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Abstract

Finding global optimum of a non-convex quadratic function is in general a very difficult task
even when the feasible set is a polyhedron.

We show that when the feasible set of a quadratic problem consists of orthogonal matrices from
Rn×k, then we can transform it into a semidefinite program in matrices of order kn which has the
same optimal value.

This opens new possibilities to get good lower bounds for several problems from combinatorial
optimization, like the Quadratic Assignment Problem (QAP) and the Graph Partitioning Problem
(GPP). In particular we show how to improve significantly the well-known Hoffman-Wielandt
eigenvalue lower bound for QAP and the Donath-Hoffman eigenvalue lower bound for GPP by
semidefinite programming.

In the last part of the paper we show that the copositive strengthening of the semidefinite
lower bounds for QAP and GPP yields the exact values.
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1 Introduction

Non-convex quadratic problems are a common research topic since they appear very often in combi-
natorial optimization. They are in general very hard, since already the following simple non-convex
quadratic problem

min{xTQx : x ∈ Rn
+,
∑

i

xi = 1} (1)

is NP-hard to solve. More specifically, when Q = A+ I and A is the adjacency matrix of a graph G,
then the optimal value of (1) yields the stability number of G (see [12]) which is NP-hard to compute.

In this paper we consider the following general non-convex quadratic program:

(QP ) OPTQP = min{trace(XTAXB) : X ∈ Rn×k
+ , XTX = M, Q(X) = q},

where A and B are arbitrary symmetric matrices, M is diagonal matrix and Q(X) = q denotes some
additional quadratic constraints. Several well-known NP-hard problems can be restated in the form
QP, e.g. the Quadratic assignment problem, the Graph partitioning problem, the Weighted sums of
eigenvalues problem etc.

The problems listed above are very tough, and there is no polynomial time algorithm which finds
the optimal solution of these problems (unless P=NP). Optimal solutions are often computed with
a branch and bound algorithm which has the exponential time complexity. The efficiency of this
algorithm strongly depends on the quality of upper and lower bounds for the optimal value of the
problem. Upper bounds we get with any heuristic, while computing lower bounds typically consists
in relaxing some hard constraint and computing the optimal value of the relaxed problem.

Many researchers studied relaxations which yield spectral lower bounds. Hoffman and Wielandt
[10] established an eigenvalue lower bound for the optimal value of QP for the case when the feasible
set consists of non-negative square orthonormal matrices. They dropped the sign constraint and
computed the optimal value of the relaxed problem which is determined by the eigenvalues of A and
B, see Section 2. This is also known as the eigenvalue lower bound for the Quadratic assignment
problem.

Donath and Hoffman [8] presented an eigenvalue lower bound for the Graph partitioning problem
which is another special case of QP. They again relaxed the original problem which is NP-hard by
ignoring the sign constraint and reformulated the resulting problem as an eigenvalue optimization
problem.

Helmberg et al. [9] and Rendl and Wolkowicz [19] studied the projected eigenvalue lower bounds
for the minimum cut problem and graph partitioning problems.

Anstreicher and Wolkowicz [1] reformulated the Hoffman-Wielandt and the Donath-Hoffman lower
bounds as optimal values of semidefinite programs. A similar result was obtained by Povh and Rendl
for the eigenvalue lower bound from [9], see [15]. These results are very important because further
strengthenings of the eigenvalue lower bounds lead to untractable problems, while the semidefinite
reformulation enables adding additional constraints and therefore improving the lower bounds.

Our contribution to the literature on approximation of non-convex quadratic programs consists
of the following results:

• In Section 2 we prove a representation theorem which states that the Lagrangian relaxation of
the quadratic program over the set of orthogonal matrices which is a semidefinite program is
tight, if we add on the primal side a redundant semidefinite constraint. This results generalizes
the Anstreicher-Wolkowicz result from [1] and yields much smaller semidefinite programs for
the Donath-Hoffman lower bound.
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• In Section 3 we present the implications of the representation theorem on computing lower
bounds for the Quadratic assignment problem and the Graph partitioning problem. We show
in particular that the Donath-Hoffman lower bound arises as the Lagrangian relaxation of the
properly relaxed Graph partitioning problem, but there is in general non-zero duality gap in
the relaxation. Nevertheless, this procedure opens new possibilities for further strengthening of
the Donath-Hoffman lower bound by semidefinite programming.

• We study semidefinite lower bounds for QAP and GPP and propose some new constraints which
significantly improve eigenvalue lower bounds and yield semidefinite programs which seem to
be the tradeoff between the accuracy and time complexity, see Section 3.

• We show that replacing the semidefinite constraint by completely positive constraint improves
the lower bound, and in the case of GPP yields even the exact value. This is the contents of
Section 5.

1.1 Notation

We denote the ith standard unit vector by ei. The vector of all ones is un ∈ Rn (or u, if the dimension
n is obvious). The square matrix of all ones is Jn (or J), the identity matrix is I and Eij = eie

T
j .

In this paper we consider the following sets of matrices:

• The vector space of real symmetric n× n matrices: Sn = {X ∈ Rn×n : X = XT },

• the cone of n× n positive semidefinite matrices: S+
n = {X ∈ Sn : yTXy ≥ 0∀y ∈ Rn},

• the cone of n× n copositive matrices: Cn = {X ∈ Sn : yTXy ≥ 0∀y ∈ Rn
+},

• the cone of n× n completely positive matrices: C∗n = conv{yyT : y ∈ Rn
+}.

We also use X � 0 for X ∈ S+
n . A linear program over Rn

+ is called a linear program, a linear
program over S+

n is called a semidefinite program, while a linear program over Cn or C∗n is called a
copositive program.

The sign ⊗ stands for the Kronecker product. When we consider the matrix X ∈ Rm×n as a vector
from Rmn, we write this vector as vec(X) or x. By 〈·, ·〉 we denote the standard scalar product, i.e.
〈u, v〉 = uT v for u, v ∈ Rn, and for X,Y ∈ Rm×n we have 〈X, Y 〉 = trace(XTY ). For matrix columns
and rows we use the Matlab notation: X(i, :) and X(:, i) stand for ith row and column, respectively.
If a ∈ Rn, then Diag(a) is an n× n diagonal matrix with a on the main diagonal and diag(X) is the
main diagonal of a square matrix X.

For a matrix Z ∈ Skn we often use the following block notation:

Z =

 Z11 · · · Z1k

...
. . .

...
Zk1 · · · Zkk

 , (2)

where Zij ∈ Rn×n.
When P or Psubscript is the name of the optimization problem, then OPTP or OPTsubscript,

respectively, denote their optimal values.
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2 Semidefinite programming relaxations for QP

2.1 Representation theorem

Hoffman and Wielandt [10] showed that

OPTHW = min{〈X, AXB〉 : X ∈ Rn×n, XTX = I } = 〈λ, σ〉− (3)

where λ and σ are the vectors of eigenvalues of A and B, respectively, and 〈λ, σ〉− denotes the scalar
product, where we first sort the components of λ increasingly and the components of σ decreasingly.
OPTHW is a lower bound for OPTQP , since the problem (3) is obtained from QP by omitting sign
constraints and the quadratic constraint Q(X) = q.

Anstreicher and Wolkowicz [1] formulated this lower bound as the optimal value of a semidefinite
program. They added in problem (3) the redundant constraint XXT = I and then considered the
Lagrangian dual of the problem which is semidefinite program (4). They showed that strong duality
holds for this case, hence we have

OPTHW = max {trace(S) + trace(T ) : S ∈ S, T ∈ S, S ⊗ I + I ⊗ T � B ⊗A}. (4)

In this section we extend this result to a more general case when the matrices X ∈ Rn×k still have
orthonormal columns but are not square. In this case we have XTX = Ik, but the other constraint
XXT = In is not satisfied, if k < n. Therefore we can not repeat the Anstreicher-Wolkowicz
procedure. The following lemma shows how the constraint XXT = In should be generalized to close
the duality gap.

Lemma 1 If X ∈ Rn×k and XTX = Ik, then XXT � In.

Proof: Let us fix X. We can complete the columns of X into an orthonormal basis (u1, u2, . . . , un)
of the space Rn, hence for 1 ≤ i ≤ k we have ui = X(:, i). Let u =

∑n
i=1 αiui be an arbitrary vector

from Rn. We have uT (I −XXT )u =
∑n

i=k+1 α
2
i ≥ 0, hence I −XXT � 0. 2

Now we can prove the theorem.

Theorem 2 If A ∈ Sn and B ∈ Sk, then

min {〈X, AXB〉 : X ∈ Rn×k, XTX = Ik} =
max {trace(S)− trace(T ) : S ∈ Sk, T ∈ S+

n , S ⊗ In − Ik ⊗ T � B ⊗A} (5)

Proof: The proof mostly consists of extensions of the ideas from [1]. Let OPT1 and OPT2 be
the optimal values of the first and the second problem in (5), resp. Firstly we show that the second
problem is the Lagrangian relaxation of the first problem, if we add the seemingly redundant constraint
XXT � I. In the sequel we reduce it to a linear program and finally prove that the optimal value of
the dual linear program is ∑

i

σiλϕ(i)

where ϕ is some injection from {1, . . . , k} into {1, . . . , n} and λ, σ are vectors with the eigenvalues
of A and B, resp. This is at least OPT1 [9, Theorem 5] and completes the chain of inequalities.
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We introduce the dual variable S for the constraint XTX = Ik and the dual variable T for the
newly added constraint XXT � In. Clearly S ∈ Sk, T ∈ S+

n and we have

OPT1 = min{〈X, AXB〉 : X ∈ Rn×k, XTX = Ik, XX
T � In}

= min
X∈Rn×k

{
max

S∈Sk, T∈S+
n

{〈X, AXB〉+ 〈S, Ik −XTX〉 − 〈T, In −XXT 〉}
}

≥ max
S∈Sk, T∈S+

n

{
trace(S)− trace(T ) + min

x∈Rnk
xT (B ⊗A− S ⊗ In + Ik ⊗ T )x

}
= max {trace(S)− trace(T ) : S ∈ Sk, T ∈ S+

n , S ⊗ In − Ik ⊗ T � B ⊗A}
= OPT2.

The first inequality follows from exchanging min and max and the last equality is due to the inner
minimization problem which is a quadratic unconstrained problem and is therefore bounded from
below if and only if its Hessian B ⊗ A − S ⊗ In + Ik ⊗ T is positive semidefinite. We also used the
fact that

〈X, AXB〉 = xT (B ⊗A)x for x = vec(X).

We show that there is an equality above by transforming the last semidefinite program into a linear
program. Since A and B are symmetric, we can find an orthonormal decomposition A = PΛP T and
B = QΣQT , where Λ = Diag(λ), Σ = Diag(σ), vectors λ, σ are as above and P , Q are matrices
whose columns are eigenvectors of A and B, respectively. We can write

OPT2 = max {trace(S)− trace(T ) : S ∈ Sk, T ∈ S+
n , S ⊗ In − Ik ⊗ T � Σ⊗ Λ}

= max {uT
k s− uT

n t : s ∈ Rk, t ∈ Rn
+, si − tj ≤ σiλj , ∀i, j}

= min {
∑

i,j σiλjzij : y ∈ Rn
+, Z ∈ Rk×n

+ , Zun = uk, Z
Tuk + y = un}.

The first equality in the expression above follows from the fact that the cost function depends
only on diagonal entries of the matrices S and T , so we may ignore all non-diagonal entries and write
s = diag(S) and t = diag(T ). The last optimization problem is a dual linear program to the last but
one problem. We should note that the system matrix in the last linear program is totally unimodular,
hence there exists (see [13]) an integer optimal solution

(Z∗, y∗) ∈ Rk×n
+ × Rn

+.

The matrix Z∗ is therefore a 0-1 matrix and defines an injection ϕ∗ : {1, . . . , k} → {1, . . . , n} with
ϕ∗(i) = j ⇐⇒ z∗ij = 1. This means that we have proved

OPT2 =
k∑

i=1

σiλϕ∗(i) ≥ min
{∑

i

σiλϕ(i) : ϕ injection : {1, . . . , k} → {1, . . . , n}
}
.

The optimal value of the right-hand side problem above is exactly OPT1 (see e.g. [9, Theorem 5]),
and from all relations from the beginning we can conclude that OPT1 = OPT2. 2

Remark 1 If k = n, then (4) and (5) are equivalent. Indeed, if (S∗, T ∗) ∈ Sk × Sn is feasible for
(4), then (S̄, T̄ ) defined by S̄ = S+λmax(T ) and T̄ = −T +λmax(T ) is a feasible solution for (5) with
the same objective value. Similarly any feasibly pair (S, T ) for (5) gives feasible solution (S,−T ) for
(4) with the same objective value.
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2.2 SDP relaxations for QP

Suppose that we have in QP only “pure” quadratic constraints, i.e. Q(X) = q contains only equations
of type 〈X,AiXBi〉 = qi, where Ai and Bi are arbitrary matrices such that the scalar product is
defined. Based on the Theorem 2 we can obtain the following semidefinite lower bound for the
optimal value of QP

OPTQP ≥ min trace(XTAXB)
X ∈ Rn×k, XTX = M
〈X,AiXBi〉 = qi, ∀i

= min trace(Y TAYM1/2BM1/2)
Y ∈ Rn×k, Y TY = I

〈Y,AiYM
1/2BiM

1/2〉 = qi, ∀i

≥ max trace(S)− trace(T ) + qT y
S ∈ Sk, T ∈ S+

n ,

S ⊗ In − Ik ⊗ T +
∑

i yi (M1/2BT
i M

1/2)⊗Ai � (M1/2BM1/2)⊗A

= min 〈M1/2BM1/2 ⊗A, Z〉
Z ∈ S+

kn, W ∈ S+
n∑

i Z
ii +W = I, 〈I, Zij〉 = δij ,

〈M1/2BT
i M

1/2 ⊗Ai, Z〉 = qi,∀i
= min 〈B ⊗A, V 〉

(QPSDP ) V ∈ S+
kn, W ∈ S+

n∑
i

1
mi
V ii +W = I, 〈I, V ij〉 = miδij ,

〈BT
i ⊗Ai, V 〉 = qi, ∀i

The second quadratic problem above is obtained from the first by substitution Y = XM−1/2. The
first semidefinite program above is the Lagrangian dual of the second quadratic problem. The second
semidefinite program is Lagrangian dual of the first semidefinite program. The last semidefinite
program is obtained from the second semidefinite program by reverse substitution V = (M1/2 ⊗
I)Z(M1/2 ⊗ I).

The first inequality appears since we dropped out the sign constraint in the quadratic problem QP,
while the second inequality is due to the fact that the Lagrangian relaxation of non-convex quadratic
program might have non-zero gap. This actually happens very often (see also Subsection 3.2 and
Example 1). If we do not have quadratic equations 〈X,AiXBi〉 = qi, then the second inequality is
equality due to Theorem 2.

Note that the Lagrangian semidefinite duals have zero duality gap, since S = 0, T = αI and y = 0
are strictly feasible solution for the first semidefinite program above, if α > 0 is sufficiently large
(i.e. the matrices T and (M1/2BM1/2) ⊗ A + Ik ⊗ T are positive definite when T = αI for α > 0
sufficiently large).

Remark 2 If quadratic constraint Q(X) = q contains also linear terms, i.e. is of the form
〈X,AiXBi〉+ 〈Ci, X〉 = qi, Ci 6= O, then we can repeat the procedure by adding zero row and column
into matrix variable in the semidefinite program. Constraints 〈X,AiXBi〉 + 〈Ci, X〉 = qi would be
transformed this way into 〈D̃, Z̃〉 = qi, where

D̃ =
[

0 1
2vec(C)T

1
2vec(C) BT

i ⊗Ai

]
and Z̃ =

[
1 zT

z Z

]
.
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3 New semidefinite lower bounds for the Quadratic assignment
problem and the Graph partitioning problem

In this section we demonstrate how to use the semidefinite representation results from the previous
section to obtain better lower bounds for the Quadratic assignment and the Graph partitioning prob-
lem. These problems can be naturally expressed as QP hence we can apply the bounding technique
from the Subsection 2.2.

3.1 Quadratic assignment problem

The Quadratic Assignment Problem (QAP) can be stated in the following way. Let Π be the set
of n × n permutation matrices (a matrix X is a permutation matrix, if it corresponds to some
permutation φ, i.e. xij ∈ {0, 1} and xij = 1 ⇐⇒ φ(i) = j). For given real symmetric n×n matrices
A and B we want to find a permutation matrix X ∈ Π which gives

(QAP) OPTQAP = min {〈X, AXB〉 : X ∈ Π}.

The QAP is nowadays widely considered as a classical combinatorial optimization problem, but it
is also known as a generic model for various real-life problems, see the QAP library [7] for more
references on QAP. The QAP is well known to be NP-hard, and even approximating the OPTQAP

within a constant factor is an NP-hard problem. The computational effort to solve the QAP is
very likely to grow exponentially with the problem size, and problems of size n ≥ 25 are currently
considered as large instances.

The most recent and promising trends of research to find good lower bounds for OPTQAP are
based on semidefinite programming. Zhao et al. [20], Sotirov and Rendl [18] and Povh and Rendl [16]
lifted the problem from the vector space Rn×n to S+

n2+1
or S+

n2 and formulated several semidefinite
programs which give increasingly tight lower bounds for the QAP. They used several methods to solve
these semidefinite programs. The computational results show that these lower bounds are among the
strongest but also the most expensive to compute (in practice they could solve these programs for
n ≤ 35).

In this subsection we present a new lower bound for the QAP, based on semidefinite programming
which is obtained by strengthening the Hoffman-Wielandt eigenvalue lower bound. Indeed, we may
express the set of permutation matrices as Π = {X ∈ Rn×n

+ : XTX = I}, yielding the QP form for
the QAP:

(QAP ) OPTQAP = min{trace(XTAXB) : X ∈ Rn×n
+ , XTX = I, Q(X) = q},

Note that we do not need any quadratic constraint in Q(X) = q in the last formulation for QAP.
Nevertheless, it becomes important when we start relaxing the QAP, hence we add initially quadratic
constraint which are redundant for the set of permutation matrices. An example of such constraint
is

〈X, JXJ〉 = n2 (6)

which is equivalent to uTXu = n and is automatically satisfied for permutation matrices, since they
have in each row and each column exactly one non-zero element equal to 1.

From Subsection 2.2 it follows that
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OPTQAP ≥ min 〈B ⊗A, Z〉
Z ∈ S+

n2 , W ∈ S+
n

(QAPSDP )
∑

i Z
ii +W = I, 〈I, Zij〉 = δij ,

〈BT
i ⊗Ai, Z〉 = qi,∀i

Remark 3 If (Z,W ) are feasible for QAPSDP , then it follows that

trace(W ) = trace(I)−
∑

i

trace(Zii) = n− n = 0.

Matrix W is positive semidefinite with zero trace, hence W = 0 and we can eliminate it from QAPSDP .

Semidefinite program QAPSDP is therefore a model which can give rise to several lower bounds for
OPTQAP . The tightness of this bound is tuned by the quadratic equations included in Q(X) = q. If
this constraint contains no equation, then the resulting lower bound is exactly the Hoffman-Wielandt
eigenvalue lower bound for OPTQAP denoted by OPTHW (this follows from the fact that QPSDP is
in this case exactly the conic dual of (4) with zero duality gap).

If Q(X) = q contains only (6) which becomes on the dual side

〈Jn2 , Z〉 = n2, (7)

this gives new lower bound denoted by OPTnew1 which improves the Hoffman-Wielandt lower bound
significantly.

We may add beside the ”total sum” constraint (6) the so-called “Gangster” constraint [20]:

xijxik = 0, xjixki = 0 ∀i, j, k, j 6= k,

which captures the property that each permutation matrix has in each row and in each column exactly
one non-zero element. It yields in QAPSDP the following equations:

〈Ejk ⊗ Eii, Z〉 = 0, 〈Eii ⊗ Ejk, Z〉 = 0 ∀i, j, k, j 6= k. (8)

We denote this lower bound by OPTnew2.
The tightness of several lower bounds is demonstrated in Table 1. The first column contains the

name of the problem instance which also tells us the size of the instance. The second column contains
the Hoffman-Wielandt eigenvalue lower bound OPTHW , the third column contains the new lower
bound OPTnew1 obtained by adding the “total sum” constraint (7) and the fourth column contains
the second lower bound OPTnew2 obtained by further inclusion of the “Gangster” constraint (8).

The fifth column contains the strongest known semidefinite lower bound OPTbest (this is the
lower bound, based on the QAPR3 model from [18]) and in the last column we have the optimal value
of the QAP instance. Data for the last two columns are taken from [6].

We can see that the single constraint (6) improves the eigenvalue lower bound significantly. We also
point out that the resulting semidefinite program is still quite simple (it has O(n2) linear constraints)
comparing to the program underlaying the best lower bound which contains O(n4) linear constraints.

The second lower bound OPTnew2 is also very tight, but we have to pay a big price for it: it
contains O(n3) linear constraints. These constraints are mostly orthogonal, therefore we can compute
OPTnew2 by the boundary point method from [17] which performs well on such problems. Indeed,
for n ≥ 25 we computed OPTnew2 by using this method.

Remark 4 By inspection we can see that the bounds OPTnew1 and OPTnew2 are equivalent to the
bounds QAPAW+ and QAPR2 from [16] and [18] which were obtained as semidefinite relaxations of
the copositive formulation of the Quadratic assignment problem.
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name OPTHW OPTnew1 OPTnew2 OPTbest OPTQAP

tai15a -414351 325410 349528 377111 388214
tai20a -714902 576806 619033 671685 703482,00
tai25a -1050896 959295 1009453 1112862 1167256,00
tai30a -1505554 1501252 1576943 1706875 1818146,00
tai35a -2015234 1941527 2029726 * *
tai40a -2559063 2481593 2549838 * *
tai40b -1659647368 398654801 552755351 * *

Table 1: The new lower bounds OPTnew1 and OPTnew2 improve the eigenvalue lower bound
OPTHW significantly and are not very far from OPTbest, while the underlaying semidefinite program
has much smaller complexity. With ‘ * ’ we denote the values which are currently unavailable in the
literature and we were also incapable to compute them due to the complexity reasons.

3.2 The Graph partitioning problem

The Graph partitioning problem (GPP) is a classical problem from combinatorial optimization. Given
a simple undirected graph G = (V, E) with |V | = n, a number of partitions k > 1 and a vector
m = (m1, m2, . . . ,mk) ∈ Nk with 1 ≤ m1 ≤ m2 ≤ . . . ≤ mk,

∑
imi = n, we are interested in a

partition (S1, S2, . . . , Sk) of the vertex set V such that |Si| = mi and the total number of cut edges
(i.e. edges between different sets) is minimal.

We may represent any partition into k blocks with prescribed sizes by a (partition) matrix X ∈
{0, 1}n×k, where xij = 1 if and only if the ith vertex belongs to the jth set. With this notation the
total number of cut edges is exactly 0.5〈X, AXB〉, where A is the adjacency matrix of the graph (i.e.
aij = 1 if (ij) is an edge and aij = 0 otherwise) and B = Jk− Ik. If L is Laplacian matrix of a graph,
then it holds 0.5〈X, AXB〉 = 0.5〈X, LX〉.

The set of all partition matrices may be described as

{X ∈ Rn×k
+ : XTX = M, Diag(XXT ) = un}, (9)

where M = Diag(m). We may describe the partition matrices also by other equations, but the
equations from (9) are the most convenient for our bounding procedure.

Graph partitioning problem may be therefore formulated as

(GPP) OPTGPP = min {1
2
〈X, LX〉 : X ∈ Rn×k

+ , XTX = M, Diag(XXT ) = un}.

We can write constraint Diag(XXT ) = un as 〈X, EiiX〉 = 1, 1 ≤ i ≤ n, hence GPP is a special
instance for QP. Procedure from Subsection 2.2 yields the following semidefinite lower bound for
OPTGPP :

OPTGPP ≥ min 1
2 〈I ⊗ L, V 〉

V ∈ S+
kn, W ∈ S+

n

(GPPSDP )
∑

i
1

mi
V ii +W = I, 〈I, V ij〉 = miδij ,

〈I ⊗ Eii, V 〉 = 1, 1 ≤ i ≤ n

We denote the optimal value of the semidefinite program from above by OPTDH , since it is exactly
the Donath-Hoffman eigenvalue lower bound [8] for OPTGPP , as follows from the following theorem.
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Theorem 3 Optimal value of GPPSDP is exactly the Donath-Hoffman eigenvalue lower bound for
OPTGPP .

Proof:
Anstreicher and Wolkowicz [1] showed that the OPTDH , defined as

OPTDH = max
{1

2

k∑
i=1

mk−i+1λi(L+D) : D = Diag(d), uTd = 0
}

(10)

where λ1(L + D) ≤ λ2(L + D) ≤ · · ·λn(L + D) are the eigenvalues of L + D, can be represented as
the optimal solution of the following semidefinite program

OPTDH = max trace(S) + trace(T )

s. t. M̄ ⊗ (L+ Diag(v))− I ⊗ S − T ⊗ I � 0
uT

nv = 0, v ∈ Rn, S, T ∈ Sn,

where

M̄ =
1
2

[
M 0
0 0

]
.

This semidefinite program has matrix variable of order n2× n2 and is therefore much larger than
GPPSDP . It is obviously strictly feasible, hence its dual semidefinite program has the same optimal
solution. Therefore we have

OPTDH = min 〈M̄ ⊗ L, Y 〉

s. t. Y ∈ S+
n2 ,

∑n
i=1 Y

ii = I,
∑k

i=1mi diag(Y ii) = u,

trace(Y ij) = δij , 1 ≤ i ≤ j ≤ n.

One can see that OPTDH is determined only by blocks Y ij for 1 ≤ i, j ≤ k, therefore we can write

OPTDH = min 1
2 〈M ⊗ L, Y 〉

s. t. Y ∈ S+
kn,

∑k
i=1 Y

ii � I,
∑k

i=1mi diag(Y ii) = u,

trace(Y ij) = δij , 1 ≤ i ≤ j ≤ k,

After introducing V = (M1/2 ⊗ I)Y (M1/2 ⊗ I) we obtain exactly the problem GPPSDP . 2

We can strengthen the lower bound OPTDH by adding further constraints to GPP which are
redundant for the partition matrices, but become important on the dual side. The “total sum”
constraint

〈X, JnXJk〉 = n2 (11)

is a good candidate. It implies in GPPSDP the constraint 〈Jkn, V 〉 = n2 which is no more redundant,
hence we obtain a new lower bound for OPTGPP denoted by OPTnew1 which is strictly better than
OPTDH .

We can improve OPTnew1 further by exploring the orthogonality of the columns of partition
matrices. If X is a partition matrix, it holds

xijxik = 0 ∀i, j, k, j 6= k,
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and we obtain in GPPSDP the following new equations:

〈Ejk ⊗ Eii, Z〉 = 0 ∀i, j, k, j 6= k, (12)

which imply new lower bound OPTnew2 strictly better than OPTnew1.
Table 2 demonstrates the quality of these lower bounds on 9 random graphs with 50 nodes, where

the probability that there exists an edge between two nodes varies from 0.1 to 0.9 (the probability is
included in the name of the instance in the first column). For each instance we took m = (5, 10, 15, 20).
The second column contains the number of graph nodes, the third column contains the number of
graph edges and the last three columns contain the lower bounds OPTDH , OPTnew1 and OPTnew2.

name n |E| OPTDH OPTnew1 OPTnew2
g50.01 50 111 17.92236 22.76201 23.55990
g50.02 50 256 81.95602 95.91899 99.93125
g50.03 50 342 124.71776 148.70114 152.18022
g50.04 50 478 204.30261 236.69719 242.42469
g50.05 50 611 287.20402 332.79142 338.11772
g50.06 50 759 378.24995 440.78017 442.77462
g50.07 50 897 470.15719 544.23761 549.70123
g50.08 50 984 530.48562 615.03507 619.51603
g50.09 50 1098 618.86660 719.45628 722.23682

Table 2: Lower bounds for Graph partitioning problem, where m = (5, 10, 15, 20)

We can see that these lower bounds are closer to each other comparing to lower bounds for QAP .
Table 2 also demonstrates that adding few constraints to a semidefinite formulation of an eigenvalue
lower bound does not make the semidefinite problem much harder, but the optimal value is improved
significantly. Lower bound OPTnew1 is obtained by improving the eigenvalue bound OPTDH by
only one constraint (11). On the other hand further tightening by (12) which contains nk(k − 1)/2
equations yields much smaller improvement comparing to the additional effort needed to compute
OPTnew2.

4 Tightness of the proposed relaxations

In the previous sections we show how to obtain semidefinite lower bounds for OPTQP and how to im-
prove them by adding new constraints. In all cases we are interested in accurate and computationally
cheap semidefinite relaxations, but this is not always possible. When computing ε-optimal solution
for QP is an NP-hard problem (this is true e.g. for QAP), then there might always happen a non-zero
gap between the optimal values of QP and QPSDP (unless P=NP), since finding an ε-optimal solution
of semidefinite programs has polynomial time complexity [4].

There are two sources for the gap between the optimal values of QP and QPSDP , as there are
two inequalities in the term on page 6. If the sign constraint is redundant, then the first inequality
is equality, but this happens very rarely (actually we could not provide an example).

The second reason for the gap is the duality gap in the Lagrangian relaxation of the non-convex
quadratic problem. In Theorem 2 we only proved that there is no duality gap, if there is no quadratic
constraint in QP beside the orthogonality constraint XTX = M .

As we could see in Section 3, additional (redundant) quadratic constraints become necessary in
QP after dropping out the sign constraint, since they decrease both sources of gap.

The following example demonstrates this situation.
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Example 1 Let G = K3 be the complete graph on 3 vertices and m = (1, 2) be the partitioning
vectors for the Graph partitioning problem. Obviously we have OPTGPP = 2 and any partitioning
matrix is optimal. As we proved in Subsection 3.2, the Donath-Hoffman lower bound (10) is obtained
as Lagrangian relaxation of the following quadratic problem

min {1
2
〈X, LX〉 : X ∈ Rn×k, XTX = M, Diag(XXT ) = un}

By a short exercise we can see that this quadratic problem has optimal value 3 −
√

2 ≈ 1.586, while
OPTDH = 1.500. Here we have both gaps non-zero. Further strengthenings of OPTDH by adding
(11) and (12) yield OPTnew1 = OPTnew2 = 2.

5 Approximating OPTQP by copositive programming

Several authors have proved recently that some quadratic programs can be restated as linear programs
over the cone of copositive or completely positive matrices (in the sequel we call such problems
copositive programs). Bomze et al. [3] proved that the standard quadratic programming problem
can be rewritten as linear program over the cone of completely positive matrices. De Klerk and
Pasechnik [11] reformulated the stability number problem as copositive program. Povh and Rendl
[15, 16] proved that the three-partitioning problem and the quadratic assignment problem have a
copositive representation. The strongest representation result by the time being belongs to Burer
[5] who showed that any quadratic problem in binary and continuous variables can be rewritten as
copositive program.

All problems mentioned above are NP-hard problems and rewriting them as copositive programs
does not make them tractable, but only opens a new line of possible relaxations based on approxi-
mations of the copositive or completely positive cone.

In this section we show that the lower bounds for the quadratic program QP can also be improved
by copositive programming.

As we pointed out in Section 4, there are two possible sources for the gap between the optimal
values of QP and QPSDP . The first is due to the fact that we eliminated the sign constraint X ≥ 0
in QP before computing the Lagrangian relaxation of QP. If we keep the sign constraint, then we get
in the Lagrangian relaxation the copositive constraint

(M1/2BM1/2)⊗A− S ⊗ In + Ik ⊗ T −
∑

i

yi (M1/2BT
i M

1/2)⊗Ai ∈ Ckn,

and in the last semidefinite program QPSDP the constraint V ∈ S+
kn rewrites into V ∈ C∗kn. The

resulting copositive program is therefore

OPTCP = min 〈B ⊗A, V 〉
(QPCP ) V ∈ C∗kn, W ∈ S+

n∑
i

1
mi
V ii +W = I, 〈I, V ij〉 = miδij ,

〈BT
i ⊗Ai, V 〉 = qi ∀i

Obviously we have OPTQP ≥ OPTCP ≥ OPTSDP . We wonder when we get the equality
OPTQP = OPTCP . In the following example we present the case when there is strict inequality.
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Example 2 Suppose A = Jn, B = Jn−In, m = un and we have no constraint of the type 〈X, AiXBi〉 =
qi. Therefore QP is a trivial Quadratic assignment problem, and for any feasible matrix X (which is
a permutation matrix) we have 〈X,AXB〉 = n2 − n, hence OPTQP = n2 − n. On the other hand the
matrices V = 1

nIn2 and W = On are feasible for the copositive relaxation QPCP with 〈B⊗A, V 〉 = 0,
hence we have gap OPTQP −OPTCP = n2 − n.

5.1 Copositive relaxation for Graph partitioning problem is tight

When we consider the Graph partitioning problem (see Subsection 3.2 for the definition), then we
can describe the feasible set of GPP by

FEASGPP = {X ∈ {0, 1}n×k : XTX = M}
= {X ∈ Rn×k

+ : XTX = M, Diag(XXT ) = un, 〈X, JnXJk〉 = n2}. (13)

Recall that in the second formulation we do not need the constraint 〈X, JnXJk〉 = n2, but it
becomes important in the copositive relaxation of the problem for the same reason as in the previous
sections.

By repeating the procedure from the beginning of the section we obtain the following copositive
lower bound for OPTGPP

OPTGPP ≥ min 1
2 〈I ⊗ L, V 〉

(GPPCP ) V ∈ C∗kn, W ∈ S+
n∑

i
1

mi
V ii +W = I, 〈I, V ij〉 = miδij ∀i, j

〈I ⊗ Eii, V 〉 = 1 ∀i, 〈Jkn, V 〉 = n2.

Note that the bound OPTCP is actually a strengthening of the OPTnew1 lower bound from
Subsection 3.2, since we replace V ∈ S+

kn by V ∈ C∗kn. A closer look reveals that this lower bound is
tight, i.e. OPTGPP = OPTCP . We can say more: there is a strong relation between the set of all
partition matrices and the feasible set for GPPCP , as follows from the following lemma.

Lemma 4 The following is equivalent:

(a) V ∈ C∗kn is feasible for GPPCP ;

(b) V =
∑

s λspsp
T
s , where λs ≥ 0,

∑
s λs = 1, ps = vec(Ps) and Ps is a partition matrix for all s.

Proof: The implication (b)⇒(a) is easy: if P is a partition matrix, then ppT is completely positive
and is feasible for GPPCP . The same is true for any convex combination of such matrices.

The direction (a)⇒(b) is more involved. Let V ∈ C∗kn be feasible for GPPCP . By definition we
have V =

∑
s qsq

T
s , where qs ∈ Rkn

+ and qs 6= 0 ∀s. We can obtain from each vector qs a matrix Qs

such that qs = vec(Qs). The constraint 〈I, V ij〉 = miδij implies that
∑

s〈I, Qs(:, i)Qs(:, j)T 〉 = miδij
or equivalently

∑
sQ

T
s Qs = M . In particular this means that each Qs has orthogonal columns.

The matrix
V̂ =

∑
i,j

V ij = (uk ⊗ In)TV (uk ⊗ In)

is positive semidefinite and satisfies diag(V̂ ) = un, 〈Jn, V̂ 〉 = n2. This implies that V̂ = Jn or
equivalently 〈Jk ⊗Eij , V 〉 = 1 for all i, j. Let us denote by ri(Q) the sum of i-th row of Q. Therefore
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we have for each pair 1 ≤ i < j ≤ n:

〈Jk ⊗ Eii, V 〉 =
∑

s

ri(Qs)2 = 1,

〈Jk ⊗ Ejj , V 〉 =
∑

s

rj(Qs)2 = 1,

〈Jk ⊗ Eij , V 〉 =
∑

s

ri(Qs)rj(Qs) = 1.

The Cauchy-Schwarz inequality for the equality case implies ri(Qs) = αrj(Qs) and α = 1. Since we
have ri(Qs) = rj(Qs) for all 1 ≤ i ≤ j ≤ n, we can define Ps = 1

r1(Qs)
Qs and λs = r21(Qs) (note that

ri(Qs) 6= 0 ∀i, s, since qs 6= 0 ∀s). It follows V =
∑

s λspsp
T
s and

∑
s λs = 1. We already have the

factorization of V , stated by the lemma. To finish the proof, we need to show that Ps are partition
matrices.

We know by definition that each Ps has non-negative entries, orthogonal columns and ri(Ps) =
1 ∀i. This implies Ps ∈ {0, 1}n×k and

∑
i,j Ps(i, j) = n, hence

∑
i Ps(i, j) =

∑
i Ps(i, j)2 ∀j. It

remains to show that
∑

i Ps(i, j) = mj ∀j. This will be done in the last part of the proof.
The constraint 〈I, V jj〉 =

∑
s λs

∑
i Ps(i, j)2 = mj implies:

〈J, V jj〉 =
∑

s

λs(
∑

i

Ps(i, j))2 ≥ (
∑

s

λs

∑
i

Ps(i, j))2

= (
∑

s

λs

∑
i

Ps(i, j)2)2 = m2
j .

On the other hand, from
∑

i
1

mi
V ii � I it follows

n ≥
∑

i

1
mi
〈J, V ii〉 ≥

∑
i

1
mi
m2

i = n,

hence 〈J, V jj〉 = m2
j ∀j.

The matrix Ṽ =
∑

i,j〈J, V ij〉Eij = (Ik ⊗ un)TV (Ik ⊗ un) is positive semidefinite with Ṽii = m2
i

and 〈J, Ṽ 〉 = n2, hence it must hold Ṽi,j = mimj ∀i, j, or equivalently 〈J, V ij〉 = mimj . Using this
property we obtain for each pair 1 ≤ i < j ≤ k:

〈J, V ii〉 =
∑

s

λs(
∑

t

Ps(t, i))2 = m2
i ,

〈J, V jj〉 =
∑

s

λs(
∑

t

Ps(t, j))2 = m2
j ,

〈J, V ij〉 =
∑

s

λs(
∑

t

Ps(t, i))(
∑

t

Ps(t, j)) = mimj .

The Cauchy-Schwarz inequality again implies
∑

t Ps(t, i) = mi
mj

∑
t Ps(t, j) ∀s, hence, since the

sum of all entries in each Ps is n, we obtain
∑

t Ps(t, i) = mi, 1 ≤ i ≤ k. 2

Note that we can write GPP also in the form

OPTGPP =
{

min
1
2
〈I ⊗ L, V 〉 : V = ppT , P . . .partition matrix

}
=

{
min

1
2
〈I ⊗ L, V 〉 : V =

∑
s

λspsp
T
s , λs ≥ 0,

∑
s

λs = 1, Ps . . . partition matrices
}
.
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Lemma 4 implies that any feasible solution for GPCP is feasible for the later formulation of GPP and
vice versa, hence the following theorem follows immediately.

Theorem 5 For the Graph partitioning problem we have OPTGPP = OPTCP .

We also have the following corollary.

Corollary 6 If we replace constraint V ∈ S+
n2 by the completely positive constraint V ∈ C∗n2 in the

semidefinite program underlaying the QAPnew1 lower bound, we obtain the exact value OPTQAP .

Proof: Note that QAP is a special instance of GPP obtained by taking m = un. Let us denote the
copositive program obtained by the copositive strengthening of the semidefinite program underlaying
the QAPnew1 lower bound by QAPCP . The only difference between QAPCP and GPPCP is that in
QAPCP is missing the constraint 〈I ⊗ Eii, V 〉 = 1. But this constraint is redundant here, since we
know that

∑
i V

ii = I (see Remark 3) and that all off-diagonal blocks V ij ∀ i 6= j, have zeros on the
main diagonal. 2

Results from Theorem 5.1 and Corollary 6 are not surprising, since similar results were obtained
by Povh and Rendl [16, 15] also for the 3-partitioning problem and for the Quadratic assignment
problem.

6 Conclusions

Computing good lower bounds for hard problems from combinatorial optimization is very important,
especially if we plan to solve the problem by Branch and Bound method. In the paper we present
how to improve by semidefinite programming the eigenvalue lower bounds for some problems, where
the feasible set consists of orthogonal matrices.

We rewrite the quadratic problem over the set of (non-quadratic) orthogonal matrices as a semidef-
inite program. This result is a generalization of the result from Anstreicher and Wolkowicz [1], and
opens new possibilities for approximating some hard quadratic problems, where the feasible set con-
sists of orthogonal matrices subject to some additional constraints (like the Quadratic assignment
problem (QAP), the Graph partitioning problem (GPP), the Weighted sums of eigenvalues problem
etc.). We offer a generic semidefinite program which gives tighter lower bounds for these problems,
comparing to the eigenvalue lower bounds. The semidefinite bound can be further improved towards
the optimum of the original problem by adding linear constraints which correspond to some valid
constraint in the original problem. We also suggested few such constraints for QAP and GPP and
they indeed improved the bounds significantly. We give some preliminary computational results which
show the potential of this approach.

In the last section we demonstrate the power of copositive programming. If we replace the
semidefinite constraint in the generic semidefinite program by completely positive constraint, we
obtain better lower bounds. In the case of Graph partitioning problem the resulting copositive
program even delivers the exact value.

We also try to address the question whether we can extend Theorem 2 to a larger class of quadratic
problems at least to quadratic programs over the orthogonal matrices which satisfy some additional
quadratic or linear constraints? While Beck [2] provided a weak but positive answer to the first
question we show that the Graph partitioning problem certainly does not belong to any of these
classes (see Example 1).
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