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On a Packing and Covering Problem 

VoJTECH R6oL 

Let positive integers r < k < N and a family fJP of k-element subsets of {1, 2, ... , N} 
be given. We say that fJP is r-dense if any r-element subset of {1, 2, ... , N} is contained 
in at least one member of :Jf. On the other hand we say that :if' is r-sparse if any two 
members of fJP intersect in less than r-elements-i.e. every r-element subset of{1, 2, ... , N} 
is contained in at most one member of :Jf'. It is well known (see [ 4]) that 

(1) 

for any r-dense family fJP and r-sparse family :Jf', :Jf, :Jf' c [{1, 2, ... , N} t. In [2] Erdos 
and Spencer denote by M(N, k, r) the minimal number of elements of r-dense family 
fJP c [{1, 2, ... , N}t and by m(N, k, r) the maximal number of elements of r-sparse family 
:Jf' c [{1, 2, ... , N}t From (I) we get 

(~)
M(N, k, r) ~ (~) ~ m(N, k, r). 

It was shown by P. Erdos and J. Spencer [2] that 

M(N, ~ r)~ [ ( ~)/(~)][I +log(~)]. 
In 1963 P. ErJos and J. Hanani [I] conjectured that 

lim M(N, k, r)(~) (~)-I= Li!f!o m(N, k, r)(~) (~)-I= 1, (2) 

for every fixed r and ~ r < k. They proved (2) for r =2 and all k and for r =3, k =p or 
p + 1 where p is power of a prime. 

The objective of this paper is to prove (2) (cf. [5], where a few related remarks are 
mentioned). 

PRELIMINARIES 

We find it convenient to work with the following structures. Let J be a k-element set 
(k-set) of positive integers. A k-partite r-graph is a pair 

G = (( Vj)jEb E) 

such that Ie (") v;l ~ 1 for every j E J and e E E, moreover Iel = r and e c ujE] v; for every 
eE E. 

If G =(( Vj)iEJ, E) then we set V( G)= UiEl Vj, E( G)= E. For IE [J]'([J]' denotes the 
set of all r-element subsets of J) PI =PI (G) denotes the cardinality of EI (G), where 

EI( G)= {e E E; en V; ,c. 0 for every i E /}. 
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70 v. Rodl 

We say that subset Lc ujEJ "},ILl;;, r is complete set if [L]' c E. Let L be a complete set 
of cardinality k, we say that the set K = [L]' forms a k-gon. Let L be a complete set in 
G, then uL( G) will denote the number of complete k-sets containing L as a subset. 

Let AI, Az, ... ' Ap, A= u;=l Ai be pairwise disjoint sets. By the symbol [{AJf=I]' we 
shall denote the system of all r-subsets of A, intersecting each Ai in at most one element. 
We shall often use the symbol o(l) to denote a quantity (depending on the natural number 
n) the value of which tends to zero as n (here always n) tends to infinity. For a function 
f(n) we put o(f(n)) = o(l)f(n). For two functions f(n), g(n) we will write f(n)- g(n) 
if f(n) = (l +o(l))g(n). We also write f(n)- 8 g(n) if lf(n)- g(n)l < 8f(n). Finally we 
will state here the following auxiliary. 

CLAIM. For every pair of positive integers n, m, n > m and positive reals p, q, p + q = I 
such that 

(2p -l)n < m <2pn 

we have 

n)pmqn-m <exp(-! (m- np?). (3)( m 3 npq 

We omit the standard proof based on Stirling formula. (For the proof of very similar 
statements see e.g. [3]). 

RESULTS 

The objective of this paper is to prove the following theorem. 

THEOREM. For every pair ofpositive integers r and k, r < k, 

lim M(N, k, r) (k) (N) -t =lim m(N, k, r) (k) (N) -t =I 
N->oo r r N->oo r r 

holds. 

First we show the easy fact that 

lim M(N, k, r)(k) (N)-t =I 
N-oo r r 

implies that 

lim m(N, k, r) (k) (N) -I= I 
N-.oo r r 

and thus that it will be sufficient to show the first statement only: 
Let 

be an r-dense family. For every e E [ {1, 2, ... , N}]' let v( e) be the number of elements 
of :JP containing e. We have 

2: {v( e); e E [{1, 2, ... , N}]'} ~ (l + 8) ( ~) 
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and thus 

After deleting (from :¥) all elements ofF containing r-sets e with v( e);;. 2 we get at least 

k-sets, forming an r-sparse family. The last quantity tends to 

this proves our claim. 
The proof of the theorem is divided into three lemmas. 

LEMMA 1. Let G = ((~)~=~>E), I V11 =I V2 1 = · ··=I Vkl = n beak-partite r-graph, p and 
a 1( 1= r, ... , k- 1) positive reals smaller than one such that 

(a) aL(G)- a 1nk-t for any L, complete (in G) k> ILl= 1;;. r. 
({3) PI(G)-pnrforanylE[{1,2, ... ,k}]r. 

Then for every e > 0 one can select a system 'J{ of k-gons from G such that if we put 

G* = ((~)~=I; E -{e; 3K E 'JC, e E K}), 

pf = PI(G*), 

aL* = aL( G*), 
the following hold: 

(a) pf-(pexp(-are))nrforanylE[{1,2, ... ,k}]r. 

(b) aL*- [ a1 exp ( -a~-'e ( ( ~)- (:)))] nk-tforany L complete (in G*), k >ILl= 1;;. r. 

(c) J{{K\ K 2}, K 1
, K 2 EJ(, K 1 n K 2 ¥ 0}J ~2arsJUKEX KJ. 

REMARK. Roughly speaking this Lemma asserts that for a given e > 0 there is n > n0 ( e) 
such that if aL( G), p1 ( G) are close to values described in (a)( {3) one can select a system 
'J{ with p1, aL* close to values described in (a) and (b) and moreover such that (c) holds. 

PROOF OF LEMMA 1. Let G=((~)~=t.E) be a given k-partite r-graph with the 
properties (a) and ({3) of Lemma 1. Suppose without loss ofgenerality that n = I V11 = I V2 l = 
· · ·=I Vkl is large positive integer (this will be specified later). Let*" be a random variable 
the values of which are subsets of the set J(( G) of all k-gons of the r-graph G. If K E 'JC( G) 
then 

e 
Prob[K E *"] = ~ 

n 

and these probabilities are independent for different K E 'JC( G). First consider the edges 
of G which are not covered by chosen k-gons (more precisely the edges of E1 = E1 ( G), 
where 1E[{1,2, ... ,k}]' and G=(V(G)E(G)-{e;3KE*"eEK}). For a fixed edge 
e E E1 the probability that e E E1 ( G) is 

<7 nk-'(l+o(l)) 

Pe= 
( 
1- n:-r 

) 
, -exp(-sar). 
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These probabilities are independent for different e E E1• Thus the probability that there 
are exactly s edges in E1 which are not covered by any k-gon K E :tf is 

L n Pe n (1-p.)= 
EE[Eil' eEE eEE1-E 

= (pn '(1: o( 1))) ( exp( -w·,) )' (1- exp( -sa-,) )pn'(1+o(1))-s( 1 + o( 1) )pn'. 

For any a-> o let Ss be the set of all integers such that 0~ s ~ pn'(l +o(l)) = IE1I and 
Is- (exp( -a-,s ))pn'l > 8pn' exp( -a-,s ), then by (3) we get 

L (pn'(l +o(l))) (exp(-w,))'(l-exp(-w,))pn'(1+o(1))-s(l +o(l))Pn' 
sESS S 

< n' exp( -c1n') < exp( -c2n') 

for some c1> 0, c2 > 0 and n sufficiently large. 
Thus we get 

PI( G)- pn' exp( -a-,s ), 
s 

for every IE [{I, 2, ... , k}t with probability greater than (4) 

1- ( :) exp( -c2 n') > 1- exp( -c3 n'), c3 > 0 

Here we used again that n is sufficiently large. Now we prove the following: 

CLAIM. For every 8 > 0, k >I~ r, 

Prob[a-L( G)-;; a-L( G) exp( -eo-, ( ( :) - ( :) ) , L complete, } (S) 

ILl= I]> 1-exp(-c;n) 

(here c; is the positive constant depending on the size of L only). 

We shall proceed by induction on k-ILl. If ILl= k -1 and L is complete then there 
is k' E {1, 2, ... , k} (say k' = k) and t(L) = a-k_ 1n(l + o(l )) vertices V~o V2, ... , V1(L) E Vk' = 
vk such that 

{v;}u R E E 

for every i E {I, 2, ... , t(L)} and R E [Ly-1. Let AL be the event that [L]' c U{E~o IE 

[{l,2, ... ,k}]'}=E. For a vertex v;1~i~t(L) denote by B; the event that all edges 
{v;} u R, R E [L]'-1remain in E. It follows from (a) of Lemma 1that for every i, 1~ i ~ t(L) 
the number of complete k-sets L' containing V; and moreover such that [L']' n [Lu {v;}]' ,c. 
0 and [L']' n [L]' = 0 is bounded from above by 

k-1) a-,nk-r(l +o(l))( r-1 

and from below by 



73 On a packing and covering problem 

As deletion of one of such k-gons causes that B; fails to be true provided AL holds, we 
have 

e )u'nk-,<~=ll ( (k 1) )
Prob(B;jAL)- ( 1- nk-r -exp - r-l u,e . 

Clearly the events (B;IAL) are independent for fixed L and different i, 1,;;;; i,;;;; t(L). 
Thus similarly as in the preceding case we get, using (3) that 

Prob[uL(G); t( L) exp (- eu, ( ~=:)); L complete, L c V, 

ILl= k-1]> 1-exp(-c~_ n),1 

where c~_ 1 , is a positive constant independent on n. Here we have again used the fact 
that there are only polynomially many choices for L). As t(L) = uL( G) we are done. 

Suppose now that we proved our claim ( 4) for all L, k- 1~ILl~ k- j where 1 ,;;;; j,;;;; 
k-r-1. Let L' be a fixed complete set IL'I=k-j-1, l,s;j,s;k-r-1. Without loss of 
generality suppose that L' n V; ~ 0 for i = 1, 2, ... , k- j -1. Let v;, 1,;;;; i,;;;; t(L') be all 
vertices of Vk-j such that {v;} u R E E for every i, 1,;;;; i,;;;; t( L') and R E [ L']'- 1

• Let again 
Av be the event that [LT c E and for i, 1,;;;; i,;;;; t(L') let B; be the event that all edges 
{v;} u R, R E [L']'- 1 remain in E. Then, similarly to the preceding case we have 

k-j-1))Prob( B:I~J- exp - eu, r _ .( ( 1 

The events (B;IAd are independent for fixed L' and different i, 1,;;;; i,;;;; t(L'). Thus again 
if 8 > 0, we have again by (3) that 

k-j-1))l{i, {v;} u R E E for every R E [L']'- 1}1; t(L') exp ( -eu, ( r _ (6)
1 

with the probability bigger than 1- exp( -cLj-l n) for cLj- 1 > 0. By the induction assump
tion, i.e. (4), we have the probability that 

((k)r r L'u L' (G);exp ( -eu, - (k-j)) u (G) for every i, 

(7)
l,;;;;i,s;t(L') (here Li=L'u{v;}) is larger than 1-exp(-ck-jn). 

As the set of all k-gons containing L' in G is the union of all sets of k-gons containing 
such Li for which Li c G holds we get, combining ( 6) and (7) and using ( 1 + 8)2 < 1+38 
for 8 < 1, that 

uL'(G) = I uv (G)

[(( k) (k-j)) (k-j-1)]) L';;exp ( -eu, r- r + r-1 I""i~t(L)u 

-exp(-eu,[(~)-(k-~-l)])uL'(G) 
for 8 < 1 with probability exponentially close to 1. As th~re are only polynomially many 
choices for L' we infer that 

L' L' [ ( ( k) (k- j - 1))Ju (G);;u (G)exp -eu, r- r 

for every L' holds with probability bigger than 1- exp( -c~-j-I n). This proves the Claim. 
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Now we shall examine intersections of chosen k-gons. For a system 'J{ of k-gons let 
c('J{) denote the number of pairs K 1

, K 2 E J{ such that K 1 n K 2 ~ 0. Then the expectation 

. E( c(:K)) =(I+ o(l)) ( :) pn' ( u,n2k-r) c:-r) 2 

I+ o(l) ( k) 2 2 r:OS: pu,e n,
2 r 

and thus 

Prob( c(:K):os:~(pu;e 2 n')(:) ~~(l+o(I)). 
According to ( 4) we have that 

I KYJf" K I ~ ( :) pnr(l + o(l)- (I+ 5) exp( -ure)) 

holds with probability bigger than 1-exp(-c3 n') for n ~ n(5). As (4) holds for any 5 > 0 
and n ~ n(5), we can assume that 

Thus we have for n sufficiently large 

2 2 r3(k)
c(:K) 4 r pure n 

:-:-'-:------'---:-:OS:-:-:------'-...:,_______ 

I U Kl (k) r ( CTre 
kEJf" pn (I+o(l)-exp -u,e)-

r 10 
3 2 24CT riO 

2 2 < 2u,e, (8)
CTre CTre

o(l)+u e ----
r 2 10 

with probability at least 10 + o(l)). Combining (4), (5) and (8) we get that there exists 
XE:K satisfying (a), (b) and (c). 

LEMMA 2. Let G = ( ( V;) ~= 1 , E) be a k-partite r-graph satisfying assumptions ofLemma 
1. Then there exists a system Y' of k-gons of G such that 

(a) I U S I= IEI(I -o(I)) 
SEY 

(k)-l
(b) WI :os: lEI , 0 +o(l)). 

PROOF. Let 5 ~ 0 be a given real. We will show that there exists (provided n =I Vd = 
· · ·=I Vkl is sufficiently large) a system of k-gons of G which 

contains all but at most 5/2IEI edges (9) 

and such that 

( 10) 
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We shall construct our system g inductively. We shall also construct an auxiliary sequence 
G0 , G 1, ••• , G, of r-graphs such that E ( G0 ) :::::> E ( G 1) :::::> • • • :::::> E ( G,) ( t will be specified 
later). Set G0 = G and e = ( 5I 40',). According to Lemma I there exists a system X0 = 'J{ 
of k-gons of G0 with the properties of Lemma l. Suppose that we have constructed 
Gj = ( ( V;) ~= Ej), Ej c E and a system 9j of k-gons, covering edges of E - Ej so that1 , 

(a) O'L( q) - 0'1 exp [ -O',ej ( ( :) -C))] nk-
1 for every 

L complete in q, k> ILl= I~ k, 

(b) p1 ( Gj)- p exp( -O',ej)n' for every IE [{1, 2, ... , k}]' 

(c) 19'11 « (I+~) IE(~r 

Then, according to Lemma I, we can select a system 'J0 of k-gons from Gj such that 
if we put Gj+l = q-edges of all selected k-gons the following holds: 

1(a') O'L( q+1)- 0'1nk- exp [- eO',(j + I) ( ( :) -C))] for any L complete in q+ ~> k > 

ILl=[~ r, 
(b') p1 (Gj+ 1)-pn'exp(-w,(j+l)) for any IE[{l,2, ... ,k}]'. 

Moreover, we have 

I{{K 1 ,K2},K\K2 E'J0,K 1 nK2 'i'0}1~20',el U Kl. 
KE:Xj 

If we choose for each couple {K 1, K 2}, K 1
, K 2 E'J0, K 1 n K 2 'i' 0 at least one of its elements 

and delete all such k-gons from 'J0 we get a system of at least 

pairwise disjoint k-gons covering at most IUKEXj Kl edges. Thus we get 

Set 9J+ 1 = 9j u 'J0; as 9J+ 1 covers clearly all edges of E- Ej+l we get that 

(c') 19J+d=Wji+I'J01 

"' (I+~) IE(~)'I+ (~) (~ +2u,•e))I.Yx/I 

( 5) IE-Ejl I ( 5)
< 1+2 (:) + (:) 1+2 IEj-Ej+d 
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Set t = fl/ O"rE In 2/ O" l and repeat this procedure t-times. The system g = Y, covers all 
edges of E-E, and as IE,I~exp(-O"ret)IEI~(B/2)IEI we get that (9) holds. Moreover 
we have 

i'f,l ~ ( 1+~) IE(:)'I ~(1+~) (:) 
and thus (10) holds as well. 

LEMMA 3. Let p > k > r be given positive integers. Let At. A 2 , ••• , AP be pairwise disjoint 
sets of the same (large) cardinality n. Then there exists a decomposition 

[{AJf=tr = U{Ej, 1 E [{1, 2, ... , Pltl ( 11) 

such that for every J, J' E [{1, 2, ... , k} ]P,J ~ 1' 
(a) E1 n Er ~ 0, 
({3) E1 c [{A;}iE1 ]', and the r-graph H(J) defined by V(H(J)) = UiEJAi, E(H(J)) = E1 

satisfies 

(y) PI(H(J))-! nr, 
' t 

forevery IE[J]', 

(B) O"L(H(J))-0"1nk-t, for any L complete 

(1) (;)-(~) 
O"t = t and k ~ ILl = I~ r, 

where 

=(p- r)t k .-r 

PRooF. For every e E [ { A;}f= 1]' let X (e) be the set of all k-subsets J of {1, 2, ... , p} 
with the property that {i; Ai n e ~ 0} c J. Clearly IX( e )I= t. To every e E [ {A;}f= 1]' choose 
independently on all other choices an element cfJ (e) of X (e). For every J E [ { 1, 2, ... , p}]k 
let H(J) be a random r-graph defined by 

V(H(J)) = U Ai 

Obviously 
(12) 

yields a partition satisfying (a) and ({3). We show that with probability 1-o(l) the 
partition (12) satisfies ( y) and (B) as well. Let L, ILl= I< k be a fixed subset of uiEJAi 
such that ILn Ail~ 1 for every i EJ. Let A{ denote the event that Lis complete subset 
of H(J) and for v E A4l( i0 EJ- {i; L n A~ 0}) let BL{vl denote the event that 

[Lu{v}]' -[L]' c H(J). 
Then 

Prob(BL{vJIAfJ = Prob(Biu{vl) =G) (k~,l, 
and these probabilities are independent for different v E Aio and fixed L and J. Thus, 
according to (3) we get that for fixed i0 , J, Land B> 0 

I ( 
1)(,~,) I 

l{vEA4l;[Lu{v}]r-[L]'EH(J)}- t n ~Bn (13) 
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holds with the probability smaller than exp( -c1n ), where c1 > 0 is independent on n. As 
there are only polynomially many (in n) choices for i0 , 1 and L (n is large and p, k, r, 8 > 0 
are fixed) we get that there exists c2 > 0( c2 < c1) such that the probability of the event that 
there is i0 , 1 and L such that holds is bounded by exp( -c2 n). Similarly one can show 
that there exists c3 > 0 such that the probability that 

IPT(H(1)) -~ n' I~ 8n' 

for some I and 1 is bounded by exp(- c3 n). Hence the partition satisfies ( y) and (8) 
with probability at least l- exp( -c3 n)- exp(-c2 n ). Thus for n sufficiently large there 
exists a decomposition satisfying (a), ({3) and 

(y') Ip1 (H(1)) -~ n' I< 8n', 

(8') ll{v E A;,; [Lu {v}]' -[L]' E H(1)}1 ~ (D C,',l I< 8 Gr,~,) n, (14) 

for any choice of I, 1, Land i0 • As (14) holds for any L, (Lis complete in H(1))1LI =I, 
r,;;;; I< k, we get by induction that L is contained in at least 

( 1)(~)-(~) (1)r.;::l<~,)(1- 8 )k-l t nk-1(1 - 8 )k-1 t nk-1 

and at most 

(I) <kJ-<'l
(l + 8 )k-l t ' ' nk-1 

k-gons of H(J). This together with ( y') and with the fact that 8 > 0 may be considered 
arbitrarily small yields ( y) and ( 8). 

PROOF OF THE THEOREM. Let 8 > 0 be positive real and k, r positive integers. Take 

Take large integer N (without loss of generality we shall suppose that N is divisible by 
p) and set n =NIp. Consider p pairwise disjoint sets A 1, A 2 , ••• , AP ofthe same cardinality 
n. Take the decomposition (the existence of which is ensured by Lemma 3) 

[{AJf~tJ' = U{E,; 1 E [{I, 2, ... 'p}t} 

Thus for each 1 E[I, 2, ... ,p}t we have that the r-graph H(J) = ((Aj)jEl• E,) satisfies 
the assumptions of Lemma 2. Hence we get, that for N ~ N (8, k, r) there exists a system 
Y'(1) of k-gons such that 

(l) 

and 

(2) 
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To every from at most ( l>/8 ( ~)) IE1 1 uncovered edges e choose a k-subsetofUjEJ Ai which 

contains e and let v1 be a set consisting ofall k-gons of Y(J) and all chosen k-sets. We have 

IE] I ( 1+D IE] I~ IE] I ( i)) 
lv1l~ (~) + (~) = (~) 1+4 · 

The set v = U{vb J E[{1, 2, ... , p}t} is a system of at most 

k-sets (for the last inequality we used again that n is large) having the property that any 
eE[{AJf~ 1 J' is contained in some element of v. Now we examine elements of [A]'
[{AJf~1]'(A=U~~~ AJ. There are at most 

of them. For each such r-set e choose an k-set (subset of A) that contains e. This gives 
at most 

new k-sets. After adding all such k-sets to v we get an r-dense system 3P of k-sets of 
U~~ 1Ai such that 
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