
Basic Observables for Processes�Michele Boreale1 Rocco De Nicola2 Rosario Pugliese21Dipartimento di Scienze dell'Informazione, Universit�a di Roma \La Sapienza"2Dipartimento di Sistemi e Informatica, Universit�a di FirenzeAbstractA general approach for de�ning behavioural preorders over process termsas the maximal pre{congruences induced by basic observables is examined.Three di�erent observables, that provide information about the initial com-munication capabilities of processes and about the possibility that processesget engaged in divergent computations, will be considered. We show thatthe pre{congruences induced by our basic observables coincide with intuitiveand/or widely studied behavioural preorders. In particular, we retrieve inour setting the must preorder of De Nicola and Hennessy and the fair/shouldpreorder introduced by Cleaveland and Natarajan and by Brinksma, Rensinkand Vogler. A new form of testing preorder, which we call safe{must, alsoemerges. The alternative characterizations we o�er shed light on the di�er-ences between these preorders, and on the rôle played in their de�nition bytests for divergence.1 IntroductionIn the classical theory of functional programming, the point of view is taken thatexecuting a program expression corresponds to evaluating it. If we write M # v toindicate that programM evaluates to value v, the problem of the equivalence of twoprograms, hence of their semantics, can be stated as follows:Two programs M and N are observationally equivalent if for every pro-gram context C such that both C[M] and C[N] are programs, and forevery value v, we have: C[M] # v if and only if C[N] # v.�The extended abstract of this paper has been presented at ICALP'97 and appears in LNCS1256, at pages 482 { 492. This work has been partially supported by EEC: HCM project EXPRESS,by CNR project \Speci�ca ad alto livello e veri�ca formale di sistemi digitali" and by Istituto diElaborazione dell'Informazione CNR, Pisa.
1

A similar approach, used e.g. for the lazy lambda calculus [1], is that of de�ningequivalence relations in terms of reduction to normal forms. It leads to consideringas equivalent any two programs that cannot be di�erentiated by considering thepossibility of obtaining normal forms after plugging terms in any context.In general, given a language equipped with a reduction relation, the paradigmfor de�ning preorders (equivalences) over terms of the language, can be traced backto Morris [20] and can be phrased as follows:1. De�ne a set of observables (values, normal forms, . . .) to which a programcan evaluate by means of successive reductions.2. De�ne a basic preorder over terms by stating that a term is less de�ned thananother if it exhibits a smaller set of basic observables.3. Consider the largest pre{congruence over the language induced by the basicpreorder.This paradigm has been the basis for assessing many semantics of sequential lan-guages and is at the heart of the full abstraction problem, see e.g. [26].Here, we aim at taking advantage of this paradigm also for studying modelsof concurrent systems and their equivalences. In this case, the choice of the basicobservables is less obvious. It is well{known that input/output relations are notsu�cient for describing the semantics of this class of systems; it would thus belimitative to use values as observables.Also studying the evolution to some kind of normal forms under all possiblecontexts is not as inspective as in the case of lambda calculus. Indeed, while theinteraction between a �{term and the environment is circumscribed, that betweena process and its environment is less clear. Suppose a �{term M is plugged into a\context" N , to form an application MN ; then, everywhere along a computation,we know when an interaction between M and N occurs, namely when M reduces toa �{abstraction and a �-reduction takes place. Thus, observing reduction of M to a�-abstraction is a sensible basic observable that permits understanding the overallbehaviour of a term. On the contrary, when considering concurrent systems, theinternal evolution of single parallel components is freely intermingled with externalcommunications. Understanding the semantics of concurrent components via theircontextual behaviour turns out to be much less obvious.A �rst attempt at approaching the problem of process equivalences along thementioned lines is described in [19]. Milner and Sangiorgi de�ne a new equivalencefor CCS [18] based on barbed bisimilarity. This relation represents a uniform basisfor de�ning sensible process equivalences for di�erent languages, as it only relies ona reduction relation and an observation predicate that detects the communicationcapability at a given channel. Informally, two processes are considered as barbedequivalent if they have the same communication capabilities, and this property is2

preserved by internal reduction. The latter requires a co{inductive de�nition. Milnerand Sangiorgi show that CCS and �{calculus context closures of barbed bisimilarityleads to alternative characterizations of bisimulation congruences.It can be said that in [19] the classical approach, �a la Morris outlined above,is not followed to the letter. Indeed, the basic observables are very simple, butthe basic equivalence heavily relies on co{induction. In this paper we would like toconsider the impact of a simpler observation machinery that only relies on contextsand basic observables, avoiding the use of co{inductive tests.Like Milner and Sangiorgi, we shall be interested in testing for the communicationcapabilities of systems, but we shall look for guaranteed ones. When one is willingto infer the interactive behaviour of a system from its \isolated" behaviour, theknowledge of the system's possibility of accepting communications along speci�cchannels is not su�cient. Indeed, considering just the possibility of communicationand closing with respect to all contexts would lead to trace semantics (see e.g.[8]), that totally ignores possible deadlocks and other liveness properties. Due tothe inherent nondeterminism of concurrent computations, to get more inspectivesemantics it is necessary to know whether communications are guaranteed.Moreover, we shall be interested in the risk a system has of getting involved in anin�nite sequence of internal communications (divergence), because this could leadto ignoring all subsequent external stimuli. Finally, when considering divergencewe �nd it interesting also to detect those external communications that can lead aprocess to a divergent state.These considerations lead us to introducing three basic observables:1. P ! ` (P guarantees `) asserts that, by internal actions, P can only reach statesfrom which action ` can be eventually (after a sequence of internal actions)performed;2. P # (P converges) asserts that P cannot get involved in an in�nite sequenceof internal actions;3. P # ` (P converges along `) asserts that P converges and does so also afterperforming `.For processes equipped with a �nite reduction relation, these observables are ob-viously decidable; but, in general, they are not. This is somehow expected wheneverthe base language is Turing powerful.As base language, we shall consider a simple variant of CCS, named Tau{lessCCS (TCCS, [10]) that replaces the operators for internal transitions and for choicewith an operator for internal choice and an operator for purely external choice1.1These choice operators were originally introduced by Hoare, see e.g. [15], their operationalsemantics was described in [25].
3

communicationrequirements 8<:
convergence requirementsz }| {no req. convergence: # conv. after `: # `no req. U #�c , <�CT #L�c , <�CTguarantee `: ! ` �cL , <�cFS #�cL , <�M #L�cL , <�SMTable 1: Contextual Preorders CharacterizationsWe have chosen TCCS for the sake of simplicity and for avoiding the well knowncongruence problem that arises in presence of silent transitions and choice. Allof our results are however easily extended to CCS and to other languages whoseoperational semantics enjoys some mild conditions (see the �nal section).The three predicates described above naturally induce �ve contextual preorders,that are listed in Table 1 (on the left of ,). There we represent a contextual pre-order using the notation s1�cs2 , where s1 (if present) refers to the used convergencepredicate, and s2 (if present) refers to the guarantees one. The universal relation isdenoted by U .The main results of this paper are �ve full abstraction theorems that make itmanifest that our contextual preorders do coincide with well{known and/or intuitivebehavioural preorders over processes studied in the literature. More speci�cally, wewill show that:� �cL , the contextual preorder induced by ! `, coincides with <�cFS , the maximalpre{congruence included in the fair/should preorder of [21] and [4].� #�c and #L�c , the contextual preorders induced by # and # `, both coincidewith <�CT , the preorder given by reverse inclusion of convergent traces. Thisis the maximal re�nement of trace semantics [8] that respects divergence.Together with the impact of the three observables used in isolation we will also studythe result of using them in pairs and shall show that:� #�cL , the contextual preorder induced by # and ! `, coincides with <�M , theoriginal must preorder of [9, 13];� #L�cL , the contextual preorder induced by # ` and ! `, gives rise to a newpreorder, the safe{must preorder <�SM , which is also supported by a veryintuitive testing scenario.Table 1 provides a summary of the mentioned results.The safe{must preorder has a direct characterization in terms of computationsfrom pairs of observer and process: a computation is successful if a success state isreached strictly before a \catastrophic" (divergent) one (this explains the adjective

4

`safe'). This condition is stronger than the one introduced by De Nicola and Hen-nessy [9] and is very closely related to the de�nition of Olderog's readiness semanticsin [24].The rest of the paper is organized as follows. In Section 2, we briey recall syntaxand transitional semantics of TCCS. In Section 3, we introduce the relevant notionsof the observational semantics for TCCS. Moreover, we report some alternative char-acterizations of the testing preorders that will be useful in later proofs. In Section 4,we present the full abstraction theorems that relate our contextual preorders to thepreorder given by the reverse inclusion of convergent traces, to the fair/should pre-order, to the must preorder and to the safe{must preorder. Section 5 is devoted tostudying the relationships among the di�erent preorders we have considered, and tofurther investigating the safe{must preorder. Section 6 contains a brief discussionon extensions and future work. The �nal section contains some concluding remarksand comments on related work.2 Tau{less CCS: TCCSIn this section, we briey present the syntax and the operational semantics of TCCS,(�{less CCS [10, 13]). As mentioned in the introduction, we have preferred TCCSto CCS because the former allows us to avoid the \congruence problems" that arisewhen the CCS choice operator (+) is used and silent actions are abstracted away.However, the very same results can be obtained by using CCS and its must pre{congruence. This can be obtained from the must preorder by imposing that wheneverthe \better" process can perform a silent move, so can do the other [9].We let� N , ranged over by a; b; : : :, be an in�nite set of names and N = fa j a 2 Ng,ranged over by a; b; : : :, be the set of co{names. N and N are disjoint and arein bijection via the complementation function (�); we de�ne: (a) = a;� L = N [N , ranged over by `; `0; : : :, be the set of labels; we shall use L;K; : : :,to range over subsets of L and we de�ne L = f` j ` 2 Lg;� X , ranged over by X; Y; : : :, be a countable set of process variables.De�nition 2.1 The set of TCCS terms is generated by the grammar:E := 0 ���
 ��� `:E ��� E[]F ��� E�F ��� E jF ��� EnL ��� Effg ��� X ��� recX:Ewhere f : L ! L, called relabelling function is such that f` j f(`) 6= `g is �nite,f(a) 2 N and f(`) = f(`). We let Proc, ranged over by P , Q, etc., denote the setof closed terms or processes (i.e. those terms where every occurrence of any agentvariable X lies within the scope of some recX: operator).5

The language has two basic processes (0 and
) and a number of operators forbuilding up terms from existing ones. The intuitive meaning of TCCS terms is:- 0 (inaction) cannot perform any action;-
 (divergence) may only compute internally;- `:E (action pre�x) executes action ` and then behaves like E;- E[]F (external choice) behaves either like E or like F and the choice is con-trolled by the environment;- E�F (internal choice) may autonomously decide to behave either like E orlike F ;- E j F (parallel composition) denotes the concurrent execution of E and F ;- EnL (restriction) behaves like E except that it cannot execute actions in L;- Effg (relabelling) behaves like E except that its actions are renamed by f ;- recX:E (recursive de�nition) has the same meaning as the term de�ned bythe equation X = E and is used for describing recursive behaviours.In the following, we often shall write ` instead of `:0. We write f`01=`1; : : : ; `0n=`ngfor the relabelling operator ffg where f(`) = `0i if ` = `i, i 2 f1; : : : ; ng, andf(`) = ` otherwise. As usual, we write E[E1=X1; : : : ; En=Xn] for the term obtainedby simultaneously substituting each occurrence of Xi in E with Ei (with renamingof bound process variables possibly involved). We use the notation Pi2f1;:::;ngEias a shorthand of E1[] � � � []En (the order in which the operands Ei are arranged isunimportant, as [] is associative and commutative in every semantics considered inthe paper); when n = 0, this term will by convention indicate 0. Similarly, thenotation P�i2f1;:::;ngEi is used as a shorthand of E1� � � ��En (also � is associativeand commutative in every semantics considered in the paper).The structural operational semantics of a TCCS term is de�ned via the twotransition relations `�! (visible actions) and �! (internal actions) induced by theinference rules in Table 2 and in Table 3, respectively.As usual, we use =) or �=) to denote the reexive and transitive closure of�! and use s=) , with s 2 L+, for =) `�! s0=) when s = `s0. Moreover, wewrite P s=) if there exists P 0 such that P s=) P 0 (P �̀! and P �! will be usedsimilarly). We will call sort of P the set sort(P) = f` 2 L j P s`=) for some s 2 L�g,successors of P the set S(P) = f` 2 L j P `=)g, and language generated by P theset L(P) = fs 2 L� j P s=) g. Note that, since we only consider �nite relabellingoperators, every TCCS process has a �nite sort.
6

AR1 `:P �̀! PAR2 P �̀! P 0Pffg f(`)�! P 0ffg AR3 P �̀! P 0PnL �̀! P 0nL if ` 62 L [LAR4 P �̀! P 0P []Q �̀! P 0 AR5 P �̀! P 0P jQ �̀! P 0 jQTable 2: SOS rules for Visible Actions (symmetric of rules AR4 and AR5 omitted)IR1
�!
 IR2 recX:E �!E[recX:E=X]IR3 P �! P 0Pffg �! P 0ffg IR4 P �! P 0PnL�! P 0nLIR5 P �Q�! P IR6 P �! P 0P []Q�! P 0 []QIR7 P �! P 0P jQ�! P 0 jQ IR8 P �̀! P 0, Q �̀! QP jQ�! P 0 jQ0Table 3: SOS rules for Internal Actions (symmetric of rules IR5, IR6 and IR7 omitted)We will write P n to denote the n{th �nite syntactical approximant of P , obtainedby �rst unfolding n times all the recursive sub-terms of P , and then replacing therecursive sub-terms with
 (see, e.g., [13]).De�nition 2.2 A context is a TCCS term C with one free occurrence of a processvariable, usually denoted by . If C is a context, we write C[P] instead of C[P=].The context closure Rc of a given binary relation R over processes, is de�ned as:P Rc Q if and only if for each context C : C[P]R C[Q]:Rc enjoys two important properties:a. (Rc)c = Rc,b. R � R0 implies Rc � R0c.In the following, we will write 6R for the complement of R.3 Observational SemanticsIn this section, we introduce a number of observational semantics for TCCS; we fol-low two approaches. The �rst one relies on three basic observables (i.e. predicatesover processes) which give rise to �ve signi�cant preorders; the corresponding pre{congruences are obtained by closing these preorders over all possible TCCS contextsand determine �ve semantics for the language. The second approach relies on the7

classical testing scenario of [9, 13], or variants of it. We shall also introduce alterna-tive characterizations of the obtained testing preorders that will be useful in laterproofs.3.1 Basic Observables and Observation PreordersDe�nition 3.1 Let P be a process and ` 2 L. We de�ne three basic observationpredicates over processes as follows:� P ! ` (P guarantees `) if and only if for each P 0, P =) P 0 implies P 0 `=) ;� P # (P converges) if and only if there is no in�nite sequence of internal tran-sitions P �! P1 �! � � � starting from P ;� P # ` (P converges along `) if and only if P # and, for each P 0, P `=) P 0implies P 0 #.The above predicates can be combined in �ve sensible ways and used to de�ne�ve basic observation preorders over processes, as stated in the following de�nition.De�nition 3.2 Let P and Q be processes.� P #�Q if and only if P # implies Q #;� P #L�Q if and only if for each ` 2 L: P # ` implies Q # `;� P �L Q if and only if for each ` 2 L: P ! ` implies Q ! `;� P #�L Q if and only if for each ` 2 L: (P # and P ! `) implies (Q # and Q ! `);� P #L�L Q if and only if for each ` 2 L: (P # ` and P ! `) implies (Q # ` andQ ! `).Of course, the basic observation preorders are very coarse. More re�ned relationscan be obtained by closing the above preorders under all TCCS contexts. For eachbasic observation preorder, say �, the contextual preorder generated by � is de�nedas its closure �c.3.2 Testing Preorders and Alternative CharacterizationsLike in the original theory of testing [9, 13], we have that:- observers, ranged over by O;O0; : : :, are processes capable of possibly perform-ing an additional distinct \success" action w =2 L;- computations from P j O are sequences of internal transitions P j O (=P0 jO0)�! P1 jO1 �! � � �, which are either in�nite or such that there existsk � 0 with Pk jOk 6�! . 8

De�nition 3.3 Let P be a process and O be an observer.1. P mustM O if for each computation from P jO, say P jO �! P1 jO1 �! � � �,there is some i � 0 such that Oi w�! .2. P mustSM O if for each computation from P jO, say P jO�! P1 jO1�! � � �,there is some i � 0 such that Oi w�! and Pi #.3. P mustFS O if for each computation from P jO, say P jO�! P1 jO1 �! � � �,it holds that Pi jOi w=) for each i � 0.The �rst de�nition of successful computation given above is exactly that of [9].The second one considers successful only those computations that can report asuccess strictly before the observed process diverges. The third de�nition, which isessentially borrowed from [4], totally ignores the issue of divergence2. These threenotions allow us to de�ne three preorders: the �rst one (<�M) is the original mustpreorder of [9, 13], the second one (<�SM) is the new safe{must preorder and thethird one (<�FS) is the (reverse of the) fair/should preorder of [21] and [4].De�nition 3.4 Let P and Q be processes and X 2 fM;SM;FSg thenP <�XQ if and only if for every observer O: P mustX O implies QmustX O:<�M , <�SM and <�FS are called must, safe{must and fair/should preorder, respec-tively.Given a testing preorder <�X , X 2 fM;SM;FSg, the corresponding TCCS pre{congruence is de�ned as its closure <�cX and the corresponding equivalence, 'X , isde�ned as 'X = <�X \ (<�X)�1.We introduce below alternative characterizations of the preorders must and safe{must. They support simpler methods for proving (or disproving) that two processesare behaviourally related. For presenting the new characterizations, we need someadditional notation.De�nition 3.5 Let s 2 L�, B ��n L and Q be a set of processes.� The convergence predicate, # s, is de�ned inductively as follows:{ P # � if P #;{ P # `s0 if P # � and for each P 0 : P `=) P 0 implies P 0 # s0.We write P " s (P " � or P ") if P # s (P # �) does not hold.� (P after s) is the set of processes fP 0 j P s=) P 0g.2Although not explicitly present in the �rst de�nition, it is there taken into account: a divergentprocess would contain an unsuccessful computation.9

� P # B means P # ` for each ` 2 B.� Q # B means P # B for each P 2 Q.� P acceptsM B means that there exists ` 2 B such that P `=) .� Q acceptsM B means P acceptsM B for each P 2 Q.� Q acceptsSM B means Q # B and Q acceptsM B.De�nition 3.6 Let X 2 fM;SMg. For processes P and Q, we write P �X Q iffor each s 2 L� such that P # s, it holds that:a) Q # s, andb) for every B ��n L: (P after s) acceptsXB implies (Qafter s)acceptsXB.The proof of the following result is reported in [9, 13].Theorem 3.7 For all processes P and Q, P <�M Q if and only if P �M Q.Theorem 3.8 For all processes P and Q, P <�SM Q if and only if P �SM Q.Proof: Very similar to that of Theorem 3.7, reported e.g. in [13]. Below, weoutline the proof. We provide additional details for those points that di�er from[13].Part ((=). Let O be any observer and suppose that Q 6mustSM O: we showthat P 6mustSM O as well. Let be any non-successful computation, say Q j O =(Q0 j O0) �! Q1 j O1 �! � � �, for Q j O. The case when is in�nite is dealt withexactly like in [13] (it requires K�onig's Lemma for reducing to the �nite case). If is�nite, then there are k and s such that Qk jOk 6�! , and Q s=) Qk and O s=) Ok.Furthermore, for each i, 0 � i � k, such that Oi w�! , there is j � i with Qj ".Now, if P " s a non-successful computation for P j O can be easily constructed. IfP # s then Q # s, by de�nition of �SM : this implies that Oi 6 w�! for 0 � i � k.Now, let B def= S(Ok). Since Qk j Ok 6�! , we deduce that (Qafter s) acceptsSM Bdoes not hold. From this and P # s we deduce that also (P after s) acceptsSM Bdoes not hold. That is, there is P 0 such that P s=) P 0 and either S(P 0)\B = ; orP 0 `=) P 00 and P 00 ", for some ` 2 B: in both cases, a non successful computationfor P jO can be easily constructed.The proof of part (=)), similarly to the proof of Theorem 3.7 in [13], re-lies on two sets of observers. The �rst kind of observers tests for convergencealong s (P # s), and is de�ned inductively on s as follows: c(�) = w andc(`s0) = (w�w)[](`:c(s0)). The second kind tests for the sets of acceptance aftera sequence of actions ((P after s) acceptsSM B), and is de�ned inductively on s asfollows: a(�; B) = P`2B `:w and a(`s0; B) = (w�w)[](`:a(s0; B)). 210

By taking advantage of the above alternative characterizations it is easy to provethat the must and the safe{must preorders are pre{congruences.Theorem 3.9 For all processes P and Q and X 2 fM;SMg, P <�XQ if and onlyif P <�cXQ.Proof: The proof for <�M relies on the alternative characterization and can befound, e.g., in [13]. The proof for <�SM can be done along the same lines. Inparticular, to show that the preorder is preserved also by the recursive contexts, thefollowing property is used:for any process P and any observer O,P mustSM O implies that there exists n � 0 such that P nmustSM Owhere P n denotes the n{th �nite syntactical approximant of P . 2The fair/should preorder <�FS was not considered above because it is not pre-served by recursive contexts. This can be easily seen by considering the followingcounter{example. Consider the processes P = a:b[]a:c and Q = a:b and the contextC = recX:(j a:b:X)nfa; bg. It obviously holds that P <�FS Q, but C[P] 6<�FS C[Q](just take O = c:w); hence P 6<�cFS Q.In [5], for a language slightly di�erent from ours, the following alternative char-acterization of the closure of the fair/should preorder is conjectured: P <�cFS Q ifand only if (P <�FS Q and L(P) � L(Q)). If the conjecture were proved we wouldget a simple and natural characterization of the contextual preorder <�cFS .4 Full Abstraction ResultsIn this section, we present the full abstraction theorems that relate our contextualpreorders to the (reverse) inclusion of convergent traces preorder, the fair/shouldtesting, the must testing and the safe{must preorders.From now onward, we shall adopt the following convention: an action declaredfresh in a statement is assumed di�erent from any other name and co{name therementioned.4.1 Convergence predicate and convergent tracesIn this section, we deal with the �rst two contextual preorders, #�c and #L�c , andprove that they have the same distinguishing power and coincide with the reverseinclusion of the convergent traces preorder.De�nition 4.1 For all processes P and Q, we write P <�CT Q if for each s 2 L�such that P # s, it holds that: 11

a) Q # s, andb) s 2 L(Q) implies s 2 L(P).It is easy to show that <�CT is the largest preorder included in trace semantics(reverse trace inclusion) which includes the must preorder <�M . Furthermore, <�CTis a congruence, as stated by the following theorem.Theorem 4.2 For all processes P and Q, P <�CT Q if and only if P <�cCT Q.Proof: Obviously we have that <�cCT is included in <�CT . To establish the reverseinclusion we need a case analysis on the contexts. The only di�cult case is when arecursive context is used. In this case the proof relies on the following facts, whoseproofs are standard:1. for any process P and sequence s 2 L�, P # s if and only if there exists n � 0such that P n # s;2. for any process P and sequence s 2 L�, s 2 L(P) if and only if there existsn � 0 such that s 2 L(P n)where P n denotes the n{th �nite syntactical approximant of P . 2We will use some special contexts for proving relationships between the preorders.If s 2 L�, say s = `1 � � � `n (n � 0), we de�neCs1 = j `1: � � � :`n:0 and Cs2 = j `1: � � � :`n:
.The following two lemmas will be useful for proving the coincidence of the pre-orders #�c , #L�c and <�CT . The proof of the �rst is straightforward.Lemma 4.3 For any process P and s 2 L�, P # s if and only if Cs1 [P] #.Lemma 4.4 Consider a process P and s 2 L� such that P # s. Then s 2 L(P) ifand only if Cs2 [P] ".Proof: Assume that P # s. If P s=) P 0 then we can construct the derivationCs2[P] =) P 0 j
: this implies that Cs2 [P] ". On the converse, suppose that Cs2 [P] ":then, relying on the fact that P # s, we can easily show by induction on s thatP s=) . 2Theorem 4.5 For all processes P and Q, P <�CT Q if and only if P #�cQ.
12

Proof: (=)) Since � 2 L(P) for any process P then, by de�nition, <�CT iscontained in #� from which the result follows by closing under contexts and byrelying on Theorem 4.2.((=) Suppose that P #�cQ and that P # s. Then we have:P # s implies (Lemma 4.3)Cs1[P] # implies (hypothesis P #�cQ with C = Cs1)Cs1 [Q] # implies (Lemma 4.3)Q # s:Now we can use the fact that P # s and Q # s for proving that s 2 L(Q) impliess 2 L(P). Indeed, suppose that s 2 L(Q); then we haves 2 L(Q) implies (Lemma 4.4 and Q # s)Cs2 [Q] " implies (hypothesis P #�cQ with C = Cs2)Cs2 [P] " implies (Lemma 4.4 and P # s)s 2 L(P):which proves that P <�CT Q. 2Theorem 4.6 For all processes P and Q, P #L�cQ if and only if P #�cQ.Proof: (=)) We prove that #L�c is contained in #� , from which the result followsby closing under contexts. Suppose that P #L�cQ and that P #. Fix a fresh ` 2 L(such an ` exists because sort(P) and sort(Q) are �nite). Then we have:P # implies(P j `) # ` implies (hypothesis P #L�cQ with C = j `)(Q j `) # ` impliesQ #which proves that P #�Q.((=) It can be proved like Theorem 4.5, �rst part of case ((=) with s = `. 24.2 Guarantees and fair testingTo prove full abstraction for fair/should, we will use the following lemma.Lemma 4.7 Let P be a process and O be an observer.1. P mustFS O if and only if P jOf =̀wg ! `, where ` 2 L is a fresh action;2. P ! ` if and only if P mustFS `:w.
13

Proof:1. Observe that, as fw;wg \ sort(P) = ; and f`; `g \ (sort(P;O)) = ;, therenaming f =̀wg does not a�ect the interactions between P and O, therefore(a) P jO =) P 0 jO0 if and only if P jOf =̀wg =) P 0 jO0f =̀wgand (a) P 0 jO0 w=) if and only if P 0 jO0f =̀wg `=) :Now we prove that P mustFS O implies P j Of =̀wg ! ` (the converse can beproved similarly). Let P 0 and O0 be such that P j Of =̀wg =) P 0 j O0f =̀wg.Facts (a) and (b) above and the hypothesis imply that P jO =) P 0 jO0 andP 0 jO0 w=) . Using again (a) and (b) above, but in the opposite direction, weconclude that P 0 jO0f =̀wg `=) .2. (=)) Let P 0 and O be such that P j `:w =) P 0 j O: we must show thatP 0 j O w=) . If O = w then P 0 j O w�! which implies the thesis. If O = `:wthen P =) P 0. By hypothesis, P 0 `=) . This implies that P 0 j `:w w=) .((=) Suppose that P =) P 0: we must show that P `=) . Now P j `:w =)P 0 j `:w. By hypothesis, P 0 j `:w w=) ; since w 62 sort(P), then P 0 `=) . 2Theorem 4.8 For all processes P and Q, P <�cFS Q if and only if P �cL Q.Proof: ((=) We prove that �cL is contained in <�FS , and the claimed result willfollow by closing under contexts. Suppose that P �cL Q and that P mustFS O; let `be a fresh action. We have:P mustFS O implies (Lemma 4.7(1))P jOf =̀wg ! ` implies (hypothesis P �cL Q, with C = jOf =̀wg)Q jOf =̀wg ! ` implies (Lemma 4.7(1))QmustFS O:(=)) We prove that <�FS is contained in �L , and the claimed result will followby closing under contexts. Suppose that P <�FS Q and that P ! `, for any `. Wehave: P ! ` implies (Lemma 4.7(2))P mustFS `:w implies (hypothesis P <�FS Q)QmustFS `:w implies (Lemma 4.7(2))Q ! `: 2
14

`1`2 c
c

c
c

���	
���	

���	 @@@R@@@R@@@R
Qs3 �1

�n
�2 c c

c
���	

���	
���	 @@@R@@@R@@@R

Qs4

?̀n ss s ss s
Figure 1: Processes Qs3 and Qs4 used for contexts Cs3 and Cs44.3 Guarantees plus convergence, and must testingTo prove full abstraction for must, we will use the following special contexts.De�nition 4.9 Let s 2 L�, say s = `1 � � � `n (n � 0), and B ��n L. Let fB denotea function which maps each ` 2 B to one and the same fresh c. Fix a bijectivecorrespondence among `1, . . . , `n and n fresh actions �1, . . . , �n. We de�neCs3 = jQs3 where Q�3 = c and Q`s03 = `:Qs03 []candCs;B4 = (jRs)ffBgjQs4 where Rs = `1:�1: � � � `n:�n; Q�4 = 0 and Q`1s04 = �1:Qs04 []c :To give a better intuition of these contexts, we report in Figure 1 a pictorialrepresentation of processes Qs3 and Qs4, for s = `1 � � � `n.Lemma 4.10 Let s 2 L�, B ��n L and c be a fresh action.a) P # s if and only if Cs3 [P] # if and only if Cs3 [P] # c.b) (P after s) acceptsM B if and only if Cs;B4 [P] ! c.Proof:a) We start with proving that P # s implies Cs3[P] #. The proof is by in-duction on s. The base case is trivial. Suppose now s = `s0, and assumeby contradiction that Cs3[P] ", i.e. assume there is an in�nite sequenceCs3[P] = R0�!R1�! � � �. Due to the form of the context Cs3 and to the fact15

that P #, we deduce that, for some i, Ri = Cs03 [P 0], with P `=) P 0. Now, byhypothesis P 0 # s0, thus by induction hypothesis we get Ri = Cs03 [P 0] #, whichis a contradiction.Now, we prove that Cs3[P] # implies Cs3[P] # c. We have just to show thatCs3[P] c=) R implies R #. Due to the form of the context Cs3 and the factthat c is fresh, R is of the form P 0 j 0 where P s0=) P 0, for some s0 pre�x ofs. Since Cs3 [P] =) P 0 j Qs003 , with s0s00 = s, the hypothesis implies that P 0 #which, in turn, implies R #.We are left with proving that Cs3 [P] # c implies P # s. Let s0 be some pre�xof s, i.e. s = s0s00, and P 0 be such that P s0=) P 0. We must show that P 0 #.Since we can construct the sequence of internal moves Cs3 [P] =) P 0 jQs003 , thehypothesis Cs3 [P] # c implies P 0 #.b) (=)) Suppose that Cs;B4 [P] =) R. We must show that R c=) . Due to theform of the context Cs;B4 , there exist s0; s00 and P 0 such that s = s0s00 and P s0=)P 0 and either R = (P 0 j�i�1:Rs00)ffBgj(�i�1:Qs004 []c) or R = (P 0 jRs00)ffBgjQs004 .In the �rst case, obviously, R c=) . In the second case, if s0 is a proper pre�xof s then Qs004 c�! otherwise there exists ` 2 B such that P 0 `=) and thenR c=) .((=) Let R 2 (P after s) (if (P after s) = ;, we are done). Due to theform of the context Cs;B4 , R 2 (P after s) implies that the following sequenceof internal transitions Cs;B4 [P] =) (R j 0)ffBg j 0 is possible. Since, byhypothesis, Cs;B4 [P] ! c and c is fresh then there exists ` 2 B such that R `=) ,i.e. RacceptsM B, and the thesis is proved. 2Theorem 4.11 For all processes P and Q, P <�M Q if and only if P #�cL Q.Proof: (=)) From the de�nition, it is easily seen that �M is contained in #�L(indeed P ! c if and only if (P after �) acceptsM fcg). By applying Theorem 3.7,closing under contexts and recalling that <�M is a pre{congruence (Theorem 3.9),the thesis follows.((=) Here, we show that #�cL is contained in �M . This fact, Theorem 3.7and Theorem 3.9 imply the thesis. Assume that P #�cL Q and that P # s, for somes 2 L�. We have to show that: (a) Q # s and (b) (P after s) acceptsM B implies(Qafter s) acceptsM B, for any B ��n L.As to part (a), from P # s and Lemma 4.10(a), it follows that Cs3 [P] #. Obviously,for every process R, Cs3[R] ! c. From Cs3[P] #, Cs3[P] ! c and P #�cL Q it follows thatCs3[Q] #. By applying again Lemma 4.10(a), but in the opposite direction, we obtainQ # s.
16

Qs;B5`1`2
`n

c c
c

���	
���	

���	 @@@R@@@R@@@Rss s���	 ���� @@@R? ? ?s s s`01 `02 `0mc c cFigure 2: Process Qs;B5 for context Cs;B5As to part (b), suppose that (P after s) acceptsM B. This and Lemma 4.10(b)imply that Cs;B4 [P] ! c. Moreover, it is easy to see that for every process R,R # s implies Cs;B4 [R] #. From Cs;B4 [P] #, Cs;B4 [P] ! c and P #�cL Q, it follows thatCs;B4 [Q] ! c. By applying again Lemma 4.10(b), but in the opposite direction, weobtain (Qafter s) acceptsM B. 24.4 Guarantees plus convergence, and safe{must testingTo prove full abstraction for safe{must, we will use another special context. Again,we assume that c 2 L is always fresh.De�nition 4.12 Let s 2 L�, say s = `1 � � � `n (n � 0), and B ��n L. We de�ne thecontext Cs;B5 = jQs;B5 where Q�;B5 = X̀2B `:c and Q`s0;B5 = `:Qs0;B5 []c :Again, to give a better intuition of context Cs;B5 , we report in Figure 2 a pictorialrepresentation of process Qs;B5 , for s = `1 � � � `n and B = f`01; � � � ; `0mg.Lemma 4.13 Let s 2 L�, B ��n L and c be a fresh action. If P # s then(P after s) acceptsSM B if and only if (Cs;B5 [P] # c and Cs;B5 [P] ! c).Proof: (=)) We must show that (a) Cs;B5 [P] #, (b) Cs;B5 [P] c=) R implies R #,and (c) Cs;B5 [P] =) R implies R c=) .
17

The proof of (a) goes by induction on s and is similar to the proof of the �rstpart of Lemma 4.10(a): the only di�erence is that now, in the base case, one relieson the fact that for each ` 2 B and P 0 such that P =) P 0, we have P 0 # `, whichis a consequence of (P after s) acceptsSM B.As to (b), if Cs;B5 [P] c=) R, due to the form of Cs;B5 it must be R = P 0 j 0, withP s0=) P 0 for some pre�x s0 of s`, with ` 2 B. Since it must be P # s` (from P # sand (P after s) acceptsSM B), we get that P 0 #, and the claim follows.As to (c), suppose that Cs;B5 [P] =) R. Due to the form of Cs;B5 , it must beeither R = P 0 j c or R = P 0 jQs00;B5 and P s0=) P 0 with s0s00 = s. In the �rst case,obviously R c�! . In the second case, if s00 6= �, we have Qs00;B5 c�! ; otherwise, itis s0 = s and from (P after s) acceptsSM B we deduce that there is ` 2 B such thatP 0 `=) ; hence R c=) .((=) Let R 2 (P after s) (if (P after s) = ;, we are done). Due to the formof the context Cs;B5 , we have that Cs;B5 [P] =) R j P`2B `:c. Since c is fresh,the hypothesis Cs;B5 [P] ! c implies that there exists ` 2 B such that R `=) , i.e.RacceptsM B; moreover, the hypothesis Cs;B5 [P] # c implies that whenever R `=) R0with ` 2 B then R0 #, i.e. R # B, and the thesis follows. 2Theorem 4.14 For all processes P and Q, P <�SM Q if and only if P #L�cL Q.Proof: The proof can be done along the lines of Theorem 4.11, but relying onTheorem 3.8, and Lemmas 4.10(a) and 4.13 and on the fact that <�SM is a pre{congruence (Theorem 3.9). 2Remark 4.15 It is worthwhile to point out that the context Cs;B5 cannot be usedin place of the (more complex) context Cs;B4 to prove full abstraction for the mustpreorder (Theorem 4.11). In fact, P # s does not imply that Cs;B5 [P] # (for instancea:b:
 # a but Ca;fbg5 [a:b:
] "). This would invalidate the proof of the \if" part ofTheorem 4.11.Indeed, the use of a context very similar to our Cs;B5 invalidates a proof in apaper by Main ([17], Lemma 4.2), where the relationships between the must andthe maximal trace preorders are studied.5 An Assessment of the PreordersIn this section we explore the relationships among the preorders we have considered:the uniform setting we have used makes this task relatively simple. Moreover, wecomment on the safe{must preorder.Theorem 5.1 For all processes P and Q, P <�M Q implies P <�SM Q, but not vice{versa. 18

Proof: We show that #�cL is contained in �SM , from which the result will fol-low by applying Theorems 4.11 and 3.8. Suppose that P #�cL Q and that P # s,for some s 2 L�. We show that (a) Q # s and that (b) (P after s) acceptsSM Bimplies (Qafter s) acceptsSM B, for any B ��n L. Let s be `1 � � � `n. As to (a),just apply Lemma 4.10(a), like in the proof of Theorem 4.11. As to (b), sup-pose that (P after s) acceptsSM B. It is easy to show (paralleling the proof of Lem-mas 4.10 and 4.13 part (b)) that for any P 0 it holds that Cs;B5 [P 0] # and Cs;B5 [P 0] ! cif and only if (P 0 after s) acceptsSM B. Applying this result to P and Q it follows(Qafter s) acceptsSM B (just parallel the proofs of Theorems 4.11 and 4.14).This proves that P #�cL Q implies P <�SM Q. To show that the vice{versa doesnot hold, we exhibit a counter{example. Consider P def= a:b:
 and Q def= a. It is easyto see that P <�SM Q, but P 6#�cL Q (just consider the context j a). 2The following theorem summarizes the relationships among the pre{congruencesconsidered in the paper.Theorem 5.21. <�M � <�SM � <�CT :2. <�cFS is not comparable with <�M , <�SM and <�CT .Proof:1. The result follows from Theorems 4.5, 4.11, 4.14 and 5.1. By de�nition, it iseasily seen that #L�cL is included in #L�c . The inclusion is strict: a #L�c 0but a 6#L�L 0.2. To see that neither of <�M , <�SM and <�CT is included in <�FS (hencein <�cFS), consider the processes P def= recX:(a:X[]a:b) and Q def= recX:a:X.Clearly, P <�M Q, hence P <�SM Q and P <�CT Q. However, P 6<�FS Q (be-cause P mustFS O and Q 6mustFS O, when O def= recX:(a:X[]b:w)). To see theconverse, observe that 0 <�cFS
, but 0 6<�CT
, hence 0 6<�SM
 and 0 6<�M
.2The mutual relationships among the pre{congruences are simpler if we move tostrongly convergent processes. We say that a process P is strongly convergent ifP # s for every s 2 L�.Theorem 5.3 For strongly convergent processes, it holds that:<�cFS � <�M = <�SM � <�CT :
19

Proof: The alternative characterizations of <�M and <�SM , show that they coin-cide for strongly convergent processes: this accounts for the equality.We show now that if P and Q are strongly convergent then P <�cFS Q impliesP <�M Q. For this we prove that �cL , restricted to strongly convergent processes, iscontained in �M , from which the result follows by Theorems 4.8 and 3.7. Indeed,assume that P �cL Q and that (P after s) acceptsM B, for some s 2 L� and B � L.We prove that (Qafter s) acceptsM B as well, which, since the considered processesare strongly convergent, is su�cient to prove the thesis. By Lemma 4.10(b), itfollows that Cs;B4 [P] ! c, which in turn implies Cs;B4 [Q] ! c, which in turn, in virtueof Lemma 4.10(b), implies the wanted (Qafter s) acceptsM B. This proves thatP �M Q and concludes the proof that P <�M Q. The same counter{examplesused in the proof of Theorem 5.2 show that the inclusions <�cFS � <�M and<�SM � <�CT are strict. 2We conclude the section with a discussion on the safe{must preorder. First, weoutline an axiomatization for it. A key axiom is the law`:
 = `:
� 0. (S)The intuition behind (S) is that if action ` is \unsafe" (leads to divergence), `cannot even be guaranteed. It is not di�cult to prove that any axiomatization for<�M (e.g. those in [13, 9]) augmented with the law (S) yields a sound and completeaxiomatization for <�SM . The idea is to show that must and safe{must coincideover normal forms (in the sense of [13, 9]) which have additionally been \saturated"with respect to left-to-right applications of the law (S). These safe normal formscan be de�ned inductively as follows:�
 is a safe normal form;� P�A2LP`2A `:P` is a safe normal form if P` is a safe normal form for each` 2 [fA : A 2 Lg, and whenever P`0 =)
, for some `0 2 A with A 2 L,then A n fl0g 2 L.We omit the details of the proof, which develops along the same lines of [13, 9], andis based on transforming via (S) the normal forms there introduced.Safe{must is closely related to a variant of readiness semantics considered byOlderog [24]. In particular, the must engage relation that is used in [24] to de�ne thisvariant is very similar to our mustSM , modulo the fact that we consider observers,whereas there traces are considered. Indeed, it is easily seen that <�SM is includedin Olderog's semantics, while the vice{versa is not true, as shown by the followingcounter{example. Consider the processes P = a:
[]b and Q = (a:
[]b)�0. Theyhave the same readiness semantics in the sense of Olderog but, by considering theobserver O def= b:w, we have P mustSM O and Q 6mustSM O.
20

However, a slight variation of Olderog's readiness semantics coincides with oursafe{must. It is su�cient to modify the third set of the close operation used byOlderog, De�nition 4.4.1, pag.126 of [24], where �(P) is, essentially, the set of readypairs and divergence points of P :f(s; F 0)j there exists ` such that (s`; ") 2 �(P) and F 0 � succ(s;�(P))gwith the following:f(s; F 0)j there exists F s.t. (s; F [F 0) 2 �(P) and for each ` 2 F : (s`; ") 2 �(P)g:6 Generalizations and Future WorkThe full abstraction results for TCCS (Theorems 4.5, 4.8, 4.11 and 4.14) can be easilyextended to many other process languages, provided the theorems are re-stated toreplace each of the (must and safe{must) testing preorders with the induced pre{congruences. This is necessary to cope with operators that might not preserve thepreorders, such as the CCS choice operator +.More precisely, the full abstraction results can be easily established for any pro-cess language that satis�es the following two requirements:1. The set of operators contains inaction, action pre�x, external choice, parallelcomposition and relabelling;2. The associated labelled transition system is �nitely branching.Indeed, once observables and testing preorders for such a language have been de�ned,the wanted results can be obtained by simply noticing that:- the proofs of the full abstraction theorems only rely on contexts that can bebuilt using the operators listed above and, for must and safe-must, on theexistence of alternative characterizations preorders �M and �SM ;- on the other hand, the alternative characterizations �M and �SM are (al-most) language-independent, as they only rely on the two previously mentionedrequirements (see also [13], Chapter 4.4).The observables we have considered capture natural communications and con-vergence capabilities of reactive systems. It is not di�cult to strengthen the cor-responding predicates to get more inspective observables, some of which requireconsidering a richer base language than TCCS. Below, we discuss a few possiblegeneralizations.
21

� E�ciency can be taken into consideration by counting the number of internalactions, in the spirit of [2, 22]. To capture the above within our setting, wecan re�ne the guarantee predicate with information about the number of �!{reductions needed to reach a state capable of the visible action. More precisely,we could de�ne P !m`, m � 0, as:whenever P �! iP 0 then there is j such that i+ j � m and P 0 �! j �̀! .We strongly conjecture that this observable (plus convergence) exactly cap-tures the must e�ciency testing preorder of Natarajan and Cleaveland [22],provided that the language is extended with the parallel composition operatorj k of [22], that depends on a natural number k which decreases whenever aninternal action takes place.� Distribution of systems can be observed by tagging visible actions with someinformation about the location where they take place, see e.g. [7, 3]. A naturalchoice for us would be to consider a guarantee predicate of the form P !(`@u),where u is a locality in the sense of [3]. If the language is extended witha parallel composition operator which requires two synchronizing actions tobe tagged with the same locality, it should not be di�cult to establish fullabstraction results for the resulting testing theories.� Timing aspects of processes behaviour are elegantly modelled in [29, 30, 23] byadopting a two-phase operational semantics. One phase models occurrence ofusual atomic actions, the other models time passing via \idling" transitions, ofthe form P d�! P 0 (d non-negative real). A parallel composition of processescan idle only if both the components can; as a consequence, in a testing sce-nario, observers can be used to exactly detect how long processes can idle. Fullabstraction results with respect to testing could be obtained by extending theguarantee predicate to idling actions: P !d if and only if whenever P d0=) P 0,d0 < d, then P 0 d�d0=) (here Q d=) Q0 means Q =) d1�! =) � � � =) dn�! ,for some d1; : : : ; dn such that Pni=1 di = d).In much the same vein, basic observables could be devised to deal with otherfeatures of concurrent systems, such as priority, probability and causality, and toassess the di�erent proposals for tackling these issues.7 Concluding Remarks and Related workWe have advocated the general approach of de�ning behavioural preorders for pro-cess as the maximal pre{congruences induced by basic observables. As case study wehave considered a simple process algebra (TCCS) and three observables that checkthe communication capabilities of processes and the possibility that processes have22

of getting engaged in in�nite internal computations. Our standpoint is vindicatedby the fact that all but one of the obtained pre{congruences for TCCS do correspondto preorders long studied in the literature [9, 21, 4]. If we had to sum up the mainachievements of our approach, we could say that it represents a uniform basis forde�ning testing{based observational preorders.Our results would still hold for languages that signi�cantly di�er from the processalgebra considered in this paper. For example, our approach can be used for de�ningbehavioural equivalences for asynchronous models of parallelism, once one has �xedwhat are the important facets of such systems. Also, it can be used to capture othersemantics aiming to describe other aspects (e�ciency, location, duration, . . .) ofconcurrent systems. Of course, relations de�ned in terms of context closure mightturn out to be of little use for practical applications, but they can de�nitely be usedprescriptively to assess alternative characterization more amenable to automaticchecking.Beside Milner and Sangiorgi [19], notions of observables in the same spirit asours have been proposed by Main [17], Vogler [28], Hennessy [14], Ferreira [11] andLaneve [16].In [17], it is shown that the pre{congruence induced by the preorder based oninclusion of maximal traces coincides, both for CCS and CSP, with the must pre{congruence of [9]; another characterization is given by only considering the inclusionof the maximal �{trace, i.e. a sequence of invisible moves leading to a divergentstate or to a deadlocked one. These basic observables hinder the rôle played bythe convergence test, which is somehow included in that for maximality, and thisprevents from capturing di�erent notions, such as fair testing.In [28], two Petri nets are called d{equivalent if they both can reach a deadlockedstate or if they both cannot do so. Then it is proved that the variant of failure se-mantics [6] that ignores divergence is obtained by closing d{equivalence with respectto parallel composition.In [14], a series of variants of the testing framework are proposed and resultsare listed that show how, by changing the expressive power of observers, a numberof equivalences ranging from bisimulation to testing can be captured. One of theconsidered family of observers consists just of agents of the form `:w:0, that somehowresemble our ! ` predicates. It is claimed that for strongly convergent processes thepre{congruence induced by this family of observers coincides with the must preorder.Ferreira [11] and Laneve [16] deal with languages di�erent from classical pro-cess algebras. In particular, Ferreira uses a predicate which resembles very muchthe conjunction of our # and ! ` (based on production of values rather than oncommunication capabilities) to de�ne a testing preorder for Concurrent ML [27];this seems to be strongly related to our safe{must preorder. He also conjecturesthat if one considers pure CCS (and observes communication capabilities instead ofvalue productions) the obtained preorder coincides with the must pre{congruence
23

of [9]; here we have proved this conjecture. Laneve discusses the impact of anobservables-based testing scenario on the Join Calculus, a language with elaboratesynchronization schemata [12].AcknowledgmentsWe are grateful to L. Aceto, F. van Breugel, W. Ferreira, E.-R. Olderog, A. Rensinkand W. Vogler for interesting discussions and suggestions and to F. Focardi for a �rstdebugging of the ideas presented in the paper. Two anonymous referees providedhelpful suggestions for improving the presentation.References[1] S. Abramsky. The lazy lambda calculus. Research Topics in Functional Programming,David Turner, ed., Addison{Wesley, 1990.[2] S. Arun-Kumar, M. Hennessy. An e�ciency preorder for processes. Acta Informatica,29(8):737-760, 1992.[3] G. Boudol, I. Castellani, M. Hennessy, A. Kiehn. Observing localities. TheoreticalComputers Science, 114:31-61, 1993.[4] E. Brinksma, A. Rensink, W. Vogler. Fair Testing. Proceedings of CONCUR'95 (I.Lee, S.A. Smolka, Eds.), LNCS 962, pages 313-327, Springer, 1995.[5] E. Brinksma, A. Rensink, W. Vogler. Applications of Fair Testing. In R. Gotzheinand J. Bredereke, ed., Formal Description Techniques IX, Theory, Applications andTools. IFIP, Chapman & Hall, 1996.[6] S.D. Brookes, C.A.R. Hoare, A.W. Roscoe. A theory of communicating sequentialprocesses. Journal of the ACM, 31(3):560-599, 1984.[7] I. Castellani, M. Hennessy. Distributed bisimulations. Journal of the ACM, 10:887-911, 1989.[8] R. De Nicola. Extensional Equivalences for Transition Systems. Acta Informatica,24:211-237, 1987.[9] R. De Nicola, M. Hennessy. Testing Equivalence for Processes. Theoretical ComputersScience, 34:83-133, 1984.[10] R. De Nicola, M. Hennessy. CCS without � 's. Proceedings of TAPSOFT'87 (H. Ehrig,et al., Eds.), LNCS 249, pages 138-152, Springer, 1987.[11] W. Ferreira. Semantic Theories for Concurrent ML. Ph.D. Thesis, University of Sus-sex, 1996.
24

[12] C. Fournet, G. Gonthier, J.-L. L�evy, L. Maranget, D. R�emy. A Calculus of MobileAgents. Proceedings of CONCUR'96 (U. Montanari, V. Sassone, Eds.), LNCS 1119,pages 406-421, Springer, 1996.[13] M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.[14] M. Hennessy. Observing Processes. In Linear Time, Branching Time and PartialOrder in Logics and Models for Concurrency (J. de Bakker, et al., Eds.), LNCS 354,Springer, 1989.[15] C.A.R. Hoare. Communicating Sequential Processes. Prentice{Hall Int., 1985.[16] C. Laneve. May and Must Testing in the Join-Calculus. Technical Report UBLCS-96-4, Universit�a di Bologna, Dept. of Computer Science, Bologna, 1996.[17] M.G. Main. Trace, Failure and Testing Equivalences for Communicating Processes.Int. Journal of Parallel Programming, 16(5):383-400, 1987.[18] R. Milner. Communication and Concurrency. Prentice Hall International, 1989.[19] R. Milner, D. Sangiorgi. Barbed Bisimulation. Proceedings of ICALP'92 (W. Kuich,Ed.), LNCS 623, Springer, 1992.[20] J.-H. Morris. Lambda Calculus Models of Programming Languages. Ph.D. Thesis,MIT, 1968.[21] V. Natarajan, R. Cleaveland. Divergence and Fair Testing. Proceedings of ICALP'95(Z. F�'ul�'op, F. G�ecseg, Eds.), LNCS 944, pages 648-659, Springer, 1995.[22] V. Natarajan, R. Cleaveland. An Algebraic Theory of Process E�ciency. Proceedingsof LICS'96 (Los Alamitos, California), pages 63-72, IEEE Computer Society Press,1996.[23] X. Nicollin, J. Sifakis. An Overview and Synthesis on Timed Process Algebras.Proceedings of CAV'91 (K.G. Larsen, A. Shou, Eds.), LNCS 575, pages 376-398,Springer, 1991.[24] E.-R. Olderog. Nets, Terms and Formulas. Cambridge University Press, 1991.[25] E.-R. Olderog, C.A.R. Hoare. Speci�cation-oriented semantics for communicatingprocesses. Acta Informatica, 23:9-66, 1986.[26] C.-H.L. Ong. Correspondence between operational and denotational semantics: thefull abstraction problem for PCF. Handbook of Logic in Computer Science, vol.4, S.Abramsky, D.M. Gabbay and T.S.E. Maibaum, ed., Oxford Science Publ., 1995.[27] J.H. Reppy. Concurrent ML: Design, application and semantics. Proceedings of Func-tional Programming, Concurrency, Simulation and Automata Reasoning (P.E. Lauer,Ed.), LNCS 693, pages 165-198, Springer, 1993.25

[28] W. Vogler. Failures Semantics and Deadlocking of Modular Petri Nets. Acta Infor-matica, 26:333-348, 1989.[29] Y. Wang. Real-time behaviour of asynchronous agents. Proceedings of CONCUR'90(J.C.M. Baeten, J.W. Klop, Eds.), LNCS 458, pages 502-520, Springer, 1990.[30] Y. Wang. CCS + Time = an Interleaving Model for Real Time Systems. Proceedingsof ICALP'91 (J. Leach Albert, Ed.), LNCS 510, Springer, 1991.

26

