
Doppler Synthetic Aperture Radar Interferometry:

A Novel SAR Interferometry for Height Mapping

using Ultra-Narrowband Waveforms

Birsen Yazıcı1,∗, Il-Young Son1 and H. Cagri Yanik
1Department of Electrical and Computer Systems Engineering, Rensselaer

Polytechnic Institute, Troy, NY, USA
∗Corresponding author

E-mail: yazici@ecse.rpi.edu

Abstract. This paper introduces a new and novel radar interferometry based

on Doppler synthetic aperture radar (Doppler-SAR) paradigm. Conventional SAR

interferometry relies on wideband transmitted waveforms to obtain high range

resolution. Topography of a surface is directly related to the range difference between

two antennas configured at different positions. Doppler-SAR is a novel imaging

modality that uses ultra-narrowband continuous waves (UNCW). It takes advantage

of high resolution Doppler information provided by UNCWs to form high resolution

SAR images.

We introduced the theory of Doppler-SAR interferometry. We derived

interferometric phase model and develop the equations of height mapping. Unlike

conventional SAR interferometry, we show that the topography of a scene is related

to the difference in Doppler between two antennas configured at different velocities.

While the conventional SAR interferometry uses range, Doppler and Doppler due to

interferometric phase in height mapping, Doppler-SAR interferometry uses Doppler,

Doppler-rate and Doppler-rate due to interferometric phase in height mapping. We

demonstrate our theory in numerical simulations.

Doppler-SAR interferometry offers the advantages of long-range, robust,

environmentally friendly operations; low-power, low-cost, lightweight systems suitable

for low-payload platforms, such as micro-satellites; and passive applications using

sources of opportunity transmitting UNCW.
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1. Introduction

Synthetic Aperture Radar (SAR) interferometry is a powerful tool in mapping surface

topography and monitoring dynamic processes. This tool is now an integral part of

wide range of applications in many disciplines including environmental remote sensing,

geosciences and climate research, earthquake and volcanic research, mapping of Earth’s

topography, ocean surface current monitoring, hazard and disaster monitoring, as well

as defense and security related research [1].

Basic principles of SAR interferometry were originally developed in radio

astronomy [2, 3]. Interferometric processing techniques and systems were later developed

and applied to Earth observation [4, 5, 6, 7, 8].

SAR interferometry exploits phase differences of two or more SAR images to

extract more information about a medium than present in a single SAR image [9] [10].

Conventional SAR interferometry relies on wideband transmitted waveforms to obtain

high range resolution [10, 1, 11, 12, 13]. The phase difference of two wideband SAR

images are related to range difference. There are many different interferometric methods

depending on the configuration of imaging parameters in space, time, frequency etc [1].

When two images are acquired from different look-directions, the phase difference is

related to the topography of a surface.

In this paper, we develop the basic principles of a new and novel interferometric

method based on Doppler-SAR paradigm to determine topography of a surface. Unlike

conventional SAR, Doppler-SAR uses ultra-narrowband continuous waves (CW) to form

high resolution images [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]. Conventional SAR

takes advantage of high range resolution and range-rate due to the movement of SAR

antenna for high resolution imaging. Doppler-SAR, on the other hand, takes advantage

of high temporal Doppler resolution provided by UNCWs and Doppler-rate for high

resolution imaging.

We develop the phase relationship between two Doppler-SAR images and show

that the phase difference is related to Doppler difference. We approximate this phase

difference as Doppler-rate and derive the equations of height mapping for Doppler-SAR

interferometry.

Conventional wideband SAR interferometry for height mapping requires two

different look-directions. Doppler-SAR interferometry provides a new degree of

freedom in system design by allowing antennas to have the same look-direction, but

different velocities to obtain height mapping. Additional advantages of Doppler-SAR

interferometry include the following: (i) Small, lightweight, inexpensive, easy-to-design

and calibrate hardware, high Signal-to-Noise-Ratio(SNR) and long effective range of

operation. All of these make Doppler-SAR interferometry a suitable modality for

applications requiring high SNR, long range of operation and low payload platforms

such as micro-satellites or small uninhabited aerial vehicles. (ii) Effective use of

electromagnetic spectrum and environmentally friendly illumination. (iii) Passive

applications. Doppler-SAR may not require dedicated transmitters, since existing Radio
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Frequency (RF) signals of opportunity often have the ultra-narrowband properties.

To the best of our knowledge, this is the first interferometric method that is

developed in Doppler-SAR paradigm. We present the theory for two monostatic

Doppler-SAR. However, the method can be easily be extended to bistatic and multi-

static configurations and synthetic aperture imaging applications in acoustics.

The rest of the paper is organized as follows: In Section 2, SAR geometry and

notation are defined. In Section 3, wideband SAR image formation, layover effect and

basic principles of wideband SAR interferometry are described in a perspective relevant

to our subsequent development. In Section 4, Doppler-SAR data model, image formation

and layover are summarized. Section 5 introduces the basic principles of Doppler-SAR

interferometry and compares the results to wideband SAR case. Section 6 presents

numerical simulations and Section 7 concludes the paper.

2. Configurations and Notation

We consider two mono-static SAR systems as shown in Fig. 1.

Antenna 1

Antenna 2

: Location of the scatter 

: Height of the scatter 

Figure 1: Imaging geometry for an interferometric SAR system with two antennas

following trajectories γ1(s) and γ2(s). The scatterer is located at x ∈ R3 where its

height is h(x) and x = [x1, x2] ∈ R2.

Let γ1(s) and γ2(s), s ∈ [S1, S2] ⊆ R, denote the trajectories of the first and second

antennas, respectively.

Unless otherwise stated, bold Roman, bold italic, and Roman lower-case letters will

denote elements in R3, R2 and R, respectively, i.e., x = [x1, x2] ∈ R2, x3 ∈ R, and

x = [x, x3] ∈ R3. The Earth’s surface is located at x = [x, h(x)], where h : R2 → R,

is the unknown height representing ground topography. Let V : R3 → R denote target

reflectivity where we assume that the scattering takes place only on the surface of the

Earth. Major notation used throughout the paper is tabulated in Table 1.
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Table 1: Notation

Symbol Description

x = [x, h(x)], x ∈ R2 Location on earth’s surface

h(x) Unknown height of a scatter at x

V (x) Surface reflectivity

γi(s) i-th antenna trajectory

s Slow-time

t Fast-time

Ri(x, s) Range of i-th antenna

ω0 Center frequency of the transmitted waveforms

si0 Zero-Doppler time for the i-th antenna

Li(x, s) Look-direction of the i-th antenna

dWB
i (t, s) Wideband SAR demodulated received signal at i-th

antenna

|z− γi(s)| = C. Iso-range surface

̂(z− γi(s)) · γ̇i(s) = C Iso-Doppler surface

KWB
i Filtered backprojection (FBP) operator for wideband SAR

IWB
i Wideband SAR image

ΦWB
s0 (x) Wideband interferometric phase

b Baseline vector in wideband SAR interferometry

L1(z, s10) · b = C Interferometric phase cone

l Vector from a known scatterer position to the unknown

location of a scatterer

l⊥1 Component of l perpendicular to ̂(z0 − γ1(s))

ΦWB
flat(x) Flattened wideband SAR interferometric phase

φ(t) Smooth windowing function

Tφ Duration of φ(t)

dUNBi (µ, s) Doppler-SAR data

Li(z, s) · γ̇i(s) = C Iso-Doppler surface

Li(z, s) · γ̈i(s) −
γ̇i(s)·γ̇⊥

i (s)
Ri(z,s)

= C

Iso-Doppler-rate surface

KUNBi FBP operator for Doppler-SAR

IUNBi Doppler-SAR image

ΦUNBsd
(x) Doppler-SAR interferometric phase

v Baseline velocity

ΦUNBflat (x) Flattened Doppler-SAR interferometric phase
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3. Wideband SAR Interferometry

The basic principles of SAR interferometry are described by many sources [10], [25], [9],

[26] [27], [1] and [28]. In this section, we summarize the principles and theory of

SAR interferometry in a notation and context relevant to our subsequent presentation

of Doppler-SAR interferometry. We begin with the wideband SAR received signal

model, derive the interferometric phase model, provide a geometric interpretation of

the interferometric phase from which we develop the equations of height mapping.

3.1. Wideband SAR received signal model

We assume that the SAR antennas are transmitting wideband waveforms. Let ri(t, s)

denote the received signals, i = 1, 2 where s and t are the slow-time and fast-time

variables, respectively. Under the start-stop and Born approximations, the received

signals can be modeled as [29, 30, 31]:

ri(t, s) =

∫
e−iω(t−2Ri(x,s)/c)Ãi(x, s, ω)V (x)dxdω (1)

where

Ri(x, s) = |x− γi(s)| (2)

is the range of the ith antenna, c is the speed of light in free-space, ω is the temporal

frequency variable, V (x) is the scene reflectivity function. Ãi is a slowly-varying

function of ω that depends on antenna beam patterns, geometrical spreading factors

and transmitted waveforms.

Let ω = ω0 + ω′, ω′ ∈ Ω where Ω is the bandwith and ω0 is the center frequency of

the transmitted waveforms. We demodulate the received signals and write

dWB
i (t, s) = eiω0tri(t, s), (3)

=

Ω∫
−Ω

e−iω′(t−2Ri(x,s)/c)Ãi(x, s, ω
′)ei2

ω0
c
Ri(x,s)V (x)dxdω′. (4)

Next, we approximate Ri(x, s) in ei
ω0
c
Ri(x,s) around s = si0 as follows:

Ri(x, s) ≈ Ri(x, s
i
0) + (s− si0) ∂sRi(x, s)|s=si0

+
(s− si0)2

2
∂2
sRi(x, s)

∣∣
s=si0

, i = 1, 2 (5)

where ∂s denotes derivative with respect to s and si0 is the zero-Doppler time for the

ith antenna, i.e.,

∂sRi(x, s)|s=si0 = ̂(x− γi(si0)) · γ̇i(si0) = 0. (6)

In (6) x̂ denotes the unit vector in the direction of x and γ̇i(s) denotes the velocity of

the ith antenna.
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We define

Li(x, s) = ̂(x− γi(s)) (7)

and refer to Li(x, s) as the look-direction of the ith antenna. Note that at the zero-

Doppler time, the antenna look-direction is orthogonal to the antenna velocity.

Let

Ai(x, s, ω
′) = Ãi(x, s, ω

′)e
i2
ω0
c

(s−si0)
2

2

[
∂2sRi(s,x)|

s=si0

]
. (8)

Finally, we write the demodulated received signal as follows:

dWB
i (t, s) ≈

Ω∫
−Ω

e−iω′(t−2Ri(x,s)/c)Ai(x, s, ω
′)ei2

ω0
c
Ri(x,s

i
0)V (x)dxdω′. (9)

3.2. Wideband SAR image formation and layover

Many different algorithms were developed to form wideband SAR images such as

range-Doppler [25], seismic migration [32], backprojection [31] and chirp scaling [33]

algorithms. All of these algorithms take advantage of high range resolution provided by

wideband transmitted waveforms and pulse-to-pulse Doppler information provided by

the movement of antennas. The location of a scatterer is identified by intersecting the

iso-range and iso-Doppler surfaces and the ground topography as shown in Fig. 2.

Doppler cone

Sensor position

Scatterer position

Range sphere

Velocity vector

x

Figure 2: The SAR image of a scatterer is reconstructed at the intersection of the

iso-range (sphere) and iso-Doppler (cone) surfaces and the height of the scatterer.

More precisely, the image of a scatterer is formed at z satisfying the following

equations:

Iso-range surface: |z− γi(s)| = Ri(x, s) (10)

Iso-Doppler surface: ̂(z− γi(s)) · γ̇i(s) = ∂sRi(x, s) (11)

Height: z3 = h(x), z = [z, z3]. (12)
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Note that Ri(x, s) and ∂sRi(x, s) are the measured range and Doppler and h(x) is

the height of the scatterer. As functions of z, (10) and (11) define the iso-range and

iso-Doppler surfaces, respectively.

Iso-range contours are defined as the intersection of the iso-range surface, i.e.,

sphere, and the ground topography. Without loss of generality, we consider a filtered

backprojection (FBP) type method where the received and demodulated signals are

backprojected onto iso-range contours defined on a reference surface [31], [29]. In the

absence of heigh information, demodulated signal is backprojected onto the intersection

of the iso-range surface and a known reference surface. Without loss of generality, we

assume a flat reference surface at zero height and backproject the demodulated signals

onto the following iso-range contours:

HRange
i (z0) =

{
z0 ∈ R3

∣∣ z0 = [z, 0] and |z0 − γi(s)| = Ri(x, s)
}
. (13)

Let KWB
i be an FBP operator. Then, the reconstructed image of the scatterer at x

becomes

IWB
i (zi0) := KWB

i [d̃WB
i ](zi0),

=

∫
eiω′(t−2Ri(z

i
0,s)/c)QWB

i (zi0, ω
′, s)dWB

i (t, s)dω′dtds, (14)

where QWB
i is a filter that can be chosen with respect to a variety of criteria [31], [34].

From (9), the image of the scatterer at x becomes

IWB
i (zi0) = |IWB

i (zi0)|ei2
ω0
c
Ri(x,s

i
0). (15)

The magnitude of reconstructed images is a measure of target reflectivity, whereas the

phase of the reconstructed image depends on the true location, x = [x, h(x)] of the

scatterer. However, since the true height h(x) of the scatter is unknown and hence

different than that of the reference surface, the location, zi0, at which the scatterer

is reconstructed is different than its true location, x. This positioning error due to

incorrect height information is known as layover. Fig. 3 depicts the layover effect.

We see that without the knowledge of ground topography, additional information

or measurements are needed to reconstruct the scatterers at correct locations. This

additional information is provided by a second antenna that has a different vantage

point than the first one.

3.3. Wideband SAR interferometric height reconstruction

An interferogram is formed by multiplying one of the SAR images with the complex

conjugate of the other SAR image [9, 10]. Prior to multiplying the SAR images, the

two intensity images, |IWB
i (zi0)|, i = 1, 2 are co-registered so that pixel locations z1

0 and

z2
0 , each corresponding to the scatterer at position x in the scene, are roughly aligned‡.

Multiplying IWB
1 (z1

0) with the complex conjugate of IWB
2 (z2

0), we get

IWB
1 (z1

0)IWB
2 (z2

0) = |IWB
1 (z1

0)||IWB
2 (z2

0)|ei2
ω0
c

(R1(x,s10)−R2(x,s20)). (16)

‡ The positioning errors due to layover are different in the two SAR images due to different imaging

geometries.
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Figure 3: Layover in wideband SAR - The range sphere depicts the iso-range surface of

the monostatic SAR configuration. Since the correct height of the scatterer at location

x is unknown, the image of the scatterer at x is formed at z0 on a flat surface.

We refer to the phase of the interferogram as the wideband interferometric phase

ΦWB
s0

(x) = 2
ω0

c
(R1(x, s1

0)−R2(x, s2
0)) (17)

where s0 is a multi-index for {s1
0, s

2
0}. The interferometric phase ΦWB

s0
provides us the

third measurement needed to determine the location of a scatterer in R3. In general

the range difference can be many multiples of 2π. Unique phase proportional to range

difference can be determined by a phase unwrapping process [1].

Now consider the following surface

|z− γ1(s1
0)| − |z− γ2(s2

0)| = c

2ω0

ΦWB
s0

(x) (18)

where ΦWB
s0

(x) is the measured interferometric phase. (18) defines a two-sheet

hyperboloid with foci at γ1(s1
0) and γ2(s2

0). We assume that the distance between the

antennas is much smaller than the ranges of the antennas to the scene and approximate

this hyperboloid as follows:

L1(z, s1
0) · b ≈ c

2ω0

ΦWB
s0

(x) (19)

where

b = γ2(s2
0)− γ1(s1

0) (20)

is the baseline vector. (19) defines a cone whose vertex is the first antenna and the axis

of rotation is the baseline vector. We call this surface the interferometric phase cone.

The interferometric phase cone provides the third equation needed to locate the position

of a scatterer in R3. More precisely, the location of the scatterer is given by the solution

of the following equations:

Range sphere: |z− γ1(s1
0)| = R1(x, s1

0) (21)

Doppler cone: ̂(z− γ1(s1
0)) · γ̇1(s1

0)) = ∂sR1(x, s)|s=s10 (22)

Interferometric phase cone: L1(z, s1
0) · b =

c

2ω0

ΦWB
s0

(x). (23)
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The right-hand-side of (21)-(23) are measured quantities defined in terms of the true

location, x, of the scatterer in the scene and the left hand-side-defines the three surfaces

in terms of the location of the scatterer z in the image. Fig. 4 geometrically illustrates

the solution of these three equations in wideband SAR interferometry. Typically the

Figure 4: Wideband SAR interferometry provides a third algebraic equation by which

the unknown location of a scatters in R3 is determined. The scatterer is located at the

intersection of the Doppler-cone, iso-range sphere, and the interferometric phase cone.

The axis of rotation of the Doppler-cone is the velocity of the first antenna and the axis

of rotation of the interferometric cone is the baseline vector extending from the first to

the second antenna.

variation in the color coding of interferogram is “flattened” by subtracting the expected

phase from a surface of constant elevation. Let x = l + z0. Then, under the assumption

that |l| � |z0 − γ1(s)|

̂(x− γ1(s)) ≈ ̂(z0 − γ1(s)) +
l⊥1

|z0 − γ1(s)|
(24)

where

l⊥1 = l− ̂(z0 − γ1(s))

[
l · ̂(z0 − γ1(s))

|z0 − γ1(s)|

]
. (25)

In other words, the vector l⊥1 is the component of l perpendicular to ̂(z0 − γ1(s)). The

flattened phase then becomes

ΦWB
flat(x) = 2

ω0

c

[
L1(x, s1

0)− L1(z0, s
1
0)
]
· b (26)

≈ 2
ω0

c

l⊥1 · b
R(z0, s1

0)
. (27)

Since b⊥1 · l = l⊥1 ·b where b⊥1 is the component of b perpendicular to L1(z, s1
0), (27) can

be alternatively expressed as

ΦWB
flat(x) = 2

ω0

c

b⊥1 · l
R(z0, s1

0)
. (28)
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Fig. 5 illustrates the key concepts and vectors involved in the wideband

interferometry.

Figure 5: A two-dimensional illustration of vectors involved in wideband interferometric

phase. l = x − z0 where z0 = [z0, 0], γi(s
i
0) denotes the location of the ith antenna

at the zero-Doppler time si0, L1(z0, s
1
0) denotes the look-direction of the first antenna

with respect to the reference scatterer located at z0, and l⊥1 is the component of l

perpendicular to L1(z0, s
1
0). The wideband interferometric phase is related to the

projection of the baseline vector, b, onto the the look-direction, L1(x, s1
0), of the antenna

with respect to scatterer location x. Known vectors are shown in red and unknown

vectors are shown in black.

4. Data Model and Image Formation for Doppler-SAR

4.1. Data Model for Doppler-SAR

We consider two mono-static antennas following the trajectories γi(t), i = 1, 2,

transmitting ultra-narrowband CWs as shown in Fig. 1. Let p(t) ≈ p̃(t)eiω0 be the

transmitted waveform where ω0 is the center frequency. The scattered field model at

the ith antenna is then given by

ri(t) =
ω2

0

(4π)2

∫
e−iω0(t−2|x−γi(t)|/c)

|x− γi(t)|2
p̃(t− 2|x− γi(t)|/c)V (x)dx. (29)

Let µ ∈ R+ and φ(t) be a smooth windowing function with a finite support, t ∈ [0, Tφ].

Following [15, 14, 23], we correlate ri(t) with a scaled and translated version of the

transmitted signal over φ(t) as follows:

dUNBi (µ, s) =

∫
ri(t)e

iω0µ(t−sTφ)/cp̃∗(µ(t− sTφ))φ(t− sTφ)dt. (30)



Doppler Synthetic Aperture Radar Interferometry 11

Inserting (29) into (30), we obtain

dUNBi (µ, s) =
ω2

0

(4π)2

∫
e−iω0(t−2|x−γi(t)|/c)

|x− γi(t)|2
p̃(t− 2|x− γi(t)|/c)V (x)

× eiω0µ(t−sTφ)/cp̃∗(µ(t− sTφ))φ(t− sTφ)dtdx. (31)

Approximating γi(t) around t = sTφ, γi(t) ≈ γi(sTφ) + γ̇i(sTφ)(t − sTφ), and making

the far-field approximation, we write

|x− γi(t)| ≈ |x− γi(sTφ)| − Li(x, sTφ) · γ̇i(sTφ)(t− sTφ), (32)

where Li(x, sTφ) = ̂(x− γi(sTφ)) and γ̇i(sTφ) = ∂sγi(sTφ) is the velocity of the ith

antenna.

To simplify our notation, for the rest of the paper, we set Li(x, sTφ) = Li(x, s),

γi(sTφ) = γi(s), γ̇i(sTφ) = γ̇i(s), ∂
2
sγi(sTφ) = γ̈i(sTφ) = γ̈i(s) and Ri(x, sTφ) =

Ri(x, s). We next define Doppler for the ith antenna

fdi (x, s) = −ω0

c
Li(x, s) · γ̇i(s). (33)

Inserting (32) and (31) into (33), the data model becomes

dUNBi (µ, s) =

∫
e−it[ω0(1−µ)−2fdi (x,s)]Ãi(t,x, s, µ)ei2fdi (x,s)sTφV (x)dtdx, (34)

where Ãi(t,x, s, µ) is a slow varying function of t composed of the rest of the terms in

(31).

We now approximate fdi (x, s) around s = sid as follows:

fdi (x, s) ≈ fdi (x, sid)+(s−sid) ∂sfdi (x, s)
∣∣
s=sid

+
(s− sid)2

2
∂2
sf

d
i (x, s)

∣∣
s=sid

.(35)

We choose sid such that

∂fdi (x, s)

∂s

∣∣∣∣
s=sid

= 0 ⇒ Li(x, s
i
d) · γ̈i(sid)−

γ̇i(s
i
d) · γ̇⊥i (sid)

Ri(xsid)
= 0 (36)

where γ̈i(s
i
d) is the acceleration of the ith antenna and γ̇⊥i (sid) is the component of γ̇i(s

i
d)

perpendicular to the look-direction Li(x, s
i
d) as described in (25). We refer to sid as the

zero-Doppler-rate time for the ith antenna.

Using (35) in ei2fdi (x,s)sTφ and redefining the slow-varying function in t,

Ai(t,x, s, µ) = Ãi(t,x, s, µ)e
i2sidTφ

(s−sid)
2

2
∂2sf

d
i (x,s)|

s=si
d , (37)

we obtain the following data model for Doppler-SAR image reconstruction:

dUNBi (µ, s) ≈
∫

e−it[ω0(1−µ)−2fdi (x,s)]Ai(t,x, s, µ)ei2fdi (x,sid)sidTφV (x)dtdx.(38)
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4.2. Doppler-SAR Image Formation and Layover

Similar to the wideband case, we reconstruct images by backprojection as described in

[35, 15] [14]. The forward model in (38) shows that the data, dUNBi (s, µ), is the weighted

integral of the scene reflectivity over iso-Doppler contours. It was shown in [14] that

a scatterer located at x in the scene is reconstructed at the intersection of iso-Doppler

surface and iso-Doppler-rate surface and ground topography. More precisely, the image

of a scatterer located at x in the scene is reconstructed at z satisfying the following

equations:

Iso-Doppler surface: Ld
i (z, s) · γ̇i(s) =

c

ω0

fdi (x, s) (39)

Iso-Doppler-rate surface: Li(z, s) · γ̈i(s)−
γ̇i(s) · γ̇⊥i (s)

Ri(z, s)
=

c

ω0

∂sf
d
i (x, s) (40)

Height: z3 = h(x), z = [z, z3] (41)

where the right-hand-side of (39)-(40) corresponds to measurements and the left-hand-

side defines surfaces in image parameter z.

The iso-Doppler-rate surface, given by the following set,

HDop−rate
i (z) =

{
z ∈ R3

∣∣ Li(z, s) · γ̈i(s)−
γ̇i(s) · γ̇⊥i (s)

Ri(z, s)
=

c

ω0

∂sf
d
i (x, s)

}
. (42)

can be viewed as a continuum of intersections of cones and expanding spheres centered

at the sensor location. The axis of rotation for the surface is the acceleration vector of

the antenna trajectory. Fig. 6 illustrates iso-Doppler and iso-Doppler-rate surfaces and

the reconstruction of a point scatterer by the intersection of these surfaces and ground

topography. The reconstruction is analogous to the wideband SAR image reconstruction

shown in Fig. 2.

In the absence of ground topography information, we backproject data onto iso-

Doppler contours on a reference surface. Without loss of generality, we consider the

following iso-Doppler contours:

HDop
i (z0) =

{
z0 ∈ R3

∣∣ z0 = [z, 0] and Li(z, s) · γ̇i(s) =
c

ω0

fdi (x, s)

}
(43)

where the right-hand-side of the equality in (43) is the high resolution measurement

provided by ultra-narrowband CW.

Let KUNBi be an FBP operator as described in [14]. Then, the reconstructed image

is given by:

IUNBi (zi0) := KUNBi [dUNBi ](zi0)

≈
∫

eit(ω0(1−µ)−2fdi (zi0,s))QUNB
i (s, zi0, t)d

UNB
i (s, µ)dtdµds (44)

where QUNB
i is a filter that can be chosen as in [35, 15, 14]. The reconstructed image is

given by

IUNBi (zi0) = |IUNBi (zi0)|ei2fdi (x,sid)sidTφ . (45)
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Figure 6: In Doppler-SAR image reconstruction, a scatterer located at x in the scene

is correctly reconstructed at the intersection of the iso-Doppler and iso-Doppler-rate

surfaces and the ground topography. Iso-Doppler surface is a cone in which its vertex

is the antenna location and its axis of rotation is the antenna velocity. The geometry

of the iso-Doppler-rate surface depends on the antenna trajectory. Figure is drawn for

a linear trajectory at a constant height.

In the absence of topography information, we see that a scatterer located at x in the

scene is reconstructed at zi0 6= x in the image. This position error in the reconstructed

image is the counterpart of the layover effect observed in conventional wideband SAR

images. Fig. 7 illustrates the layover effect in Doppler-SAR. However, the phase of the

reconstructed image is a function of the scatterer’s true location, x, and hence, includes

its height information, h(x).

Figure 7: If the height of a scatter is not known, it is reconstructed at an incorrect

position. Both the correct scatterer location x and its image z0 lie on the same iso-

Doppler surface, i.e., the Doppler cone. z0 lies at the intersection of the Doppler cone

defined fd1 (x, s) and the flat topography.

Note that the phases of the reconstructed images depend on the Doppler-rate,
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fdi (x, sid), the duration of the windowing function, Tφ, and the corresponding zero-

Doppler-rate times, sid. The height information is included in the Doppler-rate.

However, since each imaging geometry may yield different zero-Doppler-times, Doppler-

rate in the phase of each image is multiplied by a different zero-Doppler-rate time. To

equalize the effect of this multiplication factor, we multiply one of the reconstructed

images with itself so that the Doppler-rate in the phase of both images are multiplied

by the same factor, say s1
d. As a result, each image becomes

IUNBi (zi0) = |IUNBi (zi0)|ei2fdi (x,sid)s1dTφ , i = 1, 2. (46)

5. Doppler-SAR Interferometric Height Reconstruction

Similar to the wideband case, we form two Doppler-SAR images, IUNBi (zi0), i = 1, 2,

co-register the intensity images |IWB
i (zi0)| and multiply one of them by the complex

conjugate of the other to form an interferogram. Then the interferometric phase, i.e.,

the phase function of IUNB1 (x)IUNB2 (x) is given by

ΦUNB
sd

(x) = 2s1
dTφ

(
fd1 (x, s1

d)− fd2 (x, s2
d)
)

(47)

where sd denotes multi-index for {s1
d, s

2
d}. Thus the scatterer lies on the following surface:

L1(z, s1
d) · γ̇1(s1

d)− L2(z, s2
d) · γ̇2(s2

d) = − c

2ω0

(
fd1 (x, s1

d)− fd2 (x, s2
d)
)

(48)

where the right-hand-side is the measured interferometric phase. The left-hand-side of

(48) defines a surface that can be described as the intersections of two cones one of

which has a continuously changing solid angle.

Assuming that the distance between the antennas is much smaller than the ranges of

the antennas to the scene, we can approximate the look-direction of the second antenna

in terms of the look-direction of the first one as follows:

L2(x, s2
d) = L1(x, s1

d) +
b⊥1

R1(x, s1
d)

(49)

where b = γ2(s2
d) − γ1(s1

d) is the baseline vector and b⊥1 is the component of b

perpendicular to the look-direction of the first antenna. Using (49), we approximate

the interferometric phase as follows:

− c

2s1
dTφω0

ΦUNB
sd

(x) ≈ L1(x, s1
d) · v +

b⊥1 · γ̇2(s2
d)

R1(x, s1
d)

(50)

where

v = γ̇2(s2
d)− γ̇1(s1

d). (51)

We refer to v as the baseline velocity. We see that (50) approximates the interferometric

phase as a Doppler-rate. Additionally, (50) shows that Doppler-SAR interferometry

involves not only configuring antennas in position space, but also in velocity space.

The larger the difference in antenna velocities in the look-direction of the first antenna,

the larger the interferometric phase becomes. If on the other hand, the velocities of the

antennas are the same, the second term in (50) defines the interferometric phase surface.
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Clearly, in Doppler-SAR interferometry (50) provides the third equation needed to

determine the location of a scatterer in R3. More precisely, the location of a scatterer

is given by the solution of the following three equations:

Iso-Doppler: ̂(z− γ1(s1
d)) · γ̇1(s1

d) =
c

ω0

fd1 (x, s1
d) (52)

Iso-Doppler-rate: ̂(z− γ1(s1
d)) · γ̈1(s1

d)−
γ̇1(s1

d) · γ̇⊥1 (s1
dTφ)

R1(s1
d, z)

= ∂sf
d
1 (x, s1

d) (53)

Interferometric Doppler-rate: L1(z, s1
d) · v +

b⊥1 · γ̇2(s2
d)

R1(z, s1
d)

= − c

2s1
dTφω0

ΦUNB
sd

(x). (54)

Fig. (8) depicts the intersection of the three surfaces at the scatterer location in R3.

Scatterer position

Velocity vector

Doppler cone
Interferometric

phase 
Doppler-rate surface

Sensor position

Doppler-rate surface

Figure 8: Determination of the scatterer location in Doppler-SAR interferometry. The

scatterer is located at the intersection of the Doppler cone and the two iso-Doppler-

rate surfaces. Interferometric phase measurement provides the third surface, i.e., the

interferometric phase iso-Doppler-rate surface.

Similar to the wideband SAR interferometry, the interferometric phase can be

“flattened” by subtracting the phase due to a scatterer with known height. Without loss

of generality, let z0 = [z, 0] with R1(z0, s) = R1(x, s) and x = z0 + l. Thus, identifying

the location of a scatterer is equivalent to determining l.

Using (24), we see that

ΦUNB
flat (x) = ΦUNB

sd
(x)− ΦUNB

sd
(z0) ≈ l⊥1 · v

R1(z0, s1
d)

+O
(

1

R2
1(z0, s1

d)

)
(55)

where l⊥1 is the component of l perpendicular to L1(z0, s
1
d). (55) shows that the flattened

interferometric phase for Doppler-SAR interferometry is related to the projection of the

unknown l⊥1 onto the baseline velocity vector scaled by the range of the first antenna to

z0. Since l⊥1 · v = v⊥1 · l where v⊥1 is the component of v perpendicular to L1(z0, s
1
d), we

alternative express (55) as follows:

ΦUNB
flat (x) ≈ v⊥1 · l

R1(z0, s1
d)
. (56)

Fig. 9 shows the key concepts and vectors involved in Doppler-SAR interferometry.
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Figure 9: An illustration of key concepts and vectors in Doppler-SAR interferometry.

l = x − z0 where z0 = [z0, 0], γi(s) denotes the ith antenna position, L1(z0, s
1
d)

denotes the look-direction with respect to a reference surface, l⊥1 is the component of

l perpendicular to L1(z0, s
1
d), γ̇1(s) denotes the antenna velocity, L1(x, s1

d) denotes the

look-direction of the antenna with respect to the correct target location. Doppler-SAR

interferometric phase is proportional to the projection of the baseline velocity vector

onto l⊥1 . Known vectors are shown in red and unknown vectors are shown in black.

5.1. Comparison of Doppler-SAR Interferometry wide Wideband Case

Table II tabulates the interferometric phase for the wideband SAR and Doppler-SAR

cases. We compare and contrast the two interferometric phases below:

• For WB and UNB, the “baseline” is the difference in range and difference in velocity,

respectively.

• The larger the ω0, the center frequency, the larger the interferometric phase in both

WB and UNB cases.

• The larger the range, R1, the smaller the interferometric phase in both WB and

UNB cases.

• For UNB, larger the Tφ, the larger the interferometric phase.

• For WB, the larger the b, the difference between the positions of the two antennas,

the larger the interferometric phase. For UNB, the larger the v, the difference

between the velocities of the two antennas, the larger the interferometric phase.
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Table 2: Raw and flattened interferometric phase functions for wideband SAR and

Doppler-SAR.

Interferometric Phase Flattened Interferometric Phase

Wideband SAR 2ω0

c

[
L1(x, s10) · b

]
2ω0

c
1

R1(z0,s10)

[
b⊥1 · l

]
Doppler-SAR −2ω0

c sdTφ

[
L1(x, s1d) · v + 1

R1(x,s1d)
b⊥1 · γ̇2(s2d)

]
−2ω0

c sdTφ
1

R1(z0,s1d)

[
v⊥1 · l

]

6. Numerical Experiments

6.1. Experimental Setup

We conducted numerical experiments for both wideband and Doppler-SAR. Our

experimental setup was as follows:

• A scene of size 128× 128m at 1m resolution was imaged.

• A single point target was placed at (−20,−31, 50)m with the origin (0, 0, 0) at the

scene center.

• Two antennas flying on a linear trajectory parallel to the y-axis was used with

both antennas placed at 7.1km from the scene center in the x-axis direction. The

midpoint of the linear trajectories for both antennas was aligned at y = 0.

• Wideband: First antenna was placed at height of 3km and the second at 4km.

The length of the trajectories were 1km in length for both antennas. Both antennas

were moving at velocity of 100m/s. A waveform with flat spectrum of 100MHz

bandwidth at center frequency of 8GHz was transmitted from both antennas. 512

frequency samples and 1024 slow-time, s, samples were used for imaging.

• Doppler: First antenna was placed at height of 2km and the second at 4km. The

length of the trajectories were 1km for both antennas. The first antenna was moving

at velocity of 100m/s and the second at 400m/s. A continuous waveform at center

frequency of 8GHz was transmitted from both antennas. A window of 0.01s was

used for processing at each slow time. 512 fast time, t, samples and 1024 slow-time,

s, samples were used for imaging.

6.2. Wideband SAR Interferometry

Fig. 10a and Fig. 10b show the reconstructed images of the point target located at

(−20,−31, 50)m from the first and the second antenna, respectively assuming a flat

ground topography at height of 0m. In both Fig. 10a and Fig. 10b, we see that there is

a displacement due to layover effect in the range direction (x-axis). The first antenna

reconstructs the target at (−41,−31, 0)m. The second antenna reconstructs the target

at (−48,−31, 0)m.
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(a) (b)

Figure 10: (a) Wideband reconstruction of the target located at (−20,−31, 50)m using

the first antenna assuming flat ground topography. The target is reconstructed at

(−41,−31, 0)m. (b) Wideband reconstruction of the target located at (−20,−31, 50)m

using the second antenna assuming flat ground topography. The target is reconstructed

at (−48,−31, 0)m.

We next align the peaks in the two images and multiply the first image with the

complex conjugate of the second as in (16) to generate the interferogram. The resulting

interferogram is shown in Fig. 11.

Figure 11: The interferogram from wideband SAR reconstructed images.

In order to reconstruct the height we use the set of equations (21), (22), and (23).

The Doppler cone equation (22) at zero-Doppler point s1
0 gives us that the iso-Doppler

contours are in the look-direction, which in our scenario is parallel to the x-axis. Thus,

iso-Doppler contours have constant y value at the target’s y position. Using this fact,
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we need only to compute the intersection of iso-range contour (21) and interferometric

phase contour (23) fixing the y position. From Figs. 10a and 10b we see that both

targets are reconstructed at y position of −31m. Thus we reconstruct the true target

position using y = −31m. For reconstruction, we sampled the height in the interval

[1, 100]m at 0.5m resolution.

Fig. 12a shows the magnitude image of |z−γ1(s1
0)| −R1(x, s1

0) at y = −31m. Note

that R1(x, s1
0) is the measured value derived from the phase of the reconstructed image.

The dark blue area indicates the iso-range contour where the magnitude of the difference

is minimized.

(a) (b)

Figure 12: (a) Image of the magnitude of |z − γ1(s1
0)| − R1(x, s1

0) at y = −31m. The

iso-range contour is indicated by dark blue area where the magnitude of |z− γ1(s1
0)| −

R1(x, s1
0) is minimized. (b) Image of the magnitude of L1(z, s1

0) · b − c
2ω0

ΦWB
s0

(x) at

y = −31m. The interferometric phase contour is indicated by dark blue area where the

magnitude of L1(z, s1
0) · b− c

2ω0
ΦWB
s0

(x) is minimized.

Similarly, Fig. 12b shows the magnitude image of the difference L1(z, s1
0) · b −

c
2ω0

ΦWB
s0

(x). As before, the dark blue area indicates the interferometric phase contour.

Combining the two images, Fig. 13 shows the intersection of the two contours

indicated by the dark blue area. The white ‘x’ in Fig. 13 indicates the exact intersection

computed and where the target is reconstructed. The white ‘o’ indicates the true target

position. It is clear that the target is reconstructed at the correct position and height.

6.3. Doppler-SAR

We proceed similar as in the wideband case for the Doppler-SAR case. Figs. 14a and 14b

show the reconstructed image for Doppler-SAR for the first and second antennas,

respectively. The first antenna reconstructs the target at (−34,−31, 0)m and the second

antenna at (−48,−31, 0)m.



Doppler Synthetic Aperture Radar Interferometry 20

Figure 13: Image of the intersection of the iso-range contour with the interfermetric

phase contour at y = −31m. The exact intersection is indicated by white ‘x’. The

true target position is indicated by white ‘o’. The target is reconstructed at the correct

position and height.

(a) (b)

Figure 14: (a) Doppler-SAR reconstruction of the target located at (−20,−31, 50)m

using the first antenna assuming flat ground topography. The target is reconstructed

at (−34,−31, 0)m. (b) Doppler-SAR reconstruction of the target located at

(−20,−31, 50)m using the second antenna assuming flat ground topography. The target

is reconstructed at (−48,−31, 0)m.
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As in the wideband case, we align the peaks of the two images and multiply the first

image with the conjugate of the second image to form the interferogram of the Doppler

images. The resulting interferogram is shown in Fig. 15.

Figure 15: The interferogram from Doppler-SAR reconstructed images.

To reconstruct the height we use the set of equations given in (52), (53),

and (54). The zero-Doppler-rate points, s1
d, is approximated by the end of the

antenna’s trajectories farthest from the target position. By (36), for a linear trajectory

with constant velocity, true zero-Doppler-rate point would be where γ̇i(s
1
d) ⊥ γ̇⊥i (s1

d).

Namely, where the look-direction is parallel to the velocity vector. The best estimate

would be at a point in the trajectory farthest away from the target location.

Fig. 16a illustrates the iso-Doppler surface at y = −31m, which is the y-position

where the target position is reconstructed and the true target’s y position. Notice that

both images reconstruct the scatterer at the correct y position. The iso-Doppler contour

is given by the dark blue area as before.

Similarly, Figs. 16b and 16c illustrate the iso-Doppler-rate and interferometric

Doppler-rate surfaces, respectively at y = −31m.

Fig. 17 combines Figs. 16a, 16b, and 16c. The intersection of the three contours is

indicated by white ‘x’. The white ‘o’ shows the true target location. Clearly, the target

is reconstructed at the correct position and height.

7. Conclusions

We present a novel radar interferometry based on Doppler-SAR imaging paradigm.

Doppler-SAR uses single frequency transmitted waveforms. It has several advantages

over conventional SAR including simpler, inexpensive hardware, high SNR and long

effective range of operation, and is suitable for use in passive radar applications.

We derived the interferometric phase relationship for Doppler-SAR. Doppler-SAR

interferometric phase depends on the difference in the velocity of the antennas as opposed



Doppler Synthetic Aperture Radar Interferometry 22

(a) (b)

(c)

Figure 16: (a) Image of the magnitude of ̂(z− γ1(s1
d)) · γ̇1(s1

d) − c
ω0
fd1 (x, s1

d) at

y = −31m. The iso-Doppler contour is indicated by dark blue area where the

magnitude of ̂(z− γ1(s1
d)) · γ̇1(s1

d) = c
ω0
fd1 (x, s1

d) is minimized. (b) Image of the

magnitude of ̂(z− γ1(s1
d)) · γ̈1(s1

d) −
γ̇1(s1d)·γ̇⊥1 (s1dTφ)

R1(s1d,z)
− ∂sf

d
1 (x, s1

d) at y = −31m. The

iso-Doppler-rate contour is indicated by dark blue area where the magnitude of
̂(z− γ1(s1

d))·γ̈1(s1
d)−

γ̇1(s1d)·γ̇⊥1 (s1dTφ)

R1(s1d,z)
−∂sfd1 (x, s1

d) is minimized. (c) Image of the magnitude

of L1(z, s1
d) ·v +

b⊥1 ·γ̇2(s2d)

R1(z,s1d)
+ c

2s1dTφω0
ΦUNB
sd

(x) at y = −31m. The interferometric Doppler-

rate contour is indicated by dark blue area where the magnitude of L1(z, s1
d) · v +

b⊥1 ·γ̇2(s2d)

R1(z,s1d)
+ c

2s1dTφω0
ΦUNB
sd

(x) is minimized.
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Figure 17: Image of the intersection of the iso-Doppler, iso-Doppler-rate and

interferometric Doppler-rate contours at y = −31m. The intersection is indicated by

white ‘x’. The true target position is indicated by white ‘o’. The target is reconstructed

at the correct position and height.

to the range difference observed in wideband SAR. Thus, in Doppler-SAR interferometry,

one can reconstruct the ground topography even with the same look-direction from both

antennas so long as their velocities are different). Furthermore, we showed that the true

target position is determined by the intersection of iso-Doppler, iso-Doppler-rate, and

interferometric Doppler-rate surfaces. This is different from conventional wideband SAR

in that the surfaces that determine the true target position are iso-range, iso-Doppler,

and interferometric Doppler-rate surfaces.

We presented numerical simulations for a single point scatterer using two antennas

moving in linear trajectories to verify our interferometric method. We also conduct

conventional wideband SAR interferometric reconstruction as a comparison. We

show that both wideband SAR and Doppler-SAR interferometry is able to accurately

reconstruct the target location. Thus, our numerical simulations show that Doppler-

SAR interferometry retains the accuracy of conventional SAR interferometry while

having the advantage that Doppler-SAR affords.

In the future, we will analyze the sensitivity of height estimation with respect to

other observables and parameters.

Acknowledgement

This material is based upon work supported by the Air Force Office of Scientific

Research (AFOSR) under award number FA9550-16-1-0234, and by the National Science

Foundation (NSF) under Grant No. CCF-1421496.



Doppler Synthetic Aperture Radar Interferometry 24

Appendix A. Approximations

Appendix A.1. Far-field approximation

Let x and y be two vectors such that |x| � |y|. Then, by using Taylor series expansion

we can make the following approximation:

|x− y| =
√

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2, (A.1)

=
√
|x|2 − 2(x1y1 + x2y2 + x3y3) + |y|2, (A.2)

= |x|

√
1− 2(x · y)

|x|2
+
|y|2
|x|2

, (A.3)

≈ |x|
(

1− 1

2

2x · y
|x|

)
, (A.4)

≈ |x| − x̂ · y (A.5)

where x̂ is the unit vector x̂ = x
|x| .

Appendix A.2. Approximation of look-direction under far-field assumption

Let ̂(x− γ(s)) denote a look direction where x = y + z and |y − γ(s)| � |z|. Then by

using far field expansion we can write

̂(x− γ(s)) =
x− γ(s)

|x− γ(s)|
(A.6)

=
y + z− γ(s)

|y + z− γ(s)|
, (A.7)

≈ y − γ(s)

|y − γ(s)|+ ̂(y − γ(s)) · z
+

z

|y − γ(s)|+ ̂(y − γ(s)) · z
, (A.8)

≈ (|y − γ(s)| − ̂(y − γ(s)) · z)
y − γ(s)

|y − γ(s)|2

+
(|y − γ(s)| − ̂(y − γ(s)) · z)z

|y − γ(s)|2
, (A.9)

≈ ̂(y − γ(s)) +
z− ̂(y − γ(s))

[
̂(y − γ(s)) · z

]
|y − γ(s)|

, (A.10)

≈ ̂(y − γ(s)) +
z⊥

|y − γ(s)|
(A.11)

where z⊥ is the transverse z, i.e. projection of z onto the plane whose normal vector is

along the look direction ̂(γ(s)− y). Therefore, difference of look directions is given by:

̂(x− γ(s))− ̂(y − γ(s)) ≈ z⊥

|γ(s)− y|
(A.12)

where x = y + z.
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