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Abstract The phenomenon of digital computation is explained (often differently) in
computer science, computer engineering and more broadly in cognitive science. Although
the semantics and implications of malfunctions have received attention in the philosophy
of biology and philosophy of technology, errors in computational systems remain of
interest only to computer science. Miscomputation has not gotten the philosophical
attention it deserves. Our paper fills this gap by offering a taxonomy of miscomputations.
This taxonomy is underpinned by a conceptual analysis of the design and implementation
of conventional computational systems at various levels of abstraction. It shows that
‘malfunction’ as it is typically used in the philosophy of artefacts only represents one type
of miscomputation.
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1 Introduction

Despite the possibly definitive characterisation of computability offered by the Church-
Turing Thesis, the understanding of what is computable has undergone important
changes. The debate nowadays oscillates between mathematical computability and its
concrete counterpart. Does the definition of an algorithm (viewed as a stepwise solution
for some computational problem) square with, say, the Turing Machine (TM) or any
other extensionally equivalent computational model? This revolves around the episte-
mic relation among four aspects of computability and physical computation.
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The purely abstract notion of a computable function and the problem domain;
The algorithm for solving the computational problem;

The transition from an algorithm to a program (in some systems); and

The physical execution of the program on some computational system.

L=

In what follows, we take computation to be the execution of algorithm(s)" and also rely
on an extensional characterisation of computation. We maintain that finite state automata,
pushdown automata, TMs, conventional digital computers and calculators—all compute.
As well, primitive Boolean gates (e.g. AND/OR/NOT gates) and some combinational
circuits, such as half adders and full adders, compute but only trivially. If we adopt a broad
(and vague) definition of algorithm, such as ‘a well-defined sequence of steps that always
finishes and produces an answer’ (Hopcroft et al. 2001, p. 373), then it is easy to argue that
the aforementioned systems compute by executing algorithms. In the present discussion,
we shall only be concerned with miscomputations in systems of this type.

Whilst computation has certainly received attention in the literature, surprisingly,
miscomputation still lacks a sound characterisation, despite its pervasiveness. One
exception in the philosophical literature is the mechanistic account of computation, in
the context of which Gualtiero Piccinini emphasises the importance of miscomputation
for any adequate account of physical computation (Piccinini 2007, p. 505). A more
recent exception in the literature is the instructional information processing account,
which gives reasons for the occurrence of computational errors in both trivial and
nontrivial computational systems (Fresco & Wolf unpublished). Insofar as physical
computational systems are susceptible to errors and verification methods have been
developed in computer science to either prevent or isolate such errors, they certainly
need to be addressed by any adequate account of computation.

Still, the characterisation of miscomputation offered by Piccinini is too narrow. He
characterises miscomputation as a kind of malfunction, that is, as an event in which
the computational system fails to fulfil its function. Piccinini lists many cases of
miscomputation, including a failure of a hardware component, a faulty interaction
between hardware and software, a mistake in computer design and a programming
error (Piccinini 2007, pp. 523-524). But, as we argue below, malfunction (what we
call operational malfunction in the context of our analysis) is only one source of
miscomputation. A mistake in computer design, for example should not be classified
as an operational malfunction, yet, it still counts as a miscomputation. The objective
of this paper is to offer a multi-layered analysis of miscomputation.

Already in 1950, Alan Turing made the following observations about ‘mistakes’ in
computational systems.

“We may call [... these two types of mistake] ‘errors of functioning” and ‘errors of
conclusion’. Errors of functioning are due to some mechanical or electrical fault
which causes the machine to behave otherwise than it was designed to do. In
philosophical discussions one likes to ignore the possibility of such errors; one is

! This characterisation is not unproblematic. For one thing, the precise notion of algorithm remains unclear
and is still debated in theoretical computer science and philosophy of computer science. The first author
discusses this problem elsewhere and proposes an alternative account of computation as instructional
information processing (Fresco & Wolf unpublished).
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Miscomputation

therefore discussing ‘abstract machines’. These abstract machines are mathematical
fictions rather than physical objects. By definition they are incapable of errors of
functioning. In this sense we can truly say that ‘machines can never make mis-
takes’. Errors of conclusion can only arise when some meaning is attached to the
output signals from the machine. [...] When a false proposition is typed we say that
the machine has committed an error of conclusion. There is clearly no reason at all
for saying that a machine cannot make this kind of mistake.” (Turing 1950, p. 449).

Turing’s errors of functioning and errors of conclusion are examined in our
analysis at a finer level of granularity. We argue that a computational system
can only make an error of functioning (i.e. an operational malfunction), yet, to
observe that, the analysis of errors has to proceed at different levels of
abstraction (LoAs). The different notions of computational errors, such as
‘bugs’, ‘malfunctions’, ‘failures’ or ‘mistakes’, are typically based on some
common sense characterisation and they lack any precision. It is, therefore,
important to distinguish the different notions and associated meanings in com-
puter science and computational practice.

The paper is organised as follows. Section 2 briefly discusses the relation between
miscomputation and malfunction of artefacts. In Section 3, we give some paradig-
matic examples of miscomputation in designed systems and sketch an initial charac-
terisation of miscomputation. In Section 4, we discuss three LoAs pertaining to the
design of digital computational systems: the functional specification of the system,
the system’s design specification and the algorithm design. In Section 5, a distinction
is made between algorithm implementation in software and in hardware. Section 6
describes the lowest LoA” where some miscomputation is bound to occur: the
execution of algorithms in physical systems. In Section 7, we offer a taxonomy of the
miscomputations discussed in the paper throughout the various LoAs. Section 8 con-
cludes the paper.

2 Malfunction of Artefacts

Computational systems are different from other technological artefacts due to the
tension that exists in the former case between abstract and concrete. Because of the
formal and technological dimensions of computational systems, the task of analysing
such systems is a multi-layered enterprise. Whilst some attention has been given to
the ontology of computational objects (Turner 2013) in philosophy of computer
science (Turner and Eden 2011), the methodology of their explanation has not yet
been sufficiently investigated. The contribution of our paper hinges on two important
philosophical debates. On the one hand, there is a long tradition of philosophical
analysis of explanation of scientific practice (cf. Hempel 1965; Kitcher 1989;
Strevens 2008; Woodward 2005). On the other hand, there has been an ongoing
debate about malfunction in biological systems versus in human-made artefacts (cf.
Franssen 2006; Millikan 1989; Neander 1995).

2 It should be noted that, strictly, the ‘lowest’ LoA we analyse here is not the last one. The analysis can
proceed at even lower level, such as at the quantum-physical level.
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Whilst the first debate is interesting from a methodological perspective, the second
focuses on the ontology of functional systems. Our taxonomy also acts as a bridge
between these two debates. Abstract computational systems are susceptible to ‘de-
sign’ errors and physical computational systems are subject to physical noise and are,
thus, prone to a different type of errors (namely, operational malfunction). From the
methodological perspective, the taxonomy honours the practice of computer science,
which is structured according to different LoAs.

The distinction between errors of functioning and errors of design (Turing’s
errors of conclusion) is also present in the philosophy of artefacts. However, the
difference in nature between errors of functioning and errors of design is clearer
in the context of computational systems, and it is easier to observe why opera-
tional malfunction only applies to a narrow category of errors. Analogously to
computational systems that can fail to compute correctly, artefacts, in general,
can fail to perform their functions for two reasons. One is indeed malfunction
proper (as discussed later in the paper), but the other is a functional failure due
to design mistakes. The ICE-theory® offers one of the most well developed
accounts of technical functions including an analysis of artefact malfunctions.
On the one hand, technical malfunctioning is said to come in degrees, ‘from
minor and major defects to outright failure’ (Houkes and Vermaas 2010, p. 103).
Accordingly, a basic distinction is drawn between failing to operate as per
design and failing to be usable. On the other hand, another important distinction
is drawn between token- and fype- malfunctioning. The latter requires again an
appeal to design (e.g. describing all light bulbs of a type as malfunctioning, since
they all consume more energy than they should; (ibid)).

The evaluation of an artefact malfunction, as in the case of a miscomputation, requires
an appeal to the design of the artefact. The ICE-theory, for example, requires an
account of what it means for the artefact to have the capacity to function, which is
distinguished from the ability to exercise such function (Houkes and Vermaas 2010,
pp. 106-108). The former property is typically defined by appeal to design, whilst the
latter is defined purely in terms of errors of functioning (to use Turing’s terminology
again). In Jespersen and Carrara (2011, p. 120), it is argued that, on the design view,
‘an artefact is an F if, and only if, it was designed (hence intended) to function as an
F, irrespective of its capacity to function as one’. The design view, which squares
roughly with etiological theories of function, embeds a subsective understanding of
the semantics of malfunctioning. On this view, ‘[a] malfunctioning F retains its proper
function as an F, but forfeits its capacity to function as an F’ (ibid).

‘Malfunction’ has, of course, deep roots in philosophy of biology as well, for
naturally evolving organisms are also error-prone. Any adequate theory of the
evolutionary source of a (teleological) function has to account for the possibility of
malfunction (Perlman 2010, p. 54). Whether any insights from philosophy of tech-
nology about function and malfunction can be extrapolated to philosophy of biology
remains an open question, on which we remain neutral here. The debate about the

? “ICE’ theory stands for Intentional, Causal-role, Evolutionist function theory. For more details on this
theory, see Houkes and Vermaas (2010).
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nature of biological function between the Selectionist who relates it to the history and
evolutionary selection of the system concerned and the Systematicist who relates it to
the actual causal role it plays for the system, remains unsettled (Perlman 2010, p. 53).
The ensuing discussion focuses on the analysis of errors in computational systems.

3 Miscomputation in Designed Systems

We begin our analysis of miscomputation proper by considering an example. Suppose
that under normal circumstances a computational system S performs the computa-
tional step C,; at time T, on input I; producing output O;, which feeds in as input to
the next computational step C, at T, producing output O, at T5. Let us further assume
that an operational malfunction (at the hardware level) occurs, and yet S produces
output O, at Ts. S performs C; at T; as before, but it then malfunctions and performs
C; (instead of C,) at T, on O, while still producing the same output O, at T;. This is
analogous to a two-step deductive argument (P—R—Q), where the first step (P—R)
is valid. The second step (R—Q) is invalid and yet the overall argument (P—Q) is
valid. Although the final outcome is the same as the intended one (when it functions
properly), we would still say that S miscomputed (Fresco 2012).

This example shows how computation requires some notion of purpose in order to
distinguish a proper computation from a miscomputation. A computational system
can be said fo act for a purpose according to its design. When a system fails to
accomplish the purpose for which it was designed, a miscomputation can be identi-
fied. In the next section, the notion of purpose is considered explicitly as a defining
element of specifications of computational systems.

But first, let us turn to some more examples of miscomputations. Consider the
famous Y2K bug, which was the result of the common practice (before the year 2000)
of abbreviating a four-digit representation of a year to two digits. A main reason for
representing years as two digits was to conserve memory space. It was not clear whether
the increment of year=99 to year=00 would be recognised by computational systems as
1900 or 2000. This problem was not limited just to software-based systems.

Another example is the famous 1994 Pentium FDIV bug. This microprocessor bug
was caused by an error in a lookup table that was a part of the chip’s hardware
floating point divide unit. This bug was only triggered upon certain input data and the
degree of inaccuracy of the result delivered depended upon the input data and the
specific instruction involved (Intel 2004). Importantly, the cause of the bug was an
error in a script that downloaded some quotient digit values into a hardware lookup
table. That error resulted in a few lookup entries being omitted from that table.

Let us now consider the following two cases. The first one is an algorithm for
multiplying two positive natural numbers.

1 Read the values of X and Y.

2 Product=—1.//—1 represents illegal input

3 If both X and Yare positive integers: product=X*Y.
4 Return product.

Code excerpt 1 An algorithm that multiplies two positive natural numbers.

@ Springer



N. Fresco, G. Primiero

Let us further assume that this algorithm is implemented in the Java programming
language as follows.

public static int computeProduct(int factorl, int factor2) {
int product = -1; // the value -1 represents illegal input
if(factorl > 0 && factor2 > 0){

product = factorl* factor2;

}

return product;

}

Code excerpt 2 An implementation of the multiplication algorithm above in Java.

Whilst the algorithm for multiplying the two factors has no restriction of the result
stored in Product, the program implementation of product in Java has an upper bound
of 2°'-1.* If the program is executed and the calculated product exceeds this value, it
will not produce the expected output.

In which sense do the above examples qualify as miscomputations? We consider
Piccinini's definition of a miscomputation: ‘[a] mechanism m miscomputes just in
case m is computing a function f on input i, f{i)=0;, m outputs 0,, and 0,70,
(Piccinini 2007, p. 505). We note that this definition cannot be correct for all
concrete computations. For a computational system may produce the correct output
fortuitously as a result of some hardware malfunction. The first example discussed
above shows that a computational system S produces the output O, despite a
hardware malfunction. S produces the same output that would have been produced
had it not malfunctioned. However, O, is produced by following an incorrect
computational step (compared with the specification of S that we discuss in the
following section). If we take f{(I;)=0,, then S miscomputes and still gives the
correct output O,. This, we believe, shows why it is important to not only consider
errors at the appropriate LoA, but also to consider other LoAs for determining
whether a particular scenario is a miscomputation or not. The taxonomy that is
offered below fulfils this task.

4 Purpose, Specification and Algorithm Design

‘The complexity of many contemporary computational systems irrespective of
their ontological nature, demands that they be treated as physical systems’
(Turner 2011, p. 148, italics added). It is not a logical impossibility to verify
the correctness of a (complex) computational system but a practical one: the
more complex the system is, the less feasible it is to determine its correctness
(or ensure the lack of any miscomputation in principle). Whatever the method

* See http://docs.oracle.com/javase/7/docs/api/java/lang/Integerhtm#MAX_VALUE for details.
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of verification is (in abstract or physical systems), in order to determine whether a
certain operation of the system is incorrect, some correctness criterion (or criteria) is
required. Determining whether an artificial system miscomputes is certainly easier
than determining it for a natural computational system (whatever ‘natural compu-
tational system’ means precisely). At least in the former case, we can refer to its
purpose and specification.

Whether or not some system performs the correct computation can be established
objectively by examining its functional structure or design (below, we make a finer
distinction between the two). It is well known that the problem of whether there exists
a design, which satisfies a given set of functional requirements, is, in general,
undecidable. This problem is akin to that of finding a proof for a given sentence in
first order logic. On the other hand, the problem of verifying the correctness of a
particular design (ex post facto) against a given requirements specification is decid-
able. The undecidability of the first problem exceeds the scope of this paper. To a first
approximation, we stipulate that a system miscomputes when it does not comply with
the principles made explicit by its specification(s).

Specifications of computational systems have a normative function that is central
for determining the correct or wrong behaviour of these systems. ‘[I]t is the act of
taking a definition to have normative force over the construction of an artefact that
turns a mere definition into a specification’ (Turner 2011, p. 140, italics added).
Arguably, ‘[w]hether a [computational system] malfunctions is not a property of the
[system] itself but is determined by its specification’ (Turner 2011, p. 141, italics
added). But, as we argue below, it is only errors of conclusion that violate the
normative value of specifications. Errors of functioning (i.e. operational
malfunctions), on the other hand, do not violate the norms set by the specification.
They are the result of noise. This reinforces the importance of Turing’s distinction
between these two types of computational errors.

The characterisation of miscomputation relies on another relevant distinction that
should be made in the context of purpose, namely between internal and external
teleology. Objects that have some immanent property that makes them goal-directed
can be said to be internally teleological. If an object has some goal assigned to it by
some goal-conceiving agent (e.g. its designer), then it is externally teleological
(Mahner and Bunge 1997, p. 368). Accordingly, a human-made artefact has an
externally assigned purpose, or in other words, a purpose-by-design. Yet, it seems
excessive to say that a TM only has a purpose as long as there is a purpose-attributing
agent. Consider the following claim. ‘{A] computer on a dumping-ground has no
purpose [...] whatsoever, although [there may exist] somebody who retrieves it from
there and [...] is able to rethink the intentions of its designer, e.g. by examining its
structure’ (Mahner and Bunge 1997, p. 369). Once its purpose has been built in into
its structure the goal of the TM remains unchanged even in the absence of any
purpose-attributing agent. A specific-purpose TM is always directed to attaining a
specific goal, namely, the computation of some function (for example, f(n)=n+1). For
a similar reason, a specific-purpose computer, which was designed to compute the
successor function, but somehow produces the output (n-1) for the input (neN"), is
said to miscompute rather than just serve some other purpose.

For the present discussion, we stipulate that the purpose of a computational system
is determined by its design as it is reflected in its internal structure. Since the focus of
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this paper is ‘conventional’ (rather than natural) computational systems, we adopt the
notion of purpose by design, and, hence, characterise a computational system as
externally teleological. When the analysis of computational systems is extended to
apply to the computational theory of mind, ‘purpose’ is problematic, but this need not
concern us at present.

We now turn to the requirements specification of a computational system that is the
highest LoA® where the computational problem and problem domain are defined. We
refer to this level as the functional specification level (FSL). In the IT industry, a
software specification (referred to as software requirements specification (SRS)) pro-
vides a complete description of the expected behaviour of the computational system to
be developed. An SRS specifies what the system is supposed to do functionally.
However, it may also specify some non-functional requirements, such as the system’s
hardware, some possible interactions with other systems, design constraints that are
imposed on the implementation of the system (e.g. policies for database integrity,
resource limits, etc.) or performance constraints (e.g. the speed, response time and
availability of various software functions) (IEEE Computer Society 1998).

Whilst the satisfaction of functional requirements by the corresponding implemen-
tation is a crucial feature of both hardware and software verification, the process of
specification has typically been done by producing a natural language description of a
set of functional requirements. This introduces ambiguity that can lead to
unverifiability, due to the lack of a standard machine-executable representation.
The use of specification languages is common in computer science for properly
describing the purpose and conduct of a system at a very general LoA. These
languages are typically non-executable sets of description patterns for the properties
and actions the system is supposed to have and be able to perform. Data and functions
are generally translated into properties (e.g. using abstract state machines, or alge-
braically in Common Algebraic Specification Language, or in a model-theoretic
notation using the Vienna Development Method or set-theoretically in Z, which is
roughly based on the Zermelo—Fraenkel axioms for set theory).®

Although a specification does not (typically) specify the algorithm design of the
system in question, it does limit the possible number of algorithm designs. In some
cases, the functional requirements of a specification may also include processing
requirements (indicating the computational steps of the system). But in the most
general sense, these specifications define the system’s input and output requirements.
Thus, even if the processing requirements are not defined explicitly, the possible set
of algorithms is constrained by the extension of the <permitted input, expected
output> pairs defined.” A specification defines the problem(s) to be solved, the set
of permitted inputs and expected outputs (pre- and post-conditions of the system), as
well as supporting assumptions regarding the system to be designed for solving the
problem(s) in question. The purpose of the system is to solve this problem under the
given assumptions.

3 A similar caveat applies here as in footnote 2.

® For an overview of the logics of many of these languages, see, for example, Bjorner and Henson (2008).
7 Formally, the requirement for the correctness of the permitted input is expressed by a pairwise disjoint
union partition of the input domain in (1) standard domain, (2) admitted exceptional domain, (3) failure
domain and (4) unexpected domain. The correctness of the expected output domain is ensured by
expressing (3) and (4) as empty domains as a precondition of the system.
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The more fine-grained specification (often referred to as a system design descrip-
tion (SDD), in the IT industry) describes (at a high level) what informational states
the system accesses and possibly by which instructional states it does so. We refer to
this level as the design specification level (DSL). A design specification reflects a
conceptualisation of the system under design that embodies its essential characteristics
and demonstrates a means to fulfil the system’s requirements (IEEE Computer Society
2009). The objective of a design view, which guides the SDD, is to address design
constraints pertaining to the relevant system’s requirements. For an SDD to be deemed
correct, the complete set of design constraints needs to be addressed, and for it to be
valid there should be no conflicts among the design elements. This type of specification
is more than a stipulative definition of the system—it is a functional definition of the
system to a varying degree of accuracy. The more general the specification is (e.g. listing
only a few broad requirements), the less constrained the algorithm is.

At the FSL, only the intention(s) of the producer(s) of the (requirements) specifi-
cation can be considered. For convenience, we refer to this producer as the Architect,
and to the system designer as the System Designer hereinafter. This means that the
inevitable gap between the FSL and DSL leaves much room for error creep already at
the DSL. In this sense, the general criterion of correctness seems to be functionality-
centric: ‘make the system do what you want it to do’ (Smith 1996, p. 416). At the
FSL, the conceived functionality is simply specified by way of incomplete conditions
that the system should satisfy to produce a specific operation.

When considering an algorithm design, the functional design specifications can
only provide an informal measure of correctness by way of comparing the former
with the latter. We refer to the level of algorithm design as algorithm design level
(ADL) and to the agent(s) responsible for the algorithm design as the algorithm
designer (who may, but need not, be the same as the system designer). To establish a
formal criterion of correctness at the ADL, it is crucial to determine the model of
implementation under consideration. On the one hand, one can use a subset of
possible physical simulation patterns for verifying the given design (say, as specified
by an SDD). A different approach, which is less used in computer practice, is known
in theoretical computer science as formal methods. The specifications used in formal
methods are well-formed statements in mathematical logic and the formal verifica-
tions are deductions in that logic (cf. Meyer 1985 and Black et al. 1996 for a basic
introduction).

By way of example, consider the execution of a program p under a given set of
conditions (call it N, for ‘network’) for a certain specification (S) of program type
(p).® This can be formally expressed as the validity of the logical expression Ni-p:S.
Program termination formally corresponds to the correctness of the typing relation, in
the form of type-checking (i.e. given a program p, a specification S and a network N,

& Here, we implicitly refer to the proof-theoretical result known as Curry—Howard isomorphism establishing a
direct relation between computer programs and derivations. A valid contextual proof (or lambda term) is
isomorphic to a program correctly executable in a network. This result, also known as proofs-as-program
identity, is based on the interpretation of formulae and specifications as types, of which respectively proofs and
programs are instantiating elements. This formal identity allows treating a running program as formal objects,
whose properties—including correctness and termination—can be established by way of deductive methods.
The isomorphism originates in observations by Curry (1934), Curry et al. (1958) and Howard (1980). For a
systematic treatment of the issue, see Serensen and Urzyczyn (2006).

@ Springer



N. Fresco, G. Primiero

is NFp:S a derivable expression?) and type-inhabitation (i.e. given a program p, is
there a specification S in a network N such that N+p:S a derivable expression?). The
benefit of formal methods is that, in principle, they provide a means to establish
correctness for all possible inputs.

Our analysis shows that purpose is a conceptual, rather than an operational,
criterion of correctness. The abstract characterisation of the system is made more
concrete when a particular algorithm is designed according to the assumptions and
various constraints imposed by the specification(s). A procedural elaboration of the
system’s specification at lower LoAs (i.e. algorithm design and algorithm implemen-
tation) is crucial, because it directly provides a criterion of correctness in terms of the
right procedure(s) to be executed to produce the expected output (which as we have
seen is missing at the FSL). At the ADL, one has to refer to either practical
correctness of the system by using simulation patterns or a purely formal understand-
ing of logical correctness (i.e. by using formal methods). The result is that any list of
all possible miscomputation scenarios would be inherently incomplete. For verifica-
tion methods in the former case consist in generalisations from sample cases used in
simulations and in the latter case consist in abstraction from concrete aspects of the
physical implementation of the system. It seems inevitable then that the analysis of
miscomputation must be extended to the level of algorithm implementation (in either
hardware or software).

5 Implementation of Algorithms as Programs or in Hardware

In the section above, we have considered purpose, functional specification, design
specification and algorithm design—all leaving room for (different types of) error
creep. We turn next to consider the level of algorithm implementation (in either
software or hardware), to which we refer as AIL. The responsible agent is referred to
as the Engineer.

Some systems compute by virtue of executing programs: a stored-program com-
puter is an epitome of such a system. Other physical systems do not execute programs
(in the classical sense used in computer science) but compute nonetheless, such as
Boolean gates. Boolean gates qualify, by our lights, as trivial computational systems,
yet they do not require the simple algorithm that they execute to first be converted
into a program in some programming language. The algorithm of a conventional
AND-gate performs a logical conjunction operation on two input data. This algorithm
is executed directly by the physical gate that implements it. More complex combi-
national circuits, such as half and full adders, execute algorithms that are
implemented in hardware by using a network of primitive Boolean gates. In the
taxonomy of miscomputation that follows, we note that the implementation of
algorithms as programs adds another layer of potential errors that is not present as
such in the implementation of algorithms in hardware.

5.1 Software Implementation of Algorithms

The most common type of miscomputation in algorithm implementation in software
is compilation errors. A compiler translates the source program (i.e. the algorithm
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written in a specific programming language) into a low-level machine language of the
CPU (or into assembly language in some cases) that can then be executed by the
computational system. When a compilation error occurs, the compiler fails to compile
at least one part of the source program. The result is a failure of the compilation
process to produce the target machine code.

The first type of compile-time errors is syntactic. It is the result of a violation of the
syntax or grammatical rules of a programming language. Some compiled languages,
such as C, Java and Pascal, for example, require that programs explicitly state the data
type of any variable at either the time it is declared or first used. In some interpreted
languages data type checking is performed at run-time (as opposed to at compile-
time), thereby a variable can refer to a value of any type, thereby making data
type declarations unnecessary. Other compile-time errors occur when some part
of the source program does not conform to the syntactic rules of the program-
ming language. A simple, but common, example is a missing semicolon at the
end of some statement when the programming language specifies that each
statement must be terminated by a semicolon. Another example is calling an
undeclared variable or function. This error is typically the result of misspelling
the variable or function name.

The second type of compile-time errors is semantic. This type of errors is some-
times identified with logic errors (cf. Dale and Weems 2005, p. 237, 2008, p. 251),
but not always (cf. Dooley 2011, pp. 297-298; Feldman and Koffman 1999, p. 109;
Purdum 2012, p. 33; Shelly et al. 2006, pp. 76—77). Unlike syntax errors, semantic
errors may or may not be detected by the compiler depending on the particular
programming language and the compiler used. Semantic errors occur when the
program complies with the grammatical rules of the programming language, but the
context of some statement or expression is wrong. These errors violate the rules of
meaning of the programming language. If the compiler does not identify them, the
program will produce the wrong behaviour at runtime. Common examples of seman-
tic errors are the following.

* Using a variable though it has not been initialised (e.g. for(int 7; i<10; i++)
doSomething();). A Java compiler, for instance, should detect such an error
(Campione et al. 2001, p. 395).

» Passing the wrong number (or type) of parameters to a function;

* Adding a semicolon after the condition in an if or while statement in C/C++ or
Java (Dooley 2011, p. 182);

Unlike syntax errors, some semantic errors may often be the result of a faulty
algorithm design, and not just the result of wrongfully translating the algorithm into
some programming language. A paradigmatic example is a division by zero (Dale
and Weems 2005, p. 237). Yet, this is where the distinction between semantic and
logic errors is blurry.

The next type of miscomputation at the present LoA is /ogic errors. In the literature
they are characterised as ‘[errors that occur] when a program does not behave as
intended due to poor design or incorrect implementation of the design’ (Shelly et al.
2006, p. 77). This characterisation shows that this type of errors is hard to discern
from semantic errors. The distinction is indeed subtle. Whilst semantic errors ‘reflect
a bending of the syntax rules of the language [...,] logic errors [...] are the result of
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design errors the programmer makes when manipulating [...] data’ (Purdum 2012, p.
297). It is not clear that this is always the case. A program code, such as

if (x<0 && x>0){
doSomething();

}else {
doSomethingElse();

Code excerpt 3 A Java program code with an if-else conditional statement.

does not manipulate data, yet it qualifies as a logic error, for regardless of the value of
x, the statement ‘doSomething();” will never be executed when the program is
executed. We turn next to a brief discussion of errors in algorithm implementation
in hardware.

5.2 Hardware Implementation of Algorithms

As said above, some algorithms are implemented directly in hardware. Errors iden-
tified at the present LoA may be collectively referred to as hardware design faults.
Unlike software that is not subject to physical noise (e.g. radiation, friction, power
spikes and temperature influence), hardware components are extremely vulnerable to
it. As indicated by Moore’s law, the number of transistors on integrated circuits
increases as time progresses, thereby leading to the growing design complexity of
hardware circuits. When this complexity is augmented with random noise signals, the
possible types of miscomputation in hardware grow rapidly. There are many different
factors that may induce hardware errors at runtime, which must be taken into account
at the design phase. A complete analysis of all the possible types of hardware design
errors exceeds the scope of this paper. We only make some observations that
characterise hardware design, but do not typically apply in the case of algorithm
implementation in software.

The increasing demand for greater performance, complex functionality and expo-
nential reduction in size of computer hardware (in accordance with Moore’s law) has
resulted in the functional test generation being widely acknowledged as the bottleneck
of the hardware design phase. The main focus of this testing approach is to generate test
vectors that can verify the complex functionality of and interaction between multiple
design units. This is commonly done by generating millions of random test vector sets.
But this random test generation cannot guarantee the coverage of all possible function-
alities, particularly, in complex designs (Hari et al. 2008, p. 408). The traditional worst-
case design methodology becomes infeasible partly due to energy overhead and the
required a priori knowledge of all possible error sources at design time. As a result,
hardware design has to cater for the correction or mitigation of possible errors (May et al.
2008, p. 456). It is, therefore, hard to classify all noise-induced errors as faulty
requirement specification of the hardware system. But certainly some assumptions
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should be made at the level of system requirements, such as the expected temperature,
range of operation and voltage ranges.

Reliability and fault tolerance are crucial in hardware design. A common technique
for tolerating hardware faults is hardware redundancy by replicating all hardware
components that need to be introduced into the system to overcome possible opera-
tional malfunctions. These replicated components are superfluous if no faults occur,
and their removal does not diminish the system’s computing power in the absence of
faults (Williams et al. 2003, p. 126). Another technique is the introduction of
software redundancy that would otherwise not be needed in fault-free compu-
tation. Even computers that recover from faults mostly by hardware means use
programs to control fault recovery. The software recovery design depends on
the type of possible operational malfunction that is expected (Williams et al.
2003, p. 127).°

By way of closing this section, we note that, unlike the verification of algorithm
implementation in software, the ever increasing complexity of hardware circuits
makes it impractical, if not impossible, to verify every circuit on a breadboard.
Hardware description languages (e.g. Verilog, VHDL and SystemC) make possible
the verification of digital circuits’ functionality before fabricating them on a chip.
These languages play a role in providing both a descriptive and a normative reading
of the system in question, offering assertions of properties and cycle behaviours to be
satisfied by way of sequential or conditional expressions, enriched by temporal
operators. Properties in this context are concise, declarative and unambiguous spec-
ifications of the desired system behaviour that are used to guide the verification
process (IEEE Computer Society 2005). These languages allow the elimination of
most design bugs and use a very abstract level of description of algorithm imple-
mentation in hardware without choosing a specific fabrication technology (Palnitkar
2003). Still, it is practically impossible to anticipate all possible error conditions at
runtime. '’

6 Execution of Algorithms

In this section we discuss the algorithm execution level (hereafter, AEL). By the
execution of algorithms we mean the actual computational process in real-world
systems. Typically, any error that was introduced and not corrected at the higher
LoAs is bound to manifest itself at runtime under the appropriate conditions. Program
runtime errors are only detected when the program is executed on some physical
computational system. These are errors in either logic or arithmetic operations, but
they could also occur as the result of hardware failure. Typical examples are attempts

® Error handling has a proper counterpart in the logical design of programs that might fail to provide their
specified service (particularly in distributed architectures). This is typically done by providing rigorous
definitions of crucial concepts in design: the specification, the semantics of the program involved, its
correctness, the possible exceptions and the cases of fault, failure and error. At each LoA of the program’s
semantics, an appropriate handling procedure is defined. For a comprehensive analysis of exception
handling design, see Lee and Anderson (1990) and Buhr et al. (2002).

' For more on simulation-based and formal verification techniques of hardware design the reader is
referred to Lam (2005).
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to divide a number by 0, running out of memory (unlike a TM with an infinite tape),
invalid input (unexpected input data for which there is no defined operation in the
program) and software race conditions where separate computer processes depend on
some shared unsynchronised state.

These errors (if unhandled) cause the execution of a program to terminate
abnormally, because the operation attempted is impossible to carry out. Since
runtime errors can be caused either by the program, an input to the program or
a hardware failure, they can be anticipated but hard to avoid. Where such errors
can be anticipated, corrective steps should be taken by the Engineer to avoid
either an unexpected behaviour or an abnormal termination of the program. But
these errors cannot be completely avoided. Consider a program that expects to
read a file that was stored on the filesystem, only that the file is either
corrupted (e.g. due to some hardware failure) or nonexistent (e.g. another
process may have deleted it).

A hardware failure is simply a physical failure of some component in the
computer (that may be introduced by a faulty design). It can be a computational
component, such as an AND-gate, but it can just as well be a non-
computational component, such as a cooling system. Hardware components
typically contain error detection mechanisms that can detect when an error
condition exists. Hardware errors can be classified as either permanent or
transient as a function of their duration (Williams et al. 2003, p. 126).
Permanent errors are caused by solid failures of components. They are easier
to detect but typically require the use of more drastic correction techniques than
their counterparts. Transient errors are intermittent failures that prevent the
normal operation of a unit for only a short period of time, which is typically
not long enough to allow detection and testing as in the case of permanent
errors. Hardware errors can also be classified as either correctable or
uncorrectable errors (MSDN 2012). A correctable error is an error condition
that can be corrected by the hardware or software by the time that the operating
system is notified about its presence. An uncorrectable error is an error
condition that cannot be similarly corrected.

7 A Taxonomy of Miscomputations

The analysis presented above encompasses Turing’s errors of functioning and
errors of conclusion. Errors of conclusion can be viewed as the parent
category for various errors that may be induced at various LoAs starting with
FSL all the way ‘down’ to AIL (in either software or hardware), inclusive.
They are typically associated with agents, such as the Architect, the System
Designer, the Algorithm Designer or the Engineer who is/are responsible for
‘[attaching] some meaning [...] to the output signals from the machine’
(Turing 1950, p. 449). On the other hand, errors of functioning are confined
to operational malfunctions at AEL. The taxonomy provided below maps each
LoA with one of four different kinds of error: mistakes, failures, slips (see
Primiero 2013) and operational malfunctions. The taxonomy is summarised in
Table 1.
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Table 1 This table summarises the various LoAs discussed and the different possible errors

Agent LoA Conceptual Material Performable Error type
Architect FSL Contradicting Mistake
requirements
System DSL Invalid design Mistake
designer (mismatch
with the FSL)
System DSL Incomplete design Failure
designer (relative to the FSL)
Algorithm ADL Invalid routine Mistake
designer (a violation of

either well-
formedness or
consistency rules)

Algorithm ADL Incorrect routine Failure
designer

Engineer  AIL Syntax error Slip

Engineer  AIL Semantic error Slip

Engineer  AIL Logic error Mistake

Engineer  AIL (hardware) A wrong selection Mistake

of hardware (e.g.
using an AND-
gate for a logical

disjunction
operation)
Engineer  AIL (hardware) Wrong implementation Failure
(e.g. the 1994
Pentium FDIV bug)
N/A AEL Hardware and/ Operational
or software malfunction
error

In our analysis, we consider three categories of miscomputations.

1. Miscomputations due to the breaching of validity conditions'' are classified as
conceptual.

2. Miscomputations due to the breaching of correctness conditions'* are classified
as material.

" Validity conditions here refer to both validity and satisfiability criteria on the specification. The logical
validity of a specification is typically given by formulating the behavioural description of a program in
(propositional) conjunctive normal form. One can check whether for each disjunctive atom in the same
conjunct the negation is also available, and if so, then logical validity is proven. Otherwise, logical validity
cannot be proven. Satisfiability is the weaker logical counterpart that only requires one positive evaluation
for an atom. The class of propositional formulas in conjunctive normal form has a straightforward check for
syntactic validity, but a hard one for satisfiability.

12 Correctness conditions here refer to the relation of logical, total and partial correctness between the
program and its specification. Logical correctness refers strictly to the relation that the syntax of the
expression (program) bears to the construction rules allowed by the alphabet and language in question. An
incorrectly formulated program will not yield an output that conforms to its specification. More generally,
an algorithm is said to be totally correct, if it outputs the value required by its specification and halts. It is
said to be partially correct, if no claim is made about its termination.
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3 Miscomputations due to the breaching of physical conditions are classified as
performable.

The first and second categories of miscomputation apply to FSL ‘down’ to
AIL. At the FSL, a specification that contains two contradicting requirements
fails to satisfy validity conditions. For example, a global requirement might be
that the computational system continues operating even when database connec-
tivity is lost (say, by using the file system instead for temporary storage). But
another contradicting requirement pertaining to some critical subsystem would
be such that it implies a strong coupling with the database (thereby, failing to
operate in the absence of database connectivity). At the ADL, AIL (and
sometimes DSL), a validity condition concerns how the routine selected and
the task required match. For example, at the ADL and AIL, unbounded
recursion or unbounded while loops in real-time systems'® are the wrong fit
because of the mission criticality and response-time sensitivity of these systems.

Correctness conditions refer to the DSL, ADL and AIL. They refer to the structure
of the selected routine in consideration of the output to be generated. At the DSL,
consider, for example, an interaction among three components of the system, S/, S2
and S3. S1 (correctly) invokes some subroutine resulting in S2 being called to process
this request. Yet, if S3, which is the target consumer of the output generated by S2,
does not receive this output, the overall interaction is said to not satisfy correctness
conditions.

Atthe ADL, we may consider a simple TM, 7, that fails to satisfy some correctness
conditions. Given any tuple as input, 7 replaces it with a single ‘1’ on its tape as
output (i.e. 7 computes f(x; ... x,)=1). Its configuration would be defined by the
following set of six quadruples of the form (current state, symbol scanned, operation
and next state).

STATE1-READ1-WRITEO-STATEI
STATE1-READO-MOVERIGHT-STATE2
STATE2-READ1-WRITEO-STATELI
STATE2-READO-MOVERIGHT-STATE3
STATE3-READ1-WRITEO-STATE2
STATE3-READO-WRITE1-STATE4

Sk D=

STATE4 is the Halting State. Suppose that a second TM, 7°, whose config-
uration is given by a similar set of quadruples only that the fifth one does not
move the TM back to STATE2, but rather moves it directly forward to
STATE4. In other words, once 7° reaches STATE3 it scans a symbol, writes
either a ‘0’ or a ‘1’ and moves to the Halting state. 7” would still be valid, but
incorrect for computing f{x; ... x,)=1. After having deleted the first input
argument, 77 would either delete the first symbol of the possible second input
argument and halt (e.g. for ‘111’ only the first ‘1’ would be deleted) or find no
such input and write 1. 7° would not start the initial cycle again to delete all
entries in the second input argument.

'3 These are systems that are used to control and monitor physical processes and are rigidly constrained in
terms of their response time and/or the validity of their data.
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Similarly, at the AIL, the program has to be well formed, but correctness condi-
tions are not limited only to the grammatical rules of the particular programming
language. Consider the following example in Haskell pseudo-code:

let list 1 :=[2,3]

let list m := [4,5]
1++m:=[2,3,4,5]
inl:[l++m]=[1,2,3,4,5]

Code excerpt 6 A pseudo code in Haskell using the “++* and ‘:* operators.

The ++ operator appends one list to another and the : operator adds elements to the
head of a list. Hence, while the statement

inl:[[4,5]]=[2,3,4.5]
is a legal regular expression, the statement

in[2,3]:[4,5]=2

is illegal. For the latter attempts to add a list to integer elements that are not a list,
thereby resulting in a non-homogeneous object (see, e.g. Davie 1992, pp. 24-25).
This in turn induces a compile time error, due to a type mismatch between [Int] and a
list. We note that the Y2K bug discussed above falls in this category too. For, at the
AIL, the wrong representation of the year data was used.

We call mistakes those conceptual errors that may occur at the FSL, DSL, ADL and
AIL. They correspond to design-level errors, induced by either the System Designer’s
interpretation of the Architect's intention or the Engineer’s interpretation and translation
of the system’s design and/or purpose. If the purpose of the system were only to operate
under some circumstances, but not others, then it would be wrong to classify that system
as miscomputing under different circumstances when it does not produce the expected
result. Mistakes could occur due to a miscomprehension of the requirement(s) formu-
lation by the system designer, a semantic error due to a bad translation of algorithm
design into some programming language or a logic error due to a poor algorithm design.
They could also occur at the hardware implementation level, where they are introduced
at the level of hardware system design or by a wrong matching between software and
hardware.

We call failures those material errors occurring at the DSL, ADL and AIL. They
can occur at the DSL when a conceptually correct system requirements specification
is wrongly formulated as a system design specification. Consider a software system
intended to track and manage goods requests, goods production, their delivery and
payments. Assume that the system designer receives a valid and correct system
requirements specification. Let us further assume that the system design specification
produced is valid insofar as no contradictory actions are specified. However, the
design specification is not correct if, for example, no routines are included for the
tracking and management of payments. Failures can occur, at the ADL, when, say, a
correct and valid SDD is translated into a faulty algorithm (e.g. the TM T~ discussed
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above for computing the function f(x; ... x,,)=1). An example of a failure at the AIL is
the 1994 Pentium FDIV bug discussed above. The error in the script, which
downloaded some quotient digit values into a hardware lookup table, occurred whilst
implementing the algorithm directly on the chip.

The third category of performable miscomputations applies to the AEL only. We
call a computational system error under physical conditions an operational malfunc-
tion. Malfunctioning at the AEL corresponds simply to the well-known cases of
errors at runtime by either hardware failures or a combination of software and
hardware failures. This family of miscomputations can occur despite satisfying
validity and correctness conditions. Malfunctions may be introduced at higher
LoAs but manifest themselves at runtime. Consider the case of a CPU meltdown at
runtime. This meltdown may be the result of some non-computational component
failing to perform its designated operation (e.g. a breakdown of the cooling system
due to wear and tear or a faulty design). It can also be the result of the system’s
exposure to physical processes or forces, such as radiation, heat or friction. It can also
be induced by faulty hardware and/or software design, such as a poor choice of
physical material for electronic components that dissipate excessive heat in normal
operation or faulty software design incorrectly leading to a constant voltage feed in
some chip.

The last type of errors is a slip. Slips are not produced by a wrong categorisation, a
wrong system design, or a faulty translation of algorithm design at AIL. They apply
to either syntax or semantic errors that are induced at the level of algorithm imple-
mentation in software. Notice that any of these errors would be characterised as a slip,
only if it occurs notwithstanding the intention of the engineer to avoid blunders in
translating a valid and correct algorithm design into the corresponding code (i.e.
moving from ADL to AIL). The engineer fails to perform those tasks correctly,
although s/he knows the syntactic and semantic rules of the particular programming
language for implementing the algorithm design.

Is our taxonomy general enough to include abstract computational systems? TMs,
for example, are seen as perfect abstractions of conventional digital computers. It is
possible to argue that TMs, by definition, do not miscompute. But this claim is true,
only if by miscomputation we mean operational malfunction (or errors of function-
ing). TMs are analysable at the ADL and as such they are susceptible to any errors
that may be induced at that LoA or the ones above (i.e. FSL and DSL). A specific
TM, M, whose input tape is inscribed with a string s, which is not well formed, might
seem similar to the invalid input runtime error mentioned above. If M receives s as
input and halts, but not in accepting state, does it indeed miscompute for s? Hardly. M
computes correctly. It is simply undefined for computing on input s and so M halts
but does not accept s.

8 Conclusions
This paper provides a systematic taxonomy of miscomputations in conventional
computational systems. We have tracked errors that may be introduced at various

levels starting from the functional description of the system that defines its purpose
through algorithm design and implementation down to the lower level of physical
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computation. In this taxonomy we identify four types of miscomputation: mistakes,
slips, failures and operational malfunctions. Arguably, the first three types of
miscomputation are introduced at the levels above the physical computation. The
last one only occurs at the physical level (AEL).

The philosophical debate on malfunctioning thus far has been deprived of a
systematic way to account for different ways of explaining what it actually means
for a system to behave incorrectly. We believe that the present taxonomy is a
backdrop for further research, at least in the case of conventional computational
systems. How much this taxonomy extends to other human-made artefacts or bio-
logical systems remains to be established.

We note that it is only what we call ‘operational malfunction’ at AEL that may be
relevant in the case of computational theories of mind. For this type of
miscomputation need not presuppose the notion of external purpose. Another curious
result is that by reserving the notion of miscomputation to apply only to operational
malfunctions, the cause of the miscomputation is often the physical substrate that is
contingent to the computational process itself.
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