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Abstract

This paper describes a generalization of the isometric Arnoldi algorithm and shows that it can be inter-
preted as a structured form of modified Gram—Schmidt. Given an isometry A, the algorithm efficiently
orthogonalizes the columns of a sequence of matrices M ; for j > 0 (with M_; = 0) for which the columns
of Mj — AMj_ are in a fixed finite dimensional subspace for each j > 0. The dimension of the subspace
is analogous to displacement rank in the generalized Schur algorithm. The algorithm is described in terms
of projections and inner products. This is in contrast to orthogonalization methods based on the generalized
Schur algorithm, for which Cholesky factorization is central to the computation. Numerical experiments
suggest that, relative to a generalized Schur algorithm, the new algorithm improves the numerical orthogo-
nality of the computed orthonormal sequence.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

We assume throughout this paper that A is an isometry acting on a complex Hilbert space
A with inner product (x,y) and norm ||x|| = (x, x)!/2. Given a vector x € # with |x|| = 1
the isometric Arnoldi algorithm [3,4] is an efficient procedure for orthogonalizing the Krylov
sequence

X, AX, Azx,

It can be viewed as a generalization of the Szego recurrence [9] for the orthogonalization of the
polynomial power basis
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1,z,zz,z3,...

with respect to an inner product on the unit circle or as a generalization of the lattice algorithm
[1] for the orthogonalization of the columns of an m x [ windowed Toeplitz matrix

T=[t 7zt z’t ... ZzI7l,
where Z is the circulant shift matrix and
tT =[to t - fm OT,]]~

The orthogonalized sequence gives a basis with respect to which A reduces to a product of plane
rotations. In the matrix case this corresponds to a unitary similarity that reduces A to unitary
Hessenberg form, providing an efficient means to solve the unitary eigenvalue problem [2]. The
procedure also provides efficient methods for solving systems involving shifts of unitary matrices,
i.e. systems of the form (@A + BI)x = b [6].

The goal of this paper is to modify the isometric Arnoldi algorithm so as to orthogonalize
a generalization of the class of Krylov sequences. We generalize in two ways. First, instead of
sequences of vectors, we consider sequences of matrices of the form

Mj=[m;; mj;> --- mj,] e

for j > 0 and where m; ; € /. Throughout this paper we assume that M_; = 0. Second, instead
of requiring that M; = AM;_1, we require that the columns of M; — AM;_ lie in some finite
dimensional subspace .# C .

We make a few comments about notation. It is convenient to interpret a vector X € J as an
operator mapping a complex number a to the product ax € 5 . The vector x then has an adjoint
x* : # — C defined by x*y = (y, x). We similarly interpret a matrix M with p columns that
are each in # as an operator from C” to # acting through matrix vector multiplication in the
obvious way. If M : C” — A is a matrix with columns my € # the adjoint M* : # — CP is
a matrix with rows my. Given an arbitrary operator B we use the notation Z(B) to represent the
orthogonal projector onto Im(B).

Let

M =My My M, --]. 2)

Orthogonalizing the columns of M (> against the columns of each M jfor0 < j <k — 1results
in a matrix of the form

(k) (k)
o 0 mo o .

The sequence M j(k) is M j projected onto the orthogonal complement of the span of the columns of
My, My, ..., Mi_1. The k leading zero blocks are the columns of MO,A My, ..., My_1 projected
onto the orthogonal complement of their own span. The sequence M ;J ) is the orthogonalization

of the sequence M in the sense that Im(MJ(.j)) L Im(M,Ek)) for j # k and
Im[My M; --- M;j]l=Im [M(go) Mfl) e M](.j)]

for j > 0. The explicit computation of each of the sequences M](.k) fork =0,1,2,...canbeinter-
preted as a block form of modified Gram—Schmidt. The generalized isometric Arnoldi algorithm
can be interpreted as a structured form of the above unstructured orthogonalization procedure. The
algorithm exploits the fact that if M; is Krylov-like then the partially orthogonalized sequences

Mj(.k) are also Krylov-like.
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In order to describe the Krylov-like structure of the sequences M](.k) we need a more detailed
description of Krylov-like structure. For a variety of reasons it is convenient to work with projec-
tors. If Py is the orthogonal projector onto .# then a Krylov-like sequence could be defined as a
sequence satisfying a relation of the form

Mj—AM; 1 = PoM; — PyAM; 3)

for j > 0. Unfortunately, if we start with a sequence M satisfying a relation of the form (3) then

the partially orthogonalized sequence M %) satisfies a relation of the form (3) only if Py is replaced
by a projector of greater rank. The following definition is based on a relation that is preserved
during orthogonalization with no increase in the ranks of the projectors.

Definition 1. Any projectors Py and Qy satisfying

Pol(I = Qo)AY Py =0 “)
for j > 1 are referred to as displacement projectors. A sequence M; : C¥ — # with M_; =0
is Krylov-like with displacement projectors Py and Qg if

Mj—AM; | = PbM; — QoAM;_, 5)
for j > 0.

Example 1. An ordinary Krylov sequence m; = AJx for ||x|| = 1 where m_; = O satisfies
m; — Am;_; = §;Xx € Span(x)

for j > 0 and where §; = 1 for j = 0 and §; = 0 for j # 0. Thus
m; — Am;_; = Pom; — QpAm;_

for j > 0 with Py = Q¢ = xx*.

Example 2. An m x n real Toeplitz matrix
T=1[t t - t_1] (6)
has columns
=l 11 o el
that satisfy
tj —Zt;j_1 =§to+ (t—; — tyy—;)e1 € Span(to, e)
for j > 0 where Z is the circulant downshift matrix and t_; = 0. Thus
tj —Ztj_1 = Pot; — QoZt;_,

where

5 (to — 10e1) (to — t0e1) " (7

Py=Qo=ee] + ————
lito — toe1 ||

In the above examples (4) is satisfied for the simple reason that Py = Q. As orthogonalization
proceeds we generate projectors P and Qy that are displacement projectors for M](.k). In general
Py and Qy are not equal. Nevertheless they satisfy
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Pel(I — Q)AV Py =0 ®)

for j > 1. This relation is of fundamental importance to the proof that the algorithm correctly
orthogonalizes a Krylov-like sequence.

An outline of this paper is as follows. In §2 we derive a form of the isometric Arnoldi algorithm
that can also be applied to a Krylov-like sequence. The derivation assumes that the sequence is an
ordinary Krylov sequence. In §3 we describe some simple properties of Krylov-like sequences,
including a connection with Toeplitz-like matrices. We also show that Krylov-like structure is
preserved by orthogonalization. In §4 we prove that the generalized isometric Arnoldi algorithm
orthogonalizes a Krylov-like sequence M. In §5 we factor the projectors and describe the algo-
rithm in terms of the bases for the images of the projectors. In §6 we show how to extend the
procedure with recurrences to compute the factor R in a Q R factorization. The recurrences reveal
the connection between the generalized isometric Arnoldi algorithm and the generalized Schur
algorithm. In §7 we present some numerical experiments. Finally in §8 we comment on some
open problems and ongoing research.

2. A general form of the isometric Arnoldi algorithm

We now put the isometric Arnoldi algorithm in a form that is applicable to general Krylov-like
sequences. The initial derivation assumes that the sequence to be orthogonalized is an ordinary
Krylov sequence. It is only in §4 that we prove that the algorithm also correctly orthogonalizes
Krylov-like sequences. In order to avoid worrying about the dimension of various subspaces and
the choice of particular bases for the subspaces it is convenient to state the general form of the
algorithm in terms of projectors. The projectors Py and Qy described in this section are in fact dis-
placement projectors for a Krylov-like sequence, although the proof of this fact is also put off to §4.

Given a Krylov sequence m; = A/x where ||x|| =1 and A*A = I, the isometric Arnoldi
algorithm of [3,4] is as follows.

Algorithm 1. Isometric Arnoldi
X0 =X,y0=X,k=0
Yo = —(AX, X)
While |yx| # 1

Xkt1 = (AXg + veyo) /v 1 — [ l?
Yi+1 = KAXe +y0) /v 1 — [y ?
Vil = —(AXky1, Yit1)
k=k+1
End While
It can be shown that the quantity y; satisfies |yx| < 1. If |y| < 1 for 0 <k <n —1 then
Algorithm 1 generates an orthonormal sequence of vectors x; for which
Span(xg, X1, ..., Xx) = Span(x, AX, ..., Akx) O]
foreach 0 < k < n.If |y,| = 1 then
Span(xg, X1, ..., X;) = Span(x, AXx, ..., A"X)

is an invariant subspace of A.
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In describing the isometric Arnoldi algorithm, we differ from [3,4] in that we enforce the
normalization ||xg|| = ||yk|l = 1. Starting with |xol| = |lyoll = 1, it is easily verified that if
IXill = llyxll = 1 then

IAXE + veyell® = 17 Axe + yell> = 1 — |yl

so that [xe1 [l = lyse1 | = 1.
Let Py be the orthogonal projector onto Span(xx) and let Qy be the orthogonal projector onto
Span(yy). Then [|x¢|| = [ly |l = 1 implies

XXk =y;yk =1, Pr=xix{, and Qg = yy;.
It follows that

I — QAR N? = 1 — | Qe AXe|> = 1 — |lyayf Axl® = 1 — [yl

so that
L (Ax — ve(vi Ax) ! (I - 0nA
Xk+1 = —F/——— Xk — Yy Xk)) = —————————— — Uk Xk
J1— P k (I — Qr) Axk|l
or
1

Pk-‘rl = Xk+lx;(k+l = m(l — Qk)AXkXZA*(I — Qk) (10)

Thus

Pry1 =2((U — Qu)AP).

Define Vi, = 2((I — Qx)APy) and suppose for the moment that Uy = Pi. Then we can write
Pry1 = Vi as

Pry1 = P — U + V. (11)

When considering the case of a general Krylov-like sequence we choose Uy to be the projector
onto a particular subspace of Im(Py). Hence in general we do not have Py = Uj. Nevertheless,
with an appropriate choice of Uy, (11) is applicable to the orthogonalization of general Krylov-like
sequences.

We now consider the computation of Q1. Since

1 |
X, = AX
Xk+1  Yi+1] ; 2[ &yl [yk 1}

— Il
and
H
( 1 [1 ﬁ])[l 0}( 1 [1 WD _[1 o}
Vi—ipl e L0 U= e 0 -1
we have
L0 | [{x4] _ I 0 [|xfA*
[Xk+1 Yk+1]|:0 _1} [YZH = [Axr ] o —1|| v
or

* * * * *
Xp+1X 11 — Ye+1Yrq1 = AXeXp A — Yiyy-



188 M. Stewart / Linear Algebra and its Applications 423 (2007) 183-208

Thus Qp4+1 = Qx — APtA* + Pi41. Using the relations Py = Uy and Pri] = Vi we can
write

Qi+1 = Ok — AUA™ + V. (12)

As with the relation for P41, (12) is applicable to a Krylov-like sequence if Uy is chosen to be
the projector onto a suitable subspace of Im(Py).
With regard to termination of the algorithm, we note that

| Qk AUl = | Ok A Pill = Ilyryr AXexXi |l = [yl

so that terminating when |yx| = 1 is the same as terminating when || Qx AU || = 1.

Finally, since the relation Uy = Py is suitable only for the orthogonalization of an ordinary
Krylov sequence and does not apply in the case of a Krylov-like sequence, we introduce a more
generally applicable formula. If || Qx AU || < 1 then |yx| < 1 so that mg, my, ..., mg4 are lin-
early independent. The vector X1 is mg4 orthogonalized against Span(mg, my, ..., mg) and
then normalized. Linear independence thus ensures that x;; +1Mi+1 # 0 so that

P(Pryimyy1) = P (X 1% My 1) = Pryp = Upp.

Combining this relation for Uy and the definition of V} with the recurrences (11) and (12) gives
the following form of the isometric Arnoldi algorithm.

Algorithm 2. Isometric Arnoldi in terms of projectors
Py =xx*, Qo= Pp, k=0
Uo = Py, Vo = Z((I — Qo)A Py)
While || Qx AUl < 1

Pry1= P — Ui+ Vi
Qk+1 = Qk — AULA™ + Vi
Uk+1 = P(Pry1Mp4)
Vir1r = 2(U — Or+1)AUk+1)
k=k+1

End While

Recall that in the context of an ordinary Krylov sequence, Uy = Py = x;X] so that x;’ka =0
for j # k implies that

U™ =Uy+ Ui+ -+ U,

is the orthogonal projector onto Span(x, Ax, ..., A"x) = Span(xy, ..., X;).

We have claimed that Algorithm 2 can also be used to orthogonalize the broader class of
Krylov-like sequences. The only modifications required to apply Algorithm 2 to the more general
problem are replacing Ug4+1 = 2(Pry1myy1) with Ugq1 = P(Pry1Mi41) and setting Py to be
the orthogonal projector onto the subspace .#. Although working with projectors represented as
dense matrices is clearly inefficient, the images of the projectors can be represented by orthonormal
bases, in which case the relations for Py11 and Q41 can be implemented as two updating/
downdating problems. Doing so reverses the steps of the preceding derivation, leading back to
Algorithm 1.
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3. Krylov-like sequences

Clearly the knowledge that a sequence M ; satisfies a relation of the form (5) for given Py, Qo,
and A does not suffice to uniquely determine M ;. The additional information that is required to
determine M is its projection onto the image of Py. In fact the recurrence

M;=Bj+(I—-Q0AM;_;, M_; =0 (13)

is a bijection mapping sequences of matrices B;, j > 0 with columns in the image of P (i.e. with
PyBj = Bj) onto the set of all Krylov-like sequences satisfying (5). This bijection guarantees
that PoM; = B; so that a Krylov-like sequence M is uniquely determined by its projection on
the image of Py.

Theorem 1. Let Qg and Py be orthogonal projectors:

L. If (4) holds then the mapping (13) is a bijection from the set of sequences B satisfying P)B; =
Bj to the set of Krylov-like sequences M j satisfying Mj — AM;_1 = PoMj — QoAM;_1.In
addition we have P)M; = B;.

2. If for every Bj satisfying PyBj = B; there is a sequence M; such that M; — AM;_; =
PoM; — QoAM;_1 and PoM; = Bj then (4) holds.

Proof. For M; computed from (13) with B; satisfying PyB; = B; we have

J
Mj=Bj+ Y [(I - Q0)Al" PyBjp
m=1

from which it follows that if (4) holds then PoM; = B;. The relation (13) can then be rewritten
Mj=PM;+ (I — Qo)AM;_;.

Thus if (4) holds then (13) maps sequences B; satisfying PoB; = B; into the set of Krylov-like
sequences satisfying M; — AM;_; = PoM; — QoAM;_;.

That (13) maps onto the set of all Krylov-like sequences follows from the fact that for an arbi-
trary sequence M ; satisfying M; — AM; 1 = PoM; — Q9AM;_1, we can choose B; = PyM;,
in which case the recurrence (13) generates M ;. The map is one-to-one since if B; and t}j map
to the same sequence M then

M;=Bj—(I—Q0)AM;_;, and M; =B — (I — Qo)AM;_,

immediately imply B; = B iz
To prove the second part of the theorem, we set B; = 0 for j # 0 and let By be an arbitrary
matrix with columns in Im(Fp). If there is a sequence M satisfying (5) and PopM; = B; then

J
Mj = Bj+ ) [ = Q)AI"Bj—m = [(I — Qo)AV Bo.

m=1

Since PpMj = Bj = 0 for j > 1 we then have
Pol(I = Q0)AV By = 0

for all j > 1. Since By is an arbitrary matrix with columns in Im(Py) this implies (4). [
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Krylov-like sequences are connected in a simple way with Toeplitz-like matrices. In particular,
the relation (5) is closely related to the displacement equation [8] of the block Toeplitz-like matrix
with blocks given by T; j = MM ;.

Theorem 2. Suppose that the sequence M ; satisfies (5) with M_y = 0. If
T;,j: CP — CP = MM,

then
Tij—Ti—1,j—1 = M PoM; — M |A*QoAM;_.

Proof. Multiplying both sides of
Mj=PyM;+ I — Qo)AM;_

by Pg gives Po(I — Qo)AM 1 = 0. Thus M can be represented as the sum of two components:
its own projection on Im(Py) and a component that is orthogonal to both Im(Py) and Im(Qy).
Multiplying (5) by M} gives

Ml-*Mj — M,'*AMj—l = Ml?kPoMj — Mi* QoAM;_;.
Multiplying (5) by A* gives

A*M; = Mi_y + A* PoM; — A*QoAM;_;
so that

Ml-*Mj — (Mi_1 + A*PoM; — A* QoAM,'_1)*Mj_1 = Mi*PoMj — Mi*QoAMj_l
or

MPM;— M* M;_ | = M*PyM; — M* | A*QoAM;_; + M}(Py — Q0)AM;_1.

Since M; can be represented as a Py M; plus a component orthogonal to both Im(Q) and Im(Py)
we have

M7 (Po— Qo)AM;_1 = M Po(Py — Q0)AM; 1 = M Poy(I — Qo)AM;_1=0. O
Example 3. For a Krylov sequence m; = A/x with ||x|| = 1 and m_; = 0 we have Py = Q¢ =
xx*. If t; ; = m’m; then

tij—ti—1j—1 =m (XX )m; —m;_; A*(xx*)Am;_;.

Let Zg be the n x n shift matrix [Zg];; = 1 fori = j + 1 and [Zp];; = O otherwise. If

K=[m m; --- m,_]
then T = K*K satisfies

T — ZoTZ) = K*xx*K — ZoK*A*xx*AK Z] .

Thus T is a displacement rank 2 Toeplitz-like matrix. It is well known and trivial to verify that T’
is in fact Toeplitz.

Example 4. If S = TTT where T is the real Toeplitz matrix (6) then

Siyj = Si—1,j-1= (" (to — toe1)(to — t0e)"t; — t Z (to — t0e)

lIto — toe1 I3
X (tg — toel)Tth_l) + tiTele]th — t;-l;] ZTelelTth_l.
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Equivalently
1
T T T T,T
S —2ZoSZy = ——= (T (to — toe1)(to — toe1) T — ZoT " Z (ty — tpe1)

lIto — toe1 113
x (to —toe1) " ZTZ3) + T e1e[ T — ZoT " Z e[ 2T Z; .

Thus S is a displacement rank 4 Toeplitz-like matrix.

Just as Krylov-like sequences are closely related to Toeplitz-like matrices, the generalized
isometric Arnoldi algorithm is closely related to the generalized Schur algorithm [8]. However
instead of exploiting the fact that Toeplitz-like structure is preserved by Schur complementation,
we exploit the fact that Krylov-like structure is preserved by orthogonalization. Given a Krylov-

like sequence M/(.k), j = 0 with displacement projectors Py and Q and a projector Uy with
Im(Ux) € Im(Py), the sequence
M}"“) = - Uk)M](.k)

for j > 01is a Krylov-like sequence with displacement projectors Py and Qg1 with ranks less
than or equal to the ranks of Py and Q. The following theorem justifies these claims, with the
notable exception that we put off the proof that Py and Qx4 satisty (8).

Theorem 3. Suppose that a Krylov-like sequence Mj(.k) satisfies

k)

(k) k) __ (k) (k)
Mj —AM]- 1—Pij —QkAMj71

foreach j > 0 and for displacement projectors Py and Q. (i.e. for projectors satisfying (8)). Let
Uk be the orthogonal projector for an arbitrary subspace of Im(Py). Let

Vie = 2(( — Qr)AUy),
Peyr =P — Ui+ Vi, and Qiy1 = Ok — AUA™ + Vi

Then Py4+1 and Qy+1 are orthogonal projectors with ranks less than or equal to those of Py and
Qy respectively. If

M;k+1) — (- Uk)M;k)
is the sequence M;k) orthogonalized against Im(Uy) then
MOV A = PO 0y M
for j > 0.

Proof. It follows from (8) and the fact that Im(Uy) C Im(Py) that
PV = PeP((I — Q) AUy) = PeP((I — Q) AP Uy) = 0.

This also implies Ui Vi = 0. Itis obvious from the definition of Vj that Q; V; = 0. These observa-
tions imply that Py 4+ Vi and Qy + Vi are orthogonal projectors with ranks equal to rank (Px) +
rank (Vy) and rank(Qy) + rank(Vy).

Since PyUy = Uy and P Vi, = 0, it is trivial to verify that Py is self-adjoint and idempotent
so that it is an orthogonal projector onto its own image. In fact Py is the orthogonal projector
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onto the orthogonal complement of Im(Uy) in Im(Px + Vi) = Im(Px) @ Im(Vj). The claim for
the rank of Py follows from the fact that the rank of Vj is no larger than the rank of Uy.
Since

Villd — Q) AU = (I — Q) AU
we have
AUy = V(I — Q) AU + QAU

so that Im(AUy) € Im(Qy + Vi) Since AU, A* is the orthogonal projector onto Im(AUy) it fol-
lows that Q.1 is the projector onto the orthogonal complement of Im(AU A*) in Im(Qy + V).
The claim for the rank of Q1 follows from the fact that the rank of Vj is no larger than the rank
of AU A*.
The Krylov-like structure of the sequence MJ(.k) gives
- Uk)Mj(k) — A — U,()M](."_)1
k k
= (P~ UM;" — (Qi — AU A" AM Y,
k+1 k+1 k
= (P — UM™Y — (0 = AUANAMED — (01 — AUAH AUM Y,
= (P — UM™Y — (0 = AUANAMIED 1+ (1 = 0 AUM Y, (14)
In the second line we have used the fact that (P, — Uy)({ — Uy) = (P — Uy) so that (P, —
Uk)MJ(.k) = (P — Uk)MJ(.kH). Since Vj is the projector onto Im((/ — Q) AUy) we have
(I — QAU = Vi1 — Qi) AUk = Vi AUk.

Using Vi Py = Vi O = ViU = 0 we get
(I — QAUM Y| = VAU MP
= Vi(PM P — 0 AMP ) + VAU M|
= V(M =AM )+ ViAUM P,
= Vil = UM = VeAU = UM,
= ViM Y — v am D,

Substituting the final expression into (14) gives the desired result. [

The theorem gives recurrences for computing the displacement projectors Py and Qj for
the Krylov-like sequence M](.k). Given initial displacement projectors Py and Q for a Krylov-
like sequence M the recurrences define two sequences of subspaces Im(F%) and Im(Qy) of
nonincreasing dimension.

Theorem 3 suggests a structured orthogonalization algorithm that looks very much like Algo-

rithm 2. Given a Krylov-like sequence MJ(.O) = M, the sequence can be orthogonalized against
the columns of Méo) to obtain the sequence MJ(.U = - UO)MJ(O) where Uj is the projector onto
the span of the columns of Méo). The j = 0 case of (5) with M_; = 0 implies that Im(Up) =
Im(MéO)) C Im(Py) so that Theorem 3 applies to show that M](.l) is Krylov-like. The theorem also

gives explicit relations for the displacement projectors of Mj(.l). Since Mél) = 0 we have from
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(5) that Im(M fl)) C Im(Py). Thus the process can be repeated to orthogonalize the sequence
Mj(.l) against the columns of Mfl) to get Mj(.z) = - U1)Mj(.1) where Uj is the projector onto
Im(U,) = Im(Ml(l)) C Im(Py). In general Im(M,Ek)) C Im(Py) so that this procedure can be used
to compute displacement projectors for each of the partially orthogonalized sequences Mj(k).
Unfortunately this outline of the algorithm is incomplete for two reasons. First, while the proof

of Theorem 3 depends on (8) holding for Py and Qy, we have not shown that Py and Qg4

satisfy (8). Second, although we have defined Uy, we have not given a computationally useful
formula for computing it. We have suggested that Uy should be the projector onto Im(M,Ek>).
Since we do not expect to have an explicit representation of the partially orthogonalized sequence

MJ(.k), this definition is not computationally useful.
Both gaps are filled in the next section. It can be shown that Krylov-like structure, including the
relation (8), is indeed preserved during orthogonalization. We can also show that Py M; = 0 for

Jj < k. Since M,EO) — M,Ek) has columns that are in the span of the columns of My, My, ..., My_1,
it follows that P,(M” — M) = 0 so that

Uy = 2(MY) = 2(PMP) = 2(PM). (15)

Thus Uy can be obtained from Py and the original Krylov-like sequence M ,EO). This results in the
following algorithm.

Algorithm 3. Generalized isometric Arnoldi in terms of projectors
Given: Qg, Pp, and M; for j > 0.
k=0
Uo = 2(Mo)

Vo =2(I — Q0)AUy)
Fork=0,1,2,...

Pit1 = P = Up + Vi

Qr+1 = Qk — AULA™ + Vi

U1 = P(Pry1 Miy1)

Vierr = (U — Qk+1)AUs+1)
End For

4. Orthogonality relations

Theorem 3 is almost a proof of the correctness of Algorithm 3. As noted what remains to be

proven is that the desired Uy = (M ,Ek)) can be computed through the relation Uy = 2 (P M)
and that the relation (8) is satisfied for the sequences Py and Qy. The two issues are closely
related. We have justified (15) by the claim that Im(P) is orthogonal to the columns of M; for

J < k.If Uj is chosen to be the projector onto Im(M l(l)) foreach 0 </ < k then this follows from
the j = 0 case of

Uil — Q) AV P =0
forl < k and j > 0. This property of U; is clearly similar to (8).
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Relations of this type can be proven by arguments that depend on properties of suitably defined
invariant subspaces of (I — Qr)A. We define W = (I — Qi) A so that both relations are of the
form Y W/ X = 0 for j > 0 for suitably chosen ¥ and X. Let # be an invariant subspace of W.
If we decompose # as # = Ho D J{’(J)' then W can be written as

Wi Wi, wl ) 1
W:[O sz].%oeajfoejfo@%o, (16)
where

Wit = PyyWlwy, Wiz = PﬂoWlﬂvé, and Wp = RyféWl,y,)é~

The operators X and Y can be similarly written as

Yiin T2 X1 Xp
Y = , and X = . 17
|:Y21 Yzz} |:X21 Xzz] {17

Therelation Y W/ X = Ofor j > Ohas an interpretation in terms of systems theory. In particular,
it shows that the controllability subspace of the pair (W, X) is orthogonal to the observability
subspace of the pair (Y, W) [7]. If we let 5#( be the controllability subspace of the pair (W, X)
then we obtain the following decomposition.

Lemma 1. Suppose that Y, W, and X are bounded operators on # satisfying YWI X = 0 for
Jj=0.Let

%1:{X:x:Xx0+WXx1+-~-+WlXxlforxke%’andl}O}

and let o be the closure of 1. Then 'y is an invariant subspace of W and, with respect to
the decomposition # = H o D H é, we have

(Wi Wy X X2 |0 Y2
W_[O sz], X_[O 0}, and Y_[O Yzz]. (18)

Proof. Clearly 5 has been defined to be an invariant subspace of W. Thus nyé W, = 0and

W has the form (18) with respectto #°o @ H# é. Let X and Y be partitioned as (17). By construction
Im(X) C 5 so that P%;éX = 0 which gives the desired form for X. Since Y W/ X = 0forj > 0

and Im(W/ X) C # we have
YW/ X = Py Y noW/' X = Py, YW/ X =0
for j > 0. Similarly Y7 = Pﬂ/éYWjX = 0 for j > 0. Thus for any x € |
Yix = Y Xxo 4+ Y WXX + -4+ Y W Xx; =0
This implies Y11x = 0 for any x € . Since Y11 = Py,.Y|x,, this is equivalent to Y1; = 0.

That Y>1 = 0 follows using the obvious variation of this argument. [J

The following theorem establishes that P, and Qy as generated by Algorithm 3 are displacement
projectors. Note that the properties of these projectors depend only on the Uy being chosen to be

the projector onto a subspace of P, and not on Uy being chosen to be the projector onto Im (M, ,Ek)).

Theorem 4. Let Py and Qg be orthogonal projectors satisfying
Pol(I = Qo)AV Py =0
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for j = 1. For k > 0 let the sequences Py, Qi, Uy, and Vi be generated by the following pro-
cedure: Uy is chosen to be the orthogonal projector onto an arbitrary subspace of Im(Py)
and

Vi =2(I — QAUL), Piy1=Pc— U+ Vi, and Qiy1 = Qr — AUA" + Vi

(This is just Algorithm 3 except that we do not require that Uy = P (P My).) Then the sequences
Py and Qy. are sequences of orthogonal projectors satisfying

Pel(I — QA P =0 (19)

for j > 1. We also have the relations Uy Vi = Qi Vi = PrVik = Pry1Ux =0 and Pry Vi =
Vi.

Proof. The proof is inductive. We assume that P; and Q; are orthogonal projectors satisfy-
ing P[(1 — O0NA)V P, =0for0<I<kand Jj = 1. This assumption is sufficient to prove all
the orthogonality relations in addition to showing that Py and Q41 are projectors satisfying
Pey1[(I — Qiks1)AY Py = 0 for j > 1 which completes the induction.

We start with the orthogonality relations between Uy, Vi, O, and Pi. In the proof of
Theorem 3 we have shown that Py Vy = Uy Vi = Qi Vi = 0 and that Py41 and Q1 are orthog-
onal projectors. Since V Uy = 0 and (P — Ux)Uy = 0 we have Py Uy = U Pr41 = 0. Since
(Pr — Up)Vi = 0 we have Py Vi = V.

To prove (19) we use Lemma 1 with

—(I—QVA, Y=P, and X=WY=(— QAP (20)

The induction hypothesis gives Y W/ X = 0 for j > 0. If we define # and Jf& as in Lemma 1
then with respect to the decomposition #y & # 3‘ we have

_ Wi Wi _ |10 X2 _[o o
W—[O sz] _[0 0]’ and Y_[O Yn] 1)

The additional zero blocks in X and Y that are not present in (17) arise as follows. Since Y is

an orthogonal projector it is self-adjoint and we therefore have Y1, = Y5 = 0. Since X = WY,

block multiplication gives X1; = 0. Note that the relation X = WY also implies W2,Y2, = 0.
Let

Y =P, W=(U—- QDA and X =WY =1 — Qrs1)APit.

Proving (19) is then equivalent to proving that YW/X = Ofor Jj = 0. We do this by considering
the block structure of X, ¥, and W with respect to the decomposition #y @ A 0-
The projector Uy satisfies U Py = Uy, so that

UW/X = U Pl(I — Q) AV T P =0

for j > 0 by the induction hypothesis. From the definition of 5 in Lemma 1, it follows that
Py Uk = 0 so that

0 0
Uy = |:0 U22:| .

Since V is the projector onto Im((I — Qx)AUy) = Im((I — Q) AP Uy) = Im(XUy) we clearly
have Im(V) C g so that P%,;OL Vi = 0 and

% 0
Vk=|:(;1 0i|'
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If we similarly partition A with respect to o @ %é we get
A A
_|4n 2| (22)
A Ax
Combining the partitionings of W, Uy, and V; with the definitions of W,Y,and X gives

W =W+ AU — VeA = |:W11 = ViiAn W12+A12U22—V11A12]

0 W + ApUx
A \%H 0
Y=Y-U Vik =
Ve [ 0 Yn-—-Ux
and
%= | Wi = VuAn Wit ApUn — Vidn | | Vi 0 _[xn X
0 Wa + ApUxp 0 Yn-—-Ux 0 0 |

In the equation for X we have used W22 Y2, = 0 together with the fact that Im(Uy) € Im(Py) =
Im(Y) so that Yoo — Upp is the projector onto the orthogonal complement of Im(U») in Im(Y27).
Thus

(Waa + A2aUn2) (Yo — Up2) = W Yoo (Yoo — Uzz) = 0.
The block structures of Y, W, and X imply that

Pl(I = Qe DAV Py = YW/IX =0 (23)
for j > 0. To complete the proof we recall that Vi (I — Q) = Vi so that

VkW = Vil — Qr)A + AU, — Vi Al = Vi A + Vi AUy — Vi A = Vi AU;.
Therefore

ViW/ X = ViWW/Y = ViAULW/Y =0 (24)
for j > 0. For] 1 have used Y W/ X = 0 and UkPk = UrY = Uy which imply that Uy Wiy =
UkYWJ 1% = Oforj > 1.Forj = OwenotethatUkY Ur(Py — U + Vk) = Osince Uy (Pr —

Uk) = 0and UV, = 0. Since V WiX =0 for j =0, it follows that in YW/ X the V11 block of
Y can be ignored to get

PWIR = 0 0 Wi — VilAu Win+ ApUxn — ViiAp ] [X1 X
0 Yrn—Uxn 0 Wao 4+ AU 0 0

=0. t

Theorem 5. With Py, Q, and Uy generated as in Theorem 4

P(I — Q)AV P =0 forj>1landl <k, (25)

Ol — QAV P, =0 forj>landl <k, (26)
and

Ul — QAY Pe =0 forj > 0andl <k. @7

Proof. We start with (25). The proof is by induction on k. If kK = [ the result follows immediately
from Theorem 4. We assume that it is true for some k > [ and prove it for k + 1. Define

Y=P, W=(U-0rnA, and X=(U—-0nAPF
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and let # be as in Lemma 1. The induction hypothesis gives YW/ X = 0 for j > 0. As in the
proof of Theorem 4 this implies

_ 10 0 Wi W _ 10 X2
Y_|:O Y22:|’ W_|:0 sz], and X_|:O O]'
If we define
W=(- QA and X =(— Qir1)APiy

then the induction step is equivalent to proving Y WJX =0 for J = 0. Since #, X, and W are
exactly the same as in the proof of Theorem 4 and since Y has the same form with respect to
Ho D Jfé, the same proof establishes YW/ )A(o =0.

For (26) we note that the [ = k case follows from the fact that Qx (I — Q) = 0. Assuming
that the relation holds for some k > [ we can prove it for £ + 1 in the same way as was done for
(25). The only difference is that Y = Q; instead of Y = P;.

Since U; = U; Py, (25) impliesthe j > 1 case of (27). For j = O we need to prove that U; P, = 0
for k > [. This is done by induction on k. For k =/ 4 1 we have

UP=U(P—-U + V) =0,

where we have used U; P, = U; and U;V; = 0 which were established in Theorem 4. We assume
that U; P, = O for some k > [ + 1. It follows that

UPryy =U(P — U + Vi) = U Vi

since U;(Py — Uy) = U; Py (Px — Uy) = 0 by the induction assumption. However Vj is the pro-
jector onto Im((/ — Q) AUy) and

Ui(I — QAU = Ull(I — Qu)A]' PoUy =0
since we have already proven the j = 1 case of (27). Thus U Py+1 = U; Vi =0. U

Corollary 1. For a sequence Uy computed by Algorithm 3
U,'Uj =0 fori # ]
We are ready to prove the correctness of Algorithm 3. Instead of letting Uy be the projector

onto an arbitrary subspace of Im(Py) we choose Uy, = Z(P; My) and combine the results of this
section with Theorem 3 to prove the following.

Theorem 6. Let M be Krylov-like with displacement projectors Py and Qo and let Py, Qy, and
Uy be the sequences of projectors computed by Algorithm 3. Define MJ(.O) = M; and let MJ(.k)

be the result of orthogonalizing the sequence M](-O) for j > 0 against the subspace spanned by

the columns of Ml(o) for 0 <1 < k — 1. The orthogonalization corresponds to a block form of
modified Gram—Schmidt that can be written in terms of projections as

k P k—1 U k—2 0 0
MP =(1-2(mE")) (1-2 (M) (1 -2 (M) M. (28)
The sequence M/(.k) is a Krylov-like sequence satisfying

) o _ ) ®
M© —am® = MO — 0eaM?). (29)
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The projectors Uy satisfy Uy = P <M,§k)) and U;jU; = 0 for j # i. The projector
UR =Up+ Ui+ + U

is the orthogonal projector onto
Im((Mo My - M)

Proof. We first note that Uy, as computed in Algorithm 3 is an orthogonal projector for a subspace
of Im(Py). Consequently we have all the properties of Py, Qk, Uy and Vi given in Theorem 4 and
Theorem 5.

The proofs of (29) and Uy = 2 (M (k)) are by induction. For k = 0, (29) is just a restatement

of the assumption that M is Krylov-like. Since M~ ( = 0 we have PyM, © =M, O 5o that
vo=2(PM) =2 (M),

We assume that
vi=2 (M) =2 (M), and M- amP =pPm - 0am",

for 0 < I < k and prove these relations for [ = k + 1. Since Uy = ?(PkMIEO)) = @(M,Ek)) and
Mj(.kH) is defined to be Mj(.o) orthogonalized against Ml(o) for 0 <! < k we have

M}"*“ = - Uk)Mj(.k).

The Krylov-like structure of M %+1) then follows from Theorem 3. The fact that Pry1 and Qg

are displacement projectors follows from Theorem 4.
Clearly M{"" =0. Thus m{*" AM“‘+ V= P MY — 0y AM(+ ) implies

M,EI_(S]) Py M,Eﬁjl) By Theorem 5 U; Py = Pr+1U; =0 forl < k. Comblnmg this with

k+1 0
M =1~ v (1 - UM
gives Pk_HM](.kH) = Pk+1M(.O) so that
k+1 k+1 0
EW<M]E+JE ))ZQ(PIC 1MIE+JE )) —<7<Pk+lM/£+)1)=Uk+l-
The claim for U is obvious. O

This completes the proof that Algorithm 3 orthogonalizes a Krylov-like sequence. Unfortu-
nately, the algorithm is inefficient: If # = C", then storing the projectors Py and Qy requires
O (n?) memory and each update of the projectors requires O (n?) operations. If multiplication by
A is fast and if Im(Py) and Im(Qy) are subspaces of low dimension, it is possible to obtain a
fast algorithm by factoring the projectors Py and Qy into products of the form P, = X; X} and
QO = Y, Y}’ where the columns of X; form an orthonormal basis for Im(P) and the columns of
Yy form an orthonormal basis for Im(Qy). The resulting bases can be computed more efficiently
than the corresponding projectors. This modification requires knowledge of the dimensions of the
subspaces and that special measures to be taken when the dimensions change. In preparation for
describing a factored form of the algorithm in the next section, we give further details relating the
dimensions of the images of Py, Q, Uy, and Vi.

Let

xr =rank(Py), yr =rank(Qi), # =rank(Vy), pr = rank(Up), (30)
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and
re = dim(Im(Qy) N Im(AUy)). 31)
The relation between xi, yi, fxr and ry is given in the following theorem. The theorem also
identifies the criterion || Qr AUk || = 1 as signaling a drop in dimension and describes a deflation

step in which the intersection of Im(Qy) and Im(AUy) is removed from Pk, Q, and Uy without
changing the computed Vi, Pry1 and Qp41.

Theorem 7. Let Uy, Vi, Qk, and Py be computed as in Algorithm 3. Define
Xk = (x| QrAUX| = [Ix]]}.
Then
X = Ker((I — Qr)AUy) NIm(Uy) (32)
and
AZr = AU Z 'k = Im(Qx) NIm(AU).
If ry is the dimension of 'y then
Ik = Pk —Tks Ykl =Yk — Tk, and Xgp| = Xp — Ik,

where ty, Vi, and xi are as in (30) and (31).
If Ry, is the orthogonal projector onto X'y and

Pi=P.— Ry, Or=0i—ARA*, and Up=Ui— Ry
then

Vi = 2((I — QAU = 2((I — Q) AUj).
10k ATl < 1,

and

Pis1 =P — Ui+ Vi, and Qiy1 = Ox — AULA* + V.

Proof. If x € 2y thenx € Im(Uy) since otherwise | Qx AULX|| < || Qr AllIUkX| < | QrAllIX] <
[Ix||. Similarly, we must also have Ax € Im(Qy) since otherwise ||QrAUX|| = || QrAX| <
|AX|| = [Ix]|. Thus AZ; € Im(AU;) N Im(Qk).

For any y € Im(AUy) N Im(Qy) there exists x € Im(Uy) such that y = AUrx = AX. Since

y € Im(Qp),
@k AUKX|| = |AUkx]|| = [|Ax]| = [|x]]

sothatx € 2 andy € AZ. Thus A%y = Im(AU;) N Im(Qx).

We have shown that forx € 2, Qx AUrx = Qx Ax = AXx. Conversely, if Qx AUyx = Ax then
the fact that A is an isometry implies || Qr AUrx|| = ||x]|| so that x € Zk. Thus Z'x can be char-
acterized as the set of x € # for which (A — QrAUy)x = 0. Since Z'x C Im(Uy), this implies
that if x € 2 then (I — Qx)AUrx = 0. Thus Z'x < Ker((I — Qr)AUy) N Im(Uy). Conversely
if x € Ker((I — Qr)AU;) NIm(Uy) then QrAUrx = AUX = Ax from which it follows that
|Qr AUrX|| = ||x]|. Thus x € Zk. This establishes (32).

Since Zx C Im(Uy), we can define 2 ,J("U C Im(Uy) to be the orthogonal complement of %'
in Im(Uy). Then

Im(Vy) = Im((I — Q) AU) = (I — Q) AUZ; Y .
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The kernel of (I — Qx) AUkl v is trivial since anything in the kernel would also have to be in
;

Z'x by (32). It follows that

rank(V;) = dim ((1 — opAUatY ) — dim (g{,f’U ) — rank(Uy) — dim(Z27%).
Since, as noted in the proof of Theorem 3, O Vy = 0 and Im(AU;A*) C Im(Qy) + Im(Vy) the
relation Qky1 = Qx — AU A* + V} implies

rank(Qy1) = rank(Qy) + rank(V;) — rank (AU, A*) = rank(Qy) — dim(Z%).
In a similar manner Im(Uy) € Im(P), Pt Vk =0, and P41 = Py — Uy + Vi imply the expres-
sion for xj1.

That Ek’ ék, and l~]k are orthogonal projectors with Im(ﬁk) C Im(Py), Im(ék) C Im(Qy),
and Im(Uy) C Im(Uy) follows from 2y C Im(Uy) C Im(Py) and AZx < Im(Qy). From this it

is clear that || OxAU|| < 1. If | OxAU|| = 1 then there is an x # 0 such that || Q¢ AUxx|| =
Ix||. As before this 1mp11es X € Im(Uk) C Im(Uy) and AXx € Im(Qk) - Im(Qk) which implies

that x € Z'+. However ka = (Ux — Ry)x = 0 for all x € 4, so that || QkAkall = 0. From this
contradiction we conclude that ||§kAl7kx|| < 1. o ~
The relations for Pr41 and Q4 are obvious from the definition of Py, Qk, and Ug. The
relation for Vj follows from
P((I = QAT = 2((I — (Qx — ARYAM)) AUk — Ry))
=PI — Qr)AUr + AR (Uxr — Ry) — (I — Q1)ARy)
=2((I — Qr)AUx)
= V. O

There are several special cases that are covered by the theorem but merit further description.

1. If r, = x,, then P, 1 = 0 so that Uy = 0 for k > n + 1. The algorithm can stop at this point.
The columns of My for k > n + 1 are in the span of the columns of M; for 0 </ < n.If, asin
the case of the isometric Arnoldi algorithm, rank(Py) = 1 then ||Q, AU, || = 1 implies r,, > 0
sothat , =0for/ > n+1and Uy =0 for/ > n + 1. Thus the isometric Arnoldi algorithm

terminates whenever |y; AX,| = |Q,AU,| = 1.
2. Ifr, < x,thenr, > 0doesnotnecessarily indicate linear dependence. While this situation does
not occur in the case of the isometric Arnoldi algorithm, in general ||Q, AU, | = 1 indicates

only a decrease in x,1| and y,+ and not linear dependence in the columns of the Krylov-like
sequence. The correct general criterion for identifying linear dependence is rank(U,) < p.

3.If ry = yy then yu 41 =0, Qpy1 =0, and (I — @y 1)AUpy1 = AUpyy so that Vg =
AU, +1A*. From this it follows that Q0,17 = Q,+1 = 0 and that rank (P, ) = rank(P,11).
This pattern continues: for k > n + 1 we have Qy = 0 and rank(Py) = rank(P,+1).

5. The factored algorithm

Let
P =Xy X{, Qr=0YF, U=$%S/, and Vi =TT},
where
Xp :C* >, Y:C*—> A, S:CPr— o, and T :CP% — o
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have columns that form orthonormal bases for Im(Py), Im(Qy), Im(Uy), and Im(Vj) respectively.
Thus
X;;XkZka, Y:YkZIM, S;:SkZka, and Tk*TkZIpA —re

For the deﬂated prOJectors Pk, Qk, and Uk described in Theorem 7 we define in a similar
manner X, ks Yk, and Sk with Xk = Ths Yk — Tks and py — Tk columns, respectively. If r, = 0 so that
no deflation is necessary then X r = Xr, Yk = Y, and Sk = Sk

We require a deflation procedure for computing Xk, Yk, and Sk from Xy, Yk, and Si. In
the following we assume that X is of the form Xy =[Sk Xk 2]. Since Im(Uy) € Im(Fy)

implies Im(S;) € Im(Xy), Xx can be put in this form by a suitable choice of orthonormal basis
for Im(Py).

Algorithm 4. Deflation of Xy, Y, and Sy
Given Xy, Y, and S with ||Y,:‘ASk||2 =1
and Xy partitioned as X =[Sk~ Xk.2]:
Compute unitary Ey = [Ex,1  Ex2]land Fy = [Fr,1  Fk,2] such that

I 0
H —
E; SZA*Yka = |:6k Zk,2i|

where 2y 2 is (pr — 1) X (yr — i) and || Zx 22 < 1.

Define Y ; and Sy ; by
YiFr = [Yin1  Yiol
SkEx = [Sk,1 Sk.2]
Let
= [Sk2 X2l
?k = Y2 and S:k = Sk.2.

We now show that the above algorithm computes X k> Y, . and §k such that Fk =X k X 7;, ék =
Yi )7,:‘, and Uy = S §,’: Let 2k be the right singular subspace of Y ASy associated with the singular
value 1. We claim that the subspace Z defined in Theorem 7 is given by % = S @k Ifx e 5:"/(
then
| Qk AULSKX|| = Y Y ASkX|| = 1Y ASkXll2 = [1X]l2 = [|SeX|l
so that Ské”k C k. If x € Xy then x € Im(Uy) = Im(S;) and if we define X = SZ‘X so that
X = SiX then
1YEASkX (2 = 1Y ASkSpxll2 = | @k AUkx|l = |Ix]| = [IS;x]l2 = [IX[2.
Thus every x € 2 is_of the form x = Skx for some ey and therefore 2% C Sedx. Tt
follows that %y = SpZx so that dim(Zy) = dim(SxZ'x) = dim(%) and the ry computed by
Algorithm 4 satisfies ry = dim(%%).
From Theorem 7 we have
Im(ASy) NIm(Yy) = A% = ASk,@k =Im(ASk,1) = Im(Yx 1),
where in the final equality we have used the fact that Y, k* 1ASk,1 = I, and the fact that Yy | and S
are isometries imply that Y; ; = ASk 1. Note also that ||)712‘A§k||2 < 1 implies that Im(Agk) N
Im(Yy) = {0}.
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We then have
Ve VP = V¥ — Y Y = YY) — ASi 1 Si A" = Ok — AR AY = Oy,
?kiz = XkX;: — Sk,ls,jl =P, — Ry = ﬁk,
and
§k’§;: = SkS;: — Sk, 13:1 =Uy — R, = ﬁk
Slnce Theorem 7 shows that Uk, Pk, and Qk can be used to compute Vi, Pxy1, and Qg+1, we can
use Sk, X &, and Yk in a factored algorithm to compute Tk, Xj+1, and Yj41.
In stating the factored algorithm we assume that
2k =Ipi—r & =Ly,
The condition ||Y ASill2 =1 s1gna1s the need for a deflation. Otherwise, if ||Y ASill2 < 1, we
take Xk Xk, Yk = Y, and Sk = Sk.

Algorithm 5. Generalized Isometric Arnoldi
Given: Xo, Yy, and M; for j > 0
Let S&D =[] and Xo = Xo
Fork=0,1,2,...
Let py = rank(M,f)A(k)
Compute Wy such that
M;X Wy = [Br 0]
where By is p X pi
Let X = X Wy
Partition X =[Sk Xk 2]
where S; has p; columns
Let S® = [sk=D  §;]
If |V ASkll2 = 1
Use Algorithm 4 to compute X ks )N’k, and §k.
Else
Let )?k = Xy, ?k =Y, §k = Sk
End if
Compute Hj satisfying HkHZ rHy = X and
Upe—r,  SFA*YIHg =[Cp 0]
for some (px — rr) X (px — rr) matrix Cy.
Let[Tc  Yir1l =[ASc  YilHx
Let Xpy1 = [Tk Xi2]
End for
In the particular case in which y; = ry it is not necessary to compute Hy or Y;41. See thS note

on this case at the end of §4. It is easily verified that in this case we may simply set 7 = AS; and
continue with the computation of Xy 1.
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The following theorem states that Algorithm 5 is a factored form of Algorithm 3 in which the
columns of X, Y, Sk, and T} are orthonormal bases for the images of the projectors Py, Q, Uy,
and V.

Theorem 8. Let M; be a Krylov-like sequence with displacement projectors Py and Qq. Let the
projectors be factored as

Py = XoX; and Qo= YoYy,
where XE’;XO = Iy, and Y(f Yo = Iy,. Then Algorithm 5 computes sequences Xy and Yy such that

XiXe =1Ly, YYi=1I,, SiSkx=1I,, and T;Ti=1Ip_y (33)
and

Py = Xk X5, Or =YY}, Ur=58S;, and V=TT, (34)
where Py, Qk, Uy, and Vi are the projectors computed by Algorithm 3. For each n > 0 the
columns of

SW=1S S S - Sl
have the same span as the columns of

M® =My My, M, --- M,].

Proof. To prove the theorem we show that given X « and Yy satisfying (33) and (34) the algorithm
computes Sy, Tk, Xi+1, and Y1 satisfying (33) and (34). The claim for the image of S will
then follow as a consequence of Theorem 6.

Recall that X and X have columns that are simply different orthonormal bases for the same
subspace. For Sy it is immediate from X Z X k = Iy, and the fact that Wy is unitary that S,f Sk = 1p,.
To show that S¢S 2‘ = U we observe that

pr = rank(Uy) = rank(X; X} My) = rank (M} X;) = rank (M} ;)

where we have used the fact that X,’{k oMy = 0. Thus the p x py matrix By = M ,f Sk has linearly
independent columns and

Im(Sy) = Im (S S} My) = Im(X; X} My) = Im(Py My) = Im(Uy).
Together with S} Sy = I, this implies that S; S is the projector onto Im(Uy) or equivalently
U = SkS;: .
We have already shown that given X, Y, and Sk, Algorithm 4 correctly computes Xy, Yy,

and §k. We now verify the calculation of Ty, Xy+1, and Yy by describing the structure of H.
The matrix Hj is invertible with its inverse given by Hk_1 = 2% H,?IEk. It follows that Cy is

nonsingular. Multiplying the relation that defines Cy by H,:le on the right gives
Upe—r, —S{A Yl =[Cc O1H!
which implies that Hj has the form

H Ck_H Hy 12
k= ~ o~ .
—Yk*ASka_H Hy 2
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For T} we note that the form of Hj together with [Ty  Yi4+1] = [A§k ?k]Hk implies that
- ~ | 1, ~ .~
T =[AS, Y| 27 7P = -nyYHaS.c .
k= [ASk k]|:—Y,jASk i ( kY )ASKCy
Thus
Im(Ty) = Im((I — Vi VHASCT™) = Im((I — Q) AUy) = Im(Vy).
In addition
T T = C ' SFA* (I — VYO ASCTM = O Upy—r, — SEA*YEASHCTH.
However the (1, 1) block of the relation HkHZ « Hy = 2 and the form of the matrix Hj give
Ippr, = C O — COISF A Y EAS CT = € Uy — SEA VY ASHCH
so that T;* Ty = I, . Thus T, T} = Vj.
For Xy+1 we note that )?k = [§k Xk 2] and )A(k_H = [Tx Xk,2] imply that
Xk+1XZ+1 = )2k+1)2:+1 = )?ki/t — S:kg;: + Tka* = ﬁk — ﬁk + Vi = Pr41.

Thus Xk_s_lX,’f+1 = Pyy1. Since Py has rank xx41 = x; — rr and X4 has xx41 columns, the
columns of X are linearly independent and X has a left inverse. Since Xy 1X}f 41 is a pro-

jector we have Py = Xk+1X1>:+1 = Xk+1(X;:+1Xk+1)X;:+l which implies X;:+1Xk+1 =Ly,

For Y41 we note that the relation Hy 2 H,:{ = 2 and the relation used to compute Yy imply
Yk+1Y,;k+l = ?k?,;k — AgkglfA* + Tka* = ék — AﬁkA* + Vi = Qk+1-

The relation Y;*

w1 Yet1 = Iy, follows in the same way as for Xp4i. U

6. Computing a Q R factorization

The generalized isometric Arnoldi orthogonalizes the columns of the matrix M to compute
S 1In this section we consider computation of
(n)
R()
(n)

R — g pgm — | !

R\

The blocks of rows R,E") are pr x p(n + 1) for 0 < k < n. If we define

n
p(n) — Zpk — rank(M(”))
k=0
then R is an p™ x p(n 4 1). If all the columns of M are linearly independent then p =
p(n+1)and M™ = S RM js a QR factorization of M.
To compute R™ we extend Algorithm 5 with recurrences to compute SyM;.
We start by defining

Ek,j = S;:Mj Fk,j = XIT,ZM" and Gk’j = Y;AMj_l,
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so that
Ey i
XiMj=| "
;=[]
and
R =SiM™ = [Exo  Exn - Exal.

To compute the rows of R we will give a recurrence for computing Ej 1, j» Fra1,j,and Gy
from Ey ;, Fy, j,and G ;. Note that Ey j, Fy j,and G j are py X p, (xx — px) X p,and yx X p
respectively. Thus the number of rows in these matrices varies with k.

Algorithm 4 deflates X and Y by applying unitary transformations on the right and removing
columns to get X and Y. This corresponds in an obvious way to applying unitary transformations
on the left and removing rows from Ey ; and Gy, ; Thus

Ek,j=’§;:Mj fk,szk,jZX;ZM‘, and ékyjzylfAMj_l.

We partition Hy as

Hia1 o Hii2
Hy = ’ o,
k |:Hk,21 Hi2
where Hy 11 1S (prx — rr) X (pk — rx). Since

[ASy YilHy=I[Tx Yit1]

we have
H H %
He'yy 0 H'yy SiMj— TFAM
0 Lo—pi 0 XZ,2MJ = XZ,ZMJ
H H &
He 0 Hion ] LYFAM -y Vi AMj

The Krylov-like structure of M; gives
AM; 1 =Mj;— PodM; + QoAM;_,.

By (25) and PyUy = Uy we have Py(I — Qi) AU = 0 which implies that PyT; T, = PyVy = 0.
By (26) we have Qo(/ — Q) AUy = 0 so that QoTi T;" = 0. Thus T, AM;_y = T M and

H H T
Hk,ll 0 Hk,21 S/Zij—l Tk*M/
0 L —py 0 XIT,2MAI' = XZ,ZMJ
H H =
Hk,lz 0 Hk,22 YleMj—l Y:+1AMJ‘—1
Since Xgt1 = [Sk+1 Xir12] = [Tk Xg,21Wiy1 we get
H H 5
wh 0 Hey o 00 H | [ SiMj— Sie1M;j
k+1
|: 0 I :| 0 Ly pe 0 X;,ZMJ = ;:+1’2Mj
Wl | gH 0 HH YAM; Y AM;
k,12 k,22 k Jj—1 k+1 Jj—1
or
H H ~
wH 0 He'yy 0 Heor | | Ex,j—1 Eit1,j
k1 0 ILyp O Foj | =] Ferrj |- (35)
0 Iy—n,

H H oo )
Hk,12 0 Hk,zz Gk, j Grt1,j
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This is the desired recurrence for the sequences Fy ; and Gy ;.
The recurrence can be related to the generalized Schur algorithm as follows. Theorem 2 states
that

MM — ZM® MO ZT = MO X XEM™ — ZM D A* Yo EAM ™ ZT,
where Z is the (n + 1)p x (n + 1) p block downshift matrix with p x p blocks. If

EM =[Evo Eci - Exal,

FY =1Fo Foi - Feal,
and

G,(cn) [Gko Fra -+ Fial
then

MO MOz g0 ZT = EH ED . pOH E0 _ GOH G,

Thus the matrices E(()n), FO("), and G(() " are generators, in the sense of [8], for the block Toeplitz-
like matrix M™*M Tt can be shown that (35) is the generalized Schur algorithm with the
transformations Hy and Wy computed from Xy, Y, and the Krylov-like sequence M instead of
from the generators of M™* M Of course there is the important difference that if the matrix
M %M is singular then the generalized Schur algorithm fails while the generalized isometric
Arnoldi algorithm can continue after a deflation.

7. Preliminary numerical experiments

In order to observe the effect of ill-conditioning on the procedure we compare three methods
of orthogonalizing three 20 x 10 Toeplitz matrices. All numerical experiments were run using
Matlab code written by the author on a PC with a Pentium 4 processor. The first matrix 77 has
first column and first row

1

1.001
, and [1 1.001 1.002 --- 1.009].

1.019
The matrix has condition number x,(7T7) ~ 2.8 x 10*. The second matrix 7> has elements
fi = ef(m')z/zs
i =

for 1 <i <20 and 1 < j < 10 and condition number K2(T2) = 3.1 x 107. The third matrix
is s1m11ar to the second but with elements #;; = e —(=)?/50 and condition number k;(73) =
4.0 x 10°.

The first method is Algorithm 5. The second method is Algorithm 5 with the following reor-
thogonalization step. In the absence of numerical error the matrices Xj and Yy satisfy X ,’: X =1y
and Y,j Y = I,,. However, in finite precision, the columns of X; and Y; do not remain exactly
orthogonal. The reorthogonalization step involves computing QR factorizations Xy = Qx Ry
and Y, = Qy Ry and setting X; = Qx and Yy = Qy each time through the main loop of the
algorithm.

The last method is based on displacement structure and is described in [8]. The generalized
Schur algorithm is applied to generators of the matrix
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Table 1
Loss of orthogonality
Matrix k2 (T) Isometric Arnoldi 1 Isometric Arnoldi 2 Generalized Schur
T 2.8 x 104 3.9%x 1077 3.9 x 10710 1.5x 1078
T, 3.1 x 107 1.9x 1074 1.6 x 10~ 6.8 x 1073
T3 4.0 x 10° 1.9 x 107! 47 x 10710 1.0 x 100
Table 2
Backward errors
Matrix k(T) Isometric Arnoldi 1 Isometric Arnoldi 2 Generalized Schur
T 2.8 x 10* 2.7 x 1071 3.2 x 10710 33 x 10714
T, 3.1 x 107 9.1x107° 2.1x 1071 3.4 x 10716
T3 4.0 x 10° 6.8 x 1070 23x 1078 8.8 x 10716
' 1T
T 0|

The X-unitary transformations used in the generalized Schur approach are computed from
a fast Cholesky factorization of 77T while in Algorithm 5 the transformations are computed
using inner products. The computational complexity of the algorithms is comparable, in each
case O (mn) for an m x n Toeplitz matrix.

Each algorithm was applied to 71, 7>, and 73 to compute a matrix Q with orthonormal columns.
Table 1 gives [|QTQ — I||2, the loss of orthogonality of the computed Q, for each of the three
algorithms. In each case the factor R in the QR factorization was also computed. We used the
generalized Schur algorithm [8] without any modification to compute R. The generalized isometric
Arnoldi algorithm was augmented with the recurrences from §6. The relative backward errors
IOR — Till2/1 Tk |2 are given in Table 2.

For the second algorithm, the orthonormality of the columns of the computed Q is compa-
rable to what might be expected from modified Gram—Schmidt, which satisfies an error bound
10T QO — I» < cuxa(A) [5] where u is the unit roundoff. The results for the other two algorithms
are dramatically worse. In contrast, the generalized Schur algorithm achieves the best backward
error as is shown in Table 2. This is not surprising; the generalized Schur algorithm is known to
compute a factorization for which the backward error is of the order of the machine precision.

8. Additional topics

We now comment on a few problems that have not been addressed and have been only partially
solved. The isometric Arnoldi algorithm can be used to reduce a unitary matrix A, by unitary
similarity, to a product of plane rotations The generalized isometric Arnoldi algorithm can be
used to reduce A to a slightly more complicated form. In particular under the assumption that the
columns of M™ are linearly independent the matrix S™° AS™ can be shown to have a structure
of the form

H™ = sW"As® = jH GHH . JHGG, .- Gy,
where

Gk = ka ®© G ® [(n—k)p+x,,+]—xk+1 , and jk = ka @ J. & 1p(n+l—k)+x,,+1—xk+| .
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The transformations G and Ji are unitary and are defined in terms of Hy and Wy. The definition of
H; is involved and it does not lead directly to a stable method for computing H. Further research
is needed into how to represent Hy in terms of plane rotations or Householder transformations.

This suggests an alternative method for computing R"™. If we consider the relation (5) and
multiply by the unitary matrix S™" on both sides then we get

SO M; = HWSW My + ST (PoM; — QoAM; ). (36)

The matrix S™" M is a block of columns of R™ = §* M. Multiplication of a vector by
H™ is O(n) if it is implemented as a product of rotations. Except for H™ §™" p j—1 everything
on the right hand side of (36) is in Im(Py) U Im(Qy). If this subspace is of low dimension and the
Krylov-like sequence M is available, then (36) is a fast recurrence for computing the columns of
R™ _The backward errors from Table 2 suggest that the recurrences of §6 are not a satisfactory way
to compute R™. Straightforward implementation of (36) have not given better results. However
there are numerous variations on the basic recurrences that have not yet been tried. It is also
possible that a direct recurrence for least squares solutions would be a better option. This is the
subject of ongoing research.

Finally there are a variety of issues surrounding linear dependence in Krylov-like sequences.
The generalized isometric Arnoldi algorithm is able to detect and effectively skip over vectors
that can be expressed as linear combination of previous vectors in the sequence. This is in striking
contrast to the generalized Schur algorithm for which fast Cholesky fails when the columns of
M ™ are not linearly independent. The numerical properties of deflation are not clear and merit
further investigation.
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