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0. The purpose of this paper is to consider continuous functions 
which are defined on some intervals and to derive limitproperties at 
the endpoints of such an interval if some conditions are given. 

In section 3 we prove a limitproperty which has no classical counter­
part. 

In two papers [I] and [2] (Numbers in brackets refer to the references 
given at the end of this paper) some properties of Markov Chains have 
been discussed from the intuitionistic point of view and compared with 
the classical ones. In section 5 the theorem of section 2 will be applied 
to the transition probabilities of Markov Chains and it gives a new property 
about the existence of the limit at t = 0 of the transition functions. 

For the terminology used in this paper the reader is referred to [2] 
and to the references quoted there. 

1. Theorem. Let f(t) be a continuous function which is defined 
on [b, oo) for every real number b>O. 

If 
(1) lim f(t) 

HO 
exists then we have : 

(i) lim f(t) exists for every x <1:: 0; 
Hz 

(ii) by g(x) df lim f(t) a function g(x) is defined on [b, oo) for every 
Hz 

real number b <1:: 0 and g(x) is continuous on that interval. 

Remark. 
On account of the continuity of f(t) on [b, oo) for every b>O the 

existence of lim f(t) and hence of g(x) is assured at every point x>O. 
t+x 

Furthermore the value of g(O) is given by (1). 
From the classical point of view these remarks are sufficient to prove 

the existence of g(x) on [0, oo), but from the intuitionistic point of view 
these remarks cannot be applied to real numbers x <1:: 0 for which we have 
no proof of 

[x=O] v [x>O]. 
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Therefore we have to give a proof which includes this case. 

Proof. Let x be a real number with x <j:::: 0, then we may suppose 
that this real number x is given by a sequence {en} of intervals en of 
which the endpoints r~ resp. r~ are rational numbers. Without lose of 
generality we may suppose that these endpoints satisfy the relations: 

(2) (V n) [r~ <j:::: 0) A (r~+l <j:::: r~) A (r~ < r~) A (r~+l ::} r~)] 

and 
lim (r~-r~)=O. 

n-+OO 

Let the sequence {g,.(x)} be defined by 

g,.(x)=f(r~) (n=l, 2, ... ), 

then we prove: 

(j) lim g,.(x) exists, 

(jj) lim g,.(x) = lim f(t). 

To this aim we prove: 

(Ve)([![N)(n, m>N '* lg,.(x) -gm(x)l < 2e). 

We arbitrarily choose the real number e1 > 0. Then the relation ( l) 
guarantees that a natural number k can be calculated such that: 

(3) 0<t<2-k'* lf(t)-al<ei. 

where a= lim f(t). 
HO 

Evidently an index N can be calculated such that: 

(4) 

The numbers r~ and 2-k are rational numbers, hence we have the disjunction 

(r~ <j:::: 2-k) v (r~ < 2-k), 

which implies that only the two cases: 

A : r~ <j:::: 2-k; B : r~<2-k 

need to be considered. 

Case A. 

r~ <j:::: 2-k and (4) imply: r;,->2-k-2 and from (2) we see: x>O. Using 
the continuity of f(t) it is now easily seen that: 

( 5) lim g,.(x) = lim f(r~) = lim f(t) = g(x). 
th 

Case B. 

The relations: r~<2-k, (3) and 

lf(r~)-f(r;;.)l::} lf(r~)-al + lf(r;;.)-al 
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lead to: 

(6) 

for all n, m>N. 

Now we have proved that for every real number x <)::: 0, for which 
{en} is a defining sequence, and for every real number 8 > 0 a natural 
number N can be calculated such that 

l!ln(x) -!lm(x)l < 28 

for all n, m>N and the convergence of the sequence {!ln(x)} is guaranteed 
by Cauchy's general convergence principle. 

We now prove that lim !ln(x) is independent of the sequence {en}· 
Let {Gn} with O'n= [8~, 8~] be an other sequence which defines x and 
satisfies the relations (2) and let {g~(x)} be the sequence which corresponds 
to {Gn}. 

From (2) it follows that an index N' can be calculated such that 

n <)::: N' =* 8~-8~<2-k-2. 

Without lose of generality we may suppose: N = N'. 
If x > 0 the uniquences of the limit easily follows from the continuity 

and there remains to consider the case: 

(r~<2-k) A (8~<2-k). 

In this case the uniquenes is implied by 

l!ln(x) -g~(x)l = lf(r~)- /(8~)1 :} 1/(r~) -a I+ Ia- f(s~)l < 281. 

Now we know that g(x) is defined on [0, oo), hence by Brouwer's fan 
theorem is a continuous function (even uniformly continuous on every 
closed subinterval of [0, oo)). 

2. Theorem. Let f(t) be a continuous function for every t>O such 
that f(t) is uniformly continuous on [ b, oo) for every b > 0. 

Then we have: 
The existence of lim f(t) is equivalent to uniform continuity of f(t) 

HO 
on (0, oo). 

Proof. Let us put a= lim f(t), then we have: 
t+O 

(1) 

We arbitrarily choose a real number 81 > 0 and we calculate a corres­
ponding real number b1 according to (1), then from (1) follows 

t1, t2 E (0, b1) =* I f(t1)- f(t2) I< 81. 

We know that f(t) is uniformly continuous on [tb1. oo), hence we can 
calculate a real number b2 > 0 such that: 

[t1. t2 E [tb1, oo)] A [lt1-t2l<b2]=* (1/(h)-f(t2)1<!81)· 
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Let the real number 6a be defined by 6a=min (lbt, b2}, then we have: 

[t1, t2 E (0, 00) A jt1- t2j < ba] =* (jf(tl)- j(t2)j < El}, 

i.e. f(t) is uniformly continuous on (0, oo). . 
Now we prove the inverse part of the theorem. In this case we know 

that f(t) is uniformly continuous on (0, oo), hence 

(2) (Ve}(:tlb)[(lt>O) A (t2>0) A (jlt-t2j<6)=* j(t1)-j(t2)j<s]. 

We choose the real number s1>0 arbitrarily and according to (2} we 
calculate a corresponding value b(s1) of b. 

Let {tn} be a sequence of real numbers such that 

(3) (Vn)(tn>tn+l) and lim tn=O. 
n-..oo 

The relations (2) and (3) imply: 

(:tlN)(n, m>N =* lf(tn}-f(tm)l<sl)· 

The real number Bl was chosen arbitrarily, hence by Cauchy's general 
convergence principle we conclude that lim f(tn) exists. The uniqueness 

n-..oo 

of the limit simply follows from the uniform continuity. 

3.1. Let R represent the continuum. 
We consider the following theorem which is trivially true from the 

classical point of view. 

Let f( • ) be a function which satisfies: 
(i) /( ·) is defined on R, 

(ii) f(t) is continuous for every t =1= a E R, 
(iii) f(t) is continuous from the right at t=a, 

then we have: 
lim f(t) exists for every x E R. 
Ha: 

The proof can be seen immediately by using 

(x<a) v (x=a) v (x>a) and lim f(t)=f(x). 
Ha: 

3.2. From the intuitionistic point of view theorem 3.1. is an immediate 
consequence of Brouwer's fan theorem and (i) implies (ii) and (iii) and 
f(t) is continuous everywhere. 

3.3. Now we reformulate theorem 3.1. in a somewhat different way, 
which is an equivalent formulation from the classical point of view. 

Let f( · ) be a function such that 
(j) f(t} is defined for every t <[::a and continuous for t>a E R, 

(jj) f(t) is defined and continuous for every t<a, 
(jjj) f(t) is continuous from the right at t=a, then we have: 

lim f(t} exists for every x E R. 
Hz 

18 Series A 
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However, this theorem cannot be proved from the intuitionistic point 
of view. 

3.4. Counter example 

Let f(t) be defined by 
f(t) = 2 for t <j:: a 
f(t) = 1 for t < a. 

Now we consider a real number for which we have no proof of 

(e<a) v (e=a). 

If e<a, then lim /(t)=l, but if e=a then lim /(t)=2. 
t~Q t~a 

This means that as long as we have no proof of (e=a) v (e<a) we 
cannot calculate lim f(t). 

th 

4. We now prove a theorem which has no counterpart in the classical 
theory as becomes clear from section 3.3. 

Theorem. Let f(t) be a function which is defined for all real numbers 
t which satisfy 

(t <j:: a) v (t<a). 

If lim f(t) exists for every real number x, then we have: 
Hz 

lim f(t) = lim f(t). 
tta Ha 

Proof. We define the function g(x) by: 

g(x) = lim f(t). 
Hz 

We know that g(x) is defined for all real numbers, hence from Brouwer's 
fan theorem it follows that g(x) is a continuous function. 

In particular the function g(x) is continuous at x =a, hence: 

(Vk)(lill)(Ja-xJ < 2-1 =>- Jg(x) -g(a)J < 2-k). 

Now we choose a natural number k1 and we calculate a natural number l1 

such that 

(1) x E (a- 2-11, a)=>- Jg(x) -g(a)J < 2-k1. 

However, the function /( · ), which is defined on (- oo, a), is continuous 
at every point x E (a- 2-11, a), hence 

(2) lim /(t) =g(x) = f(x) for every x E (a- 2-h, a). 

The relations (l) and (2) imply: 

x E (a-2-11, a) =>-1/(x)-g(a)J<2-kl. 

The natural number k1 was chosen arbitrarily, hence we have proved: 

lim f(x)=g(a)= lim /(x), 
zta z~a 
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5. An application to Markov Chains. 
Let a stationary Markov Chain be given by the matrix (Pti( · )), where 

Pii(t) is defined for i, j = l, 2, ... and t E (0, oo). 
By using classical methods DooB [3] has proved: 
If (Pti( · )) is a transition matrix such that all functions PtA·) are 

Lebesgue measurable functions, then all Pti( ·) are uniformly continuous 
functions on [o, oo) for every O>O. 

Furthermore he proved: 
All transition probability functions Pti( ·) are continuous on the open 

interval (0, oo) if and only if lim Pti(t) exists for all i and j. 
tto 

As we saw in [2] the first property can be proved from the intuitionistic 
point of view without supposing the measurability of the transition 
functions and from a counterexample it became clear that the second 
property cannot be proved (nowadays) from the intuitionistic point of 
view. Instead of this property we now prove: 

Theorem: If the transition probability functions Pti( ·) are defined 
for all t>O and all natural numbers i and j then the existence of 

lim Pti(t) 
tH 

is equivalent to uniform continuity of Pti( ·) on (0, oo ). 

Proof. In [2] we have proved: each Pti( ·)is an uniformly continuous 
function on [o, oo) for every o>O, hence we can apply the theorem 
which we proved in section 2 and the proof is finished. 
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