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A computational mutagenesis methodology utilizing a
four-body, knowledge-based, statistical contact potential
is applied toward globally quantifying relative environ-
mental perturbations (residual scores) in bacteriophage f1
gene V protein (GVP) due to single amino acid substi-
tutions. We show that residual scores correlate well with
experimentally measured relative changes in protein
function upon mutation. Residual scores also distinguish
between GVP amino acid positions grouped according to
protein structural or functional roles or based on simi-
larities in physicochemical characteristics. For each
mutant, the in silico mutagenesis additionally yields local
measures of environmental change (EC scores) occurring
at every residue position (residual profile) relative to the
native protein. Implementation of the random forest (RF)
algorithm, utilizing experimental GVP mutants whose
feature vector components include EC scores at the
mutated position and at six structurally nearest neigh-
bors, correctly classifies mutants based on function with
up to 77% cross-validation accuracy while achieving 0.82
area under the receiver operating characteristic curve. A
control experiment highlights the effectiveness of mutant
feature vector signals, and a variety of learning curves
are generated to analyze the impact of GVP mutant data
set size on performance measures. An optimally trained
RF model is subsequently used for inferring function for
all the remaining unexplored GVP mutants.
Keywords: computational mutagenesis/Delaunay tessellation/
knowledge-based statistical potential/random forest
supervised classification/structure–function relationship

Introduction

Gene V protein (GVP) is a relatively small protein (87
amino acids), forming dimers that bind cooperatively to
single-stranded DNA (ssDNA) intermediates during bacterio-
phage f1 replication for efficient ssDNA packaging into new
phage particles (Terwilliger, 1995). The Ff filamentous
phages f1, fd and M13 that infect Escherichia coli are very
closely related, and the GVPs of these phages are identical
(Skinner et al., 1994). When expressed at high levels, GVP
also binds non-specifically to host ssDNA and ssRNA,
leading to inhibition of E.coli growth by interfering with
DNA replication or RNA translation (Terwilliger et al.,
1994). The structure of GVP has been determined using both
X-ray crystallography (Fig. 1A) (Su et al., 1997) and NMR
(Folkers et al., 1994) techniques, making GVP an ideal

model system for protein engineering experiments given its
small size.

The analyses of experimental data obtained from
large-scale mutagenesis studies on GVP have provided sig-
nificant information about the structural and functional roles
of the constituent amino acid residues, as well as the level of
tolerance of each residue position to mutation (Terwilliger
et al., 1994). In one study, a total of 371 single-point GVP
mutants were synthesized and classified based on their
degree of E.coli growth inhibition. A second investigation
involved phenotypic classification of 138 single-point GVP
mutants based on their ability to support phage f1 propa-
gation. Each of these two sets of experiments considered a
specific type of GVP function, and the phenotypic class
assigned to each GVP mutant reflected the amount of func-
tional change relative to the wild-type protein.

Since protein structure dictates function, it follows that
appropriately quantified relative structural changes to GVP
upon single residue replacements should correlate well with
corresponding experimentally measured relative functional
changes. We have developed a computational mutagenesis to
compute these structural changes, which makes use of a four-
body, knowledge-based, statistical contact potential (Masso
and Vaisman, 2007, 2008). Underpinning these formulations
is the representation of protein structures via Delaunay tessel-
lation, a well-established computational geometry technique.
For each GVP mutant, our methodology yields both a scalar
residual score to quantify the overall relative change in
sequence-structure compatibility and a vector residual profile
to quantify relative environmental changes (EC scores) at
every GVP residue position. As will be detailed in this
manuscript, these quantities are useful both for elucidating
structure–function relationships in GVP and for developing
accurate classifiers of mutant GVP function.

Materials and methods

Experimental data
The collection of 371 GVP single-point mutants described in
the literature, consisting of at least one residue substitution at
each of positions 2–87, forms the principal data set for our
computational studies (Terwilliger et al., 1994). Each mutant
was overexpressed in an E.coli culture incubated at 378C and
functionally classified as fully active (strong inhibition of
E.coli growth, 140 mutants), partially active (weak inhi-
bition, 92 mutants) or inactive (no inhibition, 139 mutants).

In a second study, each of 138 GVP single-point mutants
was assessed for sensitivity to temperature in their ability to
support phage f1 propagation, as evidenced by the formation
of plaques of differing sizes on lawns of E.coli at both 348C
and 40.58C (Terwilliger et al., 1994). Mutants were
classified as active, ts-1 (weakly temperature-sensitive, wild-
type sized plaques at 348C but slightly smaller at 40.58C),
ts-2 (much smaller plaques at 40.58C), ts-3 (strongly
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temperature-sensitive, no plaque formation at 40.58C) or
inactive. Our computational mutagenesis elucidates the corre-
lation of structural and functional changes due to mutation,
at a fixed temperature, and is not designed for simultaneously
incorporating the dynamics of temperature variability on
function. As such, we only considered the size of mutant
GVP plaque formations at the 348C baseline and functionally
classified mutants as either active (112 mutants, including
ts-1, ts-2 and ts-3) or inactive (26 mutants).

Delaunay tessellation and the four-body statistical potential
A diverse data set of 1375 high-resolution crystallographic
protein structures was selected from the Protein Data Bank
(PDB) (Berman et al., 2000). Each structure was represented
as a discrete set of points in three-dimensional (3D) space,
corresponding to a weighted center of mass (CM) of the side-
chain atomic coordinates of the constituent amino acid resi-
dues. Delaunay tessellation was performed on each protein
structure, whereby these points were utilized as vertices to
generate an aggregate of non-overlapping, space-filling, irre-
gular tetrahedral simplices (Fig. 1B) (Singh et al., 1996;
Vaisman et al., 1998). The qhull implementation of the
Quickhull algorithm (Barber et al., 1996) was used to tessel-
late each protein, and in-house programs were developed for
data processing and analysis.

Each simplex in a protein tessellation objectively defines a
quadruplet of nearest-neighbor residues at the vertices. For
added assurance of biochemically feasible quadruplet inter-
actions, we only considered simplices for which the lengths
of all six edges were ,12 Å. Excluding permutations, there
are 8855 distinct quadruplets that can be formed from the 20
amino acids naturally occurring in proteins (Singh et al.,
1996; Vaisman et al., 1998). For each quadruplet of amino
acids, an observed frequency of occurrence was computed by
identifying all simplices generated by the 1375 protein struc-
ture tessellations for which the quadruplet is represented by
the vertices. A rate expected by chance was obtained for
each quadruplet by using a multinomial reference distribution
that relies on frequencies of the individual amino acids in the
proteins. Modeled after the inverse Boltzmann principle, an
empirical interaction potential was calculated for each quad-
ruplet type by taking the logarithm of the ratio of observed
to expected rates of occurrence, defining the four-body stat-
istical potential (Singh et al., 1996; Vaisman et al., 1998).

Employing this potential, a score was assigned to each of
the simplices in the tessellation of the GVP structure (PDB

ID: 1gvp) based on the quadruplet represented by the ver-
tices. A global topological score for GVP, defined by adding
up the scores of all simplices in the tessellated protein, rep-
resents an overall measure of sequence-structure compatibil-
ity (Masso et al., 2006, 2008). A residue environment score
was also calculated for each of the 87 amino acid positions
in GVP by locally adding up only scores of simplices utiliz-
ing the corresponding CM coordinate as a vertex (Masso and
Vaisman, 2007; Masso et al., 2008). A vector of residue
environment scores, ordered by primary sequence position
number, is referred to as a 3D–1D potential profile (Fig. 2A)
(Bowie et al., 1991; Masso and Vaisman, 2003).

Computational mutagenesis
A topological score was obtained for each single-point GVP
mutant, by utilizing the tessellation of the wild-type protein
structure (PDB ID: 1gvp) as a template, substituting the
amino acid identity at the vertex corresponding to the pos-
ition being mutated and recalculating simplex scores. The
residual score of a GVP mutant is defined as the difference
in topological scores between the mutant and wild-type
protein, and provides a measure of the relative change in
sequence-structure compatibility caused by the amino acid
replacement (Masso et al., 2006; Masso and Vaisman, 2007).
A comprehensive mutational profile (CMP) is defined by cal-
culating, at each protein position, the mean of residual scores
associated with all possible amino acid replacements
(Fig. 2B) (Masso and Vaisman, 2003; Masso et al., 2006).
Each CMP profile component is referred to as the CMP
score of the corresponding position.

The use of a single native structural template for character-
izing protein mutants is based on the following observations:
most protein mutants have no corresponding solved struc-
tures; Delaunay tessellation is based on coarse-grained
representation of protein structure at the residue level; and
the tessellation is robust to small perturbations in the coordi-
nates of the points representing the amino acids. Hence,
tessellations for the few solved GVP structures with single
residue replacements either perfectly overlap or are nearly

Fig. 1. (A) Ribbon diagram (Pettersen et al., 2004) of GVP based on the
PDB coordinate file 1gvp. (B) Delaunay tessellation of GVP, using CM
coordinates and a 12 Å edge-length filter, superimposed over a C-a
backbone trace.

Fig. 2. (A) 3D–1D potential profile and (B) CMP profile for GVP.
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identical to the native structure tessellation. Additionally, in
the case of mutants with solved structures for proteins in
general, residual scores for the mutants (single residue substi-
tutions in the native sequence) obtained by tessellating the
native structure are comparable in magnitude but opposite in
sign when compared with residual scores for the reverse
mutants (single residue substitution back to the native
sequence) obtained by tessellating the corresponding mutant
structures (unpublished).

Replacing the amino acid identity at one vertex in the
wild-type protein tessellation alters residue environment
scores at this mutated position and at all nearest-neighbor
positions defined by the simplices. The residual profile of a
GVP mutant is defined as the difference in 3D–1D potential
profiles between the mutant and wild-type protein, and the
value of each residual profile component is referred to as an
EC score (Masso and Vaisman, 2007, 2008). Mutant residual
profiles contain implicit yet significant structure and
sequence information, and the EC score at the component
corresponding to the mutated position is identically equal to
the residual score of the mutant.

Mutant attributes
A feature vector was generated for each single-point GVP
mutant and contained as input attributes (independent vari-
ables or predictors) the identities of the native and replace-
ment amino acids at the mutated position, the mutated
position number, the residual score (EC score at the mutated
position) and the EC scores at the six nearest neighbors to
the mutated position, ordered nearest to farthest by Euclidean
distance. Next, we included the ordered amino acid identities
at the six nearest neighbors as well as their ordered primary
sequence distances away from the mutated position (differ-
ence between neighbor and mutated position numbers).
Finally, the following input attributes were added as feature
vector components:

(1) a computed mean volume and mean tetrahedrality for the
set of Delaunay simplices that utilize the mutated pos-
ition as a vertex (Vaisman et al., 1998; Barenboim et al.,
2008);

(2) the secondary structure fH, helix; S, strand; T, turn; C,
coilg at the mutated position;

(3) depth fS, surface; U, undersurface; B, buriedg at the
mutated position (tessellation-based surface accessibil-
ity). Surface positions participate as one of three vertices
defining a triangular facet for exactly one tetrahedron in
the tessellation. Undersurface positions are defined as
non-surface positions that share an edge with a surface
position. All other positions are buried (Barenboim
et al., 2008);

(4) a count of the number of simplex edges the mutated pos-
ition shares with surface positions (zero by definition for
buried positions).

The mutant GVP functional class defines the output attribute
(dependent variable) associated with each feature vector.

Supervised learning for classification and prediction
The supervised classification scheme that we employed for
this study is an implementation of Leo Breiman’s random
forest (RF) algorithm (Breiman, 2001), available as part of

the Weka (Waikato environment for knowledge analysis)
suite of machine learning tools (Frank et al., 2004). The RF
algorithm incorporates a bagging (bootstrap aggregating)
procedure, whereby bootstrapped data sets are used for train-
ing an ensemble of classification trees, from which predic-
tions are obtained via majority vote (Breiman, 2001).
Additionally, a fixed-size random subset of the predictor
attributes is selected by the RF algorithm to split at every
node encountered in each of the growing trees, all trees are
unpruned and the algorithm does not overfit, regardless of
the number of selected trees. The RF algorithm generally
performs better than other supervised classification machine
learning approaches (Qi et al., 2006; Bordner, 2008). We
fixed adjustable RF parameters at 100 trees and five ran-
domly selected input attributes for splitting at each tree node.

Performance of RF on data sets of GVP mutant feature
vectors was evaluated by using stratified 10-fold cross-
validation (10-fold CV), leave-one-out cross-validation
(LOOCV) and stratified random split (66% of data set for
model training and 34% for testing). Given a generic two-
class training set consisting of ‘positive’ (P) and ‘negative’
(N) examples, Q ¼ accuracy ¼ (TP þ TN)/(TP þ FN þ
FP þ TN) provides a simple measure of performance which
is meaningful so long as class distributions are not highly
skewed. Here, TP and TN represent the number of correct
positive and negative predictions, respectively, and FP and
FN are misclassifications. The balanced error rate (BER),
calculated as BER ¼ 0.5 � [FN/(FN þ TP) þ FP/(FP þ
TN)], Matthew’s correlation coefficient (MCC), given by

MCC ¼ TP� TN� FP� FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FNÞðTPþ FPÞðTNþ FNÞðTNþ FPÞ

p ;

and area (AUC) under the receiver operating characteristic
(ROC) curve provide alternative measures that are especially
useful for highly unbalanced classes. A x2 test can be
applied to assess MCC statistical significance, where the test
statistic is given by x2 ¼ N �MCC2 (N ¼ data set size) with
one degree of freedom (Baldi et al., 2000).

The ROC curve is a plot of the true-positive rate (sensitivity)
versus the false-positive rate (1-specificity), where
sensitivity ¼ TP/(TP þ FN) and specificity ¼ TN/(TN þ FP),
and the AUC is equivalent to the non-parametric Wilcoxon–
Mann–Whitney test of ranks (Fawcett, 2003). An AUC value
near 0.5 suggests that the trained model will perform no better
than random guessing, while a value of 1.0 is indicative of a
perfect classifier. For a data set consisting of examples that
belong to more than two classes, we employ both one-against-
one (all possible two-class subsets) and one-against-all
(all possibilities for choosing one reference class and combin-
ing the others as non-reference) approaches. In the former
case, an overall AUC for the multi-class data set is calculated
as the mean of the AUC values that correspond to ROC curves
for each of the two-class subsets (Hand and Till, 2001). In the
latter case, the overall AUC is obtained by computing a
weighted average of the AUC values that correspond to ROC
curves for each of the reference/non-reference data sets, where
each AUC weight equals the proportion of reference class
examples (Provost and Domingos, 2001).
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Results and discussion

GVP structure–function relationships
On the basis of the data set of 371 GVP mutants experimen-
tally assessed for their ability to inhibit the growth of E.coli,
we computed a mean residual score for the mutants in each
class (Fig. 3A, ‘All’ category). A clear trend emerges
whereby increasingly detrimental effects on structure due to
mutation, as reflected by decreasing mean residual scores,
are associated with higher levels of functional impairment.
Furthermore, a t-test reveals that a statistically significant
difference exists between mean residual scores for the most
disparate class pair (full/inactive, P , 0.001). Within each
class, mutants were also clustered based on whether they rep-
resented conservative (C) or non-conservative (NC) substi-
tutions of the wild-type residue (Dayhoff et al., 1978), and
we computed mean residual scores for each of these sub-
groups. With the 20 amino acids clustered into six groups as
{(A,S,T,G,P), (D,E,N,Q), (R,K,H), (F,Y,W), (V,L,I,M), (C)}
based on similarities in physicochemical properties, intra-
class residue replacements are C whereas interclass substi-
tutions are NC. Note that the overall trend is driven by NC
mutations, since C substitutions generally have a minimal
impact on sequence-structure compatibility regardless of the
phenotype.

Classification models in the current computational muta-
genesis literature are typically based on whether protein
mutants are unaffected (e.g. full) or affected (e.g. partial and
inactive combined) by their corresponding residue replace-
ments (Krishnan and Westhead, 2003; Verzilli et al., 2005;

Mathe et al., 2006; Ng and Henikoff, 2006; Bromberg and
Rost, 2007). Additional justifications for such a two-class
grouping of the 371 GVP mutants are discussed later when
results concerning inferential models are presented, and a
statistically significant difference exists between mean
residual scores for this unaffected/affected class pair (P ,
0.001).

Finally, mean residual scores were also used for elucidat-
ing the GVP structure–function relationship based on the
ability of single-point GVP mutants to support phage f1
propagation at 348C (Fig. 3B). Again, a statistically signifi-
cant difference exists between mean residual scores for the
active/inactive class pair (P , 0.005), and the observed trend
is principally attributable to NC substitutions.

Classification of GVP residue positions
A strong inverse correlation (R2 ¼ 0.86) exists between the
CMP profile of GVP, obtained by averaging the residual
scores of all amino acid replacements at each position, and
the 3D–1D potential profile of the protein, which provides
an environment score for each position (Figs 2 and 4). By
averaging residual scores of NC and C substitutions separ-
ately at each position, modified NC-CMP and C-CMP pro-
files showed that this correlation is due to the NC
substitutions (R2 ¼ 0.86), without any contribution from the
C substitutions (R2 ¼ 0.02). Similar observations based on
this in silico application of our methodology have been made
for HIV-1 protease (Masso and Vaisman, 2003; Masso et al.,
2006), lac repressor (Masso et al., 2008) and a number of
other proteins (unpublished), revealing a consistent pattern of
residue clustering (hydrophobic, Quad 4; charged, Quad 2;
polar, origin).

On the basis of annotations provided in the literature, 73
out of 87 GVP residue positions were each assigned to one
of four groups according to structural locations and func-
tional considerations. Table I provides a distribution of
residue positions by group as well as by quadrant location
(Fig. 4), and Fisher’s exact test leads us to reject the null
hypothesis that no association exists between the structural/
functional groups and the quadrant locations (P , 0.0001).
We also characterized each group based on both the mean of
the residue environment scores (MRES) of the positions in
the group and the mean of the mutant residual scores (All, C,
NC) for all 19 residue replacements at all positions in the

Fig. 3. GVP structure–function correlations (see text for C/NC mutant
subsets).

Fig. 4. CMP potential profile correlation. See Supplementary data available
at PEDS online for color figure.
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group combined (Fig. 5). It is clear from Fig. 5 that our com-
putational characterization of these groups effectively dis-
criminates between hydrophobic core and DNA/
RNA-binding residues, as well as distinguishing between
interface positions and other surface residues that are not as
structurally or functionally vital.

Inferential models of mutant GVP activity
As detailed earlier, feature vectors were derived for each of
the 371 GVP mutants belonging to one of three phenotypic
classes based on their degree of E.coli growth inhibition.
Training sets included three proper two-class subsets
(one-against-one), as well as three versions of the complete
data set of mutants relabeled to reflect only two classes
(one-against-all, whereby one class is chosen as ‘reference’
and the other two classes are combined as ‘non-reference’).
Application of RF supervised classification in conjunction
with the 10-fold CV testing procedure on these training sets
reveals that the full and inactive pair of GVP mutant classes
encode the most disparate signals in their feature vectors and
are most easily distinguishable from one another, reflecting
the intuitive biological notion that this pair of mutant func-
tional classes exhibits the most significant structural differ-
ences (Fig. 6, Table II). Additionally, the higher
performance measures obtained using the full/partial two-
class subset over the partial/inactive subset, coupled with
similarly higher measures using the full/others combined
complete data set over the inactive/others combined data set,
suggest that GVP mutants in the partial class are more

similar to their inactive counterparts rather than to the fully
active GVP mutants (Fig. 6, Table II).

The results summarized above justify the clustering of
these 371 GVP mutants into two classes based on segregat-
ing fully active mutants from the others combined, which we
will subsequently refer to by using the following class
labels: unaffected (full) and affected (partial and inactive
combined). Performance of the RF algorithm on this data set

Table I. Distribution of annotated residues

Graph
Quads

Residue types Total

Surfacea Hydrophobic
corea

DNA/
RNA
bindingb

Interfacec

Q1 1 0 0 1 2
Q2 22 1 9 1 33
Q3 6 0 2 2 10
Q4 10 13 1 4 28
Total 39 14 12 8 73

aTerwilliger et al. (1994); bSkinner et al. (1994); cStassen et al. (1992) and
Su et al. (1997).

Fig. 6. (A) One-against-one and (B) one-against-all ROC curves based on
10-fold CV.

Table II. RF performance (10-fold CV)

Class Full Partial Inactive Others
combined

Full Q ¼ 0.63 Q ¼ 0.77 Q ¼ 0.73
MCC ¼ 0.22 MCC ¼ 0.54 MCC ¼ 0.44
BER ¼ 0.39 BER ¼ 0.23 BER ¼ 0.27
AUC ¼ 0.65 AUC ¼ 0.82 AUC ¼ 0.77

Partial Q ¼ 0.59 Q ¼ 0.53
MCC ¼ 0.16 MCC ¼ 0.03
BER ¼ 0.42 BER ¼ 0.48
AUC¼0.59 AUC ¼ 0.50

Inactive Q ¼ 0.66
MCC ¼ 0.30
BER ¼ 0.34
AUC ¼ 0.72Fig. 5. Characterization of GVP residues. MRES, mean of the residue

environment scores.
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was evaluated based on running 10 iterations each of 10-fold
CV and 66/34 stratified random split, as well as LOOCV,
with relatively consistent results across all three techniques
(Table III). All MCC values associated with each method are
statistically different from zero (P , 0.0001), indicating that
the RF predictions are significantly more correlated with the
data compared with random guessing.

In particular, the 10-fold CV results were compared with
those obtained by using a control derived from the mutant
GVP data set by randomly shuffling the original unaffected/
affected class labels among the mutants, for which Q ¼ 0.57,
MCC ¼ 0.10, BER ¼ 0.45 and AUC ¼ 0.55. The results
suggest that a model trained with this ‘shuffled classes’
random control cannot perform better than random guessing,
highlighting the strength of signals embedded in feature
vectors of the original data set.

Using the unaffected/affected two-class labeling of the
371 GVP mutants, we compared the performance of our RF
model (Table II, full versus others combined) with that of
other state-of-the-art approaches. Identification of other
methods appropriate for making comparisons is a non-trivial
issue in this regard. For example, there are a number of tools
available for predicting mutant stability change (e.g. DDG);
however, the property to be predicted for the GVP mutants is
the effect on activity (degree of inhibition of E.coli growth),
which in the aggregate is not directly correlated to the effect
on stability. One well-known server for predicting DDG
known as PoPMuSiC (http://babylone.ulb.ac.be/popmusic/)
was used to obtain predictions for the 371 GVP mutants,
where increased (decreased) stability from wild type was
interpreted as an unaffected (affected) prediction. PoPMuSiC
predicts values of DDG upon mutation by utilizing different
combinations of database-derived torsion and amino acid
pair distance potentials based on the solvent accessibility of
the mutated position. As expected, the performance was
extremely poor (Q ¼ 0.58, MCC ¼ 20.02 and BER ¼ 0.50)
and equivalent to random guessing; however, this is the
result of an inappropriate application of the method and does
not reflect the ability of the tool to generate accurate predic-
tions. Similarly, there exist numerous servers for predicting
whether a single-residue substitution has either no effect or
any effect on protein function. Often the models driving the
servers have been trained using only human proteins, as is
the case for example with PolyPhen (http://genetics.bwh.
harvard.edu/pph/), nsSNPAnalyer (http://snpanalyzer.utmem.
edu/), Pmut (http://mmb2.pcb.ub.es:8080/PMut/) and PhD-
SNP (http://gpcr.biocomp.unibo.it/~emidio/PhD-SNP/PhD-
SNP.htm), which renders these tools unreliable in making
accurate GVP mutant predictions. On the other hand, SIFT
(http://blocks.fhcrc.org/sift/SIFT.html) and SNAP (http://
cubic.bioc.columbia.edu/services/SNAP/) were trained using

variant proteins from diverse organisms. In particular, SIFT
is sequence-based, SNAP is structure-based, and both utilize
evolutionary information available in the form of multiple
sequence alignments. Our RF model moderately outperforms
SNAP (Q ¼ 0.68, MCC ¼ 0.36 and BER ¼ 0.31) and signifi-
cantly outperforms SIFT (Q ¼ 0.60, MCC ¼ 0.22 and
BER ¼ 0.38).

The novelty of our structure-based approach derives from
combining supervised classification (RF) with mutant attri-
butes (EC scores) obtained using a four-body potential.
These are two predictive approaches that previously have
only been studied separately. As our method does not expli-
citly incorporate evolutionary information, it serves as an
orthogonal approach that complements other methods such
as SIFT and SNAP that utilize information derived from
multiple sequence alignments. Our method for mutant
feature vector representation has been used to develop inde-
pendent models that can predict stability change (Masso and
Vaisman, 2008) as well as functional change (Masso and
Vaisman, 2007). Each model is trained using a data set of
diverse protein mutants with either experimentally deter-
mined stability change (e.g. DDG) or functional change (i.e.
effect on activity), respectively. Subsequently, each model
can be used to make predictions about new, unexplored
mutants with respect to the type of property change on
which the model was trained. For increased (decreased) stab-
ility mutants, the mutated position and its neighbors often
display favorable (unfavorable) changes in the form of posi-
tive (negative) EC scores, and hence providing an important
discriminating feature that classification algorithms can
exploit. Similarly with functional changes, the mutated
position and its neighbors generally display EC scores that
are relatively small in magnitude for unaffected mutants
compared with those that are affected, which again provides
the algorithms with distinguishing features for developing
accurate classification models.

Next, we generated learning curves in order to assess the
influence of data set size on trained RF model performance.
We began by applying RF learning and 10-fold CV to each
of 10 stratified random samples of 100 mutants, selected
from among the 371 experimental GVP mutants, and a mean
accuracy and standard deviation (SD) was calculated.
Subsequent iterations involved incrementing by 50 mutants
the size of the sampled data sets. The lack of plateaus in the
learning curves as the data set size approaches 371 indicates
that enlargement of the current mutant GVP data set may
further optimize performance of the RF model (Fig. 7).

Finally as an important practical application, we employed
the RF model learned from the entire training set of 371
mutants in order to predict the unaffected/affected class
memberships of all remaining uncharacterized single-point
GVP mutants. In particular, we had generated the feature
vector input attributes for all 87 positions � 19 substitutions/
position ¼ 1653 mutants, leaving 1282 mutants to form a
separate test set, each with an unknown functional class
output attribute. On the basis of signals encoded by the input
attributes of their feature vectors, the RF model generated a
functional class prediction for every test set mutant. We
pooled all experimental and predicted GVP mutants into the
array shown in Fig. 8, which summarizes overall mutational
patterns in the protein. Columns represent residue positions
in GVP, and rows represent the 20 possible amino acid

Table III. RF performance (unaffected/affected)

Method Q MCC BER AUC

10-fold CVa 0.71+0.01 0.40+0.02 0.29+0.01 0.76+0.01
LOOCV 0.72 0.42 0.29 0.77
66/34 splita 0.69+0.03 0.37+0.07 0.31+0.04 0.74+0.03

aTen iterations performed for 10-fold CV and 66/34 split methods.
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replacements, arranged from top to bottom in order of
increasing hydrophobicity (Kyte and Doolittle, 1982).
Notably, at interface (G23, L44, F68, D79, R82), DNA/RNA
binding (R16, R21, K24, Y26, E30, K46, R80) and hydro-
phobic core (I2, V4, I6, C33, V35, L37, V45, I47, L49, V63,
L76, I78, L81, L83) positions known to be intolerant to
specific types of amino acid substitutions, our predictions are
well in line with the experimental GVP mutant data.
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Fig. 7. Learning curves. Error bars represent +1 SD from the mean.

Fig. 8. GVP mutational array. Columns, native amino acids; rows,
substitutions; darker shades, experimental mutants; lighter shades, predicted
mutants; white squares, self-substitutions; boxed numbers, DNA/RNA
binding residues; shaded numbers, interface residues; boxed and shaded
numbers, hydrophobic core residues. See Supplementary data available at
PEDS online for color figure.
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