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This paper presents the results of modelling the heat
transfer process in heterogeneous media with the
assumption that part of the heat flux is dispersed in
the air around the beam. The heat transfer process
in a solid material (beam) can be described by an
integer order partial differential equation. However,
in heterogeneous media, it can be described by a
sub- or hyperdiffusion equation which results in a
fractional order partial differential equation. Taking
into consideration that part of the heat flux is
dispersed into the neighbouring environment we
additionally modify the main relation between heat
flux and the temperature, and we obtain in this case
the heat transfer equation in a new form. This leads
to the transfer function that describes the dependency
between the heat flux at the beginning of the beam and
the temperature at a given distance. This article also
presents the experimental results of modelling real
plant in the frequency domain based on the obtained
transfer function.

1. Introduction
In many thermal problems, the temperature of the body
is related to the heat flux. One example of such a problem
is the temperature of electrical windings, which strongly
depends on the heat flux generated by the currents
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[1]. In such a case, the dynamical relation between the temperature and the heat flux is described
by a partial differential equation (heat diffusion equation) [2]. In this paper, following the
approach from Poinot et al. [1], a model based on fractional calculus of the heat diffusion process
is given and its properties are discussed. The fractional (non-integer) calculus is an extension
of the traditional differential calculus for a case when derivatives and integrals are in non-
integer orders. This extension allows us, for example, to obtain more accurate results in modelling
systems with complex structure and systems based on diffusion processes. The fractional order
calculus was especially useful for modelling thermal processes [3–6]. In the study by Gabano
& Poinot [5], the modelling and estimation algorithms, which were based on the state-space
realization of fractional order integrator and numerical simulations, were presented. In the studies
by Dzieliński and colleagues [6,7], experimental results of modelling the heat transfer process
using fractional order calculus were presented. Another example of the systems that can be
efficiency modelled using fractional calculus are ultracapacitors. The results of ultracapacitor
modelling were presented by Dzieliński et al. [7]. A comparison between integer and fractional
order modelling of ultracapacitors was presented by Dzieliński et al. [8].

While introducing the mathematical model of non-homogeneous beam heating, the effect of
anomalous diffusion was taken into account (see [9] for details of anomalous diffusion, and
[10] for subdiffusion parameter measurement). On the other hand, the control of such thermal
plants has been discussed previously [11–13], in which a fractional order proportional–integral–
derivative-type controller has been employed to solve the temperature control problem. In this
paper, the use of a fractional order calculus to model the heating process using a thermoelectric
module also known as the Peltier module is presented.

This paper is organized as follows. In §2, the basic facts on fractional calculus are described.
Section 3 gives a mathematical description of the heating process. In §4, experimental verification
of the heating process model is described. Section 5 concludes this article with some comments
and ideas for further work.

2. Fractional calculus
A fractional order differential calculus is a generalization of the integer order integral and
derivative to real or even complex order. This idea first emerged at the end of the seventeenth
century and has been developed in the area of mathematics throughout the eighteenth and
nineteenth centuries in the works of, for example, Liouville, Riemann, Cauchy, Abel, Grünwald
and many others. More recently, by the end of the twentieth century, it turned out that some
physical phenomena are modelled more accurately when fractional calculus is used. There exist
two (in fact three) main definitions of the fractional order integrals, derivatives and differences:
Riemann–Liouville, Caputo and Grünwald–Letnikov [3,14]. Some others are also present in the
literature but are less commonly used in these applications. To be precise, the Riemann–Liouville
and Caputo definitions concern both fractional derivatives and integrals.

To define the fractional order differ-integral, the definition of the Γ (x) function is needed. The
Γ (x) function is given in the following way [3]:

Γ (x) =
∫∞

0
e−ttx−1 dt, (2.1)

where �(x) > 0.
In this paper, we will consider Caputo’s definition, which can be written as [3]

0Dα
t f (t) = 1

Γ (n − α)

∫ t

0

f (n)(τ )
(t − τ )α−n+1 dτ , (2.2)

for n − 1 < α < n. The initial conditions for the fractional order differential equations with the
Caputo derivatives are in the same form as for the integer order differential equations. For
the Caputo partial fractional derivative of order α of a function f (t, λ) with respect to variable
t, we will use notation of the form ∂α f (t, λ)/∂tα , which is often used in the related literature.
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The Laplace transform method is used often for solving engineering problems. The formula
for the Laplace transform of the Caputo fractional derivative (2.2) has the form [3]

∫∞

0
e−st

0Dα
t f (t) dt = sαF(s) −

n−1∑
k=0

sα−k−1f (k)(0). (2.3)

3. Mathematical description of the heating process
The ideal heating process, without energy loss, of a semi-infinite beam can be described by the
following partial differential equation [2]:

∂

∂t
T(t, λ) = 1

a2
∂2 T(t, λ)

∂λ2 , (3.1)

and with the following boundary conditions:

T(0, λ) = 0, T(t, 0) = u(t), (3.2)

where T(t, λ) is the temperature of the beam at time instant t and space coordinate (distance) λ,
and 1/a2 is a beam material conductivity.

Using the Laplace transform with respect to time and equation (3.1), we obtain

sT(s, λ) − T(0, λ) = 1
a2

∂2 T(s, λ)
∂λ2 , (3.3)

which, using the boundary conditions, can be transformed to the following form:

∂2 T(s, λ)
∂λ2 − a2 sT(s, λ) = 0. (3.4)

The solution of this equation has the form

T(s, λ) = C1(s) eaλs0.5 + C2(s) e−aλs0.5
, (3.5)

where C1(s) and C2(s) are the constants of the equation.
The boundary conditions imply that C1 = 0, because the solution must be bounded at ∞. This

means that
T(s, λ) = C2(s) e−aλs0.5

. (3.6)

For λ = 0, we obtain
T(s, 0) = U(s) = C2(s) ⇒ T(s, λ) = U(s) e−aλs0.5

. (3.7)

The heat flux H(t, λ) at time t and at distance coordinate λ is defined as follows:

H(t, λ) = − 1
a2

∂T(t, λ)
∂λ

, (3.8)

which using the Laplace transform and equation (3.7) gives the following relation:

H(s, λ) = 1
a

s0.5U(s) e−aλs0.5
. (3.9)

As a result, we achieve the following relation between the heat flux and the temperature at the
desired point:

H(t, λ) = 1
a

∂0.5

∂t0.5 T(t, λ). (3.10)

Using the above-mentioned steps, we can also try to describe the heating process of a semi-
infinite beam as a subdiffusion process with the following partial differential equation:

∂2 T(t, λ)
∂λ2 = a2

α

∂αT(t, λ)
∂tα

, (3.11)

and with the following boundary conditions:

T(0, λ) = 0 and T(t, 0) = u(t),
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where T(t, λ) is the temperature of the beam at time instant t and space coordinate (distance) λ,
and aα is a parameter depending on beam parameters, such as heat conductivity and density;
however, in fractional form, α is an anomalous diffusion order with relation α < 1, and H(t, λ) is
the heat flux at time t and at distance coordinate λ. Again applying the Laplace transform with
respect to time to equation (3.11), the following equation is obtained:

∂2 T(s, λ)
∂λ2 = a2

α sαT(s, λ) − a2
α T(0, λ). (3.12)

For zero initial conditions T(0, λ) = 0, equation (3.12) can be rewritten as

∂2 T(s, λ)
∂λ2 − a2

α sαT(s, λ) = 0. (3.13)

The solution of equation (3.13) is

T(s, λ) = C1(s) eaαλsα/2 + C2(s) e−aαλsα/2
, (3.14)

where C1(s) and C2(s) are the constants of the equation.
The boundary conditions imply that C1 = 0, because the solution must be bounded at infinity.

This means that

T(s, λ) = C2(s) e−aαλsα/2
. (3.15)

For λ = 0, we obtain

T(s, 0) = U(s) = C2(s) ⇒ T(s, λ) = U(s) e−aαλsα/2
. (3.16)

The heat flux H(t, λ) at time t and at distance coordinate λ is defined as follows:

H(t, λ) = − 1
a2
α

∂T(t, λ)
∂λ

, (3.17)

which using the Laplace transform and equation (3.16) gives the following relation:

H(s, λ) = 1
aα

sα/2U(s) e−aαλsα/2
. (3.18)

As a result, we achieve the following relation between the heat flux and the temperature for
anomalous diffusion:

H(t, λ) = 1
aα

∂α/2T(t, λ)
∂tα/2 . (3.19)

(a) Heat transfer equation for the heat flux loss case
In laboratory experiments of beam heating, it was found that the ideal equation does not describe
the heat transfer process with good enough accuracy. This can be caused by non-ideal thermal
insulation of the system from the environment, in which part of the heat flux is dispersed to the air
around the beam. Additionally, when we assume that the beam is built from non-homogeneous
material, the heating process is accompanied by an effect called anomalous diffusion. In such a
case, the heat flux is described by the following equation:

H(t, λ) = b
k

∂α/2

∂tα/2 T(t, λ) + 1
k

T(t, λ), (3.20)

where α �= 1 for anomalous diffusion (α > 1 for hyperdiffusion; α < 1 for subdiffusion, which is
our case); the last part of the right-hand side of this equation represents the dispersed heat flux
and b = a−1.
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Hence, by first-order differentiation with respect to λ of both sides of equation (3.20), and by
using equation (3.8), the following fractional order partial differential equation is achieved:

∂

∂λ
H(t, λ) = b

k
∂α/2

∂tα/2 H(t, λ) + 1
k

H(t, λ). (3.21)

By applying the right-hand side of equation (3.20), we obtain a fractional order partial
differential equation of the following form:

∂2

∂λ2 T(t, λ) =
(

b
k

)2
∂α

∂tα
T(t, λ) + 2

b
k2

∂α/2

∂tα/2 T(t, λ) + 1
k2 T(t, λ). (3.22)

To obtain the solution of this equation in the transfer function domain, let us apply the Laplace
transform with respect to time to equation (3.21),

∂

∂λ
H(s, λ) =

(
b
k

sα/2 + 1
k

)
H(s, λ) −0 D((α/2)−1)

t H(0, λ). (3.23)

The solution of this equation (for H(0, λ) = 0) is given as follows:

H(s, λ) = e−λ((b/k)sα/2+(1/k))H(s, 0). (3.24)

By applying the Laplace transform to equation (3.20), we obtain the following relation:

H(s, λ) = b
k

sα/2T(s, λ) + 1
k

T(s, λ) −0 D((α/2)−1)
t H(0, λ), (3.25)

from which we can obtain the transfer function describing the dynamics between the heat flux
and the temperature in the desired point λ in the form:

T(s, λ) = k
bsα/2 + 1

H(s, λ). (3.26)

From this transfer function, the following relation describing the temperature at point λ1 with
respect to the heat flux at the beginning of the beam is obtained:

T(s, λ1) = k
bsα/2 + 1

e−λ11/k(bsα/2+1)H(s, 0). (3.27)

(b) Implementation of exp(–Tsα)
For ease of analysis in practical implementation of e−Tsα

, the following well-known power series
expansion is frequently used:

ex =
∞∑

k=0

xk

k!
. (3.28)

The power series is fast converging, thus the number of terms does not have to be too big.
In fact, it can be reduced to just a few first terms. This reduction affects the accuracy of the
implementation but makes the implementation and analysis easier and faster. We consider two
examples of the approximation of the exponential transfer function. First, taking into account only
three terms of the power series expansion, we achieved

e−Tsα = 1
eTsα ≈ 1

(T2/2)s2α + Tsα + 1
, (3.29)

and, second, taking into consideration four terms we achieved

e−Tsα ≈ 1
(T3/6)s3α + (T2/2)s2α + Tsα + 1

. (3.30)
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Figure 1. The experimental set-up.

4. Experimental verification of the heating process model
Heat distribution process modelling by fractional order partial differential equations and their
respective counterparts in the frequency domain has been verified by experiments with a real
physical thermal system. The results obtained from the mathematical model proposed have been
compared with those obtained from the experiment.

(a) Experimental set-up
The experimental set-up (figure 1) contains:

— a dSPACE DS1104 PPC card with a PC;
— an electronic interface with an OPA 549 power amplifier;
— a thermoelectric (Peltier) module, SCTB NORD TM-127-1.0-3.9-MS; and
— three temperature sensors, LM35DH.

The construction of the experimental set-up allows us to put a non-homogeneous material
into the pipe and test materials with different parameters. The results obtained in the presented
experiments used two types of materials,

(i) buckshot (small metal balls of approx. 1 mm diameter) and
(ii) a 50 : 50 mixture of buckshot and couscous groats (approx. diameter 2 mm).

The Peltier module was used as the source of the heat flux H(t, 0) at the beginning of the pipe
(beam). The power amplifier was used as a voltage to current converter in order to easily control
the current in the Peltier module. All sensors and control signals for the power amplifier were
connected to the dSPACE control card DS1104.

(b) Thermoelectric module: Peltier module
The Peltier module is a semiconductor device that allows us to control not only the value of the
heat flux but also the direction of that flux. In the experiments, the TM-127-1.0-3.9-MS Peltier
module, produced by SCTB NORD, was used. The main parameters of the module are as follows:
Imax = 3.9 A, Umax = 15.5 V, Pmax = 34.0 W and �Tmax = 71.0◦C.
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Tc Th

I
H

Figure 2. Peltier module.

A Peltier module can be described by the following equation [15]:

H = cITh + 1
2 RI2 − Kp(Th − Tc), (4.1)

where H is the value of heat flux on the heat side of the module, α, R and Kp are the Peltier module
parameters, I is the current applied to the module, and Th and Tc are the temperatures of both
sides of the module (hot and cold sides). A simplified diagram of the Peltier module used is given
in figure 2.

Based on the module characteristics provided by the producer the following parameters were
obtained: R = 4.8879 Ω, c = 0.0565, Kp = 0.4978. From equation (4.1) the following relation for
obtaining the module current for the desired value of heat flux is then achieved:

I =
−cTh +

√
(cTh)2 + 2R(Kp(Th − Tc) − H)

R
. (4.2)

(c) Modelling results in the frequency domain
The transfer function based on equation (3.27) is given as follows (the additional parameters are
used for modelling unknown relations, e.g. current–heat flux):

G(λ1, s) = T(λ1, s)
H(0, s)

= k
bsα/2 + 1

e−λ11/k(bsα/2+1). (4.3)

Using buckshot as the material inside the pipe, and using Bode diagram matching (figure 3),
which minimizes the sum of squares errors of the magnitude and phase values, the following
parameters were obtained:

k = 0.8209, b = 33.0597, λ1 = 0.2632 and α = 1.5558.

For the mix of buckshot and couscous groats, and using Bode diagram matching (figure 4), the
following parameters were obtained:

k = 0.8661, b = 29.4461, λ1 = 0.2996 and α = 1.4928.

As can be seen in figures 3 and 4, the accuracy of the modelling is very high for both cases.
Only at the end of the magnitude plots can some significant values of error be observed. These
can be caused by measurement errors because measured gains for these frequencies are very low
(approx. −30 dB).

(d) Model validation in the time domain
In this section, the validation of the obtained frequency domain models in the time domain
is presented. For numerical realization of the fractional order derivatives, the recursive
Oustaloup’s algorithm [14] was used (in the implementation included in [16]). The parameters
of the Oustaloup’s algorithm that were used were ωl = 0.001, ωh = 1000 and N = 10. Additionally,
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Figure 3. Bode diagram of measured and modelled results for the buckshot. (a) Solid line, |G(λ1, jω)| measured; dotted
line with diamonds, |G(λ1, jω)| modelled. (b) Solid line, angle (G(λ1, jω)) measured; dotted line with diamonds, angle
(G(λ1, jω)) modelled.
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Figure 4. Bode diagram of measured and modelled results for the mixture. (a) Solid line, |G(λ1, jω)| measured; dotted
line with diamonds, |G(λ1, jω)| modelled. (b) Solid line, angle (G(λ1, jω)) measured; dotted line with diamonds, angle
(G(λ1, jω)) modelled.

the approximation presented in §3b was used. From relation (3.27) and using equation (3.30), we
can write

T(s, λ1) = k e−λ11/k

asα/2 + 1
e−λ1(1/k)asα/2

H(s, 0)

≈ k e−λ11/k

asα/2 + 1
1

(T3/6)s3α/2 + (T2/2)s2α/2 + Tsα/2 + 1
H(s, 0),

where T = λ1(1/k)a.
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Figure 5. Results of model validation in the time domain for the buckshot case. Solid line denotes the measured temperature
for H = 8; dotted line denotes the simulated temperature for H = 8.
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Figure 6. Results of model validation in the time domain for the mixture case. Solid line denotes the measured temperature
for H = 5; dotted line denotes the simulated temperature for H = 5.

The results of validation for the buckshot case are presented in figure 5. Other results of
validation for the mixture of buckshot and couscous groats are presented in figure 6. Both figures
show very high accuracy of the proposed model.

5. Conclusion
In this paper, the results of modelling the heat transfer process in heterogeneous materials are
presented. The mathematical model in the form of fractional partial differential equations for
a non-homogeneous beam heating process was established. The experimental set-up for beam
heating with a Peltier module as the heat flux source was built. This set-up allowed us to study
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beams containing different materials. Two of them (buckshot and a mixture of buckshot and
couscous groats) were used in experiments presented in this paper. For both cases, the parameters
of the mathematical models were found. The results obtained from measurements were compared
with those resulting from the mathematical model. The comparison shows, in general, a good
match between the mathematical model and the physical experiment.

In further work, we will verify the results obtained in the frequency domain with the
time domain experimental measurements by using a well-known method for the numerical
simulations [3,17].

This work was partially supported by the Polish Ministry of Science and Higher Education (grant
no. 4125/B/T02/2009/36), and also by the Slovak Research and Development Agency (grant no. SK-PL-0052-
09 and grant nos. VEGA: 1/0729/12, 1/0497/11 and 1/0746/11).
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pp. 452–457. Piscataway, NJ: IEEE.

14. Chen YQ, Vinagre B, Xue D, Felu V. 2010 Fractional-order systems and controls: fundamentals and
applications. Berlin, Germany: Springer.

15. Mitrani D, Tome J, Salazar J, Turo A, Garcia M, Chavez J. 2005 Methodology for extracting
thermoelectric module parameters. IEEE Trans. Instrum. Meas. 54, 1548–1552. (doi:10.1109/
TIM.2005.851473)

16. Chen YQ. 2003 Oustaloup-recursive-approximation for fractional order differentiator. See
http://www.mathworks.com/matlabcentral/fileexchange/3802-oustaloup-recursive-appro
ximation-for-fractional-order-differentiators.

17. Podlubny I, Chechkin A, Skovranek T, Chen YQ, Vinagre B. 2009 Matrix approach to discrete
fractional calculus. II. Partial fractional differential equations. J. Comp. Phys. 228, 3137–3153.
(doi:10.1016/j.jcp.2009.01.014)

 on June 1, 2017http://rsta.royalsocietypublishing.org/Downloaded from 

http://dx.doi.org/doi:10.1115/1.521474
http://dx.doi.org/doi:10.1088/0031-8949/2009/T136/014015
http://dx.doi.org/doi:10.2478/v10175-010-0059-6
http://dx.doi.org/doi:10.1186/1687-1847-2011-11
http://dx.doi.org/doi:10.1103/PhysRevE.71.041105
http://dx.doi.org/doi:10.1109/TIM.2005.851473
http://dx.doi.org/doi:10.1109/TIM.2005.851473
http://www.mathworks.com/matlabcentral/fileexchange/3802-oustaloup-recursive-approximation-for-fractional-order-differentiators
http://www.mathworks.com/matlabcentral/fileexchange/3802-oustaloup-recursive-approximation-for-fractional-order-differentiators
http://dx.doi.org/doi:10.1016/j.jcp.2009.01.014
http://rsta.royalsocietypublishing.org/

	Introduction
	Fractional calculus
	Mathematical description of the heating process
	Heat transfer equation for the heat flux loss case
	Implementation of exp(--Ts)

	Experimental verification of the heating process model
	Experimental set-up
	Thermoelectric module: Peltier module
	Modelling results in the frequency domain
	Model validation in the time domain

	Conclusion
	References

