^{\prime} is r-sparse if any two members of \mathscr{F} intersect in less than r-elements-i.e. every r-element subset of $\{1,2, \ldots, N\}$ is contained in at most one member of \mathscr{F}^{\prime}. It is well known (see [4]) that

$$
\begin{equation*}
|\mathscr{F}| \geqslant \frac{\binom{N}{r}}{\binom{k}{r}} \geqslant|\mathscr{F}| \tag{1}
\end{equation*}
$$

for any r-dense family \mathscr{F} and r-sparse family $\mathscr{F}^{\prime}, \mathscr{F}, \mathscr{F}^{\prime} \subset[\{1,2, \ldots, N\}]^{k}$. In [2] Erdös and Spencer denote by $M(N, k, r)$ the minimal number of elements of r-dense family $\mathscr{F} \subset[\{1,2, \ldots, N\}]^{k}$ and by $m(N, k, r)$ the maximal number of elements of r-sparse family $\mathscr{F}^{\prime} \subset[\{1,2, \ldots, N\}]^{k}$. From (1) we get

$$
M(N, k, r) \geqslant \frac{\binom{N}{r}}{\binom{k}{r}} \geqslant m(N, k, r)
$$

It was shown by P. Erdös and J. Spencer [2] that

$$
M(N, k, r) \leqslant\left[\binom{N}{r} /\binom{k}{r}\right]\left[1+\log \binom{k}{r}\right] .
$$

In 1963 P. ErJös and J. Hanani [1] conjectured that

$$
\begin{equation*}
\lim M(N, k, r)\binom{k}{r}\binom{N}{r}^{-1}=\lim _{N \rightarrow \infty} m(N, k, r)\binom{k}{r}\binom{N}{r}^{-1}=1 \tag{2}
\end{equation*}
$$

for every fixed r and $k, r<k$. They proved (2) for $r=2$ and all k and for $r=3, k=p$ or $p+1$ where p is power of a prime.

The objective of this paper is to prove (2) (cf. [5], where a few related remarks are mentioned).

Preliminaries

We find it convenient to work with the following structures. Let J be a k-element set (k-set) of positive integers. A k-partite r-graph is a pair

$$
G=\left(\left(V_{j}\right)_{j \in J}, E\right)
$$

such that $\left|e \cap V_{j}\right| \leqslant 1$ for every $j \in J$ and $e \in E$, moreover $|e|=r$ and $e \subset \bigcup_{j \in J} V_{j}$ for every $\boldsymbol{e} \in E$.

If $G=\left(\left(V_{j}\right)_{j \in J}, E\right)$ then we set $V(G)=\bigcup_{j \in J} V_{j}, E(G)=E$. For $I \in[J]^{r}\left([J]^{r}\right.$ denotes the set of all r-element subsets of J) $\rho_{I}=\rho_{I}(G)$ denotes the cardinality of $E_{I}(G)$, where

$$
E_{I}(G)=\left\{e \in E ; e \cap V_{i} \neq 0 \text { for every } i \in I\right\} .
$$

We say that subset $L \subset \bigcup_{j \in J} V_{j},|L| \geqslant r$ is complete set if $[L]^{r} \subset E$. Let L be a complete set of cardinality k, we say that the set $K=[L]^{r}$ forms a k-gon. Let L be a complete set in G, then $\sigma^{L}(G)$ will denote the number of complete k-sets containing L as a subset.

Let $A_{1}, A_{2}, \ldots, A_{p}, A=\bigcup_{i=1}^{p} A_{i}$ be pairwise disjoint sets. By the symbol $\left[\left\{A_{i}\right\}_{i=1}^{p}\right]^{r}$ we shall denote the system of all r-subsets of A, intersecting each A_{i} in at most one element. We shall often use the symbol $o(1)$ to denote a quantity (depending on the natural number n) the value of which tends to zero as n (here always n) tends to infinity. For a function $f(n)$ we put $\mathrm{o}(f(n))=\mathrm{o}(1) f(n)$. For two functions $f(n), g(n)$ we will write $f(n) \sim g(n)$ if $f(n)=(1+\mathrm{o}(1)) g(n)$. We also write $f(n) \sim_{\delta} g(n)$ if $|f(n)-g(n)|<\delta f(n)$. Finally we will state here the following auxiliary.

Claim. For every pair of positive integers $n, m, n>m$ and positive reals $p, q, p+q=1$ such that

$$
(2 p-1) n<m<2 p n
$$

we have

$$
\begin{equation*}
\binom{n}{m} p^{m} q^{n-m}<\exp \left(-\frac{1}{3} \frac{(m-n p)^{2}}{n p q}\right) . \tag{3}
\end{equation*}
$$

We omit the standard proof based on Stirling formula. (For the proof of very similar statements see e.g. [3]).

Results

The objective of this paper is to prove the following theorem.
Theorem. For every pair of positive integers r and $k, r<k$,

$$
\lim _{N \rightarrow \infty} M(N, k, r)\binom{k}{r}\binom{N}{r}^{-1}=\lim _{N \rightarrow \infty} m(N, k, r)\binom{k}{r}\binom{N}{r}^{-1}=1
$$

holds.
First we show the easy fact that

$$
\lim _{N \rightarrow \infty} M(N, k, r)\binom{k}{r}\binom{N}{r}^{-1}=1
$$

implies that

$$
\lim _{N \rightarrow \infty} m(N, k, r)\binom{k}{r}\binom{N}{r}^{-1}=1
$$

and thus that it will be sufficient to show the first statement only:
Let

$$
\mathscr{F} \subset[\{1,2, \ldots, N\}]^{k},|\mathscr{F}| \leqslant\binom{ N}{r}\binom{k}{r}^{-1}(1+\delta)
$$

be an r-dense family. For every $e \in[\{1,2, \ldots, N\}]^{r}$ let $\nu(e)$ be the number of elements of \mathscr{F} containing e. We have

$$
\sum\left\{\nu(e) ; e \in[\{1,2, \ldots, N\}]^{r}\right\} \leqslant(1+\delta)\binom{N}{r}
$$

and thus

$$
\sum\{\nu(e) ; \nu(e) \geqslant 2\} \leqslant 2 \delta\binom{N}{r} .
$$

After deleting (from \mathscr{F}) all elements of F containing r-sets e with $\nu(e) \geqslant 2$ we get at least

$$
\binom{N}{r}\binom{k}{r}^{-1}(1+\delta)-2 \delta\binom{N}{r}=\binom{N}{r}\binom{k}{r}^{-1}\left(1+\delta-2 \delta\binom{k}{r}\right)
$$

k-sets, forming an r-sparse family. The last quantity tends to

$$
\binom{N}{r}\binom{k}{r}^{-1} \text { as } \delta \rightarrow 0
$$

this proves our claim.
The proof of the theorem is divided into three lemmas.
Lemma 1. Let $G=\left(\left(V_{i}\right)_{i=1}^{k}, E\right),\left|V_{1}\right|=\left|V_{2}\right|=\cdots=\left|V_{k}\right|=n$ be a k-partite r-graph, ρ and $\sigma_{l}(l=r, \ldots, k-1)$ positive reals smaller than one such that
(α) $\sigma^{L}(G) \sim \sigma_{I} n^{k-1}$ for any L, complete (in $\left.G\right) k>|L|=l \geqslant r$.
(β) $\rho_{I}(G) \sim \rho n^{r}$ for any $I \in[\{1,2, \ldots, k\}]^{r}$.
Then for every $\varepsilon>0$ one can select a system \mathscr{K} of k-gons from G such that if we put

$$
\begin{aligned}
G^{*} & =\left(\left(V_{i}\right)_{i=1}^{k} ; E-\{e ; \exists K \in \mathscr{K}, e \in K\}\right), \\
\rho_{I}^{*} & =\rho_{I}\left(G^{*}\right), \\
\sigma^{L *} & =\sigma^{L}\left(G^{*}\right),
\end{aligned}
$$

the following hold:
(a) $\rho_{I}^{*} \sim\left(\rho \exp \left(-\sigma_{r} \varepsilon\right)\right) n^{r}$ for any $I \in[\{1,2, \ldots, k\}]^{r}$.
(b) $\sigma^{L *} \sim\left[\sigma_{l} \exp \left(-\sigma_{\mu} \varepsilon\left(\binom{k}{r}-\binom{l}{r}\right)\right)\right] n^{k-l}$ for any Lcomplete (in G^{*}), $k>|L|=l \geqslant r$.
(c) $\left|\left\{\left\{K^{1}, K^{2}\right\}, K^{1}, K^{2} \in \mathscr{K}, K^{1} \cap K^{2} \neq \varnothing\right\}\right| \leqslant 2 \sigma_{r} \varepsilon\left|\cup_{K \in \mathscr{H}} K\right|$.

Remark. Roughly speaking this Lemma asserts that for a given $\varepsilon>0$ there is $n>n_{0}(\varepsilon)$ such that if $\sigma^{L}(G), \rho_{I}(G)$ are close to values described in $(\alpha)(\beta)$ one can select a system \mathscr{H} with $\rho_{I}^{*}, \sigma^{L *}$ close to values described in (a) and (b) and moreover such that (c) holds.

Proof of Lemma 1. Let $G=\left(\left(V_{i}\right)_{i=1}^{k}, E\right)$ be a given k-partite r-graph with the properties (α) and (β) of Lemma 1. Suppose without loss of generality that $n=\left|V_{1}\right|=\left|V_{2}\right|=$ $\cdots=\left|V_{k}\right|$ is large positive integer (this will be specified later). Let \mathscr{K} be a random variable the values of which are subsets of the set $\mathscr{K}(G)$ of all k-gons of the r-graph G. If $K \in \mathscr{K}(G)$ then

$$
\operatorname{Prob}[K \in \mathscr{K}]=\frac{\varepsilon}{n^{k-r}}
$$

and these probabilities are independent for different $K \in \mathscr{K}(G)$. First consider the edges of G which are not covered by chosen k-gons (more precisely the edges of $\boldsymbol{E}_{I}=E_{I}(\boldsymbol{G})$, where $I \in[\{1,2, \ldots, k\}]^{r}$ and $G=(V(G) E(G)-\{e ; \exists K \in \mathscr{K} e \in K\})$. For a fixed edge $e \in E_{I}$ the probability that $e \in E_{I}(G)$ is

$$
p_{e}=\left(1-\frac{\varepsilon}{n^{k-r}}\right)^{\sigma_{r} n^{k-r}(1+o(1))} \sim \exp \left(-\varepsilon \sigma_{r}\right)
$$

These probabilities are independent for different $e \in E_{I}$. Thus the probability that there are exactly s edges in E_{I} which are not covered by any k-gon $K \in \mathscr{K}$ is

$$
\begin{aligned}
& \sum_{E \in\left[E_{E^{\prime}}\right]^{s}} \prod_{e \in E} p_{e} \prod_{e \in E_{r}-E}\left(1-p_{e}\right)= \\
& \quad=\binom{\rho n^{r}(1+\mathrm{o}(1))}{s}\left(\exp \left(-\varepsilon \sigma_{r}\right)\right)^{s}\left(1-\exp \left(-\varepsilon \sigma_{r}\right)\right)^{\rho n^{r}(1+o(1))-s}(1+\mathrm{o}(1))^{\rho n^{r}}
\end{aligned}
$$

For any $\sigma>\mathrm{o}$ let S_{δ} be the set of all integers such that $0 \leqslant s \leqslant \rho n^{r}(1+\mathrm{o}(1))=\left|E_{\boldsymbol{I}}\right|$ and $\left|s-\left(\exp \left(-\sigma_{r} \varepsilon\right)\right) \rho n^{r}\right|>\delta \rho n^{r} \exp \left(-\sigma_{r} \varepsilon\right)$, then by (3) we get

$$
\begin{aligned}
& \sum_{s \in S \delta}\binom{\rho n^{r}(1+o(1))}{s}\left(\exp \left(-\varepsilon \sigma_{r}\right)\right)^{s}\left(1-\exp \left(-\varepsilon \sigma_{r}\right)\right)^{\rho n^{r}(1+o(1))-s}(1+o(1))^{\rho n^{r}} \\
& \quad<n^{r} \exp \left(-c_{1} n^{r}\right)<\exp \left(-c_{2} n^{r}\right)
\end{aligned}
$$

for some $c_{1}>0, c_{2}>0$ and n sufficiently large.
Thus we get

$$
\left.\begin{array}{c}
\rho_{I}(\boldsymbol{G}) \underset{\delta}{\sim} \rho n^{r} \exp \left(-\sigma_{r} \varepsilon\right), \\
\text { for every } I \in[\{1,2, \ldots, k\}]^{k} \text { with probability greater than } \tag{4}\\
1-\binom{k}{r} \exp \left(-c_{2} n^{r}\right)>1-\exp \left(-c_{3} n^{r}\right), \quad c_{3}>0
\end{array}\right\}
$$

Here we used again that n is sufficiently large. Now we prove the following:
Claim. For every $\delta>0, k>l \geqslant r$,

$$
\left.\begin{array}{l}
\operatorname{Prob}\left[\sigma ^ { L } (\boldsymbol { G }) \underset { \delta } { \sim } \sigma ^ { L } (G) \operatorname { e x p } \left(-\varepsilon \sigma_{r}\left(\binom{k}{r}-\binom{l}{r}\right), L\right.\right. \text { complete } \tag{5}\\
|L|=l]>1-\exp \left(-c_{l}^{\prime} n\right)
\end{array}\right\}
$$

(here c_{l}^{\prime} is the positive constant depending on the size of L only).
We shall proceed by induction on $k-|L|$. If $|L|=k-1$ and L is complete then there is $k^{\prime} \in\{1,2, \ldots, k\}$ (say $k^{\prime}=k$) and $t(L)=\sigma_{k-1} n(1+o(1))$ vertices $v_{1}, v_{2}, \ldots, v_{t(L)} \in V_{k^{\prime}}=$ V_{k} such that

$$
\left\{v_{i}\right\} \cup R \in E
$$

for every $i \in\{1,2, \ldots, t(L)\}$ and $R \in[L]^{r-1}$. Let A_{L} be the event that $[L]^{r} \subset \bigcup\left\{\boldsymbol{E}_{I}, I \in\right.$ $\left.[\{1,2, \ldots, k\}]^{r}\right\}=E$. For a vertex $v_{i} 1 \leqslant i \leqslant t(L)$ denote by B_{i} the event that all edges $\left\{v_{i}\right\} \cup R, R \in[L]^{r-1}$ remain in E. It follows from (α) of Lemma 1 that for every $i, 1 \leqslant i \leqslant t(L)$ the number of complete k-sets L^{\prime} containing v_{i} and moreover such that $\left[L^{\prime}\right]^{r} \cap\left[L \cup\left\{v_{i}\right\}\right]^{r} \neq$ \varnothing and $\left[L^{\prime}\right]^{r} \cap[L]^{r}=0$ is bounded from above by

$$
\binom{k-1}{r-1} \sigma_{r} n^{k-r}(1+o(1))
$$

and from below by

$$
\binom{k-1}{r-1} \sigma_{r} n^{k-r}(1+\mathrm{o}(1))-\binom{k-1}{r} \sigma_{r+1} n^{k-r-1}(1+o(1)) \sim\binom{k-1}{r-1} \sigma_{r} n^{k-r}
$$

As deletion of one of such k-gons causes that B_{i} fails to be true provided A_{L} holds, we have

$$
\operatorname{Prob}\left(B_{i} \mid A_{L}\right) \sim\left(1-\frac{\varepsilon}{n^{k-r}}\right)^{\sigma^{r} n^{k-r(}\left(\frac{k-1}{r-1)}\right.} \sim \exp \left(-\binom{k-1}{r-1} \sigma_{r} \varepsilon\right)
$$

Clearly the events $\left(B_{i} \mid A_{L}\right)$ are independent for fixed L and different $i, 1 \leqslant i \leqslant t(L)$.
Thus similarly as in the preceding case we get, using (3) that

$$
\begin{aligned}
\operatorname{Prob}\left[\sigma^{L}(G) \underset{\delta}{\sim} t(L) \exp \left(-\varepsilon \sigma_{r}\binom{k-1}{r-1}\right) ;\right. & L \text { complete, } L \subset V, \\
& |L|=k-1]>1-\exp \left(-c_{k-1}^{\prime} n\right),
\end{aligned}
$$

where c_{k-1}^{\prime} is a positive constant independent on n. Here we have again used the fact that there are only polynomially many choices for L). As $t(L)=\sigma^{L}(G)$ we are done.

Suppose now that we proved our claim (4) for all $L, k-1 \geqslant|L| \geqslant k-j$ where $1 \leqslant j \leqslant$ $k-r-1$. Let L^{\prime} be a fixed complete set $\left|L^{\prime}\right|=k-j-1,1 \leqslant j \leqslant k-r-1$. Without loss of generality suppose that $L^{\prime} \cap V_{i} \neq 0$ for $i=1,2, \ldots, k-j-1$. Let $v_{i}^{\prime}, 1 \leqslant i \leqslant t\left(L^{\prime}\right)$ be all vertices of V_{k-j} such that $\left\{v_{i}^{\prime}\right\} \cup R \in E$ for every $i, 1 \leqslant i \leqslant t\left(L^{\prime}\right)$ and $R \in\left[L^{\prime}\right]^{r-1}$. Let again $A_{L^{\prime}}$ be the event that [$\left.L^{\prime}\right]^{r} \subset E$ and for $i, 1 \leqslant i \leqslant t\left(L^{\prime}\right)$ let B_{i}^{\prime} be the event that all edges $\left\{v_{i}^{\prime}\right\} \cup R, R \in\left[L^{\prime}\right]^{r-1}$ remain in E. Then, similarly to the preceding case we have

$$
\operatorname{Prob}\left(B_{i}^{\prime} \mid A_{\varkappa_{i}}\right) \sim \exp \left(-\varepsilon \sigma_{r}\binom{k-j-1}{r-1}\right)
$$

The events $\left(B_{i}^{\prime} \mid A_{L^{\prime}}\right.$) are independent for fixed L^{\prime} and different $i, 1 \leqslant i \leqslant t\left(L^{\prime}\right)$. Thus again if $\delta>0$, we have again by (3) that

$$
\begin{equation*}
\mid\left\{i,\left\{v_{i}\right\} \cup R \in \boldsymbol{E} \text { for every } R \in\left[L^{\prime}\right]^{r-1}\right\} \left\lvert\, \sim \sim_{\delta} t\left(L^{\prime}\right) \exp \left(-\varepsilon \sigma_{r}\binom{k-j-1}{r-1}\right)\right. \tag{6}
\end{equation*}
$$

with the probability bigger than $1-\exp \left(-c_{k-j-1}^{L^{\prime}} n\right)$ for $c_{k-j-1}^{L^{\prime}}>0$. By the induction assumption, i.e. (4), we have the probability that

$$
\begin{align*}
& \sigma^{L^{i}}(\boldsymbol{G}) \underset{\delta}{\sim} \exp \left(-\varepsilon \sigma_{r}\left(\binom{k}{r}-\binom{k-j}{r}\right) \sigma^{L^{i}}(G) \quad \text { for every } i,\right. \\
& 1 \leqslant i \leqslant t\left(L^{\prime}\right)\left(\text { here } L^{i}=L^{\prime} \cup\left\{v_{i}\right\}\right) \text { is larger than } 1-\exp \left(-c_{k-j} n\right) . \tag{7}
\end{align*}
$$

As the set of all k-gons containing L^{\prime} in \boldsymbol{G} is the union of all sets of k-gons containing such L^{i} for which $L^{i} \subset G$ holds we get, combining (6) and (7) and using (1+ $\left.\delta\right)^{2}<1+3 \delta$ for $\delta<1$, that

$$
\begin{aligned}
\sigma^{L^{\prime}}(\boldsymbol{G}) & =\sum_{L^{i} \in \boldsymbol{G}} \sigma^{L^{i}}(\boldsymbol{G}) \underset{3 \delta}{\sim} \\
& \sim \exp \left(-\varepsilon \sigma_{r}\left[\left(\binom{k}{r}-\binom{k-j}{r}\right)+\binom{k-j-1}{r-1}\right]\right) \sum_{1 \leqslant i \leqslant t(L)} \sigma^{L^{i}} \\
& \sim \exp \left(-\varepsilon \sigma_{r}\left[\binom{k}{r}-\binom{k-j-1}{r}\right]\right) \sigma^{L^{\prime}}(G)
\end{aligned}
$$

for $\delta<1$ with probability exponentially close to 1 . As th tre are only polynomially many choices for L^{\prime} we infer that

$$
\sigma^{L^{\prime}}(\boldsymbol{G}) \underset{3 \delta}{\sim} \sigma^{L^{\prime}}(G) \exp \left[-\varepsilon \sigma_{r}\left(\binom{k}{r}-\binom{k-j-1}{r}\right)\right]
$$

for every L^{\prime} holds with probability bigger than $1-\exp \left(-c_{k-j-1}^{\prime} n\right)$. This proves the Claim.

Now we shall examine intersections of chosen k-gons. For a system \mathscr{K} of k-gons let $c(\mathscr{K})$ denote the number of pairs $K^{1}, K^{2} \in \mathscr{K}$ such that $K^{1} \cap K^{2} \neq 0$. Then the expectation

$$
\begin{aligned}
E(c(\mathscr{K})) & =(1+o(1))\binom{k}{r} \rho n^{r}\binom{\sigma_{r} n^{k-r}}{2}\left(\frac{\varepsilon}{n^{k-r}}\right)^{2} \\
& \leqslant \frac{1+o(1)}{2}\binom{k}{r} \rho \sigma_{r}^{2} \varepsilon^{2} n^{r},
\end{aligned}
$$

and thus

$$
\operatorname{Prob}\left(c(\mathscr{K}) \leqslant \frac{3}{4}\left(\rho \sigma_{r}^{2} \varepsilon^{2} n^{r}\right)\binom{k}{r} \geqslant \frac{1}{3}(1+\mathrm{o}(1)) .\right.
$$

According to (4) we have that

$$
\left|\bigcup_{K \in \mathscr{K}} K\right| \geqslant\binom{ k}{r} \rho n^{r}\left(1+o(1)-(1+\delta) \exp \left(-\sigma_{r} \varepsilon\right)\right)
$$

holds with probability bigger than $1-\exp \left(-c_{3} n^{r}\right)$ for $n \geqslant n(\delta)$. As (4) holds for any $\delta>0$ and $n \geqslant n(\delta)$, we can assume that

$$
\delta \leqslant \frac{\sigma_{r} \varepsilon}{10} \exp \left(\sigma_{r} \varepsilon\right)
$$

Thus we have for n sufficiently large

$$
\begin{align*}
\frac{c(\mathscr{K})}{\left|\bigcup_{k \in \mathscr{K}} K\right|} & \leqslant \frac{\frac{3}{4}\binom{k}{r} \rho \sigma_{r}^{2} \varepsilon^{2} n^{r}}{\binom{k}{r} \rho n^{r}\left(1+o(1)-\exp \left(-\sigma_{r} \varepsilon\right)-\frac{\sigma_{r} \varepsilon}{10}\right.} \\
& \leqslant \frac{\frac{3}{4} \sigma_{r}^{2} \varepsilon^{2}}{o(1)+\sigma_{r} \varepsilon-\frac{\sigma_{r}^{2} \varepsilon^{2}}{2}-\frac{\sigma_{r} \varepsilon}{10}}<2 \sigma_{r} \varepsilon, \tag{8}
\end{align*}
$$

with probability at least $\frac{1}{3}(1+o(1))$. Combining (4), (5) and (8) we get that there exists $\mathscr{K} \in \mathscr{K}$ satisfying (a), (b) and (c).

Lemma 2. Let $G=\left(\left(V_{i}\right)_{i=1}^{k}, E\right)$ be a k-partite r-graph satisfying assumptions of Lemma 1. Then there exists a system \mathscr{S} of k-gons of G such that
(a) $\left|\bigcup_{S \in \mathscr{Y}} S\right|=|E|(1-\mathrm{o}(1))$
(b) $|\mathscr{S}| \leqslant|E|\binom{k}{r}^{-1}(1+o(1))$.

Proof. Let $\delta \geqslant 0$ be a given real. We will show that there exists (provided $n=\left|V_{1}\right|=$ $\cdots=\left|V_{k}\right|$ is sufficiently large) a system of k-gons of G which

$$
\begin{equation*}
\text { contains all but at most } \delta / 2|E| \text { edges } \tag{9}
\end{equation*}
$$

and such that

$$
\begin{equation*}
|\mathscr{F}| \leqslant \frac{|E|\left(1+\frac{\delta}{2}\right)}{\binom{k}{r}} \tag{10}
\end{equation*}
$$

We shall construct our system \mathscr{S} inductively. We shall also construct an auxiliary sequence $G_{0}, G_{1}, \ldots, G_{t}$ of r-graphs such that $E\left(G_{0}\right) \supset E\left(G_{1}\right) \supset \cdots \supset E\left(G_{t}\right)$ (t will be specified later). Set $G_{0}=G$ and $\varepsilon=\left(\delta / 4 \sigma_{r}\right)$. According to Lemma 1 there exists a system $\mathscr{K}_{0}=\mathscr{K}$ of k-gons of G_{0} with the properties of Lemma 1. Suppose that we have constructed $G_{j}=\left(\left(V_{i}\right)_{i=1}^{k}, E_{j}\right), E_{j} \subset E$ and a system \mathscr{S}_{j} of k-gons, covering edges of $E-E_{j}$ so that
(a) $\sigma^{L}\left(G_{j}\right) \sim \sigma_{l} \exp \left[-\sigma_{r} \varepsilon j\left(\binom{k}{r}-\binom{l}{r}\right)\right] n^{k-t}$ for every
L complete in $G_{j}, k>|L|=l \geqslant k$,
(b) $\rho_{I}\left(G_{j}\right) \sim \rho \exp \left(-\sigma_{r} \varepsilon j\right) n^{r}$ for every $I \in[\{1,2, \ldots, k\}]^{r}$
(c) $\left|\mathscr{S}_{j}\right| \leqslant\left(1+\frac{\delta}{2}\right) \frac{\left|E-E_{j}\right|}{\binom{k}{r}}$.

Then, according to Lemma 1, we can select a system \mathscr{K}_{j} of k-gons from G_{j} such that if we put $G_{j+1}=G_{j}$-edges of all selected k-gons the following holds:
($\left.\mathrm{a}^{\prime}\right) \sigma^{L}\left(G_{j+1}\right) \sim \sigma_{l} n^{k-l} \exp \left[-\varepsilon \sigma_{r}(j+1)\left(\binom{k}{r}-\binom{l}{r}\right)\right]$ for any L complete in $G_{j+1}, k>$ $|L|=l \geqslant r$,
($\left.\mathrm{b}^{\prime}\right) \rho_{I}\left(G_{j+1}\right) \sim \rho n^{r} \exp \left(-\varepsilon \sigma_{r}(j+1)\right)$ for any $I \in[\{1,2, \ldots, k\}]^{r}$.
Moreover, we have

$$
\left|\left\{\left\{K^{1}, K^{2}\right\}, K^{1}, K^{2} \in \mathscr{K}_{j}, K^{1} \cap K^{2} \neq \varnothing\right\}\right| \leqslant 2 \sigma_{r} \varepsilon\left|\bigcup_{K \in \mathscr{K}_{j}} K\right|
$$

If we choose for each couple $\left\{K^{1}, K^{2}\right\}, K^{1}, K^{2} \in \mathscr{K}_{j}, K^{1} \cap K^{2} \neq 0$ at least one of its elements and delete all such k-gons from \mathscr{K}_{j} we get a system of at least

$$
\left|\mathscr{K}_{j}\right|-2 \sigma_{r} \varepsilon\left|\bigcup_{K \in \mathscr{K}_{j}}\right|
$$

pairwise disjoint k-gons covering at most $\| \bigcup_{K \in \mathscr{K}_{j}} K \mid$ edges. Thus we get

$$
\left|\mathscr{K}_{j}\right| \leqslant \frac{\left|\bigcup_{K \in \mathscr{H}_{j}} K\right|}{\binom{k}{r}}+2 \sigma_{r} \varepsilon\left|\bigcup_{K \in \mathscr{K}_{j}} K\right|
$$

Set $\mathscr{J}_{j+1}=\mathscr{Y}_{j} \cup \mathscr{K}_{j}$; as \mathscr{S}_{j+1} covers clearly all edges of $E-E_{j+1}$ we get that
(c') $\left|\mathscr{S}_{j+1}\right|=\left|\mathscr{S}_{j}\right|+\left|\mathscr{K}_{j}\right|$

$$
\begin{aligned}
& \left.\leqslant\left(1+\frac{\delta}{2}\right) \frac{\left|E-E_{j}\right|}{\binom{k}{r}}+\frac{1}{\binom{k}{r}}\left(1+2 \sigma_{r} \varepsilon\binom{k}{r}\right) \bigcup_{K \in \mathscr{H}_{j}} K \right\rvert\, \\
& <\left(1+\frac{\delta}{2}\right) \frac{\left|E-E_{j}\right|}{\binom{k}{r}}+\frac{1}{\binom{k}{r}}\left(1+\frac{\delta}{2}\right)\left|E_{j}-E_{j+1}\right| \\
& \leqslant\left(1+\frac{\delta}{2}\right) \frac{\left|E-E_{j+1}\right|}{\binom{k}{r}}
\end{aligned}
$$

Set $t=\left\lceil 1 / \sigma_{r} \varepsilon \ln 2 / \sigma\right\rceil$ and repeat this procedure t-times. The system $\mathscr{S}=\mathscr{S}_{t}$ covers all edges of $E-E_{t}$ and as $\left|E_{t}\right| \leqslant \exp \left(-\sigma_{r} \varepsilon t\right)|E| \leqslant(\delta / 2)|E|$ we get that (9) holds. Moreover we have

$$
\left|\mathscr{S}_{t}\right| \leqslant\left(1+\frac{\delta}{2}\right) \frac{\left|E-E_{t}\right|}{\binom{k}{r}} \leqslant\left(1+\frac{\delta}{2}\right) \frac{|E|}{\binom{k}{r}}
$$

and thus (10) holds as well.
Lemma 3. Let $p>k>r$ be given positive integers. Let $A_{1}, A_{2}, \ldots, A_{p}$ be pairwise disjoint sets of the same (large) cardinality n. Then there exists a decomposition

$$
\begin{equation*}
\left[\left\{A_{i}\right\}_{i=1}^{p}\right]^{r}=\bigcup\left\{E_{j}, J \in[\{1,2, \ldots, p\}]^{k}\right\} \tag{11}
\end{equation*}
$$

such that for every $J, J^{\prime} \in[\{1,2, \ldots, k\}]^{p}, J \neq J^{\prime}$
($\alpha) E_{J} \cap E_{J} \neq \varnothing$,
(β) $E_{J} \subset\left[\left\{A_{i}\right\}_{i \in J}\right]^{r}$, and the r-graph $H(J)$ defined by $V(H(J))=\bigcup_{i \in J} A_{i}, E(H(J))=E_{J}$ satisfies
(y) $\rho_{I}(H(J)) \sim \frac{1}{t} n^{r}, \quad$ for every $\quad I \in[J]^{r}$,
(δ) $\sigma^{L}(H(J)) \sim \sigma_{l} n^{k-1}$, for any L complete

$$
\sigma_{l}=\left(\frac{1}{t}\right)^{\left(\frac{k}{r}\right)-\left(\left(_{r}^{(}\right)\right.} \quad \text { and } \quad k \geqslant|L|=l \geqslant r
$$

where

$$
t=\binom{p-r}{k-r}
$$

Proof. For every $e \in\left[\left\{A_{i}\right\}_{i=1}^{p}\right]^{r}$ let $X(e)$ be the set of all k-subsets J of $\{1,2, \ldots, p\}$ with the property that $\left\{i ; A_{i} \cap e \neq 0\right\} \subset J$. Clearly $|X(e)|=t$. To every $e \in\left[\left\{A_{i}\right\}_{i=1}^{p}\right]^{r}$ choose independently on all other choices an element $\phi(e)$ of $X(e)$. For every $J \in[\{1,2, \ldots, p\}]^{k}$ let $\boldsymbol{H}(J)$ be a random r-graph defined by

$$
\begin{aligned}
& V(\boldsymbol{H}(J))=\bigcup_{i \in J} A_{i} \\
& E(\boldsymbol{H}(J))=\boldsymbol{E}_{J}=\left\{\boldsymbol{\phi}(e) \subset\left\{\boldsymbol{A}_{i}\right\}_{i \in J} ; e \in\left[\left\{A_{i}\right\}_{i \in J}\right]^{r}\right\}
\end{aligned}
$$

Obviously

$$
\begin{equation*}
\left[\left\{\boldsymbol{A}_{i}\right\}_{i=1}^{r}\right]^{r}=\bigcup\left\{\boldsymbol{E}_{J} ; J \in[\{1,2, \ldots, p\}]^{\kappa}\right\} \tag{12}
\end{equation*}
$$

yields a partition satisfying (α) and (β). We show that with probability $1-o(1)$ the partition (12) satisfies (γ) and (δ) as well. Let $L,|L|=l<k$ be a fixed subset of $\bigcup_{i \in J} A_{i}$ such that $\left|L \cap A_{i}\right| \leqslant 1$ for every $i \in J$. Let A_{L}^{J} denote the event that L is complete subset of $\boldsymbol{H}(J)$ and for $v \in A_{i_{0}}\left(i_{0} \in J-\left\{i ; L \cap A_{i} \neq 0\right\}\right)$ let $B_{L \cup\{v\}}^{J}$ denote the event that

$$
[L \cup\{v\}]^{r}-[L]^{r} \subset \boldsymbol{H}(J) .
$$

Then

$$
\operatorname{Prob}\left(B_{L \cup\{v\}}^{J} \mid A_{L}^{J}\right)=\operatorname{Prob}\left(B_{L \cup\{v\}}^{J}\right)=\left(\frac{1}{t}\right)^{\left\{k^{\prime}\right\}},
$$

and these probabilities are independent for different $v \in A_{i_{0}}$ and fixed L and J. Thus, according to (3) we get that for fixed i_{0}, J, L and $\delta>0$

$$
\begin{equation*}
\left.\left|\left\{v \in A_{i_{0}} ;[L \cup\{v\}]^{r}-[L]^{r} \in \boldsymbol{H}(J)\right\}\right|-\left(\frac{1}{t}\right)^{(r-1)} n \right\rvert\, \geqslant \delta n \tag{13}
\end{equation*}
$$

holds with the probability smaller than $\exp \left(-c_{1} n\right)$, where $c_{1}>0$ is independent on n. As there are only polynomially many (in n) choices for i_{0}, J and $L(n$ is large and $p, k, r, \delta>0$ are fixed) we get that there exists $c_{2}>0\left(c_{2}<c_{1}\right)$ such that the probability of the event that there is i_{0}, J and L such that holds is bounded by $\exp \left(-c_{2} n\right)$. Similarly one can show that there exists $c_{3}>0$ such that the probability that

$$
\left|\rho_{I}(\boldsymbol{H}(J))-\frac{1}{t} n^{r}\right| \geqslant \delta n^{r}
$$

for some I and J is bounded by $\exp \left(-c_{3} n\right)$. Hence the partition satisfies (γ) and (δ) with probability at least $1-\exp \left(-c_{3} n\right)-\exp \left(-c_{2} n\right)$. Thus for n sufficiently large there exists a decomposition satisfying $(\alpha),(\beta)$ and

$$
\begin{align*}
& \left(\gamma^{\prime}\right)\left|\rho_{I}(H(J))-\frac{1}{t} n^{r}\right|<\delta n^{r} \\
& \left(\delta^{\prime}\right)\left|\left|\left\{v \in A_{i_{0}} ;[L \cup\{v\}]^{r}-[L]^{r} \in H(J)\right\}\right|-\left(\frac{1}{t}\right)^{\left(r_{-1}\right)}\right|<\delta\left(\frac{1}{t}\right)^{\left(r_{-1}^{\prime}\right)} n, \tag{14}
\end{align*}
$$

for any choice of I, J, L and i_{0}. As (14) holds for any $L,(L$ is complete in $H(J))|L|=l$, $r \leqslant l<k$, we get by induction that L is contained in at least

$$
(1-\delta)^{k-1}\left(\frac{1}{t}\right)^{\binom{k}{r}-\left(\frac{l}{r}\right)} n^{k-l}(1-\delta)^{k-l}\left(\frac{1}{t}\right)^{\sum_{j=1}^{k-1(r-1)},} n^{k-1}
$$

and at most

$$
(1+\delta)^{k-1}\left(\frac{1}{t}\right)^{\left(\frac{k}{r}\right)-\left(\frac{l}{l}\right)} n^{k-l}
$$

k-gons of $H(J)$. This together with $\left(\gamma^{\prime}\right)$ and with the fact that $\delta>0$ may be considered arbitrarily small yields (γ) and (δ).

Proof of the Theorem. Let $\delta>0$ be positive real and k, r positive integers. Take

$$
p=\left[\frac{2 r(r-1)}{\delta}\binom{k}{r}\right]
$$

Take large integer N (without loss of generality we shall suppose that N is divisible by p) and set $n=N / p$. Consider p pairwise disjoint sets $A_{1}, A_{2}, \ldots, A_{p}$ of the same cardinality n. Take the decomposition (the existence of which is ensured by Lemma 3)

$$
\left[\left\{A_{i}\right\}_{i=1}^{p}\right]^{r}=\bigcup\left\{E_{J} ; J \in[\{1,2, \ldots, p\}]^{k}\right\}
$$

Thus for each $J \in[1,2, \ldots, p\}]^{k}$ we have that the r-graph $H(J)=\left(\left(A_{j}\right)_{j \in J}, E_{J}\right)$ satisfies the assumptions of Lemma 2. Hence we get, that for $N \geqslant N(\delta, k, r)$ there exists a system $\mathscr{S}(J)$ of k-gons such that

$$
\begin{equation*}
\left|\bigcup_{S \in \mathscr{S}_{(J)}} S\right| \geqslant\left|E_{J}\right|\left(1-\frac{\delta}{8\binom{k}{r}}\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
|\mathscr{S}(J)| \leqslant\left|E_{j}\right|\left(1+\frac{\delta}{8}\right) /\binom{k}{r} \tag{2}
\end{equation*}
$$

To every from at most $\left(\delta / 8\binom{k}{r}\right)\left|E_{J}\right|$ uncovered edges e choose a k-subset of $\bigcup_{j \in J} A_{j}$ which contains e and let ν_{J} be a set consisting of all k-gons of $\mathscr{S}(J)$ and all chosen k-sets. We have

$$
\left|\nu_{J}\right| \leqslant \frac{\left|E_{J}\right|\left(1+\frac{\delta}{8}\right)}{\binom{k}{r}}+\frac{\left|E_{J}\right| \frac{\delta}{8}}{\binom{k}{r}}=\frac{\left|E_{J}\right|}{\binom{k}{r}}\left(1+\frac{\delta}{4}\right)
$$

The set $\nu=\bigcup\left\{\nu_{J}, J \in[\{1,2, \ldots, p\}]^{k}\right\}$ is a system of at most

$$
\binom{p}{k}\left(\left|E_{J}\right| /\binom{k}{r}\right)\left(1+\frac{\delta}{4}\right) \sim\binom{p}{k} \frac{n^{r}}{t}\left(1+\frac{\delta}{4}\right)<\left(\binom{p n}{r} /\binom{k}{r}\right)\left(1+\frac{\delta}{2}\right)
$$

k-sets (for the last inequality we used again that n is large) having the property that any $e \in\left[\left\{A_{i}\right\}_{i=1}^{p}\right]^{r}$ is contained in some element of ν. Now we examine elements of $[A]^{r}-$ $\left[\left\{A_{i}\right\}_{i=1}^{p}\right]^{r}\left(A=\bigcup_{i=1}^{p} A_{i}\right)$. There are at most

$$
\binom{p n}{r}-\binom{p}{r} n^{r}<\binom{p n}{r}\left(1-\left(1-\frac{r-1}{p}\right)^{r}\right)<\binom{p n}{r} \frac{r-1}{p} r
$$

of them. For each such r-set e choose an k-set (subset of A) that contains e. This gives at most

$$
\binom{p n}{r} \frac{r-1}{p} r<\binom{p n}{r} \delta / 2\binom{k}{r}
$$

new k-sets. After adding all such k-sets to ν we get an r-dense system \mathscr{F} of k-sets of $\bigcup_{i=1}^{p} A_{i}$ such that

$$
|\mathscr{F}|<\binom{N}{r}(1+\delta) /\binom{k}{r} .
$$

Acknowledgement

Many thanks to P. Frankl for simplification of the proof of Lemma 3 and advice which improved readability of the paper.

References

1. P. Erdös and H. Hanani, On a limit theorem in combinatorial analysis, Publ. Math. Debrecen 10 (1963), 10-13
2. P. Erdös and J. Spencer, Probabilistic Methods in Combinatorics, Akadémiai Kiadó, Budapest, 1974
3. W. Feller, An Introduction to Probability Theory and its Applications, John Wiley, New York.
4. G. Katona, T. Nemetz and M. Simonovits, On a graph-problem of Turán, Mat. Lapok 15 (1964), 228-238 (in Hungarian).
5. V. Rödl, Note on packing, covering and Turán numbers, to appear in: Supplemento ai rendiconti del circolo matematico di Palermo, Proceedings of the 10th Winter School on Abstract Analysis ed. Z. Frolik (1982), 263-266.

Received 20 August 1982 and in revised form 18 March 1983
V. Rödl

FJFI, ČVUT, Katedra Matematiky, Husova 5, 11000 Praha, Tchechoslovaque

