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Stochastic broadcasting is an important and understudied paradigm for controlling networks. In this
paper, we examine the feasibility of on-off broadcasting from a single reference node to induce syn-
chronization in a target network with connections from the reference node that stochastically switch
in time with an arbitrary switching period. Internal connections within the target network are static
and promote the network’s resilience to externally induced synchronization. Through rigorous math-
ematical analysis, we uncover a complex interplay between the network topology and the switching
period of stochastic broadcasting, fostering or hindering synchronization to the reference node. We
derive a criterion which reveals an explicit dependence of induced synchronization on the properties
of the network (the Laplacian spectrum) and the switching process (strength of broadcasting, switch-
ing period, and switching probabilities). With coupled chaotic tent maps as our test-bed, we prove
the emergence of “windows of opportunity” where only non-fast switching periods are favorable to
synchronization. The size of these windows of opportunity is shaped by the Laplacian spectrum such
that the switching period needs to be manipulated accordingly to induce synchronization. Surpris-
ingly, only the zero and the largest eigenvalues of the Laplacian matrix control these windows of
opportunities for tent maps within a wide parameter region. Published by AIP Publishing. https://
doi.org/10.1063/1.5044420

Broadcasting propaganda is a manipulative approach
used to promote a particular political cause or influence
public opinion. Similarly to this abused art of persua-
sion, driving a technological or biological network towards
some desired behavior via global broadcasting from an
external node is an effective tool for controlling networks.
Examples include a robotic leader influencing the behav-
ior of a school of fish, or a small group of neurons which
can form an epileptic focus and cause an epileptic seizure.
In this paper, we study the conditions under which a refer-
ence broadcasting node can synchronize a target network
by stochastically transmitting sporadic, possibly conflict-
ing signals. We demonstrate that manipulating the rate at
which the connections between the broadcasting node and
the network stochastically switch can overcome network
resilience to synchronization. Through a rigorous math-
ematical treatment, we discover a nontrivial interplay
between the network properties that control this resilience
and the switching rate of stochastic broadcasting that
should be adapted to induce synchronization. Unexpect-
edly, non-fast switching rates controlling the so-called win-
dows of opportunity guarantee stable synchrony, whereas
fast or slow switching leads to desynchronization, even
though the networked system spends more time in a state
favorable to synchronization.

I. INTRODUCTION

Network synchronization presents a challenging, yet fun-
damental problem in the theoretical and empirical study of

real-world systems.1–3 Synchronization is one of the most
basic instances of collective behavior, and one of the easi-
est to diagnose: it occurs when all of the nodes in a network
act in unison. Typically, it manifests in ways similar to a
school of fish moving as one larger unit to confuse or escape
from a predator4 or a collection of neurons firing together
during an epileptic seizure.5 Significant attention has been
devoted to the interplay between node dynamics and network
topology which controls the stability of synchronization.6–9

Most studies have looked at networks whose connections are
static; networks with a dynamically changing network topol-
ogy, called temporal or evolving networks, are only recently
appearing in the scientific literature 10–16 (see the recent
book17 for additional references). A particular class of evolv-
ing dynamical networks is represented by on-off switching
networks, called “blinking” networks,18,19 where connections
switch on and off randomly and the switching time is fast,
with respect to the characteristic time of the individual node
dynamics.

As summarized in a recent review,20 different aspects
of synchronization, consensus, and multistability in stochas-
tically blinking networks of continuous-time and discrete-
time oscillators have been studied in the fast-switching limit
where the dynamics of a stochastically switching network
is close to the dynamics of a static network with averaged,
time-independent connections. While a mathematically rig-
orous theory of synchronization in fast-switching blinking
networks is available, the analysis of synchronization in non-
fast switching networks of continuous-time oscillators has
proven to be challenging and often elusive.
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Non-fast switching connections yield a plethora of unex-
pected dynamical phenomena, including (1) the existence of
a significant set of stochastic sequences and optimal fre-
quencies for which the trajectory of a multistable switch-
ing oscillator can converge to a “wrong” ghost attractor21

and (2) bounded windows of intermediate switching fre-
quencies (“windows of opportunity”) in which synchro-
nization becomes stable even though the network switches
between unstable states.22,23 Found numerically in networks
of continuous-time Rössler oscillators and food chain models,
the emergence of windows of opportunity calls for a rigor-
ous explanation of unexpected synchronization from non-fast
switching.

Blinking networks of discrete-time systems (maps) with
non-fast switching offer such a mathematical treatment.24

More precisely, the switching period in discrete-time net-
works can be quantified as a number of the individual map’s
iterates such that rescaling of time yields a new, multi-iterate
map that is more convenient to work with. Using the simplest
network of two stochastically coupled tent maps, we have
derived explicit conditions for the emergence of windows of
opportunities and provided a rigorous basis for understanding
the dynamics of non-fast switching networks of discrete-time
oscillators.

In this paper, we go further and address an important
problem of how non-fast switching can be used to con-
trol synchronization in a target network through stochastic
broadcasting from a single external node. This problem of
controlling synchronous behavior of a network towards a
desired common trajectory25 arises in many technological
and biological systems where agents are required to coordi-
nate their motion to follow a leader and maintain a desired
formation.26 In our setting, each node of the target network,
implemented as a discrete-time map, is coupled to the exter-
nal node with connections that stochastically switch in time
with an arbitrary switching period. The network is harder
to synchronize than its isolated nodes, as its structure con-
tributes to resilience to controlled synchronization probed by
the externally broadcasting node.

Combining ideas from our previous work on mutual syn-
chronization of two coupled maps via non-fast switching24

and controlled synchronization in fast-switching networks,27

we reveal a complex interplay between the structure of the
target network that provides resilience to controlled synchro-
nization and the switching period of stochastic broadcasting
that can be adapted to induce synchronization.

We examine the mean square stability of the synchronous
solution in terms of the error dynamics and provide an explicit
dependence of the stability of controlled synchronization on
the network structure and the properties of the underlying
broadcasting signal, defined by the strength of broadcast-
ing connections and their switching period and probability.
Via an analytical treatment of the Lyapunov exponents of
the error dynamics and the use of tools from ergodic the-
ory, we derive a set of stability conditions that provide
an explicit criterion on how the switching period should
be manipulated to overcome network resilience to synchro-
nization as a function of the Laplacian spectrum of the
network.28

FIG. 1. The reference node (blue) stochastically broadcasts a signal to each
of the nodes in a network of N oscillators (pink). The network has a complex
topology of static connections.

Through the lens of chaotic tent maps, we discover that
the network topology shapes the windows of opportunity of
favorable non-fast switching in a highly nonlinear fashion.
In contrast to mutual synchronization with a network whose
stability is determined by the second smallest and largest
eigenvalue of the Laplacian matrix via the master stability
function,6 controlled synchronization by the external node is
defined by all its eigenvalues, including the zero eigenvalue.
In the case of chaotic tent maps, the zero and the largest eigen-
value appear to effectively control the size of these windows
of opportunity. This leads to the appearance of a persistent
window of favorable switching periods where all network
topologies sharing the largest eigenvalue become more prone
to controlled synchronization.

II. GENERAL PROBLEM

We study the synchronization of a network of N discrete-
time oscillators given by the state variables yi ∈ R for
i = 1, 2, . . . , N29 that are driven by an external reference node
given by x ∈ R via a signal that is stochastically broad-
casted to all of the nodes in the network. The topology of
the network is undirected and unweighted. It is described
by the graph G = (V , E), where V is the set of vertices
and E is the set of edges. The broadcaster-network sys-
tem is depicted in Fig. 1. The evolution of the oscillators
in the network and the reference node are given by the
same mapping function F : R → R, such that x(k + 1) =
F[x(k)]. The switching of the broadcasted signal is an inde-
pendent and identically distributed (i.i.d.) stochastic process
that re-switches every m time steps. That is, the coupling
strength of the reference node ε(mk) = ε(mk + 1) = · · · =
ε[m(k + 1) − 1] is drawn randomly from a set of n coupling
strengths {ε1, . . . , εn} with probabilities p1, . . . , pn, respec-
tively (

∑n
l=1 pl = 1).



071104-3 Jeter, Porfiri, and Belykh Chaos 28, 071104 (2018)

The evolution of the discrete-time broadcaster-network
system can be written compactly as

x(k + 1) = F[x(k)],

y(k + 1) = F[y(k)] − μLy(k)

− ε(k)IN [y(k) − x(k)1N ] ,

(1)

where F is the natural vector-valued extension of F, μ is
the coupling strength within the network, 1N is the vector
of ones of length N , IN is the N × N identity matrix, and
L is the Laplacian matrix of G, i.e., Lij = −1 for ij ∈ E ,
Lii = −∑N

j=1,j �=i Lij, i = 1, 2, . . . , N . Without loss of general-
ity, we order and label the Laplacian spectrum of L: γ1 = 0 ≤
γ2 ≤ · · · ≤ γN .

We study the stability of the stochastic synchroniza-
tion of the network about the reference node’s trajectory, or
y1(k) = y2(k) = · · · = yN (k) = x(k). Towards this goal, it is
beneficial to re-format the problem and examine the evolu-
tion of the error dynamics ξ(k) = x(k)1N − y(k). When all
of the nodes yi(k) have converged to the reference trajec-
tory, ξ(k) = x(k)1N − y(k) = 0N . To study the stability of
synchronization, we linearize the system about the reference
trajectory

ξ(k + 1) = {DF[x(k)]IN − μL − ε(k)IN } ξ(k), (2)

where DF[x(k)] is the Jacobian of F evaluated along the refer-
ence trajectory x(k). As is typical of linearization, we assume
that the perturbations ξi(k) in the variational equation (2) are
small and in directions transversal to the reference trajectory.
Convergence to the reference trajectory along these transver-
sal directions ensures the local stability of the synchronous
solution. Despite the stochastic and time-dependent nature of
the broadcasting signal ε(k), it only appears on the diagonal
elements underlying the evolution of the error vector ξ(k).
Because μL is the only matrix in (2) that is not diagonal,
we can diagonalize (2) with respect to the eigenspaces of the
Laplacian matrix.

We obtain the stochastic master stability equation

ζ(k + 1) = {DF[x(k)) − μγ − ε(k)]} ζ(k), (3)

where γ ∈ {γ1, . . . , γN } and ζ ∈ R is a generic perturba-
tion along the corresponding eigendirection of L. Notice that
γ1 = 0 corresponds to the evolution of the error dynamics in
the absence of a network. Finally, in order to simplify the anal-
ysis of the evolution of the variational equations, we re-scale
the time variable with respect to the switching period

ζ̃ (k + 1) =
m−1∏

i=0

{DF[x(mk + i)] − μγ − ε̃(k)} ζ̃ (k), (4)

where ζ̃ (k) = ζ(mk) and ε̃(k) = ε(mk). This scalar equation
provides the explicit dependence of the synchronization error
on the network topology (via μγ ) and the strength of the
broadcasted signal (via ε). With this in mind, we continue by
discussing the stability of the synchronization to the reference
trajectory.

While there are many criteria that can be considered when
determining stochastic stability of a synchronous solution, we
use the lens of mean square stability for its practicality of
implementation and inclusiveness with other criteria.30,31

Definition 1. The synchronous solution yi(k) = x(k) for
i = 1, 2, . . . , N in the stochastic system (1) is locally mean
square asymptotically stable if limk→∞ E[ζ̃ 2(k)] = 0 for any
ζ̃ (0) and γ ∈ {γ1, . . . , γN } in (4), where E[·] denotes expecta-
tion with respect to the σ -algebra generated by the stochastic
process underlying the switching.

Mean square stability of the stochastic system in (4),
and by extension, synchronization in the original system (1),
corresponds to studying the second moment of ζ̃ (k). This is
especially attractive because it reduces our study of a stochas-
tic system to that of a deterministic one. Hence, we take the
expectation of the square of the error in (4)

E[ζ̃ 2(k + 1)] =
n∑

l=1

pl

(
m−1∏

i=0

{DF[x(mk + i)]

− μγ − εl}
)2

E[ζ̃ 2(k)]. (5)

Reducing the stochastically switching system (1) to a deter-
ministic system (5) allows for the use of standard tools from
stability theory, such as Lyapunov exponents.32 The Lyapunov
exponent for (5) is computed as

λ = lim
k→∞

1

k
ln

⎡

⎣
E
[
ζ̃ 2(k)

]

ζ̃ 2(0)

⎤

⎦

= lim
j→∞

1

j

j∑

k=1

ln
{

E[ζ̃ 2(k + 1)]
}

. (6)

There are numerous pitfalls that can undermine the numer-
ical computation of Lyapunov exponent from a time series,
such as E[ζ̃ 2] falling below numerical precision in a few time
steps and incorrectly predicting stochastic synchronization
for trajectories that would eventually diverge. With proper
assumptions, one can use Birkoff’s ergodic theorem32 to avoid
these confounds and form the main analytical result of this
paper.

Proposition 1. The synchronous solution x(k) of the
stochastic system (1) is locally mean square asymptotically
stable if

λ =
∫

B
ln

⎛

⎝
n∑

l=1

pl

{
m−1∏

i=0

[DF(t) − μγ − εl]

}2
⎞

⎠ ρ(t)dt, (7)

is negative ∀γ ∈ {γ1, . . . , γN }. Here, B is the region for which
the invariant density ρ(t) of F is defined.

Proof. Assuming F is ergodic with invariant density ρ(t),
one can avoid computing the Lyapunov exponent from a time
series using Birkoff’s ergodic theorem to replace the aver-
aging over time with averaging over the state. This amounts
to replacing the summation with integration in (6). Then, by
virtue of (6) and the definition of a Lyapunov exponent, sta-
bility of the stochastic system reduces to monitoring the sign
of this Lyapunov exponent. �

Remark 1. We reduce studying the stability of synchro-
nization in (1) to monitoring the sign of the Lyapunov expo-
nents in (7), with a different exponent for each eigenvalue γ . If
each of these Lyapunov exponents is negative, the dynamics of
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the network in the original system (1) converges to the dynam-
ics of the reference trajectory. Furthermore, this allows the
stability of stochastic synchronization to be studied explicitly
in the network and broadcasting parameters μ, {γ1, . . . , γN },
{ε1, . . . , εn}, {p1, . . . , pn}, and m.

Remark 2. There are two notable consequences of the
Laplacian spectrum on the stability conditions given by the
sign of (7): (1) μγ = 0 is always an eigenvalue, such that it is
necessary that the nodes in the network pairwise synchronize
to the reference node in the absence of a network topology
and (ii) if the network is disconnected, fewer stability con-
ditions need to be satisfied, whereby there will be repeated
zero eigenvalues. In light of these consequences, a network
is inherently resilient to broadcasting synchronization, in that
it necessitates satisfying more stability conditions, and syn-
chronization in the absence of a network is always one of the
stability conditions.

III. TENT MAPS

To explore some of the theoretical implications of the
general stability criterion (7), we consider the broadcaster-
network system (1) composed of chaotic tent maps. The
chaotic tent map, described by the equation

x(k + 1) = F[x(k)] =
{

ax(k), x(k) < 1/a,
a[1 − x(k)], x(k) ≥ 1/a

(8)

with parameter a = 2, is known to have a constant invariant
density function ρ(t) = 1.33 Therefore, the general criterion
(7) can be written for controlled synchronization of chaotic
tent maps in a compact form that depends only on the network
and broadcasting parameters.

Proposition 2 (Master stability function). A stochastic
system (1) of chaotic tent maps is locally mean square asymp-
totically stable if

λ = 1

2m

m∑

i=0

(
m

i

)
ln

[
n∑

l=1

plY(i, m, μγ , εl)

]
, (9)

is less than zero, where Y (i, m, μγ , εl) is given by (2 + μγ

+ εl)
2i(2 − μγ − εl)

2(m−i) and
(m

i

) = m!
(m−i)!i! .

Proof. To derive the criterion (9), we employ ideas from
our previous work24 on synchronization of two stochastically
coupled tent maps. Using the formula for the Lyapunov expo-
nent for the general stochastic system (7), we substitute the
invariant density ρ(t) = 1 and region B = [0, 1] that the func-
tion F is defined on for the tent map. This yields the following
equation:

λ =
∫ 1

0
ln

⎛

⎝
n∑

l=1

pl

{
m−1∏

i=0

[DF(t) − μγ − εl]

}2
⎞

⎠ dt. (10)

Explicitly detailing the role of DF(t) for general values of m
is trickier. Consider the case of fast switching, when m = 1.
The product

∏m−1
i=0 [DF(t) − μγ − εl] only takes two values

[2 + μγ + εl] = f −
l and [2 − μγ − εl] = f +

l , depending on
whether or not we are taking the integral over the increasing,
i.e., [0, 1

2 ], or decreasing, i.e., ( 1
2 , 1], branch of the tent map’s

domain, respectively. Splitting the integral in (10) and then

integrating, we obtain

λ =
∫ 1

2

0
ln

[
n∑

l=1

plf
+2

l

]
dt +

∫ 1
2

0
ln

[
n∑

l=1

plf
−2

l

]
dt

= 1

2
ln

[
n∑

l=1

plf
+2

l

]
+ 1

2
ln

[
n∑

l=1

plf
−2

l

]
. (11)

For m = 2, which corresponds to two successive iterations
of the tent map before switching states, a similar partition-
ing of the interval can be used, but this time into four distinct
intervals: [0, 1

4 ], ( 1
4 , 1

2 ], ( 1
2 , 3

4 ], and ( 3
4 , 1] which correspond to

the four combinations of two consecutive iterations. We can
perform a similar replacement to (11), but with four intervals

λ =
∫ 1

4

0
ln

[
n∑

l=1

plf
+4

l

]
dt +

∫ 1
2

1
4

ln

[
n∑

l=1

plf
+2

l f −2
l

]
dt

+
∫ 3

4

1
2

ln

[
n∑

l=1

plf
−2

l f +2
l

]
dt +

∫ 1

3
4

ln

[
n∑

l=1

plf
−4

l

]
dt

= 1

4

(
ln

[
n∑

l=1

plf
+4

l

]
+ 2 ln

[
n∑

l=1

plf
+2

l f −2
l

]

+ ln

[
n∑

l=1

plf
+4

l

])
. (12)

This idea then naturally extends to 2m intervals of length 1
2m , in

which the product
∏m−1

i=0 [DF(t) − μγ − εl] is the same. With
the binomial expansion structure of this product, for the ith
iteration, there are

(m
i

)
intervals with the same product that

can be collapsed. Hence, for tent maps, the general criterion
(7) turns into (9). �

Remark 3. The closed-form analytical expression (9) for
the Lyapunov exponents indicates the explicit dependence of
the stability of controlled synchronization on the network cou-
pling strength μ, the eigenvalues of the Laplacian matrix
for the network, the switching period m, the stochastically
switching coupling strengths {ε1, . . . , εn}, and their respec-
tive probabilities {p1, . . . , pn}. For controlled synchronization
to be mean square stable, the Lyapunov exponent for any
eigenvalue in the Laplacian spectrum must be negative.

To illustrate the power of our explicit criterion (9) for
controlled synchronization and clearly demonstrate the emer-
gence of windows of opportunity, we limit our attention to
stochastic broadcasting between two coupling strengths ε1

(with probability p) and ε2 (with probability 1 − p).
To choose the coupling strengths ε1 and ε2, we consider

two statically coupled tent maps (8),

x(k + 1) = f [x(k)],
y(k + 1) = f [y(k)] + ε[x(k) − y(k)].

(13)

The network (13) describes a pairwise, directed interaction
between the dynamics of the broadcasting map x(k) and a
single, isolated map y(k) from the network where the switch-
ing broadcasting coupling is replaced with a static connection
of strength ε. The stability of synchronization in the static
network (13) is controlled by the sign of the transversal
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FIG. 2. Transversal Lyapunov exponent, λst , for the stability of synchroniza-
tion in the static network of tent maps (13), calculated through (14) as a
function of coupling ε. This diagram is used to choose the values of coupling
ε1 = −1.999 (from a stability region) and ε2 = −1.700 (from an instability
region) for the broadcasting node to switch its connections with each node of
the network.

Lyapunov exponent33

λst = ln |2 − ε| + ln |2 + ε|. (14)

Figure 2 indicates two disjoint regions given by
ε ∈ [−√

5, −√
2] and ε ∈ [

√
2,

√
5] in which λst < 0 and

synchronization is stable.
Returning to the stochastically switching broadcaster-

network system, we use the master stability function of Fig.
2 to choose ε1 = −1.999 from a stability region and ε2 =
−1.700 from an instability region such that the connection
from the broadcasting node to the network switches between
the two values, where one value supports controlled syn-
chronization and the other destabilizes it. In this way, the
broadcaster sends two conflicting messages to the network to
follow and not to follow its trajectory.

We pay particular attention to the case where the switch-
ing probability of the stabilizing coupling, ε1, is higher
(p > 1/2). One’s intuition would suggest that fast-switching
between the stable and unstable states of controlled synchro-
nization with probability (p > 1/2), that makes the system
spend more time in the stable state, would favor the stabil-
ity of synchronization. However, the master stability function
of Fig. 3 calculated through the analytical expression for the
Lyapunov exponent (9) shows that this is not the case. Our
results reveal the presence of a stability zone (black area)
which, in terms of the switching periods m, yields a win-
dow of opportunity when non-fast switching favors controlled
synchronization, whereas fast or slow switching does not.
The fact that slower switching at m > 25 at the switching
probability p = 0.9 (see the transition from point A to B)
desynchronizes the system is somewhat unexpected, as the
system is likely to remain in the stable state, defined by ε1,
most of the time.

The exact cause of this effect remains to be studied;
however, we hypothesize that this instability originates from

FIG. 3. Analytical calculation of the master stability function (9) for con-
trolled synchronization of tent maps as a function of the switching probability
p and switching period m for ε1 = −1.999, ε2 = 1.700, and μ = 0.01. (Top)
The black region indicates the stability of controlled synchronization and the
dashed lines represent the boundaries for the stability regions (gray areas)
for various eigenvalues γ of a network’s Laplacian matrix. Notice that the
size of the stability region is primarily controlled by only two curves, cor-
responding to γ = 0 (red dashed) and γ = 10 (black dashed), such that the
addition of curves for eigenvalues γ ∈ (0, 10) only affects the small cusp
part of the stability region (see the zoomed-in area). (Bottom) Zoom-in of
the region marked by the white rectangle in (top). Points A, B, and C indi-
cate pairs (p, m) for which synchronization is unstable, stable, and unstable,
respectively, for different values of the switching period m. Note the window
of favorable frequencies m which includes point B in the vertical direction
from A to C. Remarkably, the size of the stability region remains persistent
to changes of the intra-network coupling μ (not shown), suggesting the exis-
tence of soft, lower and upper thresholds for favorable switching frequencies
between m = 20 and 30.

a large disparity between the time scale of weak conver-
gence in the vicinity of the synchronization state during the
(long) time lapse when the stabilizing coupling ε1 is on and
the time scale of strong divergence from the synchronization
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solution far away from it when the destabilizing coupling ε2

finally switches on. As a result, this unbalance between the
convergence and divergence makes synchronization unstable.

The window of opportunity (black area) displayed in
Fig. 3 appears as a result of intersections between the bound-
aries (dashed curves) of the stability zones (gray areas), where
each boundary is calculated from the criterion (9) when the
Lyapunov exponent is zero for the corresponding eigenvalue
of the Laplacian matrix. The red curve for γ1 = 0 shows the
stability region in the absence of a network, and is there-
fore a necessary condition for controlled synchronization in
the presence of the network. In the general case of N dis-
tinct eigenvalues, there will be N curves. Each curve adds a
constraint and, therefore, one would expect each eigenvalue
γ1, . . . , γN to play a role in reducing the size of the stability
zone and shaping the window of opportunity as a function of
network topology.

In contrast to these expectations, Fig. 3 provides a con-
vincing argument that the stability zone is essentially defined
by two curves, corresponding to the zero eigenvalue, γ1

(red dashed curve), and the largest eigenvalue, γN (black
dashed curve). All the other curves offer a very minor con-
tribution to shaping the stability region. As a consequence,
windows of opportunity should be relatively robust to topo-
logical changes, preserving the maximum largest eigenvalue
of the Laplacian spectrum. For example, the set of four dis-
tinct eigenvalues (0, 1, 3, 10) in Fig. 3 corresponds to a star
network of 10 nodes with an additional edge connecting two
outer nodes. In this case, the removal of the additional link
reduces the spectrum to three distinct eigenvalues (0, 1, 10)

and eliminates the curve for γ = 3 which, however, does not
essentially change the stability region. This observation sug-
gests that the addition of an edge to a controlled network,
which would be expected to help a network better shield from
the external influence of the broadcasting node, might not
necessarily improve network resilience to synchronization.

Similarly, the removal of an edge from an all-to-all
network with two distinct eigenvalues (0, N) changes the
spectrum to (0, N − 1, N), which according to Fig. 3 does
not significantly alter the stability region either. For general
topologies, one may look at the degree distribution to gather
insight on the largest eigenvalue. Combining the lower34 and
upper35 bounds for a graph with at least one edge, one can
estimate the largest eigenvalue γN as follows:

max{di} + 1 ≤ γN ≤ max{di + dj}, ij ∈ E , (15)

where di is the degree of node i = 1, . . . , N . Although these
bounds are conservative, they indicate that the degree distri-
bution plays a key role in defining γN .

For a fixed number of edges, networks with highly het-
erogeneous degree distributions, such as scale-free networks,
may enhance resilience to broadcasting when compared to
regular or random networks, with more homogeneous degree
distributions. Our recent paper27 contains a comparative study
between a 2K-nearest neighbor network, a scale-free network,
and a random Erdös-Renyi graph with the same number of
edges, indicating that the scale-free network tends to have
larger values of γN .

In general, the entire spectrum of the Laplacian matrix
may matter for the stability of controlled synchronization in
a network of discrete-time oscillators. However, our analysis
of coupled tent maps points to a simpler mechanism, whereby
one can use the degree distribution for drawing conclusions on
the switching periods that guarantee the success of the broad-
caster to synchronize the network. Put simply, “you can run
but you cannot hide”: the broadcaster will identify suitable
switching rates to overcome the resilience of the network.

IV. CONCLUSIONS

While the study of stochastically switching networks has
gained significant momentum, most analytical results have
been obtained under the assumption that the characteristic
time scales of the intrinsic oscillators and evolving connec-
tions are drastically different, enabling the use of averaging
and perturbation methods. In regard to on-off stochastically
switching systems, these assumptions typically yield two
extremes, fast or slow (dwell-time36) switching, for which rig-
orous theory has been developed.18,19,21–23,37–42 However, our
understanding of dynamical networks with non-fast switch-
ing connections is elusive, and the problem of an analytical
treatment of the dynamics and synchronization in non-fast
switching network remains practically untouched.

In this paper, we sought to close this gap by creating
an analytical approach to characterize the stability of net-
work synchronization in stochastically switching networks of
discrete-time oscillators as a function of network topology
and switching period. We considered a special type of con-
trolled synchronization induced in a static network of coupled
maps through stochastic broadcasting from a single, external
node. Extending our previous work on synchronization of two
maps with non-fast switching connections24 and broadcaster-
induced synchronization in fast-switching networks,27 we
have established a rigorous toolbox for assessing the mean-
square stability of controlled synchronization in broadcaster-
network systems. Through a rigorous mathematical analysis
of the transversal Lyapunov exponents, we have uncovered a
complex interplay between a target network and the switch-
ing period of stochastic broadcasting. Stable synchronization
in the network is possible, provided that the switching period
falls into a window of opportunity.

Our approach is directly applicable to high-dimensional
maps whose invariant density measure can be calculated
explicitly. These systems include two-dimensional diffeomor-
phisms on tori such as Anosov maps,43 for which the invariant
density measure can be calculated analytically, and volume-
preserving two-dimensional standard maps whose invariant
density function can be assessed through computer-assisted
calculations.44 Although our work provides an unprecedented
understanding of network synchronization beyond the fast
switching limit, we have hardly scratched the surface of
evolving dynamical networks theory. This work immediately
raises the following questions: (1) What if the i.i.d. process
underlying the switching was relaxed to be a more general
Markov process? and (2) What if the underlying topology of
the broadcasting was more complex? Both of these questions
are of interest, but provide their own technical challenges
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and require further study. We anticipate that combining our
recent work on synchronization of two maps under Marko-
vian switching with memory45 with the approach developed in
this paper should make progress toward unraveling a complex
interplay between switching memory and network topology
for controlled synchronization.
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