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On a Packing and Covering Problem

VoiTécH R6DL

Let positive integers r <k < N and a family % of k-element subsets of {1,2,..., N}
be given. We say that ¥ is r-dense if any r-element subset of {1,2,..., N} is contained
in at least one member of %. On the other hand we say that %' is r-sparse if any two
members of & intersect in less than r-elements—i.e. every r-element subset of {1, 2, ..., N}
is contained in at most one member of &'. It is well known (see [4]) that

=17 (1

for any r-dense family % and r-sparse family %', % %' <[{1,2,..., N} In [2] Erdos
and Spencer denote by M(N, k, r) the minimal number of elements of r-dense family
Fc<[{1,2,..., N}]* and by m(N, k, r) the maximal number of elements of r-sparse family
F'<[{1,2,..., N}]* From (1) we get

N

M(N, k, r)>+/m(N, k, r).
()

It was shown by P. Erdos and J. Spencer [2] that

s [(3)/ (o)

In 1963 P. Erdds and J. Hanani [1] conjectured that

lim M(N, k, r)(l:)(I:[)_ 21&20 m(N, k, r)(f)(lj)_ =1, 2)

for every fixed r and k, r <k. They proved (2) for r=2 and all k and for r=3, k=p or
p+1 where p is power of a prime.

The objective of this paper is to prove (2) (cf. [5], where a few related remarks are
mentioned).

PRELIMINARIES

We find it convenient to work with the following structures. Let J be a k-element set
(k-set) of positive integers. A k-partite r-graph is a pair

G=((V))jen E)

such that e~ Vj| <1 for every j€J and e € E, moreover |e|=r and e= ., V; for every
ecE.

If G=((V})jcs, E) then we set V(G)=\J,c, V;, E(G)=E. For I e[J]([J] denotes the
set of all r-element subsets of J) p; = p;(G) denotes the cardinality of E;(G), where

E (G)={ecE;en V,#0 for every ie I}.
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70 V. Rédl

We say that subset L= J;.; Vj, |L|=r is complete set if [L]' < E. Let L be a complete set
of cardinality k, we say that the set K =[L]" forms a k-gon. Let L be a complete set in
G, then o“(G) will denote the number of complete k-sets containing L as a subset.

Let A}, A, ..., A,, A=J!_, A, be pairwise disjoint sets. By the symbol [{A;}/_,]" we
shall denote the system of all r-subsets of A, intersecting each A; in at most one element.
We shall often use the symbol o(1) to denote a quantity (depending on the natural number
n) the value of which tends to zero as n (here always n) tends to infinity. For a function
f(n) we put o(f(n))=o0(1)f(n). For two functions f(n), g(n) we will write f(n)~g(n)
if f(n)=(1+0(1))g(n). We also write f(n)~sg(n) if |f(n)—g(n)| < 8f(n). Finally we
will state here the following auxiliary.

CLaMm.  For every pair of positive integers n, m, n> m and positive reals p, q, p+q=1
such that

2p—-ln<m<2pn

nY mon-m _1(m—np)’
(m)pq <eXp< 3 npq ) ®)

We omit the standard proof based on Stirling formula. (For the proof of very similar
statements see e.g. [3]).

we have

REsSuULTS

The objective of this paper is to prove the following theorem.
THEOREM. For every pair of positive integers r and k, r <Kk,
k\(N\"' K\(N\"
lim M(N,k,r)( )( ) = lim m(N,k,r)( )( ) =1
N> r r N> r r
holds.

First we show the easy fact that

-1
g k() () -
N> r r

-1
lim m(N, k, r)(k) (N> =]
N> r/\r

and thus that it will be sufficient to show the first statement only:
Let

implies that

9C[{1,2,...,N}]k,|9«’|s<]:[)<l:>— (1+8)

be an r-dense family. For every e€[{1,2,..., N}]" let v(e) be the number of elements
of & containing e. We have

Y{v(e);ec[{1,2,..., N}]’}s(l+8)(1:,)
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and thus
Y {v(e); v(e)22}sza<7).

After deleting (from %) all elements of F containing r-sets e with v(e) =2 we get at least

(NG aro-2(7)=(7)() (+s-20())

k-sets, forming an r-sparse family. The last quantity tends to

N\/k\™!
r/\r
this proves our claim.

The proof of the theorem is divided into three lemmas.

LEMMA 1. Let G=((V,))E, E),|V)|=|V,|=" - - =|Vi| = n be a k-partite r-graph, p and
a(l=r, ..., k—1) positive reals smaller than one such that

(a) o"(G)~ on*! for any L, complete (in G) k>|L|=1=r.

(.B) PI(G)"'Pnrfor any IE[{I’ 2a A ] k}]r'

Then for every € >0 one can select a system ¥ of k-gons from G such that if we put
G*=((V)ioi; E~{e;AK e X, ec K}),
pf=p:1(G*),
ot* = ol (G™),
the following hold :
(a) p¥F~(pexp(—o,e))n” forany I€[{1,2,...,k}].

(b) ot*~ [o-, exp(—a',‘a‘((f) ——( l)))] n*~forany L complete (in G*),k>|L|=1=r.

r

(©) [{K", K’},K',K?’e %, K'nK*# O} <20,e|Ukex K|.

RemMARK. Roughly speaking this Lemma asserts that for a given € > 0 there is n > ny(¢)
such that if 0"(G), p;(G) are close to values described in (a)( 8) one can select a system
X with p¥, o * close to values described in (a) and (b) and moreover such that (c) holds.

PrROOF OF LEMMA 1. Let G=((V;)¥_,, E) be a given k-partite r-graph with the
properties («) and ( 8) of Lemma 1. Suppose without loss of generality that n =| V| =| V,| =
- -+ =|V,| is large positive integer (this will be specified later). Let 2 be a random variable
the values of which are subsets of the set 7 ( G) of all k-gons of the r-graph G. If K € #(G)
then

Prob[ K ex]=n—,f_—,

and these probabilities are independent for different K € #(G). First consider the edges
of G which are not covered by chosen k-gons (more precisely the edges of E; = E;(G),
where I€[{1,2,...,k}]" and G=(V(G) E(G)—{e;3AK e X ec K}). For a fixed edge
ec E,; the probability that e€ E;(G) is

€ ornk_’(l-#-o(l))
Pe=(l —nkﬂ) ~exp(—ea,).
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These probabilities are independent for different e € E;. Thus the probability that there
are exactly s edges in E; which are not covered by any k-gon K € ¥ is

Z 1_[ P. H (1—P2)=

Ec[E;) ecE ecE/—E

_ <pnr(1;[-o(l))> (exp(—za,))*(1 _exp(_eo_r))pnr(Ho(l))ﬂ(1 +0(1))pn’.

For any o> o0 let S; be the set of all integers such that 0=<s< pn’(1+0(1)) =|E;| and
|s —(exp(—a,g))pn’|> 8pn" exp(—o,¢), then by (3) we get

5 (""'“;"’(”))(exp(—em))su—exp(—em))f'"’“*"“)’-%1+o(1>>""’
se S8
<n"exp(—cn") <exp(—cn")

for some ¢, >0, ¢,> 0 and n sufficiently large.
Thus we get

p1(G)~ pn” exp(-0,¢),
for every I€[{1,2,..., k}]* with probability greater than (4)
1—<I:> exp(—¢,n") > 1—exp(—cn’), ;>0
Here we used again that n is sufficiently large. Now we prove the following:

Cram. Forevery §>0, k>1=r,

g Prob[c"(G) ~ o*(G) exp(-¢o, ((k) — ( 1)) , L complete,
8 r r (5)

|L|=11>1—exp(—cin)

(here c} is the positive constant depending on the size of L only).

We shall proceed by induction on k—|L|. If |L|=k—1 and L is complete then there
isk'e{l,2,...,k} (say k'=k) and t(L) = oy_,n(1+0(1)) vertices vy, vy, ..., Uy € Vie =
V. such that

{v,JURE€E
for every ic{1,2,...,t(L)} and Re[L]". Let A, be the event that [LT <«\U{E;, I€
[{1,2,...,k}}=E. For a vertex y;l<i=<1t(L) denote by B; the event that all edges
{v;}U R, Re[L] ' remainin E. It follows from () of Lemma 1 that forevery i, I <i=<t(L)

the number of complete k-sets L' containing v; and moreover such that[L']" n[Lu {v;}] #
& and [L']" ~n[L] =0 is bounded from above by

(k_l)a,nk_'(1+o(l))
r—1

and from below by

(k_ l)a',nk“’(l+o(l))—(k— 1)a’,ﬂn"_'_l(l +o(1))~(k_ 1)a‘,nk_'.
r r—1

r—1
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As deletion of one of such k-gons causes that B; fails to be true provided A; holds, we

have
o,rnkgr(li:}) k'— 1
Prob(BilAL)—v(l— :‘,) ~exp<—< )a’,s).
n r—1

Clearly the events (B;|A;) are independent for fixed L and different i 1 <i=¢(L).
Thus similarly as in the preceding case we get, using (3) that

k—
PI'Ob[O'L(G)’; t(L) exp(—sa,(r_ :)), L complete, L<V,

|L}=k—1]>1—exp(—ci,n),

where cj.., is a positive constant independent on n. Here we have again used the fact
that there are only polynomially many choices for L). As t(L) = o*(G) we are done.
Suppose now that we proved our claim (4) for all L,k—1=|L|=k—j where 1<j<
k—r—1. Let L' be a fixed complete set |L|=k—j—1, 1 <j<k—r—1. Without loss of
generality suppose that L'V, #0 for i=1,2,...,k—j—1. Let v}, 1<i< (L) be all
vertices of V,_; such that {vj}u Re E for every i, 1<i=<#(L') and Re[L']"". Let again
Ay be the event that [L']"< E and for i, 1 <i=<t(L') let B} be the event that all edges
{vi}UR, Re[L']"" remain in E. Then, similarly to the preceding case we have

Prob(Bj|A; ) ~ exp(—eo, (kr_i; 1)) .

The events (Bj|A.) are independent for fixed L' and different i, 1 <i=<t(L’). Thus again
if 6 >0, we have again by (3) that

i {obo Re E for every Re[LT™} - (L) exp(‘m(kr_ﬁ 1)) ©)

with the probability bigger than 1 —exp(—ci_;_, n) for c5_;_, > 0. By the induction assump-
tion, i.e. (4), we have the probability that

aLi(G);-exp(—ea,(<’:) ~<kr_j)> o' (G) for every i,

. (7)
I<i<t(L') (here L'=L'U{v;}) is larger than 1 —exp(—c,_;n).

As the set of all k-gons containing L' in G is the union of all sets of k-gons containing
such L' for which L' < G holds we get, combining (6) and (7) and using (1+8)><1+38
for 8§ <1, that

o"(6)= ¥ o"(G)

L'cG 38

woe((()-CDC0) 2
e[ ()-(77)])ree

for 6 <1 with probability exponentially close to 1. As th:re are only polynomially many
choices for L’ we infer that

O_L’(G);; " (G) exp[—wr((’:) _(k_i_ l))]

for every L' holds with probability bigger than 1 —exp(—ck_;—, n). This proves the Claim.
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Now we shall examine intersections of chosen k-gons. For a system J of k-gons let
¢(%) denote the number of pairs K', K> % such that K' n K # 0. Then the expectation

: E(cm):(1+o<1))(':)pn'("'"2_ )(ns)

1+o(l
< o(l) (k) polein’,
2 r

and thus
3 A AN
Prob c(.%)sz(pa-,e n") . 23(1+0(1) .

According to (4) we have that

U K

Kex

> (f) pn’(1+0(1) = (1+6) exp(—o,e))

holds with probability bigger than 1 —exp(—c;n") for n= n(8). As (4) holds for any § >0
and n= n(8), we can assume that

o,
é= 10 exp(o,&).

Thus we have for n sufficiently large

k
3 2 2. r
c(f) _ 4(r)pa's "
K| [k
IkLeJ.xf | ( )Pn'(l+0(1)—CXP(_0}8)—0-'£
r 10
322
= 47.7 2 2 <20, (8)
0(1)+a's—0'£ _%E
r 2 10

with probability at least 3(1+ 0(1)). Combining (4), (5) and (8) we get that there exists
K e & satisfying (a), (b) and (c).

LeEMMA 2. Let G=((V;)~,, E) be a k-partite r-graph satisfying assumptions of Lemma
1. Then there exists a system & of k-gons of G such that

(a) =|E|(1-0(1))

U s
k -1
) I71=15(¥) " +or.

PrOOF. Let =0 be a given real. We will show that there exists (provided n=|V,|=
- -+ =1|V,| is sufficiently large) a system of k-gons of G which

contains all but at most §/2|E| edges 9)

(7

and such that

FE (10)
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We shall construct our system & inductively. We shall also construct an auxiliary sequence
Gy, G1, . .., G, of r-graphs such that E(G,) > E(G,)> -2 E(G,) (¢t will be specified
later). Set G, = G and e =(6/40,). According to Lemma 1 there exists a system H#,= %
of k-gons of G, with the properties of Lemma 1. Suppose that we have constructed
G = (V)E,, E;), E;c E and a system ¥; of k-gons, covering edges of E — E; so that

(a) o"(G))~a; exp[—o-,ej((f) - (i))] n*~! for every

L complete in G, k>|L|=1=k,
(b) pi(G;)~p exp(—o,ej)n" for every I€[{1,2,...,k}]
S8\ |E—-Ej|
Fl=l1+=)—
© ig)=(1+) 6
r
Then, according to Lemma 1, we can select a system ¥; of k-gons from G; such that
if we put G, = G;—edges of all selected k-gons the following holds:

k I
(@) o"(Gyy))~on*! exp[—eo-,(j+ 1)<(r> _(r>>] for any L complete in Gj.,, k>

|IL|=1=r,
(b) p1(Gjsy) ~pn' exp(—eo,(j+1)) for any I€[{1,2,..., k}]"
Moreover, we have

{K', K}, K',K*e X, K'nK*# Q) <20, | U K

KelX;

If we choose for each couple {K', K*}, K', K*€ %, K' n K? # 0 at least one of its elements
and delete all such k-gons from J¥; we get a system of at least

U

KelX;

1% 20,

pairwise disjoint k-gons covering at most |k cx, K| edges. Thus we get

| U K]
%<2 —+20,e | U Kl.
Ke.%j

(7

r

Set ;.1 =%, L ¥;; as &4, covers clearly all edges of E — E;, | we get that
() Ll =% +1%]

() @ el

8\ |[E—-E; 1 é
() B (1),

UK

KeX;
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Set t=[1/0,eIn2/0] and repeat this procedure t-times. The system & =, covers all
edges of E—E, and as |E,|<exp(—o,et)|E|<(8/2)|E| we get that (9) holds. Moreover

we have
S\ |E—E 5\ |E
13’,|s(1+—>| “s(1+—>u

200

LEmMMA 3. Letp> k> rbe given positive integers. Let A|, A,, . .., A, be pairwise disjoint
sets of the same (large) cardinality n. Then there exists a decomposition

[{Ai}fsl]r:U{Ejs*le[{laza'"’p}]k} (11)
such that for every J, J'€[{1,2,...,k}F,J#J’
(a) E;nE;# O,
(B) E;<[{Ai}ic,], and the r-graph H(J) defined by V(H(J)) =Uc; A;, E(H(J)) = E,
satisfies
1
() p(HU)~7 n',  forevery Te[JT,

(8) o“"(H(J))~oamn*",  for any L complete

and thus (10) holds as well.

1 O-O
a,=<;) and k=|L|=I=r,

p—r
t= .
(i)

Proor. For every ec[{A;}V_,]" let X(e) be the set of all k-subsets J of {1,2,..., p}
with the property that {i; A; N e # 0} = J. Clearly | X (e)| =t To every e [{A;}?_,]" choose
independently on all other choices an element ¢ (e) of X (e). For every J€[{1,2,..., p}}*
let H(J) be a random r-graph defined by

VH(J))=U A

iel

E(H(J)) = E;={¢(e)={A}ics; ec[{Ai}ics]}

where

Obviously
{A} - =U{E;; Jel{1,2,..., p}]} (12)

yields a partition satisfying (a) and (B). We show that with probability 1 —o(1) the
partition (12) satisfies (y) and (8) as well. Let L, |L|=1<k be a fixed subset of |_;.; A,
such that |[Ln A;|<1 for every i J. Let A] denote the event that L is complete subset
of H(J) and for ve A, (ipe J—{i; Ln A; #0}) let B]_;,, denote the event that

[Lu{o}]" -[L] < H(J).
Then

1 (ki|)
PrOb(Biu{v}lAi) = PrOb(Biu{v}) = <;) ’

and these probabilities are independent for different veE A, and fixed L and J. Thus,
according to (3) we get that for fixed iy, J, L and 6>0

GLy

|{v€Aio;[Lu{v}]’—-[L]’eH(J)}‘—(%) n|=én (13)
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holds with the probability smaller than exp(—c,n}), where ¢,> 0 is independent on n. As
there are only polynomially many (in n) choices for iy, J and L (nislargeand p, k, r, §>0
are fixed) we get that there exists ¢,> 0(c, < ¢,;) such that the probability of the event that
there is ig, J and L such that holds is bounded by exp(—c,n). Similarly one can show
that there exists ¢;> 0 such that the probability that

=6n"

p(H) =’

for some I and J is bounded by exp(—c;n). Hence the partition satisfies (y) and (8)
with probability at least 1 —exp(—c;n)—exp(—c,n). Thus for n sufficiently large there
exists a decomposition satisfying (), (8) and

< é8n’,

(v

1
pr(HU) =’

1

Ly (L
(&) |{veA%;[Lu{u}]'—[L]'eH(f)}l—-(}) |<6(;) n, (14)

for any choice of I, J, L and i,. As (14) holds for any L, (L is complete in H(J))|L| =1,
r=1<k, we get by induction that L is contained in at least

1\ -0 1\ T G
(1—6)k_l<_) nk_'(l—S)k_I (;) nk~l

t

and at most

~ 1<$)~<£) _
(1+8) '~ n*!

k-gons of H(J). This together with (y') and with the fact that § >0 may be considered
arbitrarily small yields (y) and (8).

ProoF oF THE THEOREM. Let 8 >0 be positive real and k, r positive integers. Take

0]

Take large integer N (without loss of generality we shall suppose that N is divisible by
p) andset n = N/p. Consider p pairwise disjoint sets A,, A,, ..., A, of the same cardinality
n. Take the decomposition (the existence of which is ensured by Lemma 3)

HAM- =U{E; Jel{l, 2, .., pH

Thus for each J€[1,2,..., p}]* we have that the r-graph H(J)= ({Aj)jcs E;) satisfies
the assumptions of Lemma 2. Hence we get, that for N = N(§, k, r) there exists a system
FL(J) of k-gons such that

(1)

o
U S‘ =|E| I_T
SeF() 8( )

r

and

@) |y(1)|<|5,.|(1+§) / (")
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k
To every from at most (8/8 ( r)) |E;| uncovered edges e choose a k-subset of |_; ; A; which

contains e and let v, be a set consisting of all k-gons of ¥#(J) and all chosen k-sets. We have

é )
|EJ|(1+_) IEJ|"
E é
vy | < s + 8=-|-—J—|<1+—).

(00O
r r r
The set v=\J{v,, J€[{1,2,..., p}]*} is a system of at most

(D) (/G (=)~ () 02 <)/ 0)) (1)

k-sets (for the last inequality we used again that n is large) having the property that any
ec[{A;}/_,] is contained in some element of ». Now we examine elements of [A] —
[{A}_ T (A=Y, A). There are at most

(7)-C)r<C-0-570) <) 5

of them. For each such r-set e choose an k-set (subset of A) that contains e. This gives

(‘) 1 <(‘) / (‘)
P

new k-sets. After adding all such k-sets to v we get an r-dense system % of k-sets of
(U’ A; such that
N k
|91<< )(1+8)/( )
r r
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