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Abstract

This paper describes a generalization of the isometric Arnoldi algorithm and shows that it can be inter-
preted as a structured form of modified Gram–Schmidt. Given an isometry A, the algorithm efficiently
orthogonalizes the columns of a sequence of matrices Mj for j � 0 (with M−1 = 0) for which the columns
of Mj − AMj−1 are in a fixed finite dimensional subspace for each j � 0. The dimension of the subspace
is analogous to displacement rank in the generalized Schur algorithm. The algorithm is described in terms
of projections and inner products. This is in contrast to orthogonalization methods based on the generalized
Schur algorithm, for which Cholesky factorization is central to the computation. Numerical experiments
suggest that, relative to a generalized Schur algorithm, the new algorithm improves the numerical orthogo-
nality of the computed orthonormal sequence.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

We assume throughout this paper that A is an isometry acting on a complex Hilbert space
H with inner product 〈x, y〉 and norm ‖x‖ = 〈x, x〉1/2. Given a vector x ∈ H with ‖x‖ = 1
the isometric Arnoldi algorithm [3,4] is an efficient procedure for orthogonalizing the Krylov
sequence

x, Ax, A2x, . . . .

It can be viewed as a generalization of the Szegö recurrence [9] for the orthogonalization of the
polynomial power basis
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1, z, z2, z3, . . .

with respect to an inner product on the unit circle or as a generalization of the lattice algorithm
[1] for the orthogonalization of the columns of an m × l windowed Toeplitz matrix

T = [t Zt Z2t · · · Zl−1t],
where Z is the circulant shift matrix and

tT = [t0 t1 · · · tm−l 0T
l−1].

The orthogonalized sequence gives a basis with respect to which A reduces to a product of plane
rotations. In the matrix case this corresponds to a unitary similarity that reduces A to unitary
Hessenberg form, providing an efficient means to solve the unitary eigenvalue problem [2]. The
procedure also provides efficient methods for solving systems involving shifts of unitary matrices,
i.e. systems of the form (αA + βI)x = b [6].

The goal of this paper is to modify the isometric Arnoldi algorithm so as to orthogonalize
a generalization of the class of Krylov sequences. We generalize in two ways. First, instead of
sequences of vectors, we consider sequences of matrices of the form

Mj = [mj,1 mj,2 · · · mj,p] (1)

for j � 0 and where mj,k ∈ H. Throughout this paper we assume that M−1 = 0. Second, instead
of requiring that Mj = AMj−1, we require that the columns of Mj − AMj−1 lie in some finite
dimensional subspace M ⊆ H.

We make a few comments about notation. It is convenient to interpret a vector x ∈ H as an
operator mapping a complex number a to the product ax ∈ H. The vector x then has an adjoint
x∗ : H → C defined by x∗y = 〈y, x〉. We similarly interpret a matrix M with p columns that
are each in H as an operator from Cp to H acting through matrix vector multiplication in the
obvious way. If M : Cp → H is a matrix with columns mk ∈ H the adjoint M∗ : H → Cp is
a matrix with rows m∗

k . Given an arbitrary operator B we use the notation P(B) to represent the
orthogonal projector onto Im(B).

Let

M(∞) = [M0 M1 M2 · · ·]. (2)

Orthogonalizing the columns of M(∞) against the columns of each Mj for 0 � j � k − 1 results
in a matrix of the form[

0 · · · 0 M
(k)
k M

(k)
k+1 · · ·

]
.

The sequence M
(k)
j is Mj projected onto the orthogonal complement of the span of the columns of

M0, M1, . . . , Mk−1. The k leading zero blocks are the columns of M0, M1, . . . , Mk−1 projected
onto the orthogonal complement of their own span. The sequence M

(j)
j is the orthogonalization

of the sequence Mj in the sense that Im(M
(j)
j ) ⊥ Im(M

(k)
k ) for j /= k and

Im[M0 M1 · · · Mj ] = Im
[
M

(0)
0 M

(1)
1 · · · M

(j)
j

]
for j � 0. The explicit computation of each of the sequences M

(k)
j for k = 0, 1, 2, . . . can be inter-

preted as a block form of modified Gram–Schmidt. The generalized isometric Arnoldi algorithm
can be interpreted as a structured form of the above unstructured orthogonalization procedure. The
algorithm exploits the fact that if Mj is Krylov-like then the partially orthogonalized sequences

M
(k)
j are also Krylov-like.
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In order to describe the Krylov-like structure of the sequences M
(k)
j we need a more detailed

description of Krylov-like structure. For a variety of reasons it is convenient to work with projec-
tors. If P0 is the orthogonal projector onto M then a Krylov-like sequence could be defined as a
sequence satisfying a relation of the form

Mj − AMj−1 = P0Mj − P0AMj−1 (3)

for j � 0. Unfortunately, if we start with a sequence Mj satisfying a relation of the form (3) then

the partially orthogonalized sequence M
(k)
j satisfies a relation of the form (3) only if P0 is replaced

by a projector of greater rank. The following definition is based on a relation that is preserved
during orthogonalization with no increase in the ranks of the projectors.

Definition 1. Any projectors P0 and Q0 satisfying

P0[(I − Q0)A]jP0 = 0 (4)

for j � 1 are referred to as displacement projectors. A sequence Mj : Cp → H with M−1 = 0
is Krylov-like with displacement projectors P0 and Q0 if

Mj − AMj−1 = P0Mj − Q0AMj−1 (5)

for j � 0.

Example 1. An ordinary Krylov sequence mj = Aj x for ‖x‖ = 1 where m−1 = 0 satisfies

mj − Amj−1 = δj x ∈ Span(x)

for j � 0 and where δj = 1 for j = 0 and δj = 0 for j /= 0. Thus

mj − Amj−1 = P0mj − Q0Amj−1

for j � 0 with P0 = Q0 = xx∗.

Example 2. An m × n real Toeplitz matrix

T = [t0 t1 · · · tn−1] (6)

has columns

tj = [t−j t−j+1 · · · tm−1−j ]T

that satisfy

tj − Ztj−1 = δj t0 + (t−j − tm−j )e1 ∈ Span(t0, e1)

for j � 0 where Z is the circulant downshift matrix and t−1 = 0. Thus

tj − Ztj−1 = P0tj − Q0Ztj−1,

where

P0 = Q0 = e1eT
1 + 1

‖t0 − t0e1‖2
(t0 − t0e1)(t0 − t0e1)

T. (7)

In the above examples (4) is satisfied for the simple reason that P0 = Q0. As orthogonalization
proceeds we generate projectors Pk and Qk that are displacement projectors for M

(k)
j . In general

Pk and Qk are not equal. Nevertheless they satisfy
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Pk[(I − Qk)A]jPk = 0 (8)

for j � 1. This relation is of fundamental importance to the proof that the algorithm correctly
orthogonalizes a Krylov-like sequence.

An outline of this paper is as follows. In §2 we derive a form of the isometric Arnoldi algorithm
that can also be applied to a Krylov-like sequence. The derivation assumes that the sequence is an
ordinary Krylov sequence. In §3 we describe some simple properties of Krylov-like sequences,
including a connection with Toeplitz-like matrices. We also show that Krylov-like structure is
preserved by orthogonalization. In §4 we prove that the generalized isometric Arnoldi algorithm
orthogonalizes a Krylov-like sequence Mj . In §5 we factor the projectors and describe the algo-
rithm in terms of the bases for the images of the projectors. In §6 we show how to extend the
procedure with recurrences to compute the factor R in a QR factorization. The recurrences reveal
the connection between the generalized isometric Arnoldi algorithm and the generalized Schur
algorithm. In §7 we present some numerical experiments. Finally in §8 we comment on some
open problems and ongoing research.

2. A general form of the isometric Arnoldi algorithm

We now put the isometric Arnoldi algorithm in a form that is applicable to general Krylov-like
sequences. The initial derivation assumes that the sequence to be orthogonalized is an ordinary
Krylov sequence. It is only in §4 that we prove that the algorithm also correctly orthogonalizes
Krylov-like sequences. In order to avoid worrying about the dimension of various subspaces and
the choice of particular bases for the subspaces it is convenient to state the general form of the
algorithm in terms of projectors. The projectors Pk and Qk described in this section are in fact dis-
placement projectors for a Krylov-like sequence, although the proof of this fact is also put off to §4.

Given a Krylov sequence mj = Aj x where ‖x‖ = 1 and A∗A = I , the isometric Arnoldi
algorithm of [3,4] is as follows.

Algorithm 1. Isometric Arnoldi
x0 = x, y0 = x, k = 0
γ0 = −〈Ax, x〉
While |γk| /= 1

xk+1 = (Axk + γkyk)/
√

1 − |γk|2
yk+1 = (γkAxk + yk)/

√
1 − |γk|2

γk+1 = −〈Axk+1, yk+1〉
k = k + 1

End While

It can be shown that the quantity γk satisfies |γk| � 1. If |γk| < 1 for 0 � k � n − 1 then
Algorithm 1 generates an orthonormal sequence of vectors xk for which

Span(x0, x1, . . . , xk) = Span(x, Ax, . . . , Akx) (9)

for each 0 � k � n. If |γn| = 1 then

Span(x0, x1, . . . , xn) = Span(x, Ax, . . . , Anx)

is an invariant subspace of A.
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In describing the isometric Arnoldi algorithm, we differ from [3,4] in that we enforce the
normalization ‖xk‖ = ‖yk‖ = 1. Starting with ‖x0‖ = ‖y0‖ = 1, it is easily verified that if
‖xk‖ = ‖yk‖ = 1 then

‖Axk + γkyk‖2 = ‖γkAxk + yk‖2 = 1 − |γk|2

so that ‖xk+1‖ = ‖yk+1‖ = 1.
Let Pk be the orthogonal projector onto Span(xk) and let Qk be the orthogonal projector onto

Span(yk). Then ‖xk‖ = ‖yk‖ = 1 implies

x∗
kxk = y∗

kyk = 1, Pk = xkx∗
k , and Qk = yky∗

k .

It follows that

‖(I − Qk)Axk‖2 = 1 − ‖QkAxk‖2 = 1 − ‖yky∗
kAxk‖2 = 1 − |γk|2

so that

xk+1 = 1√
1 − |γk|2

(Axk − yk(y∗
kAxk)) = 1

‖(I − Qk)Axk‖ (I − Qk)Axk

or

Pk+1 = xk+1x∗
k+1 = 1

‖(I − Qk)Axk‖2
(I − Qk)Axkx∗

kA
∗(I − Qk). (10)

Thus

Pk+1 = P((I − Qk)APk).

Define Vk = P((I − Qk)APk) and suppose for the moment that Uk = Pk . Then we can write
Pk+1 = Vk as

Pk+1 = Pk − Uk + Vk. (11)

When considering the case of a general Krylov-like sequence we choose Uk to be the projector
onto a particular subspace of Im(Pk). Hence in general we do not have Pk = Uk . Nevertheless,
with an appropriate choice of Uk , (11) is applicable to the orthogonalization of general Krylov-like
sequences.

We now consider the computation of Qk+1. Since

[xk+1 yk+1] = 1√
1 − |γk|2

[Axk yk]
[

1 γk

γk 1

]
and (

1√
1 − |γk|2

[
1 γk

γk 1

])[
1 0
0 −1

](
1√

1 − |γk|2
[

1 γk

γk 1

])H

=
[

1 0
0 −1

]
we have

[xk+1 yk+1]
[

1 0
0 −1

] [
x∗
k+1

y∗
k+1

]
= [

Axk yk

] [1 0
0 −1

] [
x∗
kA

∗
y∗
k

]
or

xk+1x∗
k+1 − yk+1y∗

k+1 = Axkx∗
kA

∗ − yky∗
k .
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Thus Qk+1 = Qk − APkA
∗ + Pk+1. Using the relations Pk = Uk and Pk+1 = Vk we can

write

Qk+1 = Qk − AUkA
∗ + Vk. (12)

As with the relation for Pk+1, (12) is applicable to a Krylov-like sequence if Uk is chosen to be
the projector onto a suitable subspace of Im(Pk).

With regard to termination of the algorithm, we note that

‖QkAUk‖ = ‖QkAPk‖ = ‖yky∗
kAxkx∗

k‖ = |γk|
so that terminating when |γk| = 1 is the same as terminating when ‖QkAUk‖ = 1.

Finally, since the relation Uk = Pk is suitable only for the orthogonalization of an ordinary
Krylov sequence and does not apply in the case of a Krylov-like sequence, we introduce a more
generally applicable formula. If ‖QkAUk‖ < 1 then |γk| < 1 so that m0, m1, . . . , mk+1 are lin-
early independent. The vector xk+1 is mk+1 orthogonalized against Span(m0, m1, . . . , mk) and
then normalized. Linear independence thus ensures that x∗

k+1mk+1 /= 0 so that

P(Pk+1mk+1) = P(xk+1x∗
k+1mk+1) = Pk+1 = Uk+1.

Combining this relation for Uk and the definition of Vk with the recurrences (11) and (12) gives
the following form of the isometric Arnoldi algorithm.

Algorithm 2. Isometric Arnoldi in terms of projectors
P0 = xx∗, Q0 = P0, k = 0
U0 = P0, V0 = P((I − Q0)AP0)

While ‖QkAUk‖ < 1

Pk+1 = Pk − Uk + Vk

Qk+1 = Qk − AUkA
∗ + Vk

Uk+1 = P(Pk+1mk+1)

Vk+1 = P((I − Qk+1)AUk+1)

k = k + 1

End While

Recall that in the context of an ordinary Krylov sequence, Uk = Pk = xkx∗
k so that x∗

j xk = 0
for j /= k implies that

U(n) = U0 + U1 + · · · + Un

is the orthogonal projector onto Span(x, Ax, . . . , Anx) = Span(x0, . . . , xn).
We have claimed that Algorithm 2 can also be used to orthogonalize the broader class of

Krylov-like sequences. The only modifications required to apply Algorithm 2 to the more general
problem are replacing Uk+1 = P(Pk+1mk+1) with Uk+1 = P(Pk+1Mk+1) and setting P0 to be
the orthogonal projector onto the subspace M. Although working with projectors represented as
dense matrices is clearly inefficient, the images of the projectors can be represented by orthonormal
bases, in which case the relations for Pk+1 and Qk+1 can be implemented as two updating/
downdating problems. Doing so reverses the steps of the preceding derivation, leading back to
Algorithm 1.
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3. Krylov-like sequences

Clearly the knowledge that a sequence Mj satisfies a relation of the form (5) for given P0, Q0,
and A does not suffice to uniquely determine Mj . The additional information that is required to
determine Mj is its projection onto the image of P0. In fact the recurrence

Mj = Bj + (I − Q0)AMj−1, M−1 = 0 (13)

is a bijection mapping sequences of matrices Bj , j � 0 with columns in the image of P0 (i.e. with
P0Bj = Bj ) onto the set of all Krylov-like sequences satisfying (5). This bijection guarantees
that P0Mj = Bj so that a Krylov-like sequence Mj is uniquely determined by its projection on
the image of P0.

Theorem 1. Let Q0 and P0 be orthogonal projectors:

1. If (4) holds then the mapping (13) is a bijection from the set of sequences Bj satisfying P0Bj =
Bj to the set of Krylov-like sequences Mj satisfying Mj − AMj−1 = P0Mj − Q0AMj−1. In
addition we have P0Mj = Bj .

2. If for every Bj satisfying P0Bj = Bj there is a sequence Mj such that Mj − AMj−1 =
P0Mj − Q0AMj−1 and P0Mj = Bj then (4) holds.

Proof. For Mj computed from (13) with Bj satisfying P0Bj = Bj we have

Mj = Bj +
j∑

m=1

[(I − Q0)A]mP0Bj−m

from which it follows that if (4) holds then P0Mj = Bj . The relation (13) can then be rewritten

Mj = P0Mj + (I − Q0)AMj−1.

Thus if (4) holds then (13) maps sequences Bj satisfying P0Bj = Bj into the set of Krylov-like
sequences satisfying Mj − AMj−1 = P0Mj − Q0AMj−1.

That (13) maps onto the set of all Krylov-like sequences follows from the fact that for an arbi-
trary sequence Mj satisfying Mj − AMj−1 = P0Mj − Q0AMj−1, we can choose Bj = P0Mj ,
in which case the recurrence (13) generates Mj . The map is one-to-one since if Bj and B̂j map
to the same sequence Mj then

Mj = Bj − (I − Q0)AMj−1, and Mj = B̂j − (I − Q0)AMj−1

immediately imply Bj = B̂j .
To prove the second part of the theorem, we set Bj = 0 for j /= 0 and let B0 be an arbitrary

matrix with columns in Im(P0). If there is a sequence Mj satisfying (5) and P0Mj = Bj then

Mj = Bj +
j∑

m=1

[(I − Q0)A]mBj−m = [(I − Q0)A]jB0.

Since P0Mj = Bj = 0 for j � 1 we then have

P0[(I − Q0)A]jB0 = 0

for all j � 1. Since B0 is an arbitrary matrix with columns in Im(P0) this implies (4). �
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Krylov-like sequences are connected in a simple way with Toeplitz-like matrices. In particular,
the relation (5) is closely related to the displacement equation [8] of the block Toeplitz-like matrix
with blocks given by Ti,j = M∗

i Mj .

Theorem 2. Suppose that the sequence Mj satisfies (5) with M−1 = 0. If

Ti,j : Cp → Cp = M∗
i Mj

then

Ti,j − Ti−1,j−1 = M∗
i P0Mj − M∗

i−1A
∗Q0AMj−1.

Proof. Multiplying both sides of

Mj = P0Mj + (I − Q0)AMj−1

by P0 gives P0(I − Q0)AMj−1 = 0. Thus Mj can be represented as the sum of two components:
its own projection on Im(P0) and a component that is orthogonal to both Im(P0) and Im(Q0).

Multiplying (5) by M∗
i gives

M∗
i Mj − M∗

i AMj−1 = M∗
i P0Mj − M∗

i Q0AMj−1.

Multiplying (5) by A∗ gives

A∗Mi = Mi−1 + A∗P0Mi − A∗Q0AMi−1

so that

M∗
i Mj − (Mi−1 + A∗P0Mi − A∗Q0AMi−1)

∗Mj−1 = M∗
i P0Mj − M∗

i Q0AMj−1

or

M∗
i Mj − M∗

i−1Mj−1 = M∗
i P0Mj − M∗

i−1A
∗Q0AMj−1 + M∗

i (P0 − Q0)AMj−1.

Since Mi can be represented as a P0Mi plus a component orthogonal to both Im(Q0) and Im(P0)

we have

M∗
i (P0 − Q0)AMj−1 = M∗

i P0(P0 − Q0)AMj−1 = M∗
i P0(I − Q0)AMj−1 = 0. �

Example 3. For a Krylov sequence mj = Aj x with ‖x‖ = 1 and m−1 = 0 we have P0 = Q0 =
xx∗. If ti,j = m∗

i mj then

ti,j − ti−1,j−1 = m∗
i (xx∗)mj − m∗

i−1A
∗(xx∗)Amj−1.

Let Z0 be the n × n shift matrix [Z0]ij = 1 for i = j + 1 and [Z0]ij = 0 otherwise. If

K = [m0 m1 · · · mn−1]
then T = K∗K satisfies

T − Z0T ZT
0 = K∗xx∗K − Z0K

∗A∗xx∗AKZT
0 .

Thus T is a displacement rank 2 Toeplitz-like matrix. It is well known and trivial to verify that T

is in fact Toeplitz.

Example 4. If S = T TT where T is the real Toeplitz matrix (6) then

si,j − si−1,j−1 = 1

‖t0 − t0e1‖2
2

(tT
i (t0 − t0e1)(t0 − t0e1)

Ttj − tT
i−1Z

T(t0 − t0e1)

×(t0 − t0e1)
TZtj−1) + tT

i e1eT
1 tj − tT

i−1Z
Te1eT

1 Ztj−1.
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Equivalently

S − Z0SZT
0 = 1

‖t0 − t0e1‖2
2

(T T(t0 − t0e1)(t0 − t0e1)
TT − Z0T

TZT(t0 − t0e1)

× (t0 − t0e1)
TZT ZT

0 ) + T Te1eT
1 T − Z0T

TZTe1eT
1 ZT ZT

0 .

Thus S is a displacement rank 4 Toeplitz-like matrix.

Just as Krylov-like sequences are closely related to Toeplitz-like matrices, the generalized
isometric Arnoldi algorithm is closely related to the generalized Schur algorithm [8]. However
instead of exploiting the fact that Toeplitz-like structure is preserved by Schur complementation,
we exploit the fact that Krylov-like structure is preserved by orthogonalization. Given a Krylov-
like sequence M

(k)
j , j � 0 with displacement projectors Pk and Qk and a projector Uk with

Im(Uk) ⊆ Im(Pk), the sequence

M
(k+1)
j = (I − Uk)M

(k)
j

for j � 0 is a Krylov-like sequence with displacement projectors Pk+1 and Qk+1 with ranks less
than or equal to the ranks of Pk and Qk . The following theorem justifies these claims, with the
notable exception that we put off the proof that Pk+1 and Qk+1 satisfy (8).

Theorem 3. Suppose that a Krylov-like sequence M
(k)
j satisfies

M
(k)
j − AM

(k)
j−1 = PkM

(k)
j − QkAM

(k)
j−1

for each j � 0 and for displacement projectors Pk and Qk (i.e. for projectors satisfying (8)). Let
Uk be the orthogonal projector for an arbitrary subspace of Im(Pk). Let

Vk = P((I − Qk)AUk),

Pk+1 = Pk − Uk + Vk, and Qk+1 = Qk − AUkA
∗ + Vk.

Then Pk+1 and Qk+1 are orthogonal projectors with ranks less than or equal to those of Pk and
Qk respectively. If

M
(k+1)
j = (I − Uk)M

(k)
j

is the sequence M
(k)
j orthogonalized against Im(Uk) then

M
(k+1)
j − AM

(k+1)
j−1 = Pk+1M

(k+1)
j − Qk+1AM

(k+1)
j−1

for j � 0.

Proof. It follows from (8) and the fact that Im(Uk) ⊆ Im(Pk) that

PkVk = PkP((I − Qk)AUk) = PkP((I − Qk)APkUk) = 0.

This also implies UkVk = 0. It is obvious from the definition of Vk that QkVk = 0. These observa-
tions imply that Pk + Vk and Qk + Vk are orthogonal projectors with ranks equal to rank(Pk) +
rank(Vk) and rank(Qk) + rank(Vk).

Since PkUk = Uk and PkVk = 0, it is trivial to verify that Pk+1 is self-adjoint and idempotent
so that it is an orthogonal projector onto its own image. In fact Pk+1 is the orthogonal projector
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onto the orthogonal complement of Im(Uk) in Im(Pk + Vk) = Im(Pk) ⊕ Im(Vk). The claim for
the rank of Pk+1 follows from the fact that the rank of Vk is no larger than the rank of Uk .

Since

Vk(I − Qk)AUk = (I − Qk)AUk

we have

AUk = Vk(I − Qk)AUk + QkAUk

so that Im(AUk) ⊆ Im(Qk + Vk) Since AUkA
∗ is the orthogonal projector onto Im(AUk) it fol-

lows that Qk+1 is the projector onto the orthogonal complement of Im(AUkA
∗) in Im(Qk + Vk).

The claim for the rank of Qk+1 follows from the fact that the rank of Vk is no larger than the rank
of AUkA

∗.
The Krylov-like structure of the sequence M

(k)
j gives

(I − Uk)M
(k)
j − A(I − Uk)M

(k)
j−1

= (Pk − Uk)M
(k)
j − (Qk − AUkA

∗)AM
(k)
j−1

= (Pk − Uk)M
(k+1)
j − (Qk − AUkA

∗)AM
(k+1)
j−1 − (Qk − AUkA

∗)AUkM
(k)
j−1

= (Pk − Uk)M
(k+1)
j − (Qk − AUkA

∗)AM
(k+1)
j−1 + (I − Qk)AUkM

(k)
j−1. (14)

In the second line we have used the fact that (Pk − Uk)(I − Uk) = (Pk − Uk) so that (Pk −
Uk)M

(k)
j = (Pk − Uk)M

(k+1)
j . Since Vk is the projector onto Im((I − Qk)AUk) we have

(I − Qk)AUk = Vk(I − Qk)AUk = VkAUk.

Using VkPk = VkQk = VkUk = 0 we get

(I − Qk)AUkM
(k)
j−1 = VkAUkM

(k)
j−1

= Vk

(
PkM

(k)
j − QkAM

(k)
j−1

)+ VkAUkM
(k)
j−1

= Vk

(
M

(k)
j − AM

(k)
j−1

)+ VkAUkM
(k)
j−1

= Vk(I − Uk)M
(k)
j − VkA(I − Uk)M

(k)
j−1

= VkM
(k+1)
j − VkAM

(k+1)
j−1 .

Substituting the final expression into (14) gives the desired result. �

The theorem gives recurrences for computing the displacement projectors Pk and Qk for
the Krylov-like sequence M

(k)
j . Given initial displacement projectors P0 and Q0 for a Krylov-

like sequence Mj the recurrences define two sequences of subspaces Im(Pk) and Im(Qk) of
nonincreasing dimension.

Theorem 3 suggests a structured orthogonalization algorithm that looks very much like Algo-
rithm 2. Given a Krylov-like sequence M

(0)
j = Mj , the sequence can be orthogonalized against

the columns of M
(0)
0 to obtain the sequence M

(1)
j = (I − U0)M

(0)
j where U0 is the projector onto

the span of the columns of M
(0)
0 . The j = 0 case of (5) with M−1 = 0 implies that Im(U0) =

Im(M
(0)
0 ) ⊆ Im(P0) so that Theorem 3 applies to show that M(1)

j is Krylov-like. The theorem also

gives explicit relations for the displacement projectors of M
(1)
j . Since M

(1)
0 = 0 we have from
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(5) that Im(M
(1)
1 ) ⊆ Im(P1). Thus the process can be repeated to orthogonalize the sequence

M
(1)
j against the columns of M

(1)
1 to get M

(2)
j = (I − U1)M

(1)
j where U1 is the projector onto

Im(U1) = Im(M
(1)
1 ) ⊆ Im(P1). In general Im(M

(k)
k ) ⊆ Im(Pk) so that this procedure can be used

to compute displacement projectors for each of the partially orthogonalized sequences M
(k)
j .

Unfortunately this outline of the algorithm is incomplete for two reasons. First, while the proof
of Theorem 3 depends on (8) holding for Pk and Qk , we have not shown that Pk+1 and Qk+1
satisfy (8). Second, although we have defined Uk , we have not given a computationally useful
formula for computing it. We have suggested that Uk should be the projector onto Im(M

(k)
k ).

Since we do not expect to have an explicit representation of the partially orthogonalized sequence
M

(k)
j , this definition is not computationally useful.
Both gaps are filled in the next section. It can be shown that Krylov-like structure, including the

relation (8), is indeed preserved during orthogonalization. We can also show that PkMj = 0 for

j < k. Since M
(0)
k − M

(k)
k has columns that are in the span of the columns of M0, M1, . . . , Mk−1,

it follows that Pk(M
(0)
k − M

(k)
k ) = 0 so that

Uk = P
(
M

(k)
k

) = P
(
PkM

(k)
k

) = P
(
PkM

(0)
k

)
. (15)

Thus Uk can be obtained from Pk and the original Krylov-like sequence M
(0)
k . This results in the

following algorithm.

Algorithm 3. Generalized isometric Arnoldi in terms of projectors
Given: Q0, P0, and Mj for j � 0.
k = 0
U0 = P(M0)

V0 = P((I − Q0)AU0)

For k = 0, 1, 2, . . .

Pk+1 = Pk − Uk + Vk

Qk+1 = Qk − AUkA
∗ + Vk

Uk+1 = P(Pk+1Mk+1)

Vk+1 = P((I − Qk+1)AUk+1)

End For

4. Orthogonality relations

Theorem 3 is almost a proof of the correctness of Algorithm 3. As noted what remains to be
proven is that the desired Uk = P(M

(k)
k ) can be computed through the relation Uk = P(PkMk)

and that the relation (8) is satisfied for the sequences Pk and Qk . The two issues are closely
related. We have justified (15) by the claim that Im(Pk) is orthogonal to the columns of Mj for

j < k. If Ul is chosen to be the projector onto Im(M
(l)
l ) for each 0 � l < k then this follows from

the j = 0 case of

Ul[(I − Qk)A]jPk = 0

for l < k and j � 0. This property of Ul is clearly similar to (8).
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Relations of this type can be proven by arguments that depend on properties of suitably defined
invariant subspaces of (I − Qk)A. We define W = (I − Qk)A so that both relations are of the
form YWjX = 0 for j � 0 for suitably chosen Y and X. Let H0 be an invariant subspace of W .
If we decompose H as H = H0 ⊕ H⊥

0 then W can be written as

W =
[
W11 W12

0 W22

]
: H0 ⊕ H⊥

0 → H0 ⊕ H⊥
0 , (16)

where

W11 = PH0W |H0 , W12 = PH0W |H⊥
0
, and W22 = PH⊥

0
W |H⊥

0
.

The operators X and Y can be similarly written as

Y =
[
Y11 Y12
Y21 Y22

]
, and X =

[
X11 X12
X21 X22

]
. (17)

The relationYWjX = 0 for j � 0 has an interpretation in terms of systems theory. In particular,
it shows that the controllability subspace of the pair (W, X) is orthogonal to the observability
subspace of the pair (Y, W) [7]. If we let H0 be the controllability subspace of the pair (W, X)

then we obtain the following decomposition.

Lemma 1. Suppose that Y, W, and X are bounded operators on H satisfying YWjX = 0 for
j � 0. Let

H1 = {x : x = Xx0 + WXx1 + · · · + WlXxl for xk ∈ H and l � 0}
and let H0 be the closure of H1. Then H0 is an invariant subspace of W and, with respect to
the decomposition H = H0 ⊕ H⊥

0 , we have

W =
[
W11 W12

0 W22

]
, X =

[
X11 X12

0 0

]
, and Y =

[
0 Y12
0 Y22

]
. (18)

Proof. Clearly H0 has been defined to be an invariant subspace of W . Thus PH⊥
0
W |H0 = 0 and

W has the form (18) with respect toH0 ⊕ H⊥
0 . Let X and Y be partitioned as (17). By construction

Im(X) ⊆ H0 so that PH⊥
0
X = 0 which gives the desired form for X. Since YWjX = 0 for j � 0

and Im(WjX) ⊆ H0 we have

Y11W
jX = PH0Y |H0W

jX = PH0YWjX = 0

for j � 0. Similarly Y21 = PH⊥
0
YWjX = 0 for j � 0. Thus for any x ∈ H1

Y11x = Y11Xx0 + Y11WXx1 + · · · + Y11W
lXxl = 0

This implies Y11x = 0 for any x ∈ H0. Since Y11 = PH0 .Y |H0 , this is equivalent to Y11 = 0.
That Y21 = 0 follows using the obvious variation of this argument. �

The following theorem establishes thatPk andQk as generated by Algorithm 3 are displacement
projectors. Note that the properties of these projectors depend only on the Uk being chosen to be
the projector onto a subspace of Pk and not on Uk being chosen to be the projector onto Im(M

(k)
k ).

Theorem 4. Let P0 and Q0 be orthogonal projectors satisfying

P0[(I − Q0)A]jP0 = 0
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for j � 1. For k � 0 let the sequences Pk, Qk, Uk, and Vk be generated by the following pro-
cedure: Uk is chosen to be the orthogonal projector onto an arbitrary subspace of Im(Pk)

and

Vk = P((I − Qk)AUk), Pk+1 = Pk − Uk + Vk, and Qk+1 = Qk − AUkA
∗ + Vk.

(This is just Algorithm 3 except that we do not require that Uk = P(PkMk).) Then the sequences
Pk and Qk are sequences of orthogonal projectors satisfying

Pk[(I − Qk)A]jPk = 0 (19)

for j � 1. We also have the relations UkVk = QkVk = PkVk = Pk+1Uk = 0 and Pk+1Vk =
Vk.

Proof. The proof is inductive. We assume that Pl and Ql are orthogonal projectors satisfy-
ing Pl[(I − Ql)A]jPl = 0 for 0 � l � k and j � 1. This assumption is sufficient to prove all
the orthogonality relations in addition to showing that Pk+1 and Qk+1 are projectors satisfying
Pk+1[(I − Qk+1)A]jPk+1 = 0 for j � 1 which completes the induction.

We start with the orthogonality relations between Uk, Vk, Qk , and Pk . In the proof of
Theorem 3 we have shown that PkVk = UkVk = QkVk = 0 and that Pk+1 and Qk+1 are orthog-
onal projectors. Since VkUk = 0 and (Pk − Uk)Uk = 0 we have Pk+1Uk = UkPk+1 = 0. Since
(Pk − Uk)Vk = 0 we have Pk+1Vk = Vk .

To prove (19) we use Lemma 1 with

W = (I − Qk)A, Y = Pk, and X = WY = (I − Qk)APk. (20)

The induction hypothesis gives YWjX = 0 for j � 0. If we define H0 and H⊥
0 as in Lemma 1

then with respect to the decomposition H0 ⊕ H⊥
0 we have

W =
[
W11 W12

0 W22

]
, X =

[
0 X12
0 0

]
, and Y =

[
0 0
0 Y22

]
. (21)

The additional zero blocks in X and Y that are not present in (17) arise as follows. Since Y is
an orthogonal projector it is self-adjoint and we therefore have Y12 = Y ∗

21 = 0. Since X = WY ,
block multiplication gives X11 = 0. Note that the relation X = WY also implies W22Y22 = 0.

Let

Ŷ = Pk+1, Ŵ = (I − Qk+1)A, and X̂ = Ŵ Ŷ = (I − Qk+1)APk+1.

Proving (19) is then equivalent to proving that Ŷ Ŵ j X̂ = 0 for j � 0. We do this by considering
the block structure of X̂, Ŷ , and Ŵ with respect to the decomposition H0 ⊕ H⊥

0 .
The projector Uk satisfies UkPk = Uk so that

UkW
jX = UkPk[(I − Qk)A]j+1Pk = 0

for j � 0 by the induction hypothesis. From the definition of H0 in Lemma 1, it follows that
PH0Uk = 0 so that

Uk =
[

0 0
0 U22

]
.

Since Vk is the projector onto Im((I − Qk)AUk) = Im((I − Qk)APkUk) = Im(XUk) we clearly
have Im(Vk) ⊆ H0 so that PH⊥

0
Vk = 0 and

Vk =
[
V11 0
0 0

]
.
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If we similarly partition A with respect to H0 ⊕ H⊥
0 we get

A =
[
A11 A12
A21 A22

]
. (22)

Combining the partitionings of W , Uk , and Vk with the definitions of Ŵ , Ŷ , and X̂ gives

Ŵ = W + AUk − VkA =
[
W11 − V11A11 W12 + A12U22 − V11A12

0 W22 + A22U22

]
,

Ŷ = Y − Uk + Vk =
[
V11 0
0 Y22 − U22

]
,

and

X̂ =
[
W11 − V11A11 W12 + A12U22 − V11A12

0 W22 + A22U22

] [
V11 0
0 Y22 − U22

]
=
[
X̂11 X̂12

0 0

]
.

In the equation for X̂ we have used W22Y22 = 0 together with the fact that Im(Uk) ⊆ Im(Pk) =
Im(Y ) so that Y22 − U22 is the projector onto the orthogonal complement of Im(U22) in Im(Y22).
Thus

(W22 + A22U22)(Y22 − U22) = W22Y22(Y22 − U22) = 0.

The block structures of Y, Ŵ , and X̂ imply that

Pk[(I − Qk+1)A]j+1Pk+1 = YŴ j X̂ = 0 (23)

for j � 0. To complete the proof we recall that Vk(I − Qk) = Vk so that

VkŴ = Vk[(I − Qk)A + AUk − VkA] = VkA + VkAUk − VkA = VkAUk.

Therefore

VkŴ
j X̂ = VkŴŴ j Ŷ = VkAUkŴ

j Ŷ = 0 (24)

for j � 0. For j � 1 have used YŴ j X̂ = 0 and UkPk = UkY = Uk which imply that UkŴ
j Ŷ =

UkYŴ j−1X̂ = 0 for j � 1. For j = 0 we note thatUkŶ = Uk(Pk − Uk + Vk) = 0 sinceUk(Pk −
Uk) = 0 and UkVk = 0. Since VkŴ

j X̂ = 0 for j � 0, it follows that in Ŷ Ŵ j X̂ the V11 block of
Ŷ can be ignored to get

Ŷ Ŵ j X̂ =
[

0 0
0 Y22 − U22

] [
W11 − V11A11 W12 + A12U22 − V11A12

0 W22 + A22U22

]j [
X̂11 X̂12

0 0

]
= 0. �

Theorem 5. With Pk, Qk, and Uk generated as in Theorem 4

Pl[(I − Qk)A]jPk = 0 for j � 1 and l � k, (25)

Ql[(I − Qk)A]jPk = 0 for j � 1 and l � k, (26)

and

Ul[(I − Qk)A]jPk = 0 for j � 0 and l < k. (27)

Proof. We start with (25). The proof is by induction on k. If k = l the result follows immediately
from Theorem 4. We assume that it is true for some k � l and prove it for k + 1. Define

Y = Pl, W = (I − Qk)A, and X = (I − Qk)APk
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and let H0 be as in Lemma 1. The induction hypothesis gives YWjX = 0 for j � 0. As in the
proof of Theorem 4 this implies

Y =
[

0 0
0 Y22

]
, W =

[
W11 W12

0 W22

]
, and X =

[
0 X12
0 0

]
.

If we define

Ŵ = (I − Qk+1)A, and X̂ = (I − Qk+1)APk+1

then the induction step is equivalent to proving YŴ j X̂ = 0 for j � 0. Since H0, X̂, and Ŵ are
exactly the same as in the proof of Theorem 4 and since Y has the same form with respect to
H0 ⊕ H⊥

0 , the same proof establishes YŴ j X̂0 = 0.
For (26) we note that the l = k case follows from the fact that Qk(I − Qk) = 0. Assuming

that the relation holds for some k � l we can prove it for k + 1 in the same way as was done for
(25). The only difference is that Y = Ql instead of Y = Pl .

Since Ul = UlPl , (25) implies the j � 1 case of (27). For j = 0 we need to prove that UlPk = 0
for k > l. This is done by induction on k. For k = l + 1 we have

UlPl+1 = Ul(Pl − Ul + Vl) = 0,

where we have used UlPl = Ul and UlVl = 0 which were established in Theorem 4. We assume
that UlPk = 0 for some k � l + 1. It follows that

UlPk+1 = Ul(Pk − Uk + Vk) = UlVk

since Ul(Pk − Uk) = UlPk(Pk − Uk) = 0 by the induction assumption. However Vk is the pro-
jector onto Im((I − Qk)AUk) and

Ul(I − Qk)AUk = Ul[(I − Qk)A]1PkUk = 0

since we have already proven the j = 1 case of (27). Thus UlPk+1 = UlVk = 0. �

Corollary 1. For a sequence Uk computed by Algorithm 3

UiUj = 0 for i /= j.

We are ready to prove the correctness of Algorithm 3. Instead of letting Uk be the projector
onto an arbitrary subspace of Im(Pk) we choose Uk = P(PkMk) and combine the results of this
section with Theorem 3 to prove the following.

Theorem 6. Let Mj be Krylov-like with displacement projectors P0 and Q0 and let Pk, Qk, and

Uk be the sequences of projectors computed by Algorithm 3. Define M
(0)
j = Mj and let M

(k)
j

be the result of orthogonalizing the sequence M
(0)
j for j � 0 against the subspace spanned by

the columns of M
(0)
l for 0 � l � k − 1. The orthogonalization corresponds to a block form of

modified Gram–Schmidt that can be written in terms of projections as

M
(k)
j =

(
I − P

(
M

(k−1)
k−1

)) (
I − P

(
M

(k−2)
k−2

))
· · ·
(
I − P

(
M

(0)
0

))
M

(0)
j . (28)

The sequence M
(k)
j is a Krylov-like sequence satisfying

M
(k)
j − AM

(k)
j−1 = PkM

(k)
j − QkAM

(k)
j−1. (29)
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The projectors Uk satisfy Uk = P
(
M

(k)
k

)
and UjUi = 0 for j /= i. The projector

U(k) = U0 + U1 + · · · + Uk−1

is the orthogonal projector onto

Im([M0 M1 · · · Mk−1]).

Proof. We first note that Uk , as computed in Algorithm 3 is an orthogonal projector for a subspace
of Im(P0). Consequently we have all the properties of Pk , Qk , Uk and Vk given in Theorem 4 and
Theorem 5.

The proofs of (29) and Uk = P
(
M

(k)
k

)
are by induction. For k = 0, (29) is just a restatement

of the assumption that Mj is Krylov-like. Since M
(0)
−1 = 0 we have P0M

(0)
0 = M

(0)
0 so that

U0 = P
(
P0M

(0)
0

)
= P

(
M

(0)
0

)
.

We assume that

Ul = P
(
PlM

(0)
l

)
= P

(
M

(l)
l

)
, and M

(l)
j − AM

(l)
j−1 = PlM

(l)
j − QlAM

(l)
j−1

for 0 � l � k and prove these relations for l = k + 1. Since Uk = P(PkM
(0)
k ) = P(M

(k)
k ) and

M
(k+1)
j is defined to be M

(0)
j orthogonalized against M

(0)
l for 0 � l � k we have

M
(k+1)
j = (I − Uk)M

(k)
j .

The Krylov-like structure of M
(k+1)
j then follows from Theorem 3. The fact that Pk+1 and Qk+1

are displacement projectors follows from Theorem 4.
Clearly M

(k+1)
k = 0. Thus M

(k+1)
j − AM

(k+1)
j−1 = Pk+1M

(k+1)
j − Qk+1AM

(k+1)
j−1 implies

M
(k+1)
k+1 = Pk+1M

(k+1)
k+1 . By Theorem 5 UlPk+1 = Pk+1Ul = 0 for l � k. Combining this with

M
(k+1)
j = (I − Uk) · · · (I − U0)M

(0)
j

gives Pk+1M
(k+1)
j = Pk+1M

(0)
j so that

P
(
M

(k+1)
k+1

)
= P

(
Pk+1M

(k+1)
k+1

)
= P

(
Pk+1M

(0)
k+1

)
= Uk+1.

The claim for U(k) is obvious. �

This completes the proof that Algorithm 3 orthogonalizes a Krylov-like sequence. Unfortu-
nately, the algorithm is inefficient: If H = Cn, then storing the projectors Pk and Qk requires
O(n2) memory and each update of the projectors requires O(n2) operations. If multiplication by
A is fast and if Im(P0) and Im(Q0) are subspaces of low dimension, it is possible to obtain a
fast algorithm by factoring the projectors Pk and Qk into products of the form Pk = XkX

∗
k and

Qk = YkY
∗
k where the columns of Xk form an orthonormal basis for Im(Pk) and the columns of

Yk form an orthonormal basis for Im(Qk). The resulting bases can be computed more efficiently
than the corresponding projectors. This modification requires knowledge of the dimensions of the
subspaces and that special measures to be taken when the dimensions change. In preparation for
describing a factored form of the algorithm in the next section, we give further details relating the
dimensions of the images of Pk , Qk , Uk , and Vk .

Let

xk = rank(Pk), yk = rank(Qk), tk = rank(Vk), pk = rank(Uk), (30)
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and

rk = dim(Im(Qk) ∩ Im(AUk)). (31)

The relation between xk, yk, tk and rk is given in the following theorem. The theorem also
identifies the criterion ‖QkAUk‖ = 1 as signaling a drop in dimension and describes a deflation
step in which the intersection of Im(Qk) and Im(AUk) is removed from Pk , Qk , and Uk without
changing the computed Vk , Pk+1 and Qk+1.

Theorem 7. Let Uk, Vk, Qk, and Pk be computed as in Algorithm 3. Define

Xk = {x : ‖QkAUkx‖ = ‖x‖}.
Then

Xk = Ker((I − Qk)AUk) ∩ Im(Uk) (32)

and

AXk = AUkXk = Im(Qk) ∩ Im(AUk).

If rk is the dimension of Xk then

tk = pk − rk, yk+1 = yk − rk, and xk+1 = xk − rk,

where tk, yk, and xk are as in (30) and (31).

If Rk is the orthogonal projector onto Xk and

P̃k = Pk − Rk, Q̃k = Qk − ARkA
∗, and Ũk = Uk − Rk

then

Vk = P((I − Qk)AUk) = P((I − Q̃k)AŨk),

‖Q̃kAŨk‖ < 1,

and

Pk+1 = P̃k − Ũk + Vk, and Qk+1 = Q̃k − AŨkA
∗ + Vk.

Proof. If x ∈ Xk then x ∈ Im(Uk) since otherwise‖QkAUkx‖ � ‖QkA‖‖Ukx‖ < ‖QkA‖‖x‖ �
‖x‖. Similarly, we must also have Ax ∈ Im(Qk) since otherwise ‖QkAUkx‖ = ‖QkAx‖ <

‖Ax‖ = ‖x‖. Thus AXk ⊆ Im(AUk) ∩ Im(Qk).
For any y ∈ Im(AUk) ∩ Im(Qk) there exists x ∈ Im(Uk) such that y = AUkx = Ax. Since

y ∈ Im(Qk),

‖QkAUkx‖ = ‖AUkx‖ = ‖Ax‖ = ‖x‖
so that x ∈ Xk and y ∈ AXk . Thus AXk = Im(AUk) ∩ Im(Qk).

We have shown that for x ∈ Xk, QkAUkx = QkAx = Ax. Conversely, if QkAUkx = Ax then
the fact that A is an isometry implies ‖QkAUkx‖ = ‖x‖ so that x ∈ Xk . Thus Xk can be char-
acterized as the set of x ∈ H for which (A − QkAUk)x = 0. Since Xk ⊆ Im(Uk), this implies
that if x ∈ Xk then (I − Qk)AUkx = 0. Thus Xk ⊆ Ker((I − Qk)AUk) ∩ Im(Uk). Conversely
if x ∈ Ker((I − Qk)AUk) ∩ Im(Uk) then QkAUkx = AUkx = Ax from which it follows that
‖QkAUkx‖ = ‖x‖. Thus x ∈ Xk . This establishes (32).

Since Xk ⊆ Im(Uk), we can define X⊥,U
k ⊆ Im(Uk) to be the orthogonal complement of Xk

in Im(Uk). Then

Im(Vk) = Im((I − Qk)AUk) = (I − Qk)AUkX
⊥,U
k .
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The kernel of (I − Qk)AUk|X⊥,U
k

is trivial since anything in the kernel would also have to be in

Xk by (32). It follows that

rank(Vk) = dim
(
(I − Qk)AUkX

⊥,U
k

)
= dim

(
X⊥,U

k

)
= rank(Uk) − dim(Xk).

Since, as noted in the proof of Theorem 3, QkVk = 0 and Im(AUkA
∗) ⊆ Im(Qk) + Im(Vk) the

relation Qk+1 = Qk − AUkA
∗ + Vk implies

rank(Qk+1) = rank(Qk) + rank(Vk) − rank(AUkA
∗) = rank(Qk) − dim(Xk).

In a similar manner Im(Uk) ⊆ Im(Pk), PkVk = 0, and Pk+1 = Pk − Uk + Vk imply the expres-
sion for xk+1.

That P̃k , Q̃k , and Ũk are orthogonal projectors with Im(P̃k) ⊆ Im(Pk), Im(Q̃k) ⊆ Im(Qk),
and Im(Ũk) ⊆ Im(Uk) follows from Xk ⊆ Im(Uk) ⊆ Im(Pk) and AXk ⊆ Im(Qk). From this it

is clear that ‖Q̃kAŨk‖ � 1. If ‖Q̃kAŨk‖ = 1 then there is an x /= 0 such that ‖Q̃kAŨkx‖ =
‖x‖. As before this implies x ∈ Im(Ũk) ⊆ Im(Uk) and Ax ∈ Im(Q̃k) ⊆ Im(Qk) which implies

that x ∈ Xk . However Ũkx = (Uk − Rk)x = 0 for all x ∈ Xk so that ‖Q̃kAŨkx‖ = 0. From this

contradiction we conclude that ‖Q̃kAŨkx‖ < 1.
The relations for Pk+1 and Qk+1 are obvious from the definition of P̃k , Q̃k , and Ũk . The

relation for Vk follows from

P((I − Q̃k)AŨk) = P((I − (Qk − ARkA
∗))A(Uk − Rk))

= P((I − Qk)AUk + ARk(Uk − Rk) − (I − Qk)ARk)

= P((I − Qk)AUk)

= Vk. �

There are several special cases that are covered by the theorem but merit further description.

1. If rn = xn then Pn+1 = 0 so that Uk = 0 for k � n + 1. The algorithm can stop at this point.
The columns of Mk for k � n + 1 are in the span of the columns of Ml for 0 � l � n. If, as in
the case of the isometric Arnoldi algorithm, rank(P0) = 1 then ‖QnAUn‖ = 1 implies rn > 0
so that Pl = 0 for l � n + 1 and Ul = 0 for l � n + 1. Thus the isometric Arnoldi algorithm
terminates whenever |y∗

nAxn| = ‖QnAUn‖ = 1.

2. If rn < xn then rn > 0 does not necessarily indicate linear dependence. While this situation does
not occur in the case of the isometric Arnoldi algorithm, in general ‖QnAUn‖ = 1 indicates
only a decrease in xn+1 and yn+1 and not linear dependence in the columns of the Krylov-like
sequence. The correct general criterion for identifying linear dependence is rank(Un) < p.

3. If rn = yn then yn+1 = 0, Qn+1 = 0, and (I − Qn+1)AUn+1 = AUn+1 so that Vn+1 =
AUn+1A

∗. From this it follows that Qn+2 = Qn+1 = 0 and that rank(Pn+2) = rank(Pn+1).
This pattern continues: for k � n + 1 we have Qk = 0 and rank(Pk) = rank(Pn+1).

5. The factored algorithm

Let

Pk = XkX
∗
k , Qk = YkY

∗
k , Uk = SkS

∗
k , and Vk = TkT

∗
k ,

where

Xk : Cxk → H, Yk : Cyk → H, Sk : Cpk → H, and Tk : Cpk−rk → H
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have columns that form orthonormal bases for Im(Pk), Im(Qk), Im(Uk), and Im(Vk) respectively.
Thus

X∗
kXk = Ixk

, Y ∗
k Yk = Iyk

, S∗
k Sk = Ipk

, and T ∗
k Tk = Ipk−rk .

For the deflated projectors P̃k , Q̃k , and Ũk described in Theorem 7 we define in a similar
manner X̃k, Ỹk , and S̃k with xk − rk , yk − rk , and pk − rk columns, respectively. If rk = 0 so that
no deflation is necessary then X̃k = Xk, Ỹk = Yk , and S̃k = Sk .

We require a deflation procedure for computing X̃k , Ỹk , and S̃k from Xk, Yk , and Sk . In
the following we assume that Xk is of the form Xk = [Sk Xk,2]. Since Im(Uk) ⊆ Im(Pk)

implies Im(Sk) ⊆ Im(Xk), Xk can be put in this form by a suitable choice of orthonormal basis
for Im(Pk).

Algorithm 4. Deflation of Xk , Yk , and Sk

Given Xk, Yk , and Sk with ‖Y ∗
k ASk‖2 = 1

and Xk partitioned as Xk = [Sk Xk,2]:
Compute unitary Ek = [Ek,1 Ek,2] and Fk = [Fk,1 Fk,2] such that

EH
k S∗

k A∗YkFk =
[
Irk 0
0 �k,2

]
where �k,2 is (pk − rk) × (yk − rk) and ‖�k,2‖2 < 1.

Define Yk,j and Sk,j by

YkFk = [Yk,1 Yk,2]
SkEk = [Sk,1 Sk,2]

Let

X̃k = [Sk,2 Xk,2]
Ỹk = Yk,2 and S̃k = Sk,2.

We now show that the above algorithm computes X̃k, Ỹk , and S̃k such that P̃k = X̃kX̃
∗
k , Q̃k =

ỸkỸ
∗
k , and Ũk = S̃kS̃

∗
k . Let X̂k be the right singular subspace of Y ∗

k ASk associated with the singular

value 1. We claim that the subspace Xk defined in Theorem 7 is given by Xk = SkX̂k . If x̂ ∈ X̂k

then

‖QkAUkSk x̂‖ = ‖YkY
∗
k ASk x̂‖ = ‖Y ∗

k ASk x̂‖2 = ‖x̂‖2 = ‖Sk x̂‖
so that SkX̂k ⊆ Xk . If x ∈ Xk then x ∈ Im(Uk) = Im(Sk) and if we define x̂ = S∗

k x so that
x = Sk x̂ then

‖Y ∗
k ASk x̂‖2 = ‖Y ∗

k ASkS
∗
k x‖2 = ‖QkAUkx‖ = ‖x‖ = ‖S∗

k x‖2 = ‖x̂‖2.

Thus every x ∈ Xk is of the form x = Sk x̂ for some x̂ ∈ X̂k and therefore Xk ⊆ SkX̂k . It
follows that Xk = SkX̂k so that dim(Xk) = dim(SkX̂k) = dim(X̂k) and the rk computed by
Algorithm 4 satisfies rk = dim(Xk).

From Theorem 7 we have

Im(ASk) ∩ Im(Yk) = AXk = ASkX̂k = Im(ASk,1) = Im(Yk,1),

where in the final equality we have used the fact that Y ∗
k,1ASk,1 = Irk and the fact that Yk,1 and Sk,1

are isometries imply that Yk,1 = ASk,1. Note also that ‖Ỹ ∗
k AS̃k‖2 < 1 implies that Im(AS̃k) ∩

Im(Ỹk) = {0}.
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We then have

ỸkỸ
∗
k = YkY

∗
k − Yk,1Y

∗
k,1 = YkY

∗
k − ASk,1S

∗
k,1A

∗ = Qk − ARkA
∗ = Q̃k,

X̃kX̃
∗
k = XkX

∗
k − Sk,1S

∗
k,1 = Pk − Rk = P̃k,

and

S̃kS̃
∗
k = SkS

∗
k − Sk,1S

∗
k,1 = Uk − Rk = Ũk.

Since Theorem 7 shows that Ũk , P̃k , and Q̃k can be used to compute Vk, Pk+1, and Qk+1, we can
use S̃k , X̃k , and Ỹk in a factored algorithm to compute Tk , Xk+1, and Yk+1.

In stating the factored algorithm we assume that

�k = Ipk−rk ⊕ −Iyk−rk .

The condition ‖Y ∗
k ASk‖2 = 1 signals the need for a deflation. Otherwise, if ‖Y ∗

k ASk‖2 < 1, we
take X̃k = Xk , Ỹk = Yk , and S̃k = Sk .

Algorithm 5. Generalized Isometric Arnoldi
Given: X0, Y0, and Mj for j � 0
Let S(−1) = [ ] and X̂0 = X0
For k = 0, 1, 2, . . .

Let pk = rank(M∗
k X̂k)

Compute Wk such that

M∗
k X̂kWk = [Bk 0]

where Bk is p × pk

Let Xk = X̂kWk

Partition Xk = [Sk Xk,2]
where Sk has pk columns

Let S(k) = [S(k−1) Sk]
If ‖Y ∗

k ASk‖2 = 1

Use Algorithm 4 to compute X̃k, Ỹk , and S̃k .

Else

Let X̃k = Xk, Ỹk = Yk , S̃k = Sk

End if

Compute Hk satisfying HH
k �kHk = �k and

[Ipk−rk S̃∗
k A∗Ỹk]Hk = [Ck 0]

for some (pk − rk) × (pk − rk) matrix Ck .

Let [Tk Yk+1] = [AS̃k Ỹk]Hk

Let X̂k+1 = [Tk Xk,2]
End for

In the particular case in which yk = rk it is not necessary to compute Hk or Yk+1. See the note
on this case at the end of §4. It is easily verified that in this case we may simply set Tk = AS̃k and
continue with the computation of Xk+1.
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The following theorem states that Algorithm 5 is a factored form of Algorithm 3 in which the
columns of Xk, Yk, Sk , and Tk are orthonormal bases for the images of the projectors Pk, Qk, Uk ,
and Vk .

Theorem 8. Let Mj be a Krylov-like sequence with displacement projectors P0 and Q0. Let the
projectors be factored as

P0 = X0X
∗
0 and Q0 = Y0Y

∗
0 ,

where X∗
0X0 = Ixk

and Y ∗
0 Y0 = Iyk

. Then Algorithm 5 computes sequences Xk and Yk such that

X∗
kXk = Ixk

, Y ∗
k Yk = Iyk

, S∗
k Sk = Ipk

, and T ∗
k Tk = Ipk−rk (33)

and

Pk = XkX
∗
k , Qk = YkY

∗
k , Uk = SkS

∗
k , and Vk = TkT

∗
k , (34)

where Pk, Qk, Uk, and Vk are the projectors computed by Algorithm 3. For each n � 0 the
columns of

S(n) = [S0 S1 S2 · · · Sn]
have the same span as the columns of

M(n) = [M0 M1 M2 · · · Mn].

Proof. To prove the theorem we show that given X̂k and Yk satisfying (33) and (34) the algorithm
computes Sk, Tk, Xk+1, and Yk+1 satisfying (33) and (34). The claim for the image of S(n) will
then follow as a consequence of Theorem 6.

Recall that X̂k and Xk have columns that are simply different orthonormal bases for the same
subspace. For Sk it is immediate from X̂∗

k X̂k = Ixk
and the fact that Wk is unitary that S∗

k Sk = Ipk
.

To show that SkS
∗
k = Uk we observe that

pk = rank(Uk) = rank(X̂kX̂
∗
kMk) = rank(M∗

k X̂k) = rank(M∗
k Sk)

where we have used the fact that X∗
k,2Mk = 0. Thus the p × pk matrix Bk = M∗

k Sk has linearly
independent columns and

Im(Sk) = Im(SkS
∗
k Mk) = Im(X̂kX̂

∗
kMk) = Im(PkMk) = Im(Uk).

Together with S∗
k Sk = Ipk

this implies that SkS
∗
k is the projector onto Im(Uk) or equivalently

Uk = SkS
∗
k .

We have already shown that given Xk, Yk , and Sk , Algorithm 4 correctly computes X̃k , Ỹk ,
and S̃k . We now verify the calculation of Tk , Xk+1, and Yk+1 by describing the structure of Hk .
The matrix Hk is invertible with its inverse given by H−1

k = �kH
H
k �k . It follows that Ck is

nonsingular. Multiplying the relation that defines Ck by H−1
k �k on the right gives

[Ipk−rk −S̃∗
k A∗Ỹk] = [Ck 0]HH

k

which implies that Hk has the form

Hk =
[

C−H
k Hk,12

−Ỹ ∗
k AS̃kC

−H
k Hk,22

]
.
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For Tk we note that the form of Hk together with [Tk Yk+1] = [AS̃k Ỹk]Hk implies that

Tk = [AS̃k Ỹk]
[

Ipk−rk

−Ỹ ∗
k AS̃k

]
C−H

k = (I − ỸkỸ
∗
k )AS̃kC

−H
k .

Thus

Im(Tk) = Im((I − ỸkỸ
∗
k )AS̃kC

−H
k ) = Im((I − Q̃k)AŨk) = Im(Vk).

In addition

T ∗
k Tk = C−1

k S̃∗
k A∗(I − ỸkỸ

∗
k )AS̃kC

−H
k = C−1

k (Ipk−rk − S̃∗
k A∗ỸkỸ

∗
k AS̃k)C

−H
k .

However the (1, 1) block of the relation HH
k �kHk = �k and the form of the matrix Hk give

Ipk−rk = C−1
k C−H

k − C−1
k S̃∗

k A∗ỸkỸ
∗
k AS̃kC

−H
k = C−1

k (Ipk−rk − S̃∗
k A∗ỸkỸ

∗
k AS̃k)C

−H
k

so that T ∗
k Tk = Ipk−rk . Thus TkT

∗
k = Vk .

For Xk+1 we note that X̃k = [S̃k Xk,2] and X̂k+1 = [Tk Xk,2] imply that

Xk+1X
∗
k+1 = X̂k+1X̂

∗
k+1 = X̃kX̃

∗
k − S̃kS̃

∗
k + TkT

∗
k = P̃k − Ũk + Vk = Pk+1.

Thus Xk+1X
∗
k+1 = Pk+1. Since Pk+1 has rank xk+1 = xk − rk and Xk+1 has xk+1 columns, the

columns of Xk+1 are linearly independent and Xk+1 has a left inverse. Since Xk+1X
∗
k+1 is a pro-

jector we have Pk+1 = Xk+1X
∗
k+1 = Xk+1(X

∗
k+1Xk+1)X

∗
k+1 which implies X∗

k+1Xk+1 = Ixk+1 .
For Yk+1 we note that the relation Hk�kH

H
k = �k and the relation used to compute Yk+1 imply

Yk+1Y
∗
k+1 = ỸkỸ

∗
k − AS̃kS̃

∗
k A∗ + TkT

∗
k = Q̃k − AŨkA

∗ + Vk = Qk+1.

The relation Y ∗
k+1Yk+1 = Iyk+1 follows in the same way as for Xk+1. �

6. Computing a QR factorization

The generalized isometric Arnoldi orthogonalizes the columns of the matrix M(n) to compute
S(n). In this section we consider computation of

R(n) = S(n)∗M(n) =

⎡⎢⎢⎢⎢⎢⎣
R

(n)
0

R
(n)
1

...

R
(n)
n

⎤⎥⎥⎥⎥⎥⎦ .

The blocks of rows R
(n)
k are pk × p(n + 1) for 0 � k � n. If we define

p(n) =
n∑

k=0

pk = rank(M(n))

then R(n) is an p(n) × p(n + 1). If all the columns of M(n) are linearly independent then p(n) =
p(n + 1) and M(n) = S(n)R(n) is a QR factorization of M(n).

To compute R(n) we extend Algorithm 5 with recurrences to compute S∗
k Mj .

We start by defining

Ek,j = S∗
k Mj , Fk,j = X∗

k,2Mj, and Gk,j = Y ∗
k AMj−1,
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so that

X∗
kMj =

[
Ek,j

Fk,j

]
and

R
(n)
k = S∗

k M(n) = [Ek,0 Ek,1 · · · Ek,n].
To compute the rows of R(n) we will give a recurrence for computing Ek+1,j , Fk+1,j , and Gk+1,j

from Ek,j , Fk,j , and Gk,j . Note that Ek,j , Fk,j , and Gk,j are pk × p, (xk − pk) × p, and yk × p

respectively. Thus the number of rows in these matrices varies with k.
Algorithm 4 deflates Xk and Yk by applying unitary transformations on the right and removing

columns to get X̃k and Ỹk . This corresponds in an obvious way to applying unitary transformations
on the left and removing rows from Ek,j and Gk,j Thus

Ẽk,j = S̃∗
k Mj , F̃k,j = Fk,j = X∗

k,2Mj, and G̃k,j = Ỹ ∗
k AMj−1.

We partition Hk as

Hk =
[
Hk,11 Hk,12
Hk,21 Hk,22

]
,

where Hk,11 is (pk − rk) × (pk − rk). Since

[AS̃k Ỹk]Hk = [Tk Yk+1]
we have⎡⎢⎣HH

k,11 0 HH
k,21

0 Ixk−pk
0

HH
k,12 0 HH

k,22

⎤⎥⎦
⎡⎢⎣ S̃∗

k Mj−1

X∗
k,2Mj

Ỹ ∗
k AMj−1

⎤⎥⎦ =
⎡⎢⎣ T ∗

k AMj−1

X∗
k,2Mj

Y ∗
k+1AMj−1

⎤⎥⎦ .

The Krylov-like structure of Mj gives

AMj−1 = Mj − P0Mj + Q0AMj−1.

By (25) and PkUk = Uk we have P0(I − Qk)AUk = 0 which implies that P0TkT
∗
k = P0Vk = 0.

By (26) we have Q0(I − Qk)AUk = 0 so that Q0TkT
∗
k = 0. Thus T ∗

k AMj−1 = T ∗
k Mj and⎡⎢⎣HH

k,11 0 HH
k,21

0 Ixk−pk
0

HH
k,12 0 HH

k,22

⎤⎥⎦
⎡⎢⎣ S̃∗

k Mj−1

X∗
k,2Mj

Ỹ ∗
k AMj−1

⎤⎥⎦ =
⎡⎢⎣ T ∗

k Mj

X∗
k,2Mj

Y ∗
k+1AMj−1

⎤⎥⎦ .

Since Xk+1 = [Sk+1 Xk+1,2] = [Tk Xk,2]Wk+1 we get[
WH

k+1 0

0 Iyk−rk

]⎡⎢⎣HH
k,11 0 HH

k,21

0 Ixk−pk
0

HH
k,12 0 HH

k,22

⎤⎥⎦
⎡⎢⎣ S̃∗

k Mj−1

X∗
k,2Mj

Ỹ ∗
k AMj−1

⎤⎥⎦ =
⎡⎢⎣ S∗

k+1Mj

X∗
k+1,2Mj

Y ∗
k+1AMj−1

⎤⎥⎦
or [

WH
k+1 0

0 Iyk−rk

]⎡⎢⎣HH
k,11 0 HH

k,21

0 Ixk−pk
0

HH
k,12 0 HH

k,22

⎤⎥⎦
⎡⎢⎣Ẽk,j−1

F̃k,j

G̃k,j

⎤⎥⎦ =
⎡⎢⎣Ek+1,j

Fk+1,j

Gk+1,j

⎤⎥⎦ . (35)
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This is the desired recurrence for the sequences Fk,j and Gk,j .
The recurrence can be related to the generalized Schur algorithm as follows. Theorem 2 states

that

M(n)∗M(n) − ZM(n)∗M(n)ZT = M(n)∗X0X
∗
0M(n) − ZM(n)∗A∗Y0Y

∗
0 AM(n)ZT,

where Z is the (n + 1)p × (n + 1)p block downshift matrix with p × p blocks. If

E
(n)
k = [Ek,0 Ek,1 · · · Ek,n],

F
(n)
k = [Fk,0 Fk,1 · · · Fk,n],

and

G
(n)
k = [Gk,0 Fk,1 · · · Fk,n]

then

M(n)∗M(n) − ZM(n)∗M(n)ZT = E
(n)H
0 E

(n)
0 + F

(n)H
0 F

(n)
0 − G

(n)H
0 G

(n)
0 .

Thus the matrices E
(n)
0 , F

(n)
0 , and G

(n)
0 are generators, in the sense of [8], for the block Toeplitz-

like matrix M(n)∗M(n). It can be shown that (35) is the generalized Schur algorithm with the
transformations Hk and Wk computed from Xk, Yk , and the Krylov-like sequence Mj instead of
from the generators of M(n)∗M(n). Of course there is the important difference that if the matrix
M(n)∗M(n) is singular then the generalized Schur algorithm fails while the generalized isometric
Arnoldi algorithm can continue after a deflation.

7. Preliminary numerical experiments

In order to observe the effect of ill-conditioning on the procedure we compare three methods
of orthogonalizing three 20 × 10 Toeplitz matrices. All numerical experiments were run using
Matlab code written by the author on a PC with a Pentium 4 processor. The first matrix T1 has
first column and first row⎡⎢⎢⎢⎣

1
1.001

...

1.019

⎤⎥⎥⎥⎦ , and [1 1.001 1.002 · · · 1.009].

The matrix has condition number κ2(T1) ≈ 2.8 × 104. The second matrix T2 has elements

tij = e−(i−j)2/25

for 1 � i � 20 and 1 � j � 10 and condition number κ2(T2) = 3.1 × 107. The third matrix
is similar to the second but with elements tij = e−(i−j)2/50 and condition number κ2(T3) =
4.0 × 109.

The first method is Algorithm 5. The second method is Algorithm 5 with the following reor-
thogonalization step. In the absence of numerical error the matrices Xk and Yk satisfy X∗

kXk = Ixk

and Y ∗
k Yk = Iyk

. However, in finite precision, the columns of Xk and Yk do not remain exactly
orthogonal. The reorthogonalization step involves computing QR factorizations Xk = QXRX

and Yk = QY RY and setting Xk = QX and Yk = QY each time through the main loop of the
algorithm.

The last method is based on displacement structure and is described in [8]. The generalized
Schur algorithm is applied to generators of the matrix
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Table 1
Loss of orthogonality

Matrix κ2(T ) Isometric Arnoldi 1 Isometric Arnoldi 2 Generalized Schur

T1 2.8 × 104 3.9 × 10−9 3.9 × 10−10 1.5 × 10−8

T2 3.1 × 107 1.9 × 10−4 1.6 × 10−11 6.8 × 10−3

T3 4.0 × 109 1.9 × 10−1 4.7 × 10−10 1.0 × 100

Table 2
Backward errors

Matrix κ2(T ) Isometric Arnoldi 1 Isometric Arnoldi 2 Generalized Schur

T1 2.8 × 104 2.7 × 10−11 3.2 × 10−10 3.3 × 10−14

T2 3.1 × 107 9.1 × 10−9 2.1 × 10−11 3.4 × 10−16

T3 4.0 × 109 6.8 × 10−6 2.3 × 10−8 8.8 × 10−16

[
T TT T T

T 0

]
.

The �-unitary transformations used in the generalized Schur approach are computed from
a fast Cholesky factorization of T TT while in Algorithm 5 the transformations are computed
using inner products. The computational complexity of the algorithms is comparable, in each
case O(mn) for an m × n Toeplitz matrix.

Each algorithm was applied to T1, T2, and T3 to compute a matrix Q with orthonormal columns.
Table 1 gives ‖QTQ − I‖2, the loss of orthogonality of the computed Q, for each of the three
algorithms. In each case the factor R in the QR factorization was also computed. We used the
generalized Schur algorithm [8] without any modification to compute R. The generalized isometric
Arnoldi algorithm was augmented with the recurrences from §6. The relative backward errors
‖QR − Tk‖2/‖Tk‖2 are given in Table 2.

For the second algorithm, the orthonormality of the columns of the computed Q is compa-
rable to what might be expected from modified Gram–Schmidt, which satisfies an error bound
‖QTQ − I‖2 � cuκ2(A) [5] where u is the unit roundoff. The results for the other two algorithms
are dramatically worse. In contrast, the generalized Schur algorithm achieves the best backward
error as is shown in Table 2. This is not surprising; the generalized Schur algorithm is known to
compute a factorization for which the backward error is of the order of the machine precision.

8. Additional topics

We now comment on a few problems that have not been addressed and have been only partially
solved. The isometric Arnoldi algorithm can be used to reduce a unitary matrix A, by unitary
similarity, to a product of plane rotations The generalized isometric Arnoldi algorithm can be
used to reduce A to a slightly more complicated form. In particular under the assumption that the
columns of M(n) are linearly independent the matrix S(n)∗AS(n) can be shown to have a structure
of the form

H(n) = S(n)∗AS(n) = Ĵ H
n+1Ĵ

H
n Ĵ H

n−1 · · · Ĵ H
0 Ĝ0Ĝ1 · · · Ĝn,

where

Ĝk = Ipk ⊕ Gk ⊕ I(n−k)p+xn+1−xk+1 , and Ĵk = Ipk ⊕ Jk ⊕ Ip(n+1−k)+xn+1−xk+1 .
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The transformations Gk and Jk are unitary and are defined in terms of Hk and Wk . The definition of
Hk is involved and it does not lead directly to a stable method for computing Hk . Further research
is needed into how to represent Hk in terms of plane rotations or Householder transformations.

This suggests an alternative method for computing R(n). If we consider the relation (5) and
multiply by the unitary matrix S(n)∗ on both sides then we get

S(n)∗Mj = H(n)S(n)∗Mj−1 + S(n)∗(P0Mj − Q0AMj−1). (36)

The matrix S(n)∗Mj is a block of columns of R(n) = S(n)∗M(n). Multiplication of a vector by
H(n) is O(n) if it is implemented as a product of rotations. Except for H(n)S(n)∗Mj−1 everything
on the right hand side of (36) is in Im(P0) ∪ Im(Q0). If this subspace is of low dimension and the
Krylov-like sequence Mj is available, then (36) is a fast recurrence for computing the columns of
R(n). The backward errors from Table 2 suggest that the recurrences of §6 are not a satisfactory way
to compute R(n). Straightforward implementation of (36) have not given better results. However
there are numerous variations on the basic recurrences that have not yet been tried. It is also
possible that a direct recurrence for least squares solutions would be a better option. This is the
subject of ongoing research.

Finally there are a variety of issues surrounding linear dependence in Krylov-like sequences.
The generalized isometric Arnoldi algorithm is able to detect and effectively skip over vectors
that can be expressed as linear combination of previous vectors in the sequence. This is in striking
contrast to the generalized Schur algorithm for which fast Cholesky fails when the columns of
M(n) are not linearly independent. The numerical properties of deflation are not clear and merit
further investigation.
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