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We give some interesting identities on the twisted (h, q)-Genocchi numbers and polynomials
associated with q-Bernstein polynomials.

1. Introduction

Let p be a fixed odd prime number. Throughout this paper, we always make use of the
following notations: Z denotes the ring of rational integers, Zp denotes the ring of p-
adic rational integer, Qp denotes the ring of p-adic rational numbers, and Cp denotes the
completion of algebraic closure of Qp, respectively. Let N be the set of natural numbers and
Z+ = N

⋃{0}. Let Cpn = {ζ | ζpn = 1} be the cyclic group of order pn and let

Tp =
⋃

n≥1
Cpn = lim

n→∞
Cpn = Cp∞ . (1.1)

The p-adic absolute value is defined by |x| = 1/pr , where x = pr(s/t) (r ∈ Q and s, t ∈ Z

with (s, t) = (p, s) = (p, t) = 1). In this paper we assume that q ∈ Cp with |q − 1|p < 1 as an
indeterminate.
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The q-number is defined by

[x]q =
1 − qx

1 − q
(1.2)

(see [1–15]). Note that limq→ 1[x]q = x. Let UD(Zp) be the space of uniformly differentiable
function on Zp. For f ∈ UD(Zp), Kim defined the fermionic p-adic q-integral on Zp as follows:

I−q
(
f
)
=
∫

Zp

f(x)dμ−q(x) = lim
N→∞

1
[
pN
]
−q

pN−1∑

x=0

f(x)
(−q)x (1.3)

(see [2–6, 8–15]). From (1.3), we note that

qnI−q
(
fn
)
= (−1)nI−q

(
f
)
+ [2]q

n−1∑

�=0

(−1)n−1−�q�f(�) (1.4)

(see [4–6, 8–12]), where fn(x) = f(x + n) for n ∈ N. For k, n ∈ Z+ and x ∈ [0, 1], Kim defined
the q-Bernstein polynomials of the degree n as follows:

Bk,n

(
x, q
)
=

(
n

k

)

[x]kq[1 − x]n−kq−1 , (1.5)

(see [13–15]). For h ∈ Z and ζ ∈ Tp, let us consider the twisted (h, q)-Genocchi polynomials
as follows:

t

∫

Zp

e[x+y]qtζyq(h−1)ydμ−q
(
y
)
=

∞∑

n=0

G
(h)
n,q,ζ(x)

tn

n!
. (1.6)

Then, G(h)
n,q,ζ

(x) is called nth twisted (h, q)-Genocchi polynomials.

In the special case, x = 0 andG
(h)
n,q,ζ

(0) = G
(h)
n,q,ζ

are called the nth twisted (h, q)-Genocchi
numbers.

In this paper, we give the fermionic p-adic integral representation of q-Bernstein
polynomial, which are defined by Kim [13], associated with twisted (h, q)-Genocchi numbers
and polynomials. And we construct some interesting properties of q-Bernstein polynomials
associated with twisted (h, q)-Genocchi numbers and polynomials.
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2. On the Twisted (h, q)-Genocchi Numbers and Polynomials

From (1.6), we note that

G
(h)
n+1,q,ζ(x)

n + 1
=
∫

Zp

[
x + y

]n
qζ

yq(h−1)y dμ−q
(
y
)

=
∫

Zp

(
[x]q + qx

[
y
]
q

)n
ζyq(h−1)y dμ−q

(
y
)

=
n∑

�=0

(
n

�

)

[x]n−�q q�x
∫

Zp

[
y
]�
qζ

yq(h−1)y dμ−q
(
y
)

=
n∑

�=0

(
n

�

)

[x]n−�q q�x
G

(h)
�+1,q,ζ

� + 1
.

(2.1)

We also have

G
(h)
n,q,ζ(x) = q−x

n∑

�=0

(
n

�

)

[x]n−�q q�xG
(h)
�,q,ζ

. (2.2)

Therefore, we obtain the following theorem.

Theorem 2.1. For n ∈ Z+ and ζ ∈ Tp, one has

G
(h)
n,q,ζ(x) = q−x

(
[x]q + qxG

(h)
q,ζ

)n
(2.3)

with usual convention about replacing (G(h)
q,ζ

)
n
by Gh

n,q,ζ
.

By (1.6) and (2.1) one gets

G
(h)
n+1,q−1,ζ−1(1 − x)

n + 1
=
∫

Zp

[
1 − x + y

]n
q−1ζ

−yq−(h−1)y dμ−q−1
(
y
)

=
[2]q

(
1 − q−1

)n

n∑

�=0

(
n

�

)

(−1)nqh−1ζ q�x

1 + qh+�ζ

= (−1)nqn+h−1ζ
(

[2]q
(
1 − q

)n

n∑

�=0

(
n

�

)

(−1)� q�x

1 + qh+�ζ

)

= (−1)nζqn+h−1
G

(h)
n+1,q,ζ(x)

n + 1
.

(2.4)

Therefore, we obtain the following theorem.
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Theorem 2.2. For n ∈ Z+ and ζ ∈ Tp, one has

G
(h)
n,q−1,ζ−1(1 − x) = (−1)n−1ζqn+h−2G(h)

n,q,ζ. (2.5)

From (1.5), one gets the following recurrence formula:

qhζG
(h)
n,q,ζ(1) +G

(h)
n,q,ζ =

⎧
⎨

⎩

[2]q if n = 1,

0 if n > 1.
(2.6)

Therefore, we obtain the following theorem.

Theorem 2.3. For n ∈ Z+ and ζ ∈ Tp, one has

G0,q,ζ = 0, qh−1ζ
(
qG

(h)
q,ζ

+ 1
)n

+G
(h)
n,q,ζ

=

⎧
⎨

⎩

[2]q if n = 1,

0 if n > 1
(2.7)

with usual convention about replacing (G(h)
q,ζ

)
n
by Gh

n,q,ζ
.

From Theorem 2.3, we note that

q2hζ2G
(h)
n,q,ζ(2) − qhζn[2]q = −qh−1ζ

n∑

�=0

(
n

�

)

q�G
(h)
�,q,ζ

= −qh−1ζ
(
qG

(h)
q,ζ + 1

)n

= G
(h)
n,q,ζ if n > 1.

(2.8)

Therefore, we obtain the following theorem.

Theorem 2.4. For n ∈ Z+ and ζ ∈ Tp, one has

q2hζ2G
(h)
n,q,ζ(2) = G

(h)
n,q,ζ + nqhζ[2]q. (2.9)

Remark 2.5. We note that Theorem 2.4 also can be proved by using fermionic integral equation
(1.4) in case of n = 2.
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By (2.4) and Theorem 2.2, we get

G
(h)
n+1,q−1,ζ−1(2)

n + 1
= (−1)nqn+h−1ζ

G
(h)
n+1,q,ζ(−1)
n + 1

= (−1)nqn+h−1ζ
∫

Zp

[x − 1]nqζ
xq(h−1)x dμ−q(x)

= qh−1ζ
∫

Zp

[1 − x]nq−1ζ
xq(h−1)x dμ−q(x).

(2.10)

Therefore, we obtain the following theorem.

Theorem 2.6. For n ∈ Z+ and ζ ∈ Tp, one has

(n + 1)qh−1ζ
∫

Zp

[1 − x]nq−1ζ
xq(h−1)x dμ−q(x) = G

(h)
n+1,q−1,ζ−1(2). (2.11)

Let n ∈ N. By Theorems 2.4 and 2.6, we get

(n + 1)qh−1ζ
∫

Zp

[1 − x]nq−1ζ
xq(h−1)x dμ−q(x) = q2hζ2G

(h)
n+1,q−1,ζ−1 + (n + 1)qh−1ζ[2]q. (2.12)

Therefore, we obtain the following corollary.

Corollary 2.7. For n ∈ Z+ and ζ ∈ Tp, one has

∫

Zp

[1 − x]nq−1ζ
xq(h−1)x dμ−q(x) = qh+1ζ

G
(h)
n+1,q−1,ζ−1

n + 1
+ [2]q. (2.13)

By (1.5), we get the symmetry of q-Bernstein polynomials as follows:

Bk,n

(
x, q
)
= Bn−k,n

(
1 − x, q−1

)
(2.14)

(see [11]).
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Thus, by Corollary 2.7 and (2.14), we get

∫

Zp

Bk,n

(
x, q
)
q(h−1)xζx dμ−q(x) =

∫

Zp

Bn−k,n
(
1 − x, q−1

)
q(h−1)xζx dμ−q(x)

=

(
n

k

)
k∑

�=0

(
k

�

)

(−1)k−�
∫

Zp

[1 − x]n−�q−1 q
(h−1)xζx dμ−1(x)

=

(
n

k

)
k∑

�=0

(
k

�

)

(−1)k−�
⎛

⎝qh+1ζ
G

(h)
n−�+1,q−1,ζ−1

n − � + 1
+ [2]q

⎞

⎠

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

qh+1ζ
G

(h)
n+1,q−1,ζ−1

n + 1
+ [2]q if k = 0,

qh+1ζ

⎛

⎝
n

k

⎞

⎠
k∑

�=0

⎛

⎝
k

�

⎞

⎠(−1)k−�
G

(h)
n−�+1,q−1,ζ−1

n − � + 1
if k > 0.

(2.15)

From (2.15), we have the following theorem.

Theorem 2.8. For n ∈ Z+ and ζ ∈ Tp, one has

∫

Zp

Bk,n

(
x, q
)
q(h−1)xζx dμ−q(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

qh+1ζ
G

(h)
n+1,q−1,ζ−1

n + 1
+ [2]q if k = 0,

qh+1ζ

⎛

⎝
n

k

⎞

⎠
k∑

�=0

⎛

⎝
k

�

⎞

⎠(−1)k−�
G

(h)
n−�+1,q−1,ζ−1

n − � + 1
if k > 0.

(2.16)

For n, k ∈ Z+ with n > k, fermionic p-adic invariant integral for multiplication of two q-
Bernstein polynomials on Zp can be given by the following:

∫

Zp

Bk,n

(
x, q
)
q(h−1)xζx dμ−q(x) =

∫

Zp

(
n

k

)

[x]kq[1 − x]n−kq−1 q
(h−1)xζx dμ−q(x)

=
∫

Zp

(
n

k

)

[x]kq
(
1 − [x]q

)n−k
q(h−1)xζx dμ−1(x)

=

(
n

k

)
n−k∑

�=0

(
n − k

�

)

(−1)�
∫

Zp

[x]k+�q q(h−1)xζx dμ−1(x).

(2.17)

From Theorem 2.8 and (2.17), we have the following corollary.
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Corollary 2.9. For n ∈ Z+ and ζ ∈ Tp, one has

n−k∑

�=0

(
n − k

�

)

(−1)�
G

(h)
k+�+1,q,ζ

k + � + 1
=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

qh+1ζ
G

(h)
n+1,q−1,ζ−1

n + 1
+ [2]q if k = 0,

qh+1ζ
k∑

�=0

⎛

⎝
k

�

⎞

⎠(−1)k−�
G

(h)
n−�+1,q−1,ζ−1

n − � + 1
if k > 0.

(2.18)

Let n1, n2, k ∈ Z+ with n1 + n2 > 2k. Then we get
∫

Zp

Bk,n1

(
x, q
)
Bk,n2

(
x, q
)
q(h−1)xζx dμ−q(x)

=

(
n1

k

)(
n2

k

)∫

Zp

2k∑

�=0

(
2k

�

)

(−1)2k−�[1 − x]n1+n2−�
q−1 q(h−1)xζx dμ−q(x)

=

(
n1

k

)(
n2

k

)
2k∑

�=0

(
2k

�

)

(−1)2k−�
⎛

⎝
G

(h)
n1+n2−�+1,q−1,ζ−1

n1 + n2 − � + 1
qh+1ζ + [2]q

⎞

⎠.

(2.19)

From (2.19), we have the following theorem.

Theorem 2.10. For n ∈ Z+ and ζ ∈ Tp, one has

∫

Zp

Bk,n1

(
x, q
)
Bk,n2

(
x, q
)
q(h−1)xζx dμ−q(x)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

qh+1ζ
G

(h)
n1+n2+1,q−1,ζ−1

n1 + n2 + 1
+ [2]q if k = 0,

⎛

⎝
n1

k

⎞

⎠

⎛

⎝
n2

k

⎞

⎠
2k∑

�=0

⎛

⎝
2k

�

⎞

⎠(−1)2k−�
G

(h)
n1+n2−�+1,q−1,ζ−1

n1 + n2 − � + 1
if k > 0.

(2.20)

Let n1, n2, k ∈ Z+ with n1 + n2 > 2k, fermionic p-adic invariant integral for multiplication of
two q-Bernstein polynomials on Zp can be given by the following:

∫

Zp

Bk,n1

(
x, q
)
Bk,n2

(
x, q
)
q(h−1)xζx dμ−q(x)

=

(
n1

k

)(
n2

k

)∫

Zp

n1+n2−2k∑

�=0

(−1)�
(
n1 + n2 − 2k

�

)

[x]2k+�q q(h−1)xζx dμ−q(x)

=

(
n1

k

)(
n2

k

)
n1+n2−2k∑

�=0

(−1)�
(
n1 + n2 − 2k

�

)
G

(h)
2k+�+1,q,ζ

2k + � + 1
.

(2.21)

From Theorem 2.10 and (2.21), we have the following corollary.
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Corollary 2.11. For n1, n2, k ∈ Z+ and n1 + n2 > 2k, one has

n1+n2−2k∑

�=0

(
n1 + n2 − 2k

�

)

(−1)�
G

(h)
2k+�+1,q,ζ

2k + � + 1

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

qh+1ζ
G

(h)
n1+n2+1,q−1,ζ−1

n1 + n2 + 1
+ [2]q if k = 0,

n1+n2−2k∑

�=0

⎛

⎝
n1 + n2 − 2k

�

⎞

⎠(−1)2k−�
G

(h)
n1+n2−�+1,q−1,ζ−1

n1 + n2 − � + 1
if k > 0.

(2.22)
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