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Model-Based Fault Diagnosis System Verification
Using Reachability Analysis

Jinya Su, Member, IEEE, and Wen-Hua Chen, Senior Member, IEEE

Abstract—In model-based fault detection and isolation (FDI)
systems, fault indicating signals (FISs) such as residuals and fault
estimates are corrupted by various noises, uncertainties and vari-
ations. It becomes challenging to verify whether an FDI system
still works or not in real life applications. It is also challenging
to select a threshold so that false alarm rate and missed detec-
tion rate are kept low depending on real operation conditions.
This paper proposes solutions to the aforementioned problems by
quantitatively analyzing the effect of uncertainties on FIS. The
problems are formulated into reachability analysis problem for
uncertain systems. The reachable sets of FIS are calculated under
normal and selected faulty cases, respectively. From these reach-
able sets, the effectiveness of an FDI system can be qualitatively
verified under described uncertainties. A dedicated threshold can
be further chosen to be robust to all possible described uncer-
tainties. As a by-product, the minimum detectable fault can also
be quantitatively determined by checking the intersection of the
computed reachable sets. The proposed approach is demonstrated
by evaluating an FDI algorithm of a motor in the presence
of parameter uncertainties, unknown load, and sensor noises,
where a fault estimation-based approach is adopted to diagnose
amplifier, velocity, and current sensor faults.

Index Terms—Fault diagnosis, fault estimation, reachability
analysis, uncertainties, verification and validation.

I. INTRODUCTION

W ITH the ever-increasing requirements on safety and
reliability for industrial systems, model-based fault

detection and isolation (FDI) or fault diagnosis is attract-
ing increasing attentions in both academia and industry
(see [1]–[3]). Observer-based FDI, as a model-based diagno-
sis approach, performs FDI by consistency-checking between
observed behavior and predicted behavior using observer
techniques based on mathematical model of the concerned
plant [4]–[6]. There are generally two steps in this approach,
i.e., observer design to generate a fault indicating signal (FIS)
and threshold selection to evaluate FIS. For example, in
residual-based approach [4], a fault is alarmed when resid-
uals (the functions of output estimation errors) are larger
than a given threshold. While in fault estimation-based
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approach [6], [7], a fault is indicated when fault estimates
deviate from a predefined threshold.

The most important and challenging issue in model-based
FDI is robustness [4]. Since there always exist some mis-
matches between the real plant and the mathematical model
used for FDI observer design in real life applications,
such as system parameter uncertainties (e.g., resistance in a
motor), external disturbances (e.g., unknown load) and sen-
sor noises [8], [9]. As a result, it brings many challenges
to the problem of FDI algorithm selection and verification,
i.e., proving whether an FDI algorithm works or not in the
presence of all kinds of system uncertainties and variations.
Any product or function must go through verification and val-
idation processes before being applied in real engineering to
see whether or not certain performance specifications are sat-
isfied [10]. Besides, the FIS is also inevitably corrupted by all
kinds of uncertainties, i.e., being nonzero even without any
faults [11], [12], which brings challenges to the problem of
threshold selection. If the threshold is selected too small, false
alarm rate is high while missed detection rate is high if the
threshold is selected too large. To this end, a lot of algorithms
have been proposed to handle the robustness issue. According
to in what stage uncertainties are considered, they can be
categorized into active and passive approaches [12], [13].
The active ones achieve robustness in the stage of observer
design, while the passive ones achieve robustness in the
stage of threshold selection (or residual evaluation, decision
making).

Typical active approaches reduce or even decouple the
effect of uncertainties on FIS by designing dedicated
observers, such as unknown input observer [8], robust fil-
ter (e.g., H∞ observer) [14]. There is another important
active approach, i.e., interval/set-membership-based diagno-
sis approach [12], [13], [15]–[17]. In this approach, the
conventional FDI observer is replaced by new interval/set-
membership-based observers which can capture the possible
upper and lower bounds of system states in the presence of
interval uncertainties. Then a fault is alarmed by consistency
check between the calculated state interval based on uncer-
tain model and measurements from sensors. This approach
has recently been applied to FDI problem of wind turbine
system in [12] and [17], where uncertain set is represented by
zonotopes due to its computational efficacy. There is also some
interesting research on how to represent uncertainty using con-
strained zonotopes [16] such that a better tradeoff between
computation accuracy and efficiency can be made.
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Although FDI observer design, algorithm verification, and
threshold selection are equally important for a successful fault
diagnosis system in real applications, less attention has been
paid to algorithm verification and threshold selection in the
existing literature. The commonly used approach in the com-
munity for algorithm verification is stochastic simulation [18].
This approach obtains the envelope of states or outputs based
on a finite (possibly large) number of different linear models
selected from a continuum of models corresponding to each
possible value of the system parameters. However, as pointed
out in [19] and [20], the number of required simulations grows
exponentially with the number of state, input, and parametric
variables due to a necessary gridding of the multidimensional
set bounding all variables. Besides, even a large number of
different models are evaluated on fairly fine grids of uncer-
tain parameters or Monte Carlo sampling, it is still possible
to miss the model corresponding to the most critical parame-
ter combinations [10]. As a result, more efficient and reliable
verification approaches are needed for FDI systems, which
motivates the research in this paper.

On the other hand, a threshold of the FIS should be selected
such that FDI system is robust to all possible model uncertain-
ties, unknown inputs, and faults of no interest (see [21, p. 8]).
The existing robust threshold selection methods are
mainly based on uncertainty amplification/inflation [21]
(see [22, p. 289]. In this approach, a conventional FDI
observer is first designed, and then in the stage of FIS evalu-
ation the system uncertainties are modeled (or approximated)
as unknown input vector with limited bound or bounded
by a known function and their effect on FIS is amplified
based on norm inequality [21], integral inequality [22].
This method may result in conservative or even useless
threshold, especially in the presence of multiple parameter
uncertainties (see [21, p. 251]). Consequently, more reliable
threshold selection approaches are needed, which will also be
investigated in this paper.

We aim to develop an efficient and reliable verification
technique for FDI algorithm using reachability analysis.
Particularly, the reachability analysis tool for continuous-
time systems using zonotopes to represent uncertainties
in [19] and [20] is employed due to its computational effi-
ciency and reliability in comparison with optimization-based
interval analysis [15]. This technique has recently received
much attention in control system verification [20]. But to
the best of our knowledge, we are the first to introduce
this technique to fault diagnosis system verification. The
basic philosophy of the proposed solution is to calculate the
effect of all types of uncertainties on FIS under normal and
selected faulty conditions, and conduct system verification
and threshold selection by inspecting the differences between
the calculated reachable sets. Specifically, interval models
are first employed to describe the physical plant, which can
accommodate the effect of uncertainties and noises. Suppose
a candidate observer-based FDI system has been predesigned
for the uncertain model along with the generated FIS. The
effect of system uncertainties on FIS under normal case and
selected faulty cases are evaluated using reachability analysis,
resulting in normal FIS reachable set and faulty FIS reachable

sets, respectively. It should be highlighted that different from
the work in [12], [16], and [17] where interval/set theory is
used to develop new FDI algorithms under uncertainties, the
reachable set theory in this paper is used for a different pur-
pose, i.e., develop a new verification technique for the existing
observer-based FDI algorithms. Furthermore, in interval/set-
membership-based diagnosis approaches, they do not actually
evaluate the FIS of an existing FDI observer since the system
state intervals rather than FDI observer state intervals are cal-
culated. Based on the aforementioned reachable sets, several
objectives can be achieved (see Section III for details).

1) It can be qualitatively verified whether a candidate FDI
algorithm works or not in the presence of described
uncertainties.

2) An appropriate dedicated threshold can be quantitatively
selected based on the normal reachable set SO that it is
robust to described uncertainties.

3) The minimum detectable fault by the candidate FDI can
be determined by checking the intersection of normal
and faulty reachable sets with different fault amplitudes.

The proposed verification approach is demonstrated by evalu-
ating an FDI system of a motor in the presence of parameter
uncertainties, unknown load, and sensor noises, where a fault
estimation-based approach is adopted to diagnose amplifier,
velocity, and current sensor faults. The results show that the
proposed solution cannot only verify a candidate FDI algo-
rithm, but also help optimally choose a right threshold and
determine the minimum detectable fault under the prescribed
level of uncertainties.

II. PROBLEM FORMULATION AND

REACHABILITY ANALYSIS

In this section, the problem of FDI will be first formulated
including model-based fault diagnosis, fault estimation-based
approach and the challenges therein. Then reachability analysis
for uncertain systems will also be introduced, which plays a
key role in FDI verification and threshold selection.

A. FDI Problem

1) Model-Based FDI System: Consider an uncertain
continuous-time linear system in the presence of unknown
disturbance, actuator/sensor faults, and sensor noises, given by{

ẋ = (A + �A)x + B(u + fa) + Dyd + Rfd
ym = Cmx + Sfs + Nn

(1)

where x, u, fa, yd, and fd are the system state, control input,
actuator fault, desired output, and unknown disturbance,
respectively, and A, B, D, and R are their distribution matri-
ces. The term Dyd is introduced to facilitate integral control
design in state space models to remove steady-state control
error, and so system (1) does not represent the physical plant
but is a modified system for controller and FDI observer
design. ym, fs, and n are the measurements, sensor faults, and
sensor noises, respectively, and Cm, S, and N are their dis-
tribution matrices. �A is the system matrix perturbation to
account for the effect of parameter uncertainties and each
element is either zero or a bounded interval. It is supposed
that feedback control law u = −Kcym + Kdyd is predesigned
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since this paper mainly focuses on FDI rather than robust
control.

The objective of model-based FDI is to detect the presence
of fault fa and fs (i.e., fault detection) and determine what kind
of fault has occurred when faults are detected (i.e., fault iso-
lation) based on system model (1). There are a vast number
of model-based FDI methods, some simply designed directly
based on the normal model by ignoring uncertainties and
noises while others considering uncertainties in their algorithm
development. The focus of this paper is about the evaluation
of a model-based FDI method, not about the development
of a new FDI algorithm. Moreover, the system verification
and threshold selection approach to be developed is applica-
ble to both residual and fault estimation-based approaches.
Without loss of any generality the fault estimation-based algo-
rithm [6] is selected as a candidate FDI algorithm, which will
be introduced in the following section.

2) Fault Estimation-Based Diagnosis System: Fault
estimation-based approaches perform fault diagnosis
by directly estimating faults based on observer theory,
such as Kalman filter type observers [23], disturbance
observers [3], [6] among others. The diagnosis logic is that
when faults are estimated, one can directly tell whether a fault
has occurred or not and which fault has occurred by checking
whether the fault estimate deviates from a predefined interval
centered at zero.

To obtain fault estimates for system (1), the concept of
state augmentation is applied, which obtains fault estimates
by augmenting faults as additional states [24]. Since in real
applications the external disturbances (e.g., unknown load in a
motor) fd has an enormous effect on state estimation and con-
sequently FIS, we reduce its effect through estimating it by
augmenting it as an additional state as well. More advanced
algorithms such as unknown input decoupling observer [23]
for state or fault estimation can be considered in the future.

Letting x̄ = (x, fa, fs, fd) be the augmented state, system (1)
can be equivalently represented by{ ˙̄x = (

Ā + �Ā
)
x̄ + B̄u + D̄yd

y = C̄x̄ + Nn
(2)

where

Ā =
[

A B 0 R
0 0 0 0

]
, B̄ =

[
B
0

]

D̄ =
[

D
0

]
, and C̄ = [

C 0 S 0
]

are the augmented system matrices. A state observer can be
designed for uncertain system (2) to obtain the estimate of
augmented state ˆ̄x including the FIS (i.e., the fault estimates){ ˙̄̂x = Ā ˆ̄x + B̄u + D̄yd + K̄o

(
y − ŷ

)
ŷ = C̄ ˆ̄x. (3)

Remark 1: There are some assumptions on �Ā in (2) so that
the observer action can be preserved. The uncertainties should
not affect the observer stability. Many results are available to
handle robust observer design such as zero sensitivity observer,
robust observer with D-stability and H∞ observer [25]. In this
paper, pole placement is adopted based on nominal model

Fig. 1. Diagram of fault estimation-based diagnosis approach including three
elements: closed-loop control system, FIS generator, and FIS evaluation.

of (2). The performance of FDI observer (3) under prescribed
level of uncertainties including stability can be automatically
verified by checking the reachable set of state estimation errors
using the proposed reachability analysis-based verification
framework in Section III [see Fig. 2(bottom)].

Remark 2: The gain matrix K̄o will usually have influence on
state estimation and fault diagnosis performance such as fault
detection time, robustness against uncertainties, sensitivity to
fault and minimum detectable fault. Interested readers may
refer to [9] for further information, where the effect of observer
gain matrix on interval observer-based fault detection has been
rigorously investigated.

Combing (2) and (3), the error dynamic e = x̄ − ˆ̄x can thus
be obtained

ė = (
Ā − K̄oC̄

)
e + �Āx̄ − K̄oNn. (4)

When extended state x̄ is obtained, one can obtain the actua-
tor fault fa and sensor fault fs, which serve as the FIS. After
FISs are available, one should further choose an appropri-
ate threshold evaluating FIS such that a Boolean decision
can be made—normal or faulty. The overall diagram of fault
estimation-based diagnosis approach is shown in Fig. 1,

3) Challenging Issues: Given a candidate FDI observer (3),
one can see from (4) that state estimation error and con-
sequently fault estimates are inevitably corrupted by uncer-
tainties �Āx̄ and noises. It should be noticed that this
phenomenon is inevitable in all kinds of model-based fault
diagnosis algorithms such as residual-based [14] and parame-
ter estimation-based [4]. This is also the reason why robustness
is usually seen as the most important and challenging issue of
model-based FDI algorithms [4].

This phenomenon results in several challenges to the appli-
cation of FDI algorithm in real engineering: first, how to
verify whether an FDI algorithm with a given threshold is
still valid or not in the presence of all kinds of uncertainties,
i.e., qualitative algorithm verification; second, how to choose
an appropriate threshold such that the FDI is robust against
uncertainties and noises, i.e., quantitative robust threshold
selection; third, how to quantitatively determine the mini-
mum detectable fault by a given FDI algorithm. This paper
proposes solutions to the aforementioned challenges. The fol-
lowing reachability analysis is introduced, as it plays a key role
in FDI algorithm verification and robust threshold selection in
this paper.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS

B. Reachability Analysis

The tool for reachability analysis of continuous-time uncer-
tain systems is based on known technique in [19] and [20],
which has been applied to control algorithm verification [20].
Reachability analysis is typically performed iteratively for
short time intervals τk := [tk, tk+1] with tk := ki, where k ∈ N
and i ∈ R+ denote time step and step-size. The time step-size i
is a tuning parameter making a tradeoff between computation
efficiency and computation accuracy for reachability analysis.
The iterative computation of reachable sets requires set-based
addition and multiplication defined as follows.

Definition 1 (Set-Based Addition/Multiplication): The rule
for set-based addition and multiplication are defined as X ⊕
Y := {x + y|x ∈ X , y ∈ Y} and X ⊗ Y := {xy|x ∈ X , y ∈ Y}.

Besides, there are multiple ways to represent a set includ-
ing polytopes [26], zonotopes [20], ellipsoids [27], and support
function [28]. The zonotopes are preferred to represent a reach-
able set in this paper since they can efficiently represent
reachable sets in high-dimensional spaces while operations
required for reachability analysis can efficiently be applied.
The definition of a zonotope is given as follows.

Definition 2 (Zonotope): Given a center c ∈ Rn and so-called
generators g(i) ∈ Rn, a zonotope is defined as

Z := {
x ∈ Rn|x = c + ∑p

i=1 βig(i), βi ∈ [−1, 1]
}

which can be put into a compact form as Z =
(c, g(1), . . . , g(p)). The order of a zonotope is defined as
ρ := (p/n), where p is the number of generators. The zono-
tope can also be seen as the set-based addition of line segments
[−1, 1]g(i).

The multiplication of a zonotope with a matrix M ∈ Ro×m

and the addition of two zonotopes Z1 = (c, g(1), . . . , g(p1))

and Z2 = (d, h(1), . . . , h(p2)) are also zonotopes, defined as

Z1 ⊕ Z2 =
(

c + d, g(1), . . . , g(p1), h(1), . . . , h(p2)
)

M ⊗ Z2 =
(

Mc, Mg(1), . . . , Mg(p1)
)
.

Besides, other functions (such as the convex hull, Cartesian
product) of two zonotopes are referred to [20].

1) Computation Tool: Consider an uncertain continuous-
time linear system described by a differential inclusion

ẋ = Ax + uc ⊕ u(t) (5)

where the uncertain system matrix A ⊂ In×n, initial state
x(0) ∈ X0 ⊂ Rn, uc ∈ Rn is the known input, and u(t) ∈
V ⊂ Rn is the uncertain input. The reachability analysis can
over-approximately (but in a tight way) obtain the reachable
set R([0, r]) of system (5) in a time interval t ∈ [0, r] denoted
as Rd([0, r]), where Rd([0, r]) ⊇ Rd

e ([0, r]) with Rd
e ([0, r]) =

{x|x(t) is a solution of (5), t = r, x(0) ∈ X0}, which can be
seen as the exact reachable set. It should be noticed that the
computation of exact reachable set is an open problem and
consequently over-approximation is usually preferred.

The detailed algorithm and its implementation are referred
to [20]. However, for the completeness of the paper, its basic
algorithm structure for a time interval τk is given as fol-
lows. Suppose that the reachable set of the affine dynamics

ẋ = Ax + uc is Rd
a(t), the reachable set of the particu-

lar solution due to the uncertain input u(t) is Rd
p(u(t), t),

and the partial reachable set correcting the initial assumption
that trajectories are straight lines between tk and tk+1 is Rd

ε .
According to [19] and [20], the reachable set for a time interval
τk is computed in the following steps.

1) Starting from Rd(tk), compute the reachable set
Rd

a(tk+1).
2) Obtain the convex hull of Rd(tk) and Rd(tk+1) to

approximate the reachable set for the time interval τk.
3) Compute Rd(τk) by considering uncertain inputs by

adding Rd
p(u(t), τk) and accounting for the curvature of

trajectories by adding Rd
ε .

2) Numerical Example: A numerical example is designed
to demonstrate.

1) Effectiveness of reachability analysis tool.
2) Computation efficacy in comparison with Monte Carlo

stochastic simulation.
3) Different effects of uncertainties �Ax on states under

different control amplitudes.
Suppose the uncertain matrix A in (5) is given by A =
A0 + �A, where the normal matrix and uncertain matrix are
given by

A0 =
⎡
⎣−2 1 0

−1 −2 0
0.1 0 0.01

⎤
⎦

�A = [−0.1, 0.1] ×
⎡
⎣ 1 1 0

1 1 0
0 0 0.1

⎤
⎦.

The initial state is chosen as x0 ∈ 13×1 + [−0.1, 0.1]. Each
element of the known control input uc is a step input with
amplitude 1 at 3 s (termed control 1) where its initial value is
chosen as 0 (termed control 0) and the amplitude is increased
to 2 at 6 s (termed control 2). Each element of the uncertain
input u(t) lies in the interval [−0.05, 0.05]. The time step-
size i is chosen as 0.005 s and the order of zonotope ρ is
600. Under this setting, the computation time for reachability
analysis is about 2.5 s using a desktop with Intel Core i5-3570
CPU@3.4 GHz and RAM 8 GB. The state reachable sets of
x1 and x3 (gray area) and 500 stochastic simulation trajecto-
ries with computation time 35 s by Monte Carlo stochastic
sampling (black lines) are shown in Fig. 2.

One can see from Fig. 2 that: 1) all the stochastically sim-
ulated trajectories lie in the calculated reachable set, which
verifies the effectiveness of reachability analysis tool and
2) when the input amplitude is increased, the corresponding
width of reachable sets also gets larger. This is due to the fact
that when input amplitude is increased, the state amplitude
and consequently the effect of uncertainties �Ax on system
states will get large as well.

III. ALGORITHM VERIFICATION

AND ROBUST THRESHOLD

In this section, the main results of the paper are provided
including qualitative verification of a candidate FDI algo-
rithm with a given threshold and quantitative robust threshold
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Fig. 2. State reachable sets (gray areas) of x1 (left) and x3 (right) under
three different control amplitudes and 500 Monte Carlo stochastic simulated
trajectories (black lines).

selection for a given FDI system. As a by-product, the min-
imum detectable fault by a given FDI algorithm can also
be determined. These results are discussed in detail in the
following sections.

A. Fault Diagnosis Algorithm Verification

Algorithm verification answers the question that whether
a given algorithm is still valid or not in a realistic envi-
ronment [10] (i.e., in the presence of all kinds of system
uncertainties such as parameter uncertainties, external distur-
bances, and sensor noises). It can be seen as a bridge between
academia and industry since any algorithm should go through
verification and validation to see whether certain performance
specification are satisfied before being applied in industry.
Although in the past few decades there are a lot of model-
based FDI algorithms proposed in academia (see [3], [4]), little
attention has been paid to FDI algorithm verification and, as a
result, model-based FDI algorithms have not been extensively
applied in industry. The commonly used algorithm verification
tool in engineering is stochastic simulation, i.e., simulating the
real system by choosing a large number of system models with
different parameter combinations. However, as pointed out
in [20], the number of required simulations grows exponen-
tially with the number of state, input, and parametric variables
and more importantly, it is still possible to miss the most crit-
ical parameter combinations. Consequently, efforts should be
made to bridge this gap, i.e., proposing a systematically for-
mal approach for FDI algorithm verification. The research in
this paper is conducted by following this observation.

The basic steps of the proposed qualitative verification
approach for a candidate FDI algorithm is summarized as
follows (see also Fig. 3).

1) Different intervals are used to capture system uncer-
tainties (e.g., parameters, unknown inputs, and sensor

noises), and an uncertain interval model [e.g., (1)] is
obtained to represent the physical system; a candidate
FDI system is also selected and developed [e.g., (3)].

2) The FIS reachable set is calculated in the absence of the
faults with system uncertainties described in step 1.

3) The FIS reachable set is calculated under selected faulty
cases, i.e., with system uncertainties and selected faults
of interest.

4) Qualitatively determine whether a candidate FDI is still
valid or not under described level of uncertainties by
comparing the normal and faulty FIS reachable sets. The
rules are summarized in Proposition 1.

Proposition 1: If the faulty FIS reachable set is well sepa-
rated from the normal FIS reachable set under described level
of uncertainties, then one can qualitatively conclude that the
FDI is valid under the prescribed uncertainties.

The calculation of FIS reachable sets under normal and
faulty cases are discussed in Section III-C, while the quantita-
tive robust threshold selection and minimum detectable fault
determination are discussed in Section III-B.

B. Robust Threshold and Minimum Detectable Fault

The threshold is selected to evaluate FIS and consequently
a Boolean decision–normal or faulty is made. Without taking
into account uncertainties (i.e., ideal condition), the threshold
is usually set to be a small value close to zero since state esti-
mation error and consequently FIS approaches to zero in the
steady-state under normal case. However, we can see from (4)
that state estimate error and consequently fault estimates are
subject to the effect of uncertainties �Āx̄ and sensor noise
Nn, which means the fault estimates are not zero even under
normal conditions. So a threshold should be carefully selected
such that it is robust against these uncertainties.

The commonly used robust threshold selection approach is
approximating all the uncertainties using unknown input with
limited bounds or a bounding function [21]. There are two
problems within this approach. First, it is not an easy task
to find an appropriate unknown input to cover the uncertain-
ties due to the time-varying and unknown nature of state x.
Second, it is pointed out in [21, p. 251] that this approach
could lead to a conservative or even useless threshold, since
valuable information about the structure of model uncertain-
ties has not been taken into account. To this end, we choose
the robust threshold by quantitatively analyzing FIS reach-
able sets under normal and selected faulty cases as discussed
in Section III-A. The results on robust threshold selection is
summarized in Proposition 2.

Proposition 2: A robust threshold can be chosen based on
the upper and lower bounds of the calculated normal FIS
reachable set. If the fault estimate lies in the normal reach-
able set, it is concluded that no fault appears, and if the fault
estimate deviates from the normal reachable set, it can be
concluded that a fault has occurred.

In addition, by comparing the normal reachable set and
faulty reachable sets under different fault amplitudes, the min-
imum detectable fault by a candidate FDI system can also be
determined. If the intersection of the FIS reachable sets under
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Fig. 3. Proposed procedure for qualitative FDI system verification, robust
threshold selection, and minimum detectable fault determination.

normal and faulty cases is empty, it can be concluded that
the FDI algorithm can effectively detect the presence of fault,
while if the intersection is not empty (e.g., the amplitude of
fault is too small), then the FDI algorithm fails to detect this
particular type of fault. The results on minimum detectable
fault are summarized in Proposition 3.

Proposition 3: Denote fm the minimum fault amplitude that
can be detected by a candidate FDI system, it can be deter-
mined in the following way: the intersection of the FIS
reachable sets under normal and faulty cases is not empty
for the scenario f ≤ fm, and the intersection of these two sets
is empty for the case f ≥ fm .

The overall diagram of the proposed FDI verification pro-
cedure is shown in Fig. 3.

C. FIS Reachable Set Computation

In this section, FIS reachable set computation under normal
and selected faulty cases are discussed. The aforementioned
FIS reachable set computation problem is first transformed
into the problem of state reachable set computation so
that the existing tool on reachability analysis introduced in
Section II-B can be applied.

To facilitate analyzing the effect of uncertainties �Āx̄ and
sensor noises Nn on the augmented state ˆ̄x and consequently
fault estimates, we derive the dynamic of ˆ̄x and put it into
the format of (5) such that the technique of state reachable
set computation can be adopted. On the one hand, from e =
x̄ − ˆ̄x, the state estimation error dynamic (4) can be put into
the following form:

ė = (
Ā − K̄oC̄

)
e + �Ā

(
e + ˆ̄x

)
− K̄oNn. (6)

On the other hand, we can see from (3) that the time varying
input u = −Kcym + Kdyd and ym are involved in derivation
of ˆ̄x, which makes the reachable set computation complicated.
To simplify the problem, we substitute the control input u and
ym into (3), such that the ˆ̄x dynamics are given by

˙̄̂x = Ā ˆ̄x + B̄
[−Kc

(
C̄x̄ + Nn

) + Kdyd
] + D̄yd

+ K̄o

(
C̄x̄ + Nn − C ˆ̄x

)

= (
Ā − B̄KcC̄

) ˆ̄x + (
K̄oC̄ − B̄KcC̄

)
e

+ (
D̄ + B̄Kd

)
yd + (

K̄o − B̄Kc
)
Nn. (7)

Combing (6) and (7), we can obtain the following compos-
ite dynamics including extended state estimation error e and

extended state estimate ˆ̄x:[
ė
˙̄̂x

]

︸︷︷︸
χ̇

=
[

Ā − K̄oC̄ + �Ā �Ā
K̄oC̄ − B̄KcC̄ Ā − B̄KcC̄

]
︸ ︷︷ ︸

A

[
e
ˆ̄x
]

︸︷︷︸
χ

+
[

0
D̄ + B̄Kd

]
yd

︸ ︷︷ ︸
uc

+
[ −K̄o

K̄o − B̄Kc

]
Nn

︸ ︷︷ ︸
u(t)

. (8)

Using the under-brace notations in (8), the composite
dynamics (8) can be put into a compact form, given by

χ̇ = Aχ + uc ⊕ u(t) (9)

where χ = [eT , ˆ̄xT ]T , A is the uncertain system matrix, uc

is the known input, and u(t) is the uncertain input. One can
see that (9) falls into the same format as that of the uncertain
system (5) in Section II-B, which means the existing reachable
set computation tool in Section II-B can be applied. Then we
can obtain the reachable set of χ and consequently FIS reach-
able sets under normal case and selected faulty cases, since the
FIS are chosen as the fault estimates in fault estimation-based
approach which are the elements of χ .

Remark 3: We can see from (8) that the distribution matri-
ces of known input yd and uncertain input n are different. To
make the reachable set computation problem of system (8)
solvable based on the existing tool [i.e., putting (8) into (9)],
the original uncertain input n has been transformed into u(t).
This process will result in conservativeness in reachable set
computation due to the fact that the dimension of uncertain
input has been increased and consequently the single-use-
expressions [19] of interval computation cannot be achieved.
However, future work can be done to handle this problem and
consequently remove the conservativeness.

IV. CASE STUDY: MOTOR FAULT DIAGNOSIS

In this section, a motor system is chosen as case study since
it is simple but enough to illustrate the basic idea of the algo-
rithm proposed in this paper. In fact, it is quite challenging
to verify the FDI algorithm for this system (especially in the
presence of multiple faults simultaneously) as shown later, the
FIS is not only affected by system parameter variation and sen-
sor noises but also by unknown external load. Both actuator
fault (i.e., amplifier) and sensor fault (i.e., velocity and current
sensor faults) diagnosis are considered. The overall diagram of
motor FDI system is shown in Fig. 4, where the closed-loop
control system using state space feedback with integral action
is introduced in Section IV-A, the actuator fault estimator, sen-
sor fault estimator, and their corresponding robust threshold
selection are given in Sections IV-B and IV-C, respectively.

A. Motor System

A linear model for the motor system with actuator
and sensor faults can be represented by (1) where x =
[x1, x2, x3, x4]T = [θ, ω, I,

∫
(θ − θd)dt]T are the system states

representing position, velocity, current, and position error inte-
gral [note: x4 = ∫

(θ − θd)dt is introduced so that an integral
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Fig. 4. Overall diagram of motor fault diagnosis system.

control can be designed to remove the steady–state tracking
error], u is the control voltage, which is designed as

u = −kθ (θm − θd) − keix4 − kωωm − kiim
= −Kcym + Kdθd (10)

where θm, ωm, and im are the measurement value of posi-
tion, velocity, and current, respectively. The parameters Kc =
[kθ , kω, ki, kei] are the control parameters to be designed (see
the Appendix) with Kd := kθ . yd = θd is the desired output
position, fd is the unknown load, and ym is the measurement
output. fa and fs are the actuator and sensor fault, respectively,
where fs = [

fsv, fsc
]T with fsv and fsc being the velocity and

current sensor faults. System matrix A, control input matrix B,
desired output matrix D, load matrix R, and measurement
matrix Cm are given as follows:

A =

⎡
⎢⎢⎢⎣

0 1 0 0

0 − kd
J

kT
J 0

0 − ke
L −R

L 0
1 0 0 0

⎤
⎥⎥⎥⎦, B =

⎡
⎢⎢⎣

0
0
1
L
0

⎤
⎥⎥⎦, D =

⎡
⎢⎢⎣

0
0
0

−1

⎤
⎥⎥⎦

R =

⎡
⎢⎢⎣

0
− 1

J
0
0

⎤
⎥⎥⎦, S =

⎡
⎢⎢⎣

0 0
1 0
0 1
0 0

⎤
⎥⎥⎦, N =

⎡
⎢⎢⎣

1 0 0
0 1 0
0 0 1
0 0 0

⎤
⎥⎥⎦, Cm = I4×4.

The meaning of the aforementioned parameters and their
normal values are referred to the Appendix. We suppose
there are four key parameters with uncertainties, i.e., kd,
kT , ke, and resistance R. The uncertain levels are given as
follows: kd ∈ [kdn − 4%kdn, kdn + 4%kdn], kT ∈ [kTn −
2%kTn, kTn + 2%kTn], ke ∈ [ken − 2%ken, ken + 2%ken], and
R ∈ [Rn − 5%Rn, Rn + 5%Rn], where kdn, kTn, ken, and Rn

denote the normal values. These parameter uncertainties can
be grouped into interval matrix �A. Without loss of general-
ity, the sensor noises np, nv, and ni lie in a bounded interval
∈ [−0.001, 0.001] with uniform distribution.

B. Amplifier Fault Diagnosis

In this section, fault estimation-based approach is applied to
the problem of amplifier fault diagnosis. In this scenario, we
suppose no sensor fault occurs to satisfy the observer observ-
ability and only actuator fault and unknown load are treated

Fig. 5. Profile of external load (real line) and amplifier fault at 6 s with
different amplitudes dotted line fa = 0.1 V and dashed dotted line fa = 1 V.

Fig. 6. Reachable set of amplifier fault estimate under normal case and fault
amplitude fa = 1 (gray area); and 500 Monte Carlo stochastic simulations of
fault estimate (black lines).

as the additional states in generalized state observer design,
i.e., x̄1 = (x, fa, fd). The FDI observer is designed as{ ˙̄̂x1 = Ā1 ˆ̄x1 + B̄1u + D̄1yd + K̄o1

(
y − ŷ

)
ŷ = C̄1 ˆ̄x1

where the system matrices are given by

Ā1 =
[

A B R
0 0 0

]
, B̄1 =

[
B
0

]

D̄1 =
[

D
0

]
, and C̄1 = [

C 0 0
]
.

The observer gain K̄o1 can be found in the Appendix. The
reference position is chosen as a step signal at 0 s with ampli-
tude of 1 rad, while the unknown external load and amplifier
fault (note: additive step-type fault is considered since other
types of fault can be equivalently transformed into additive
one) with different amplitudes are plotted in Fig. 5.

The initial state of both control system and observer system
are supposed to be zero vector. The reachable set computation
results for both normal and amplifier faulty cases are shown in
Figs. 6 and 7 where the gray areas are the calculated reachable
set and the black lines are 500 stochastic simulations of the
amplifier fault estimate using Monte Carlo stochastic sampling
for each uncertain variable satisfying a uniform distribution in
the predefined bounded interval.

We can see from Figs. 6 and 7 that reachable set com-
putation can effectively capture the fault estimates, since all
simulated fault estimates lie in the computed reachable set
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Fig. 7. Reachable set of amplifier fault estimate under normal case and fault
amplitude fa = 0.1 (gray area); 500 Monte Carlo stochastic simulations of
fault estimate (black lines).

for both normal and faulty cases. When the unknown load is
changed from 1 to 0.5 Nm at 3 s, the amplitude of reachable
set reduces accordingly. This is because when load amplitude
is reduced the state amplitude and so the effect of uncertainties
�Ax on fault estimate will be reduced.

First, based on the two reachable sets in Fig. 6, we can
qualitatively verify that the fault estimation-based diagnosis
algorithm is valid in the presence of described system uncer-
tainties and sensor noises, since the FIS reachable set under
the normal case is close to zero and the FIS reachable set
under the faulty case substantially deviates from the normal
FIS reachable set. Besides, based on the principle of the
proposed threshold selection approach, the threshold can be
chosen as the upper and lower bounds of the normal reachable
set, i.e., [0.1, 0.1].

Second, we can see from Fig. 6 that in the case of fault
amplitude fa = 1 V, the FIS reachable set (after 6 s) does
not intersect with the normal FIS reachable set (after 6 s)
and consequently the fault diagnosis algorithm can effectively
detect the presence of fault. However, in the case of fault with
a smaller amplitude fa = 0.1 V, as shown in Fig. 7 the fault
reachable set intersects with the normal reachable set and so
the fault diagnosis algorithm fails to detect the presence of the
actuator fault with this particular amplitude. This phenomenon
is reasonable since when the fault amplitude is too small, its
effect on the fault estimate and consequently FIS is limited and
cannot be distinguished from the effect of system uncertainties.

To determine the minimal fault amplitude that can be
detected by the given fault diagnosis algorithm under described
uncertainties, simulations are further done by iteratively reduc-
ing the fault amplitude such that the lower bound of FIS
reachable set under faulty case (in steady state) coincides with
the upper bound of FIS reachable set under normal case (fault
with positive value is assumed, similar process can be applied
to the case of fault with negative value). This process has been
done and the final results are shown in Fig. 8, where similar to
previous cases the amplifier fault is supposed to occur at 6 s.

From Fig. 8, we can first determine the lower and upper lim-
its of the FIS under normal case, i.e., [0.1, 0.1], which serves
as the threshold interval. The minimal fault amplitude that
can be detected by the given fault diagnosis algorithm under
described uncertainties is 0.16 V, which means the amplifier
faults with amplitude lower than 0.16 V are not detectable

Fig. 8. Reachable set of amplifier fault estimate with fault amplitude fa =
0.16 V and fa = −0.16 V (gray areas); the upper and lower bounds of
normal FIS reachable set (two dashed lines); and 500 Monte Carlo stochastic
simulations of fault estimate (black lines).

(or false alarm will appear) due to the effect of all kinds
uncertainties and unknown external load.

Remark 4: The reachable set computation is carried out
in MATLAB 2012 using the algorithm in Section II-B in
conjunction with the existing toolboxes including “INTerval
LABoratory” and Multi-Parametric Toolbox. The time step-
size of reachable set computation is chosen as i = 0.0015 and
the order of zonotope ρ is 600. Under this parameter setting,
the computation time is about 60 s using the same software
as in Section II-B; the increase in computation time is mainly
due to the increased vector dimension from three to twelve. To
further improve the computation precision, one can reduce the
step-size or increase the order of zonotope, however, it will
result in higher computation load.

C. Sensor Fault Diagnosis

In this section, we consider the problem of multiple sensor
fault diagnosis, where velocity and current sensors are consid-
ered simultaneously. The fault diagnosis algorithm verification
and threshold selection for multiple sensors are complex and
challenging, as will be shown by the simulation results that
the FISs are affected by many factors such that reference sig-
nal, uncertainties and external unknown load. Moreover, the
velocity sensor fault has effect on current sensor fault esti-
mate and vice versa, which makes the problem even more
challenging. To satisfy the observability, it is supposed that
no actuator fault occurs and only velocity sensor fault, current
sensor fault and unknown load are treated as additional states,
i.e., x̄2 = (x, fs, fd). The fault diagnosis observer is given by{ ˙̄̂x2 = Ā2 ˆ̄x2 + B̄2u + D̄2yd + K̄o2

(
y − ŷ

)
ŷ = C̄2 ˆ̄x

where the system matrices are given by

Ā2 =
[

A 0 R
0 0 0

]
, B̄2 =

[
B
0

]

D̄2 =
[

D
0

]
, and C̄2 = [

C S 0
]

and the observer gain matrix K̄o2 is referred to the Appendix.
The unknown external load, velocity and current sensor fault
profiles are shown in Fig. 9.
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Fig. 9. Profiles of unknown load (real line), velocity sensor fault (dashed
dotted line), and current sensor fault (dotted line).

Fig. 10. Reachable set of velocity sensor fault estimate (gray area) and 500
stochastic simulations of fault estimate.

Fig. 11. Reachable set of current sensor fault estimate (gray area) and 500
stochastic simulations of fault estimate.

Other simulation scenario is the same as that of amplifier
fault diagnosis in Section IV-B. The reachable set computa-
tion results for velocity and current sensor fault estimates are
plotted in Figs. 10 and 11, where the gray areas are the cal-
culated reachable set and black lines are the 500 stochastic
simulations of the sensor fault estimates using Monte Carlo
stochastic sampling for uncertain variables, which are sup-
posed to satisfy a uniform distribution in predefined bounded
intervals. The computation time increased to about 100 s, since
the vector dimension has increased to fourteen.

Similar to the case of amplifier fault diagnosis, we can see
from Figs. 10 and 11 that all stochastic simulations lie in the
calculated FIS reachable sets, which verifies the effectiveness
of reachability analysis. The initial reachable sets before 1 s

TABLE I
NORMAL VALUES OF MOTOR PARAMETERS

is not centered at zero, this is due to the transient effect of
step reference position. At 3 s, the load amplitude is reduced
from 1 to 0.5 Nm and so the effect of uncertainties on FIS is
reduced, i.e., the width of reachable set becomes smaller. From
Fig. 10, we can obtain that in the presence of velocity sensor
fault at 5 s, the FIS substantially deviates from the FIS under
normal case and so velocity sensor fault can be alarmed. At 7 s,
there is a transient jump in the reachable set of velocity fault
estimate due to the presence of current sensor fault. Because
the fault estimates for velocity and current sensor faults are
coupled. We can see from Fig. 11 that at 5 s the velocity
sensor fault also has effect on current sensor fault reachable
set. In the presence of current sensor fault at 7 s, there is a
substantial jump in FIS reachable set, which again verifies the
effect of fault diagnosis system for this type of fault under
described uncertainties.

The simulation results in Figs. 10 and 11 quantitatively show
the effect of reference position, external unknown load, system
uncertainties, and sensor noises on FISs. As a result, from the
calculated FIS reachable sets, we can choose an appropriate
threshold interval (for example, [−0.08, 0.06] for velocity sen-
sor fault and [−0.18, 0.16] for current sensor fault) such that
good robustness can be achieved.

V. CONCLUSION

This paper considered the problem of fault diagnosis system
verification and robust threshold selection for a typical model-
based fault diagnosis algorithm. Due to the presence of
uncertainties, disturbances and noises, the FISs deviate from
zero even under normal condition, which brings challenges
to algorithm verification and threshold selection. Reachability
analysis is drawn to calculate the reachable sets of FIS under
normal and selected faulty cases. Based on the calculated
reachable sets, a candidate fault diagnosis system can be qual-
itatively verified whether or not it still works under described
uncertainties. A robust threshold can be quantitatively selected
which is robust to uncertainties while minimizing the false
alarm rate or missed detection rate. So a much better tradeoff
under the described uncertainties can be achieved. In addi-
tion, by comparing these two reachable sets under different
fault amplitudes, the minimum detectable fault by a given fault
diagnosis algorithm can also be determined.

A case study of amplifier and sensor fault diagnosis of a
motor is given to illustrate its principle. It has shown that the
combination of reference set-points change, external load vari-
ations, parameter uncertainties and sensor noises makes the
verification of a simple residual-based FDI algorithm quite
challenging. It can be seen that the proposed method is not
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only able to verify a candidate FDI but also help to optimally
choose a right threshold under the prescribed level of uncer-
tainties. As a result, a better tradeoff between false alarm and
missed detection can be achieved.

This paper mainly focused on proposing the idea of fault
diagnosis algorithm verification and robust threshold selec-
tion using reachability analysis for uncertain systems. With the
advent of more advanced reachable set computation tools and
increasing computation power, it is expected that the proposed
solution would find a wide range of applications. For exam-
ple, it can be applied to optimize the observer gain matrix for
a given model-based fault diagnosis algorithm. Furthermore,
it can also be applied to performance verification for other
model-based fault diagnosis approaches (e.g., robust residual-
based and parameter estimation-based), such that the most
suitable algorithm for a given problem can be determined.

APPENDIX

The meanings of motor parameters and correspond-
ing normal values are summarized in Table I. The con-
troller gain matrix is designed as Kc = [8, 1.3, 0.2, 12.6]
with kθ = 8. The poles for observer gain K̄o1 (actua-
tor) and K̄o2 (sensor) are [−8,−7,−6,−5,−2,−2.2] and
[−8,−7,−6,−5,−2,−2.2,−2.4], respectively.
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