
Sparse Arrangements and the Number of Views ofPolyhedral Scenes�Mark de Bergy Dan Halperinz Mark H. Overmarsy Marc van KreveldyAbstractIn this paper we study several instances of the problem of determining the maximumnumber of topologically distinct two-dimensional images that three-dimensional scenescan induce. To bound this number, we investigate arrangements of curves and of sur-faces that have a certain sparseness property. Given a collection of n algebraic surfacepatches of constant maximumdegree in 3-space with the property that any vertical linestabs at most k of them, we show that the maximum combinatorial complexity of theentire arrangement that they induce is �(n2k). We extend this result to collectionsof hypersurfaces in 4-space and to collections of (d � 1)-simplices in d-space, for any�xed d. We show that this type of arrangements (sparse arrangements) is relevant tothe study of the maximum number of topologically di�erent views of a polyhedral ter-rain. Given a polyhedral terrain with n edges and vertices, we derive an upper boundO(n5 �2cplogn) on the maximumnumber of views of the terrain from in�nity, where c issome positive constant. Moreover, we show that this bound is almost tight in the worstcase, by introducing a lower bound construction inducing 
(n5�(n)) distinct views. Wealso analyze the case of perspective views, point to the potential role of sparse arrange-ments in obtaining a sharp bound for this case, and present a lower bound constructioninducing 
(n8�(n)) distinct views.For the number of views of a collection of k convex polyhedra with a total of n faces,we show a bound of O(n4k2) for views from in�nity and O(n6k3) for perspective views.We also present lower bound constructions for such scenes, with 
(n4 + n2k4) distinctviews from in�nity and 
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studied in the context of three-dimensional scene analysis and object recognition. Thecomplexity of an aspect graph is determined by the number of topologically di�erent viewsof a scene. To bound this number, we investigate arrangements of curves and of surfacesthat have a certain sparseness property.1.1 BackgroundAt a high level, the aspect-graph1 problem can be formulated as follows: Given a three-dimensional scene consisting of one or more three-dimensional objects, how many qualita-tively di�erent (see below for a precise de�nition) two-dimensional images can the scene in-duce and how e�ciently can one compute and represent a partitioning of the viewing space,i.e., the space of possible placements of the viewpoint, into maximal connected portionshaving the same view each. A concrete instance of the problem is speci�ed by determining(i) the type of objects in the scene; (ii) the viewing space; and (iii) what makes a pair ofimages of the scene (qualitatively) di�erent. Koenderink and van Doorn are credited forintroducing this concept [15],[16]. Since then, aspect graphs have attracted a lot of interest,mainly in the computer vision community, e.g., [5], [6], [14], [17], [24], [25]. We also mentionthe works of Plantinga and Dyer [19] and of Gigus et al. [11] that have a computationalgeometry avor.Here we give the basic terminology needed in the sequel. For a broader introduction anda survey of recent research on aspect graphs see, e.g., [4], from which we borrow most ofthe subsequent terminology. In this paper, we restrict ourselves to polyhedral scenes, whereevery face of an object is at and any induced image of an object is a straight line drawing.We also assume that the objects in the scene are opaque. We will consider two types ofviewing spaces. One type is the collection of views from in�nity which can be modeled bythe sphere of directions. Conceptually, we place a large sphere centered at the origin aroundour scene, and each point on the surface of the sphere represents the direction of view fromthat point towards the origin. For every direction, the view of the scene is the result ofan orthographic (parallel) projection of the visible portions of the objects in the scene in adirection opposite to the viewing direction onto a plane which is far from the scene and isorthogonal to the viewing direction. The second and more general viewing space is wherewe allow the viewing point to be anywhere in the 3D space of the scene, and a view froma point p is the perspective projection of the scene as seen from p. The perspective viewof a scene from a point p can be illustrated by considering an in�nitesimally small spherecentered at p, onto which the scene is projected.A �xed orthographic view of the scene can be regarded as a straight-edge planar subdi-vision consisting of faces, edges and vertices. As the viewing direction changes continuously,the view (i.e., the induced planar subdivision) changes continuously until we reach a crit-ical direction at which the subdivision undergoes a topological or combinatorial change:vertices, edges or faces newly appear or disappear. (In compliance with other work in thearea, we will use topological to refer to these type of changes.) The loci of critical directions1The term aspect graph is synonymous with characteristic views, viewing data and other similar terms.2



lie on curves on the sphere of directions that we will refer to as critical curves. Similarly,a �xed perspective view of the scene can be regarded as a subdivision of a sphere consist-ing of faces, circular-arc-edges and vertices. We consider two views to be the same if thetopological structure of their respective subdivisions is the same [20].We wish to partition the viewing space into maximal connected regions such that insideone region all the views are the same. For views from in�nity, we aim to partition thesphere of directions into maximal faces having the same view topologically (these will bereferred to as general viewpoints [4]), separated by critical curves, which represent accidentalviewpoints. (See Section 3 for a detailed discussion of these curves and the partitioning theyinduce.) For perspective views we aim to partition the entire space of the scene into maximalconnected 3D regions having the same view and separated by critical surfaces.The term aspect graph originates from a certain representation of the viewing space asa discrete graph where each node of the graph represents a maximal connected componentof the space having the same aspect (or view). Plantinga and Dyer [19] have shown thatthe maximum number of views of a convex polyhedron with n vertices is �(n2) for viewsfrom in�nity and �(n3) for perspective views. Later, it has been shown that for a generalpolyhedron, or more generally, for a collection of n non-intersecting triangles in space, themaximum number of views can be as high as �(n6) for orthographic views and �(n9) forperspective views [20]. Snoeyink [23] has shown that even if we restrict the objects to beaxis-parallel polyhedra, the bound for orthographic views remains �(n6).1.2 Summary of ResultsIn this paper we study the following instances of the aspect-graph problem, where betterbounds can be shown: (i) The case where the scene consists of a polyhedral terrain witha total of n edges; and (ii) the case where the scene consists of k convex polyhedra witha total of n edges. A polyhedral terrain is the graph of a piecewise-linear (polyhedral)continuous function z = F (x; y) de�ned over the entire xy-plane. Cole and Sharir [9]have studied a variety of visibility problems for polyhedral terrains, and showed that themaximum number of distinct views when the viewpoint moves along a �xed vertical line isconsiderably smaller than the number of distinct views when the viewpoint moves along aline in any other direction.To bound the overall number of views of a polyhedral terrain, we need additional ma-chinery and we consider a special type of arrangements. An arrangement of surfaces ind-space is the partitioning of d-space induced by a collection of surfaces. Arrangementsplay a central role in computational geometry, and the analysis of many geometric algo-rithms relies on the complexity of an arrangement or of portions of an arrangement (see,e.g., [10], [12]). The complexity of an arrangement of surfaces in 3-space, for example, isthe overall number of faces of dimensions 0; 1; 2 and 3 in the partitioning of space inducedby these surfaces. We obtain the following result which we believe to be of independentinterest (Proposition 2.3):Given a collection of n surface patches in three-dimensional space all algebraic3



of constant maximum degree and bounded by a small number (bounded by aconstant) of algebraic arcs of constant maximum degree, with the additionalproperty that every vertical line stabs at most k of the surface patches, k > 1,the arrangement induced by these surface patches has complexity �(n2k).This generalizes and improves a result by Sharir [22], who gives an O(n2k�(n=k)) bound forthe case of triangles2. We generalize the result even further to collections of hypersurfaces in4-space and collections of (d�1)-simplices in d-space with a low `vertical stabbing number'.Using an analogous result in the plane we show that the maximum number of views of aterrain with n vertices is O(n5 � 2cplogn) for views from in�nity, for some positive constantc. Furthermore, we show that this bound is almost tight in the worst case by presentinga polyhedral terrain with n edges that induces 
(n5�(n)) distinct orthographic views. Wethen turn to analyze the case of perspective views and point to a potential use of the resultfor sparse arrangement of surfaces in 3-space, to obtain a sharp bound for this case. Moreprecisely, we show that the bound on the number of perspective views of a terrain with nvertices is O((�(n))2n�4(n)) where �(n) is the maximum complexity of a certain family ofsegments de�ned relative to a terrain (see Section 3.2 for more details), and where �4(n) isa near-linear function related to Davenport-Schinzel sequences, �4(n) = �(n2�(n)) [2]. Wethen present a lower bound 
(n8�(n)) for this quantity. We also investigate arrangementsof k convex polyhedra having a total of n faces|where any line stabs at most 2k faces|andwe obtain an improved and tight bound �(nk2) on the maximum complexity of such anarrangement.Finally, we study another instance of the aspect-graph problem where the scene consistsof k opaque convex polyhedra having a total of n faces. In this case we show that thenumber of curves (or alternatively surfaces) determining the partitioning of the view spaceis only O(n2k) (instead of �(n3) in the general case) and we obtain a bound O(n4k2) on themaximum number of views from in�nity and O(n6k3) for perspective views. For this typeof scenes, we present constructions that induce 
(n4 + n2k4) distinct views from in�nityand 
(n6 + n3k6) views when the viewpoint can be anywhere in space.Two papers related to the study in this paper have recently been published. One paper,by Halperin and Sharir [13] uses part of the analysis given in Subsection 3.1 below incombination with new results to demonstrate the applicability of the main results of [13].In this sense, Theorem 3.2 below is a joint result of both studies. In another paper, Agarwaland Sharir [1] devise an alternative technique to bound the number of views of a polyhedralterrain. For orthographic views, their technique produces an upper bound that is inferiorto the bound given below. For perspective views they obtain a bound O(n8+") which isalmost tight in the worst case (as our lower bound construction in Subsection 3.2 shows),and is the best known (see also Remark 3.5 below).The paper is organized as follows: In Section 2 we derive a collection of combinatorialresults concerning sparse arrangements in two-, three- and higher dimensions. We then2Here and throughout the paper, �(n) is the extremely slowly growing functional inverse of Ackermann'sfunction. 4



apply some of these results, in Section 3, to obtain bounds on the maximum number ofviews of polyhedral terrains. In Section 4 we consider arrangements of convex polyhedra.In Section 5 we bound the maximum number of views of collections of convex polyhedra.Some concluding remarks and open problems are presented in Section 6.2 Arrangements of Surfaces with Low Vertical Stabbing Num-berThis section deals with arrangements of surfaces where any vertical line intersects only abounded size subset of the surfaces. In Subsection 2.1 we obtain several combinatorialresults for the two- and three-dimensional cases that we will be using in the next section.In Subsection 2.2, we extend these results to arrangements of hypersurfaces in 4-space andto arrangements of (d� 1)-simplices in d-space, for any �xed d.2.1 Combinatorial AnalysisWe start with the easier case of arrangements of curves in the plane and then proceed tohandle arrangements of surfaces in 3-space.Consider an arrangement of n simple curves in the plane, where a pair of curves intersectat most s times for some constant s. The maximum complexity of the entire arrangementin such a case is clearly �(n2). We are interested in arrangements of curves that have theadditional property that every vertical line intersects the curves in a total of at most kpoints.3 The following result has been previously obtained by several authors (we are awareof a simple and tight bound by Pach, and an almost tight bound by Sharir|both can befound in [22]). We present another simple proof that gives a tight bound. Later we will usea generalization of it for the three-dimensional case.Lemma 2.1 Given a collection of n Jordan arcs in the plane, where every pair intersect atmost a constant number of times and any vertical line stabs the arcs in a total of at most kpoints, then the maximum complexity, B(n; k), of the partitioning of the plane induced bythese curves is �(nk).Proof. Partition the plane into n=k vertical slabs such that each slab contains at most2k endpoints of the curves. Inside each slab we have at most 2k curves: We considerthe intersection of a curve with the vertical boundary of the slab as an endpoint; we thushave at most 4k potential endpoints at our disposal|2k inside the slab and 2k on itsboundaries, therefore we can \pay" for at most 2k curves. Hence, there are at most O(k2)intersection points inside each slab. The total number of intersection points is thereforen=k � O(k2) = O(nk). A bound on the maximum number of intersection points obviouslyserves as an (asymptotic) upper bound on the complexity of the arrangement.3Since for the two-dimensional case we do not require the curves to be algebraic of constant maximumdegree, the actual number of intersection points with the curves counts.5



The lower bound follows from the lower bound in Proposition 2.4 (presented below)with d = 2. 2Next, we consider arrangements of algebraic surface patches (2-manifolds with bound-ary) in three-dimensional space. We assume the surface patches that we deal with to bealgebraic of maximum degree b, where b is a small constant. Also, we assume that theboundary of each surface patch consists of a small constant number of algebraic curves, allof maximumdegree, say b too. There are a few ways to extend the two-dimensional problemto the three-dimensional case. A straightforward extension is the following:Lemma 2.2 Given a collection of n algebraic surface patches of constant maximum degreein 3-space such that any plane parallel to the yz plane intersects only k of them, then themaximum complexity, B0(n; k), of the entire arrangement induced by these surface patchesis �(nk2).But for our purposes (as will be discussed in the next section) we need a di�erentextension whose proof requires the use of a more powerful divide-and-conquer technique.Proposition 2.3 Given a collection of n algebraic surface patches of constant maximumdegree in three-dimensional space such that any vertical line stabs at most k of them, k > 1,then the maximum complexity, D(n; k), of the arrangement induced by these surface patchesis �(n2k).Proof. First we decompose each surface patch into a constant number of surface patches,with the property that any vertical line intersects any patch in at most one point. Wedenote the resulting collection of surface patches by S. Then we project the boundariesof the patches onto the xy-plane. This gives a set C of O(n) algebraic curves of constantmaximum degree (where the constant may be higher than the constant bounding the degreeof the original surfaces).Next, we use random sampling (see [8]) to control the divide-and-conquer process. Wechoose a random subset of curves R � C of size r � n, where each r-element is chosen withequal probability, and consider the arrangement A(R), which admits a vertical decompo-sition into m = O(r2) faces f1; f2; : : : ; fm. Let ni be the number of curves in C crossingthe face fi. From the analysis of Clarkson and Shor [8], it follows that for any �xed integer� � 0, the expected value ofPmi=1 n�i is O(r2(n=r)�). We choose a sample R of size r � n forwhich Pmi=1 n3i = O(n3=r). Consider one face fj in the decomposition of the arrangementA(R) and let S1 be the subset of surfaces of S whose projection onto the xy-plane fullycontains the face fj . Let S2 be the subset of surfaces of S for which the projection of their1D boundary crosses fj .By the assumption of low vertical stabbing number, we know that jS1j < O(k). Byde�nition jS2j = nj . Therefore, the complexity of the arrangement above the face fj isO((k + nj)3). Hence D(n; k) = O( mXi=1(k + ni)3) :6



Choosing r = dnk e leads to the desired boundD(n; k) = O(n2k):That the bound is tight follows from the lower bound in Proposition 2.4 with d = 3. 2Obviously, if k = 1, then the surfaces are pairwise disjoint and therefore the complexityof the entire arrangement is �(n). See also Remark 2.5 below.2.2 Extension to Higher DimensionsThe proof of the previous results relies on \good" partitioning schemes in (d�1)-dimensionalspace. Such partitionings are available for arrangements of simplices in any �xed dimensionand for arrangements of low-degree algebraic surfaces in 3-space.Proposition 2.4 Given a collection of n (d � 1)-simplices in Ed for a �xed d, such thatany vertical line (i.e., a line parallel to the Xd axis) stabs at most k of them, then thearrangement induced by these simplices has maximum complexity O(nd�1k). Furthermore,this bound is tight for k > d� 2.Proof. Project the simplices onto the hyperplane Xd = 0 and construct a (1=r)-cutting4of size O(rd�1) for the hyperplanes supporting the boundaries of the projections of thesimplices (see [18]). Taking r = dnk e we can bound the complexity Dd(n; k) of the entirearrangement as follows:Dd(n; k) = O(rd�1(k + n=r)d) = O(nd�1k):For the lower bound, construct a \grid" made of n (d� 2)-simplices on the hyperplaneXd = 0 that has complexity 
(nd�1). Extend each (d� 2)-simplex in the Xd direction intoa \long" (d� 1)-simplex. Finally, cut the resulting (d� 1)-simplices by additional k� d+1(d� 1)-simplices, all parallel to the hyperplane Xd = 0. See Figure 1 for an illustration ofthe construction in 3-space. (In the �gure we use, for convenience, rectangles rather thantriangles, but these can easily be replaced by triangles without a�ecting the lower bound.) 2Remark 2.5 The reason why the above lower bound holds only for k > d� 2 is that thegrid of the construction has edges each of which is the intersection of d�1 (d�1)-simplices.Consequently, the grid itself requires that the vertical stabbing number be at least d� 1.Proposition 2.6 Given a collection of n algebraic hypersurfaces of constant maximumdegree in four-dimensional space such that any vertical line (i.e., a line parallel to the X4axis) stabs at most k of them, the arrangement induced by these surfaces has complexityO(n3k �(nk )), where �(�) is an extremely slowly growing function.5 Moreover, for k > 2, the4Given a set S of n (d�1)-simplices in Ed, a (1=r)-cutting for S is a collection � of (possibly unbounded)closed d-simplices which together cover Ed and such that the interior of each simplex in � is intersected byat most nr (d� 1)-simplices of S. For more details, see, e.g., [18].5The function �(n) is de�ned in [7]: �(n) = 2�(n)c , where c is a constant depending on the degree of thesurfaces that are the projection of the original hypersurfaces onto the hyperplane X4 = 0.7



Figure 1: A three-dimensional arrangement with �(n2k) complexitycomplexity can be as large as 
(n3k).Proof. The proof is similar to the proof of Proposition 2.3, and it uses random samplingand the strati�cation scheme of Chazelle et al. [7]. The lower bound follows from the lowerbound of Proposition 2.4 for the case d = 4. 23 The Number of Views of Polyhedral TerrainsIn this section, we show how sparse arrangements are relevant to the analysis of the numberof views of polyhedral terrains. We obtain an upper bound on the maximum number ofviews of polyhedral terrains when viewed from in�nity, and we show that this bound isalmost tight in the worst case, by introducing a lower bound construction that almostachieves the upper bound. We also analyze the case of perspective views, and point to apotential role of sparse arrangements in obtaining a good bound for this case. Finally, wepresent a lower bound construction for perspective views.A polyhedral terrain is the graph of a piecewise-linear (polyhedral) continuous functionz = F (x; y) de�ned over the entire xy-plane. We assume that the graph has n edges. Sincethe projection of the terrain onto the xy-plane is a planar map, the number of vertices andfaces of the polyhedral terrain is O(n). Cole and Sharir [9] study a variety of visibilityproblems for polyhedral terrains. In particular, they consider the number of views of aterrain when the viewpoint is restricted to move along a given vertical line. We will beusing their result, which we now state (in a slightly modi�ed manner):Theorem 3.1 (Cole and Sharir [9]) The maximum number of di�erent views of a polyhedralterrain with n edges when the viewpoint moves along a given vertical line is O(n�4(n)), thatis O(n22�(n)).We extend this result to a larger view space|the space of views from in�nity. In the8



following subsection we handle the views from in�nity and in Subsection 3.2 we discussperspective views.3.1 Views from In�nityTo bound the number of views from in�nity we partition the sphere of directions into max-imal connected components such that the view from any two points inside one componentis topologically the same. Our goal is to obtain a bound on the maximum number of thesecomponents. The partitioning is induced by curves of three types (see [11] for a detailedstudy of these curves):I. A curve de�ned by the plane through a face of the terrain|this curve is a great circleon the sphere of directions which is the intersection with the plane through the centerof the sphere of directions that is parallel to the face.II. A curve de�ned by a vertex-edge pair of the terrain. It is also a great circle on thesphere of directions resulting from intersecting the sphere of directions with a planethrough the center that is parallel to the plane that passes through the vertex andthe edge.III. A curve describing the union of directions of lines that pass through the same threeedges of the terrain. More speci�cally, for a �xed triple of edges of the terrain, considerthe collection of lines that pass through these three edges. Translate all lines in thiscollection to contain the origin, and let � be the surface that is the union of thetranslated lines. The curve of type III is the intersection of � with the sphere ofdirections.By de�nition, there are O(n) curves of the �rst type, O(n2) curves of the second typeand O(n3) curves of the third type. These are all algebraic curves of low degree [11]. Animmediate, naive bound on the number of di�erent views is O(n6) which is the maximumnumber of faces in a partitioning of a plane (or a sphere) by O(n3) curves, each pair ofwhich does not intersect more than some constant number of times. But for a polyhedralterrain, we can obtain an improved bound.For our purposes we need a more re�ned analysis of the curves of type III. In order tobe able to use Theorem 3.1 in our case, we need to distinguish between visible and invisibleportions of curves of type III. We substitute each curve  = (e1; e2; e3) of type III de�ned bythe edges e1; e2; e3 of the terrain, by its maximal visible portions; a point on  is said to bevisible if the corresponding line that touches the three edges e1, e2, e3 either lies over theterrain or else penetrates the terrain only at points that lie further away from its contactswith the edges e1, e2, e3. In other words, for a point p on a curve  to be visible, we requirethe existence of a ray whose direction is opposite to the viewing direction represented by p,that touches e1, e2, and e3 but otherwise lies fully above the terrain. As is easily veri�ed,each visible portion of  is delimited either at an original endpoint of  or at a point whosecorresponding ray touches the terrain at four edges before penetrating the terrain.9



It has been recently shown [13] that for a terrain with n edges, the overall number ofsuch rays is at most O(n3 � 2cplogn), for some absolute positive constant c. In summary,the maximum number of maximal visible portions of critical curves of the third type isO(n3 � 2cplogn). (Indeed, part of the analysis in this subsection is used by Halperin andSharir [13] to demonstrate the applicability of the main results in [13].) We are now readyto prove the following:Theorem 3.2 The maximum number of topologically distinct views of a polyhedral terrainwith a total of n edges, when viewed from in�nity, isO(n4�4(n) � 2cplogn) = O(n5 � 2c0plogn) ;for a positive constant c0 (c0 slightly larger than c).Proof. We assume, without loss of generality, that the terrain has a minimum z-valuez = z0. We �x the center of the sphere of directions to lie on the plane z = z0 and so weare only interested in the upper hemisphere. It is not di�cult to see that in terms of viewsfrom in�nity, Theorem 3.1 can be rephrased to give the bound O(n�4(n)) on the maximumnumber of views when letting the viewpoint move along a �xed meridian on the sphere ofdirections. (Here, by a meridian, we refer to the portion of a great circle through the polesthat lies between the equator and the \north" pole.) This implies that as we move theviewpoint along the meridian, although there are O(n3 � 2cplogn) curves on the sphere, itdoes not cross more than O(n�4(n)) curves on its way. The adaptation of Lemma 2.1 fromthe planar case to our case is immediate, and therefore we may now employ Lemma 2.1where the total number of curves in this case is O(n3 � 2cplogn) and the \vertical" stabbingnumber is O(n�4(n)), and the bound follows. 2We now turn to discuss a lower bound for the number of orthographic views of a terrain.Our approach to designing lower bound constructions for the number of views consists ofbuilding a separate construction for every degree of freedom of the viewpoint such that when�xing one degree of freedom, all the views for the other degree(s) of freedom are attainable.Thus, the number of views of the whole construction is the product of the number of viewsfor each degree of freedom. (This approach will be further exempli�ed in Section 5.)Theorem 3.3 There exists a polyhedral terrain with n edges for which the number of dis-tinct orthographic views is 
(n5�(n)).Proof. For views from in�nity, we may regard our viewpoint as moving on the sphere ofdirections, that is, it has two degrees of freedom. Therefore, our construction consists of twosub-constructions. Since our construction will use viewpoints belonging to only a certainportion of the sphere of directions, we may think of our viewpoint being located at a certainarea far away from the scene, and therefore we can employ terms like nearer to or furtheraway from the viewpoint. 10



u
Figure 2: Construction A induces 
(n2�(n)) di�erent views when the viewpoint movesalong a meridianConstruction A for views that change when the viewpoint moves along a meridian onthe sphere of directions, we adapt from [9] (see Figure 2): We take n segments whose upperenvelope complexity is 
(n�(n)) (as in [26]). These segments are put on parallel verticalplanes and a thin wedge is drawn downwards from each of them. Further away from theviewpoint we construct a \hill" consisting of parallel horizontal slabs (i.e., the edges of thehill are parallel to the xy-plane). The upper envelope of the thin wedges is constructed suchthat when moving the viewpoint along a meridian, each view where a vertex of the upperenvelope coincides with an edge of the hill happens at a distinct point along the meridian.This can be achieved for example, by taking all the breakpoints of the upper envelope tolie very close to one horizontal line, so that when moving up along a meridian the last timea vertex of the upper envelope coincides with an edge e of the hill is before the �rst time avertex of the upper envelope coincides with the edge lying immediately below e on the hill.Thus, while moving along a meridian, we get 
(n2�(n)) di�erent views.Construction B is for views that change when the viewpoint moves along a parallel oflatitude (the intersection of a plane parallel to z = 0 with the sphere of directions) of thesphere. This construction is an adaptation of a part of a construction by Canny (reportedin [20]) for the lower bound for the number of views of arbitrary polyhedra. Far from theviewpoint we construct a hill similar to the hill in the construction above. See Figure 3. Infront of the hill, nearer to our viewpoint, we construct a collection of n pyramids in a rowwhich we denote by S. So far we have created a slanted grid|for a �xed view, a vertex ofthe grid is created by the intersection (of the projection) of a visible edge of a pyramid andan edge of the hill. Finally, farther from the grid and nearer to the viewpoint we construct acollection of n almost at prisms which we denote by S 0. When viewed from our viewpoint,the prisms of S 0 resemble wide rectangles, and every edge of a prism that extends from thehorizontal plane upwards is very steep, almost vertical. The distance between the adjacent11
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Figure 3: Construction B induces 
(n3) di�erent views when the viewpoint moves along aparallel of latitudequasi-vertical edges of two neighboring prisms is chosen to be very small. The distancesare chosen such that when we move the viewpoint on a parallel of latitude, we see all theintersection points of the grid through one interval between a pair of prisms of S 0, beforewe see any other intersection point of the grid through another interval between anotherpair of prisms of S 0. See Figure 4. Consider one such interval between a pair of prismsof S 0. The edges that de�ne this viewing \crack" are almost vertical, whereas the edgesof the pyramids have a smaller slope. As we move the viewpoint on a parallel of latitude,each vertex of the grid will coincide with the, say, left edge of the interval at a di�erentviewpoint, inducing 
(n2) di�erent views for one interval. Since there are 
(n) distinctintervals between adjacent prisms, we get 
(n3) distinct views when moving on a parallelof latitude.We next interpret the two constructions in terms of critical curves on the sphere ofdirections. Construction A induces 
(n2�(n)) views when the viewpoint moves along ameridian. More precisely, it is placed such that these changes will be similar for a familyof meridians, namely, there is a region of the sphere of directions where construction Ainduces a set of 
(n2�(n)) critical curves which are roughly parallel to the equator (or toany parallel of latitude). Similarly, construction B induces a set of 
(n3) critical curves thatare roughly parallel to a meridian. The two constructions are juxtaposed such that thesetwo sets of curves create a grid on the sphere of directions. Inside each two-dimensionalface of the grid we get a distinct view. Figure 5 shows the �nal construction.12



PvP 0Figure 4: A view where three edges are coincident at the point v: an edge of the hill, anedge of a pyramid P in S and an almost vertical edge of a prism P 0 in S 0
Figure 5: The overall construction inducing 
(n5�(n)) distinct orthographic viewsHow do we get the e�ect of roughly parallel critical curves in each of the constructions?Consider �rst construction A and speci�cally consider a vertex u in the upper envelope inthe view presented in Figure 2. The vertex u is the meeting point of the projection of twoedges e1 and e2 of the terrain. Because we are dealing with polyhedral terrains, these twoedges cannot coincide, but we can make them arbitrarily close to one another. Thus, if welook at the critical curve of type III induced by e1, e2 and an edge of the hill behind them,we get a curve that locally resembles an arc of a parallel of latitude (as if the simultaneousview of e1 and e2 is actually a view of a vertex of the terrain).Similarly, in construction B, we can make the pyramids in S arbitrarily close to the hillbehind them, so that when we take an edge e1 of the hill, an edge e2 of a pyramid in S,and a quasi-vertical edge of a prism in S 0, the resulting critical curve of type III resembles aportion of a meridian (as if the simultaneous view of e1 and e2 is actually a view of a vertexof the terrain).If we choose the proportions of the two constructions carefully|in particular we makethe hill in construction A su�ciently long and the pyramids and prisms in construction Bsu�ciently high|then we get the desired grid e�ect on the sphere of directions. There-fore, in total the number of views of a polyhedral terrain when viewed from in�nity can be
(n5�(n)) in the worst case. 213



A small gap still remains between the upper bound shown in Theorem 3.2 and the lowerbound shown in Theorem 3.3.3.2 Perspective ViewsFor perspective views the viewpoint may be anywhere in 3-space. Surfaces similar to thesurfaces that we have previously used to de�ne curves on the viewing sphere now serve topartition 3-space into maximal connected (three-dimensional) cells where the perspectiveview does not change topologically. More precisely, we use the following surfaces: planesthat contain faces of the terrain (type I), planes that pass through a vertex and an edge ofthe terrain (type II), and surfaces each of which is the union of lines that touch three �xededges of the terrain simultaneously (type III). In this case we are unable to obtain a sharpbound as we have obtained for views from in�nity. However, we point to the potential useof sparse arrangements here, and present a lower bound for perspective views. We alsomention a recent result [1] where an upper bound for this case has been obtained using adi�erent approach; see Remark 3.5 below.By arguments similar to those we used above for views from in�nity, there are O(n3)\critical" surfaces that subdivide the viewing space. Here also, we need a more re�nedanalysis of the critical surfaces of type III (de�ned by triples of edges). For a �xed triple ofedges, we replace the surface � = �(e1; e2; e3) by a collection of visible surface patches. Apoint in �(e1; e2; e3) is said to be visible if there is a segment pq lying above the terrain whichtouches (e1; e2; e3) and such that the viewpoint p does not lie on any of the three edges. Asurface � will be divided into patches, exactly where a corresponding line segment touchesfour edges of the terrain but does not penetrate the terrain on both sides. More precisely,this will occur when a line segment touches four edges of the terrain, one of its endpointsmay lie on one of the edges, but the other endpoint should not lie on the terrain. This latterendpoint represents the viewpoint and hence it is not allowed to lie on the terrain.The extra bounding curves that divide an original critical surface into patches, are allstraight line segments, rays or lines. It is easily veri�ed that we can subdivide the collectionof visible portions of any such surface �(e1; e2; e3) into a number of surface patches thatis proportional to the number of extra bounding curves (by a standard two-dimensionalvertical decomposition, for example). Hence, it is desirable to have a bound on the maximumnumber of extra bounding curves, which is bounded, in turn, by the maximum overallnumber of maximal segments that touch the terrain in four edges, lie above the terrain,and only one of the endpoints is allowed to lie on one of the four edges (for the reason wemention above, namely, one of the endpoints of each segment represents the viewpoint, andtherefore we do not allow it to lie on a terrain edge). We denote the maximum complexityof this family of segments for any terrain with n edges, by �(n).Lemma 3.4 The maximum number of combinatorially distinct perspective views of a poly-hedral terrain with a total of n edges is O((�(n))2n�4(n)).Proof. We have a collection of �(n) critical surface patches each with a small number(bounded by some constant) of bounding curves, which partition the viewing space into14



non-critical regions. Theorem 3.1 implies that when we let the viewpoint move along a�xed vertical line, it does not cross more than O(n�4(n)) of these surfaces. This is an upperbound on the vertical stabbing number of the arrangement of O(�(n)) surfaces. Pluggingthese quantities into Proposition 2.3 we get the asserted bound. 2The trivial upper bound on �(n) is O(n4), as it is well-known that a segment cannottouch four edges of a terrain in more than two placements (assuming general position).However, for our purposes the goal is to show that �(n) is roughly cubic, then the resultingbound on the number of perspective views will be roughly O(n8), the same order of mag-nitude as the lower bound that we present below. We remark that a lower bound of 
(n3)for �(n) is easy to establish.Remark 3.5 (1) Recently, Agarwal and Sharir [1] have shown an upper bound O(n8+") forany " > 0, on the maximum number of perspective views of a terrain with n edges, usinglower envelopes of hypersurfaces in 6-dimensional space. They have also applied the sameapproach to obtain a bound O(n5+") for the case of orthographic views. Thus our analysisof the orthographic case yields an improved bound.(2) The result of [1] for perspective views almost settles the problem (see our lower boundconstruction below). However, if a sharp bound is obtained for �(n), it might result in animproved bound for this case as well.We conclude this section with a lower bound construction for the perspective case.Lemma 3.6 The maximum number of topologically distinct perspective views of a polyhe-dral terrain with a total of n edges can be as large as 
(n8�(n)).Proof. The lower bound construction is similar to the construction of the previous subsec-tion, and similar in spirit to the construction for perspective views of arbitrary polyhedrain [20]. We start with the same construction as for orthographic views, and for the extradegree of freedom that we now have, for moving the viewpoint closer to farther away fromthe scene, we use a displaced duplicate of construction B of the previous subsection, with
(n3) changes in view as the viewpoint moves forwards or backwards.Interpreted in terms of critical surfaces, the construction of the previous subsection in-duces two sets of surface patches: the surface patches of construction A are roughly parallelto the xy-plane, while the surface patches of construction B are roughly orthogonal to the�rst set, and are oriented say parallel to the xz-plane. (Recall that each surface inducedby either construction is the collection of directions where three edges are coincident in theview, and two of the edges are arbitrarily close together. Thus, the resulting surface patchesare almost at.) We add the extra copy of construction B rotated 90� from the originalconstruction, such that the critical surface patches induced by it will be roughly orthogonalto each of the other two sets, namely, they will be roughly parallel to the yz-plane. Thisresults in a scene with 
(n8�(n)) di�erent views. 215



4 Arrangements of Convex PolyhedraWe next study arrangements de�ned by a collection of convex polyhedra in 3-space. Thesearrangements have the special property that a line in any direction stabs only a subsetof the faces. Note that we consider the interior of each polyhedron as a portion of thearrangement. We prove the following theorem6Theorem 4.1 The maximum complexity of an arrangement induced by k convex polyhedrawith a total of n vertices is �(nk2).Proof. For the upper bound, note that the set S of k convex polyhedra has stabbing number2k in any direction. Consider a segment f \ g for f; g faces of polyhedra in S. Then, eitheran edge ef of f intersects g, or an edge eg of g intersects f . By the stabbing property, eachedge intersects at most 2k faces and hence there are at most 2nk segments f \ g, over allfaces f; g of all the polyhedra in S. Using the stabbing property once more, we see thateach segment f \ g is intersected by at most 2k faces, and the upper bound follows.To see that this bound is tight in the worst case, assume k � n=3 and take a convexpolygon P1 with n=k vertices7 lying in the yz-plane. (If k > n=3 it is trivial to construct anarrangement with 
(nk2) = 
(n3) vertices.) Denote the number of vertices of Px by jPxj.Duplicate P1 k=2�1 times to obtain polygons P2; : : : ; Pk=2 and rotate Pi slightly relative toPi�1 (see Figure 6). This results in a planar arrangement (in the yz plane) with complexity12Pi6=j(jPij+ jPjj) = 
(nk). Next, extend this arrangement in the x direction, and slice theresulting arrangement of cylinders with additional k=2 triangles, all parallel to the yz planeto get a subdivision of space with complexity 
(nk2). The overall number of polyhedronvertices in the construction is n=2 + 3k=2 � n. 25 The Number of Views of Convex PolyhedraIn this section we study the number of views of a three-dimensional scene consisting of k non-intersecting opaque convex polyhedra having a total of n vertices. Again we consider twotypes of viewpoint space: The space related to orthographic views (from in�nity) and thespace related to perspective views. In [19] it was shown that for one convex polyhedron thesebounds are �(n2) and �(n3) respectively. We �rst derive upper bounds on the maximumnumber of views of k convex polyhedra and then present lower bound constructions.In Subsection 3.1 we have considered three di�erent types of curves (corresponding toaccidental viewpoints) that appear on the sphere of directions in the case of a polyhedralterrain. The same types of curves may occur in the case of convex polyhedra. As before, thecurves of type III dominate the complexity of the arrangement, so we restrict our attention6Independently, Aronov et al. [3] have obtained a similar result, generalized to arrangements of polytopesin d-dimensional space for a �xed d.7In this proof m1=m2 should be interpreted as the integer bm1=m2c.16



Figure 6: An arrangement of k convex polyhedra having 
(nk2) complexityto them. Recall that a curve of type III represents a collection of viewing directions forwhich the views of a �xed triple of edges of the polyhedra meet at one point.Let ei; ej and el be such a triple of edges. Assume for simplicity that each edge belongsto a distinct polyhedron Pi; Pj and Pl respectively. Each point on the curve represents aline L in the viewing direction that touches the three edges simultaneously. It is easy toverify that each such a line L is tangent to at least two of the polyhedra Pi; Pj ; Pl. In otherwords, it may cross the interior of at most one of these polyhedra, as the polyhedra areopaque. Suppose that this is indeed the case and it crosses through Pl. Then, necessarily,the contact between L and Pl lies farther from the viewpoint than the contacts with Pi orPj . Next, we �x el and bound the possible number of curves of the third type, induced byel and pairs of edges|one edge of the polyhedron Pi and one of Pj . Denote the number ofvertices of Px by jPxj.Lemma 5.1 The maximum number of pairs of edges, one from Pi and one from Pj, suchthat together with el they de�ne a critical curve on the sphere of directions and such that ellies farthest from the viewpoint is O(jPij+ jPj j).Proof. Suppose �rst that there is a plane �l that contains el such that both Pi and Pj lieon one side of �l. Take a plane � parallel to �l, far away from the scene and such thatel is farther from � than Pi or Pj . Let q = q(0) be an endpoint of el and draw on � theintersection of all the lines through q(0) that are tangent to Pi. The resulting curve on� is evidently the boundary of a convex polygon, which we denote by Qi = Qi(0). Thepolygon Qi(0) has at most O(jPij) edges. As we let q(t) move along el towards the otherendpoint q(1), Qi will change continuously. Still, it will always remain a convex polygon.Furthermore, it will change its (combinatorial) structure only when the line through q(t)coincides with a plane of a facet of Pi. Thus it will not have new edges appearing (or else17



have edges disappearing) more than jPij times. The same arguments hold for Pj and itscorresponding \shadow" Qj on �.An intersection point of an edge of Qi(t) and an edge of Qj(t) along some interval0 � t0 < t < t00 � 1 represents a curve of the third type on the sphere of directions. Howmany pairs of edges, one from each polygon, intersect on the boundary of the union ofthe two polygons? At t = 0 there are at most (jQi(0)j+ jQj(0)j) = O(jPij+ jPj j) suchintersection. As t increases, every new pair of edges that intersect must be the result ofa critical event that either makes the vertex of one polygon meet the edge of another, orthat an edge of a polyhedron inducing a shadow edge is substituted by another edge of thesame polyhedron. The �rst kind of critical event corresponds to the plane through a vertexof one polyhedron and the edge of the other polyhedron crossing el. For a �xed vertex ofone polyhedron there are at most two edges of the other polyhedron that can participate insuch an event, because we take the line through the vertex v and as we move it in contactwith el it may be tangent to the other polyhedron, not containing v, at most twice. Thesecond kind of critical event occurs when the line through q(t) coincides with a plane of afacet of either polyhedron. This kind as well may incur at most two new intersections withthe shadow of the other polyhedron. Therefore only O(jPij+ jPj j) critical events occur asQi(t) and Qj(t) move. And thus the overall number of potential curves involving el; Pi andPj is at most O(jPij+ jPj j).To relax the assumption that there is a plane �l such that both polyhedra Pi; Pj lie onone side of it we do the following: We arbitrarily choose a plane �l containing el and cuteach polyhedron that intersects �l by the plane �l into two. We repeat the analysis abovefor either side of �l and the polyhedra portions on that side. The only di�erence betweenthe new situation and the previous one is that one or both of the corresponding Qi and Qjare now unbounded, but the entire analysis holds verbatim.As to the assumption that the three edges ei; ej and el belong to three distinct poly-hedra, one can easily verify that if the three edges belong to only one polyhedron or totwo polyhedra, then the maximum overall number of critical curves that they can induce isasymptotically smaller than in the case where they belong to three distinct polyhedra. 2Now we can stateTheorem 5.2 The maximum number of topologically distinct views of a scene consisting ofk convex non-intersecting polyhedra with a total of n vertices, when viewed from in�nity, isO(n4k2). The number of distinct views of such a scene where the viewpoint can be anywherein space is O(n6k3).Proof. Let E(k; n) be the maximum number of curves of the third type that may appear onthe sphere of directions in the current setting. Lemma 5.1 implies that for every edge el of apolyhedron Pl the number of critical curves of type III that it may induce due to interactionwith a �xed pair of two additional polyhedra Pi and Pj is O(jPij+ jPj j). Summing over all18



Figure 7: A construction giving 
(n2+nk2) di�erent views when the viewpoint moves alonga meridianedges el we getE(k; n) � Xi6=j 6=l jPlj �O(jPij+ jPj j) � 2 kXi=1 kXj=1 kXl=1O(jPjj � jPlj) = O(n2k):The two bounds of the theorem immediately follow. 2Finally, we exhibit lower bound constructions for the number of views of convex poly-hedra.Theorem 5.3 A scene consisting of k convex polyhedra with a total of n vertices mayinduce 
(n4+n2k4) distinct views from in�nity and 
(n6+n3k6) views when the viewpointcan be anywhere in space.Proof. Following the idea presented in Section 3 we �rst present a construction for one degreeof freedom of the viewpoint that gives 
(n2+nk2) di�erent views when moving the viewpointalong a meridian on the sphere of directions. This construction is a superpositioning of twosimpler constructions. The �rst consists of a \hill" with n horizontal edges in front of whichthere is a very small convex polygon with n edges. As we move the viewpoint up all thevertices of the polygon meet one edge of the hill in the view before they meet another edge(see Figure 7, on the left-hand side of the hill).For the second construction we place a small slanted grid of roughly k=2�k=2 segmentssuch that an edge of the hill meets all intersection points of the grid before another edge ofthe hill does so as the viewpoint moves up (see Figure 7, on the right-hand side of the hill).We position the polygon and the grid such that no two viewing events coincide as we movethe viewpoint up or down.We duplicate this construction and rotate the duplicate by 90� degrees to obtain a sim-ilar e�ect when moving from left to right. To obtain the bounds for perspective views werepeat the basic construction once again. 219



6 ConclusionIn this paper we have shown an almost-tight combinatorial bound on the maximum numberof topologically di�erent orthographic views of polyhedral terrains. The bound is an orderof magnitude lower than the corresponding bound for general polyhedra. We also analyzedthe case of perspective views, and reduced this problem to the problem of bounding thecomplexity of a certain collection of segments de�ned relative to a terrain. We obtainedthese results by investigating arrangements of objects (curves or surfaces) that have thespecial property that every vertical line stabs only a small number of the objects. Webelieve that our results for this type of arrangements are of independent interest. We alsopresented extensions of these results to higher dimensions. Furthermore, we have presentedbounds on the number of views of a scene consisting of k convex polyhedra with a total ofn vertices.We suggest the following open problems:1. Tighten the gap between the lower and upper bounds on the number of views of kconvex polyhedra with n vertices in total. A possible approach to improve the upperbound would be to obtain a low stabbing number in the spirit of the result by Coleand Sharir stated as Theorem 3.1 here.2. What is the complexity of arrangements of surfaces that have a low stabbing numberin more than one direction? For example, it would be interesting to have such abound as a function of n; kmin and kmax, where kmin and kmax are the minimum andmaximum stabbing number in any direction.3. What is the maximum complexity �(n) of the special set of segments lying above aterrain as de�ned in Subsection 3.2?Our paper has concentrated on the combinatorial questions concerning aspect graphs ofcertain polyhedral scenes. We have not addressed the related algorithmic issues. E�cientcomputation of a sparse 2D arrangement is straightforward using plane sweep (see, e.g.,[21]). We believe that computing a sparse 3D arrangement of surfaces in time that is roughlyproportional to the maximum combinatorial complexity of the arrangement is fairly simple,imitating the proof of Proposition 2.3, although there are several technical details that stillneed to be studied. A somewhat more challenging problem is to compute an arrangementof convex polyhedra e�ciently.AcknowledgementThe authors thank Pankaj Agarwal for pointing out an error in Section 3 in an earlier draftof the paper. We also thank two anonymous referees for many helpful comments.20



References[1] P. K. Agarwal and M. Sharir, On the number of views of polyhedral terrains,Discrete and Computational Geometry 12 (1994), pp. 177{182.[2] P. K. Agarwal, M. Sharir and P. W. Shor, Sharp upper and lower bounds onthe length of general Davenport-Schinzel sequences, J. Combinatorial Theory, SeriesA 52 (1989), pp. 228{274.[3] B. Aronov, M. Bern and D. Eppstein, Arrangements of polytopes, manuscript,1991.[4] K. W. Bowyer and C. R. Dyer, Aspect graphs: An introduction and survey ofrecent results, Int. J. of Imaging Systems and Technology 2 (1990), pp. 315{328.[5] G. Castore, Solid modeling, aspect graphs and robot vision, in Solid Modeling byComputer (Pickett and Boyse, Eds.), Plenum Press, New-York, 1984, pp. 277{292.[6] I. Chakravarty and H. Freeman, Characteristic views as a basis for three-dimensional object recognition, Proc. SPIE: Robot Vision, Vol. 336 (1982), pp. 37{45.[7] B. Chazelle, H. Edelsbrunner, L. Guibas and M. Sharir, A singly-exponentialstrati�cation scheme for real semi-algebraic varieties and its applications, Proc. 16thICALP, 1989, pp. 179{192. Also in Theoretical Computer Science 84 (1991), pp. 77{105.[8] K. L. Clarkson and P. W. Shor, Applications of random sampling in computa-tional geometry, II, Discrete and Computational Geometry 4 (1989), pp. 387{421.[9] R. Cole and M. Sharir, Visibility problems for polyhedral terrains, Journal ofSymbolic Computation 7 (1989), pp. 11{30.[10] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer-Verlag, Heidel-berg, 1987.[11] Z. Gigus, J. Canny and R. Seidel, E�ciently computing and representing aspectgraphs of polyhedral objects, IEEE Transactions on Pattern Analysis and MachineIntelligence 13 (1991), pp. 542{551.[12] L. Guibas and M. Sharir, Combinatorics and algorithms of arrangements, in NewTrends in Discrete and Computational Geometry (J. Pach, Ed.), Springer-Verlag, 1993,pp. 9{36.[13] D. Halperin and M. Sharir, New bounds for lower envelopes in three dimensions,with applications to visibility in terrains, Proc. 9th ACM Symp. on ComputationalGeometry, 1993, pp. 11{18. 21



[14] M. Hebert and T. Kanade, The 3D pro�le method for object recognition, Proc.IEEE Conference on Computer Vision and Pattern Recognition, 1985, pp. 458{463.[15] J. J. Koenderink and A. J. van Doorn, The singularities of visual mapping,Biological Cybernetics 24 (1976), pp. 51{59.[16] J. J. Koenderink and A. J. van Doorn, The internal representation of solid shapewith respect to vision, Biological Cybernetics 32 (1979), pp. 211{216.[17] D. J. Kriegman and J. Ponce, Computing exact aspect graphs of curved objects:Solids of revolution, International Journal of Computer Vision 5 (1990), pp. 119{135.[18] J. Matou�sek, Approximations and optimal geometric divide-and-conquer, in Proc.23rd ACM Symp. Theory of Comp., 1991, pp. 505{511.[19] W. H. Plantinga and C. R. Dyer, An algorithm for constructing the aspect graph,in Proc. 27th IEEE Symp. Foundations of Computer Science, 1986, pp. 123{131.[20] W. H. Plantinga and C. R. Dyer, Visibility, occlusion and the aspect graph, Int.J. of Computer Vision 5 (1990), pp. 137{160.[21] F. P. Preparata and M. I. Shamos, Computational Geometry|An Introduction,Springer-Verlag, New York, 1985.[22] M. Sharir, On k-sets in arrangements of curves and surfaces, Discrete and Computa-tional Geometry 6 (1991), pp. 593{613.[23] J. Snoeyink, The number of views of axis-parallel objects, Algorithms Review 2(1991), pp. 27{32.[24] T. Sripradisvarakul and R. Jain, Generating aspect graphs for curved objects, inProc. IEEE Workshop on Interpretation of 3D scenes, New York, 1989, pp. 109{115.[25] J. Stewman and K. Bowyer, Creating the perspective projection aspect graph ofpolyhedral objects, Proc. IEEE International Conference on Computer Vision, NewYork, 1988, pp. 494{500.[26] A. Wiernik and M. Sharir, Planar realization of nonlinear Davenport-Schinzelsequences by segments, Discrete and Computational Geometry 3 (1988), pp. 15{47.
22


