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Transversal Theory 
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1. Introduction. Transversal theory is a branch of combinatorial mathematics 
which is only just beginning to emerge as a reasonably connected and coherent 
subject. Whether this is yet rich enough or mature enough to be called a 'theory' 
may be a matter for debate; indeed, it is by no means certain that this part of 
mathematics may not finally be classified under some broader, more comprehen­
sive title. However, what is beyond dispute is the fact that during the last two 
decades a large number of papers have been published which include some refer­
ence to the so-called marriage theorem (Theorem 2.1), which is the starting point 
for transversal theory. These papers deal with surprisingly diverse problems and 
their only connecting link seems to be this common reference to the marriage the­
orem. The arguments employed have generally had an ad hoc flavour although 
some of these have been highly original. Transversal theory is a depository for 
developing those mathematical ideas of the marriage theorem type which frequently 
recur and which seem to belong to some more general framework. 

Two books on the subject have been published recently by Crapo and Rota [11] 
and Mirsky [44] although these were written from rather differing viewpoints. 
The first part of this article will be expository and cover ground which is familiar 
to most combinatorial mathematicians. In the second part I shall describe some 
more recent work done on infinite transversals. The earlier bibliography, detailed 
proofs and a historical commentary can be found in Mirsky's book. Apart from the 
new result in set theory mentioned in § 6,1 shall not dwell upon the applications of 
transversal theory to other branches of mathematics, but refer the reader interested 
in this aspect to the article by Harper and Rota [31]. Instead I shall try to give 
emphasis to those results which are either new or which have influenced the 
development of the subject. 
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156 E. C. MILNER 

2. Early results. The letter F will always denote the system <F,-1 i e 1} of subsets 
of a set S having index set J. The sets Fj (i E I) are the members of the system but 
these are not necessarily different subsets of S. We write |F | = | / | to denote the 
cardinality öf F. If F = <F,|/ e 1} and G = (Gj\jejy are two systems, then we 
define F = G and F + G as follows :F = G means that there is a bijection / : / -• J 
such that F{ = GfU) (V / e /) ; F + G denotes the system H = <#, | e e JQ, where 
K=(Ix {0}) U (/ x {1}) and HM) = F, (V / e /) , tf (;. 1} = Gy (V; e J). 

A transversal function of .Fis an injective choice function for F, that is a function 
<p;I-+S such that <p(i) ^ p(y) (i # y) and p(/) e Ft- (i e /). The element ç(ï) is the 
representative of Fj in p and (<p(i) | / e /> is a system of distinct representatives for F. 
A transversal òf JF is the range 71 = {<p(i)\ie 1} of a transversal function and a 
partial transversal is a transversal of some subsystem F\K = <Ff-| / e #> (Ä' c /), 
We denote by TR(F) the set of all transversals of F and by PTR(/0 the set of all 
partial transversals. 

A system F has the transversal property, Fe F, if and only if F has a transversal. 
Many problems in combinatorial mathematics reduce to the question of whether or 
not a certain system jFhas the transversal, or some similar type of property. Here I 
mention just two such related properties which will be considered in § 5 in the 
discussion of infinite systems. A system F has property $l,Fe<%, if and only if there 
is a set B such that B f| Ft- # 0 # Ft\B (V / e / ) . This property was first considered 
by Miller [40] (the letter & standing for Bernstein). F has property 0&i (the selector 
property) if there is a set B such that |F{ f| B\ = 1 (V i e / ) . For other generaliza­
tions of these see [19]. The most primitive statement about transversals is the 
axiom of choice (which we assume): If Fis a system ofnonempty pairwise disjoint 
sets, then F e F. 

An obvious necessary condition for F to have a transversal is that 

(2.1) ' \F(K)\^\K\ (VKczI) 

where F(K) = \Jiek Fi9 and the marriage theorem states that this condition is also 
sufficient in the case of finite systems. 

THEOREM 2.1. If\ F\ < Ko then Fe^r if and only if (2.1) holds. 

This was proved by P. Hall [27] and condition (2.1) is usually referred to as Hall's 
condition. König had earlier proved an equivalent result [36], [37], [38] which he 
expressed in the language of bipartite graphs. There is a natural representation for a 
set system F as a bipartite graph. We can assume without loss of generality that 
/ fl S = 0 and then F defines a bipartite graph GF = (V, E) with vertex set V = / 
U S and edge Set E — {{/*, x] | i e /, x e Ft). A matching in a graph G = (V,E) is a set 
of pairwise disjoint edges W <=. E; and, for X a V9 an X-matching is a matching 
J^such that every vertex of Zis incident with some edge of W, It is easy to see that 
the set system F has a transversal if and only if the corresponding bipartite graph 
GF has an /-matching. König showed that if n < Xo and G is any bipartite graph, 
then G has a matching of size n if and only if | C | ^ n whenever C is a covering set 
(i.e., a set of vertices incident with every edge of G). Since (I\K) U F(K)is a covering 
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set of GF (K c / ) , it follows from (2.1) that, if | / | < Xo> then GF has a matching 
of size | / | and hence an /-matching. 

This formulation of the transversal property in terms of matchings in bipartite 
graphs is frequently useful and gives proper emphasis to the dual roles played by the 
index set /and the ground set S. The terminology also suggests why Theorem 2.1 is 
sometimes called the marriage theorem. If / is a set of boys and Fj is the set of /'s 
girl friends (/ e / ) , then a transversal of F (or a matching of GF) corresponds to a 
marriage arrangement in which each boy marries one of his girl friends. While this 
might be considered satisfactory for the boys (/), it is most unlikely that it would be 
considered so by the girls in S left without husbands. Perhaps, therefore, we should 
instead seek criteria for the existence of a more socially satisfying perfect matching, 
that is a matching which is simultaneously an /-matching and an 5-matching in 
GF. But it is easily seen that a necessary and sufficient condition for this is that 
there should exist some /-matching (W) and some S-matching (W) (consider the 
graph with edge set W U W). Therefore this reduces immediately to the one-sided 
problem of deciding which system F e <F. 

For those with more ambitious appetities, there is another natural generalization 
of Thereom 2.1 in which the ith boy demands a harem of size h{ [30]. 

THEOREM 2,2. If \F\ < Xo ond hj is a nonnegative integer (i e / ) , then there are 
disjoint sets X{ a Fj (ie I) such that \Xj\ = hj if and only if \F(K)\ ^ £,•<=# hj 
(V K c / ) . 

This follows immediately from Theorem 2.1 by considering an augmented system 
having hj copies of Fj (iel), This is the simplest of a number of modifications that 
can be effected on a set system in order to exploit a self-strengthening characteristic 
of Theorem 2.1 (see [44, Chapter 3]). 

A more important early extension of Theorem 2.1 was obtained by Marshall Hall 
[28] who showed that the condition (2.1) is also sufficient in the case when \F\is 
arbitrary but each Fj (ie I) is finite. The 2 m — 1 conditions of (2.1) are mutually 
independent for a finite system of sets, but for an infinite system of finite sets (2.1) 
is equivalent to the smaller set of conditions 

(2.1') \F(K)\Z\K\ (VATe/), 

where K<^ I means that K is a finite subset of /. In view of this, Marshall Hall's 
theorem can be stated in the following way. 

THEOREM 2.3. Let F be a system of finite sets. Then Fegr if and only ifF0egr 
(V F, m F). 

There are almost as many published proofs of this result as there are for Theorem 
2.1. Algebraists use a variant of Zorn's lemma, topologists recognize it as a corol­
lary of Tychonoff's theorem on the product of compact spaces, logicians employ 
Gödel's compactness theorem for the first order predicate calculus (see §5), while 
combinatorialists use Rado's selection lemma ([23], [28], [30], [32], [44]). 

We do not know of any criteria analogous to Hall's condition (2.1) for the prop-
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erties ^ or ^ Indeed we are extremely ignorant about these properties for finite 
system. For example, if m(n) is the smallest number of sets of size n which do not 
have property <%, then m(\) = 1, m(2) = 3, m(3) = 7 and m(4) is unknown. How­
ever, standard compactness arguments yield results for properties & and <%i similar 
to Theorem 2.3. 

THEOREM 2.4. If F is a system of finite sets and <€ e {&, ^x), then Fe<g if and only 
ifF0eV(VFQ(£:F). 

3. Abstract independence. Whitney was the first to study the abstract properties of 
linear independence and in his pioneering paper [68] he established the equivalence 
to different sets of axioms for this notion. The ones which most clearly reveal the 
underlying motivation of vectors in a vector space are the following. A pre-inde-
pendence structure (Whitney used the term matroid) on a set S is a nonempty set 
JK c &>(S) = {X\X œ S} satisfying the conditions: 

/ l . AaBeJf=>AeJ/ (hereditary). 
12. A, B e Jf, |B\ = \A | + 1 < Ko *=» (3 b e B\A)(A [} {b} e Jf) (exchange). 
A set X a S is independent or dependent according as Xe Jf o r l e @(S)\Jf. 

Since Whitney's paper, quite a lot of work has been done on the notion of abstract 
independence and other axiom schemes have been given ; in particular, the theory 
was greatly extended by Tutte ([61], [62]) who exploited various analogies and ap­
plications to graph theory. 

Whitney only considered the case of finite M, but many basic results can be 
extended to infinite structures if one assumes some additional finiteness type of 
condition. The most common of these is 

13. Jf has finite character. 
If Jf satisfies IX—/3 we call it an independence structure on S; it is determined by 

its finite members. One of the first deductions to be made from /1,2 is that if Jf is 
a finite pre-independence structure, then the maximal independent sets (bases) all 
have the same (finite) cardinality. If Jf is infinite there need not be any maximal 
independent sets, and even when there are they need not have the same cardinality 
[13]. However, if /3 is assumed then it is easy to see that any independent set is 
contained in a basis and moreover the bases all have the same cardinality [57]. 

It follows from the above that if Jf is a pre-independence structure on S, then 
there is an associated rank function 

(3.1) p:&(S)-+{0, 1,2, - . ,00} 

which is defined by 

p(A) = sup{|Z| | Xejf p P(A)} (A c S). 

The basic property of p, which follows easily from the definition, is that it satisfies 

(3.2) p(A) ^ p(B) (AczBcz S), 
(3.3) p(A [)B) + p(A (]B)^ p(A) + p(B) (A, B <= S). 

There is an intimate connection between increasing submodular functions and 
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matroids ([55], [18]): If p satisfies (3.1)—(3.3), then Jtp *= {X c S\p(X) ^ \X\} 
satisfies I\912 (although the rank function of Jtp is not necessarily p). 

It is natural to ask under what conditions a set system /"should have a transversal 
which is independent in some independence structure on S. Rado ([56], [57]) was the 
first to consider this problem and he obtained the following extension of Theorems 
2.1 and 2.3. 

THEOREM 3.1. Let F be a system of finite subsets of S and let Jf be an independence 
structure on S with rank function p. Then Jf f\ TR(F) ^ 0if and only if p(F(K)) 
^ \K\(yKmi). 

This theorem admits the same kind of extensions as Theorem 2.1 and has 
numerous applications (e.g., [2], [3], [65]). 

We deduce immediately from Theorem 3.1 the following analogue of Marshall 
Hall's theorem (Theorem 2.3): If F is a system of finite subsets of S and Jf is an 
independence structure on E, then the statements 

(3.4) Jt p TR(F) * 0 

and 

(3.5) Jt fi TR(F0) ± 0 (VF0<mF) 

are equivalent, Rado [57] proved that this equivalence is actually a characterization 
of independence structures. 

THEOREM 3.2. The nonempty set Jf c 0>(S) is an independence structure on E if and 
only if the statements (3.4) and (3.5) are equivalent for every system F of finite subsets 
ofS. 

As we have already hinted, (pre-) independence structures abound in combina­
torial mathematics apart from the more obvious algebraic ones, but for transversal 
theory the most important example is the following observation of Edmonds and 
Fulkerson [17]. 

THEOREM 3.3. The set of partial transversals ofF, PTR(/% is a pre-independence 
structure. 

This result is not difficult to prove, but it was important for the development of 
the subject since it initiated a new approach for subsequent research. In general, 
PTR(F) does not satisfy 13, but it does if F satisfies the local finiteness condition 
I^OO | < Ko (V x e S), where F~l(x) = {/ e l\ x e Fj} [46]. Theorem 3.3 (and the 
fact that the bases of a finite matroid have equicardinality) immediately gives the 
following result for finite set systems ([33], [39]). 

THEOREM 3.4. IfFe^r and P e PTR(F), then there is Te TR(F) such that P c T. 

For infinite systems this simple argument fails and the proof [51] depends upon 
an extension of the Banach mapping theorem due to 0re. There is an important 
practical consequence of Theorem 3.4. To check (2.1) for a large finite system would 
be both expensive and uninformative, but Theorem 3.4 shows that there is an 
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efficient procedure for actually finding a maximal partial transversal of F which 
does not involve backtracking [29]. 

We call a (pre-) independence structure Jf transversal if Jf = PTR(Z') for some 
F. Not all (pre-) independence structures are transversal, but the problem of de­
ciding whether one is or not is not always easy (see [6]). However, transversal struc­
tures do arise in natural ways. For example, if G — (V, E) is a graph, then the 
matching matroid of G9 JfG = {X c F | 3 an X-matching in G}9 is transversal [17]. 
While it is easily seen that JfG is a pre-independence structure, it is by no means 
obvious that it is transversal. 

The sum 

J4 = 2 Jfj = ( (J X* XjeMf) 

of a system (Jtj\i e /> of pre-independence structures on S is also a pre-independ­
ence structure (and if | / | < Ko and each Jfj satisfies 13 then so does Jf). The 
rank function for Jf is given by 

(3.6) p(A) = m m ( 2 p , W + \A\X\) (A c « , 

where pf is the rank function of Jfj. This important formula was first stated, for 
finite /, by Nash-Williams [48] (it is also implicit in Edmonds [15]); the infinite 
case is proved in [3], [55]. While this result is not difficult to establish (e.g., see [66] 
for an elegant deduction of (3.6) from Theorem 3.1), it provides a useful general 
technique for solving a variety of problems (e.g., [45]). 

As an illustration of the use of (3.6) we give an example due to Nash-Williams 
[48]. Consider the cycle matroid Jfc = {X c E\ X is acyclic} on the edge set of a 
graph G = (V,E). If G is finite, then the rank of a set X <= Eis \ V\ - t(X), where 
t(X) is the number of connected components of the graph (V9 X). The graph G 
contains k edge-disjoint spanning trees provided that E has rank k( | V\ — 1) in the 
matroid sum 2]?=i Jti9 where Jtj = Jfc 0 è i $ k). Thus, by (3.6), we see that a 
necessary and sufficient condition for this is that k(\ V\ — 1) ^ /c(| V\ — t(X)) + 
\E\X\(V X a E). Expressed differently, this condition states that 

(3.7) e(P) Z k(\P\ - 1), 

where P = {V\, •••, Vt} is any partition of Finto disjoint, nonempty sets and e(P) 
is the number of edges of G joining distinct V/s. This result had earlier been proved 
by Tutte [63] and Nash-Williams [47] by more direct but very involved methods and 
this use of the rank formula is a good example of the elegance and insight which is 
sometimes gained through generalization. The argument just used fails for infinite 
graphs, although Nash-Williams [50] has conjectured that (3.7) is sufficient for the 
general case. A more general problem would be to find necessary and sufficient 
conditions for the existence of pairwise disjoint bases Bj of Jfj (i e / ) , when the Jfj 
are matroids on an infinite set 5*. 

In this context it should be mentioned that Edmonds (see [15]) has suggested a 
more general setting for transversal theory by defining a 'transversal' for a system 
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of independence structures (Jf.j | / e /> to be a set T which is the disjoint union of 
bases B{ of Jfj (i e I). The original situation is regained when Jfj is taken to be the 
discretematroid{X c Fj\\X\ S l}on Fj (iel). Many of the basic results of transver­
sal theory extend to this more general setting provided the Jfj are rank finite. For 
example, a generalization of Theorem 3.4 is that any partial transversal of a rank-
finite system (Jtj\ìe/> can be extended to a complete transversal provided one 
exists. For a fuller discussion of this see Brualdi [5]. 

So far we have only considered the existence of transversals of a single set system, 
but it is useful to consider the analogous problem when there are two or more 
systems. For example, Theorems 3.1 and 3.3 together immediately give the 
following extension of the marriage theorem (first proved in [25] in the context 
of flows in networks). 

THEOREM 3.5. The finite systems F = (Fh •••, Fn}9 G = (Gh ••-, Gn) have a 
common transversal if and only if 

\F(K) R G(L)\ £ |tf| + \L\-n (K9L c= {1, 2, ...,/i})f 

A transfinite analogue for Theorem 3.5 of the Schroeder-Bernstein type is the 
following theorem proved by Pym [54] and Brualdi [4]. 

THEOREM 3.6. The systems F = <F, | /e/> and G — <G l | /e/> have a common 
transversal if F has a common transversal with some subsystem of G and G has a 
common transversal with some subsystem ofF. 

It would be useful to have a more quantitative type of condition for the existence 
of a common transversal of two infinite systems. More generally, when do two in­
finite matroids have a common basis? This is not known even for independence 
structures (for a partial solution see [5]). 

Unfortunately, there is no result like Theorem 3.5 known which guarantees the 
existence of a common transversal for three or more systems. A more general 
problem is to find conditions for three pre-independence structures to have a com­
mon independent set of a given size. A solution to these problems would have 
several important consequences. For example, it would enable us to characterize 
those directed graphs having a Hamiltonian path [67]. 

4. Systems with infinite members. The problem of extending Theorem 2.1 to 
arbitrary sytems remains as the central problem of transversal theory and is a 
prototype for similar questions in combinatorial set theory. 

It is easily seen that Hall's condition (2.1) is not sufficient for F e ST even for sys­
tems having a single infinite member, e.g., consider F = <û),{0}, {1}, •<•>. Actually 
Rado and Jung [58] gave an extension of Theorem 2,1 to cover this case. Call a 
subsystem F \ K of F critical if TR(/Ï#) = {F(K)} ; for finite K this is equivalent 
to F\Ke F and |F(Jf)| = \K\. Suppose Fis a system of finite sets and A is an 
infinite set. Then the result of [58] is that F + (A} e F if and only if F e F and 

(4.1) Ac£ U TO-
F ÌK critical 
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Extensions of this have been obtained by several authors ([17], [24], [69], [12], [60]) 
providing necessary and sufficient conditions for F e F in the case when G has 
arbitrarily many finite sets and a finite number of infinite sets. 

Recently, Damerell and I [12] settled a conjecture of Nash-Williams [49] giving 
necessary and sufficient conditions for any denumerable system of sets to have a 
transversal. For X c S, let I(X) = {/ e l\Fj C X} and put 

mQ(X) = \X\ - \I(X)\ if |JT| < GO, 
K ' } = 0 0 if \X\ = oo. 

An obvious necessary condition (essentially (2.1)) for F e ST is that m0(X) ^ 0 
(V X c S). In fact, for a finite set X a S, m^(X) measures the number of 'spare' 
elements in X which would be left over after choosing representatives for the sets 
Fj c X. For infinite X, mQ(X) is simply a first approximation to this number of 
'spare' elements in the sense that in this case there could possibly be infinitely many 
elements left over after choosing representatives for the sets Fj c X, Nash-Williams' 
idea was to find successively better and better estimates for the number of 'spare' 
elements in the following way. If T =(Tn\n < œ} is an increasing sequence of 
subsets of X such that 

(4.3) TQ czT.cz ... c j = [)Tn9 
n<ü) 

then put D(T) = I(X)\ [jn<0) I(Tn). A function/ :0>(S) -+ {0, ± 1, ±2 , . - , ± oo} 
will be called a valuation on S. If fis a valuation on S, denote by A(f X) the set of 
all sequences T = (Tn\n < œ} satisfying (4.3) and such thatf(Tn) =f(T0) < oo 
(n < o)). For Te A(f X) writef(T) = /(To). Now we define a transfinite sequence 
of valuations ma (a = 0) by induction on a as follows. Suppose a > 0 and that mß 

has been defined for ß < a. For X c S we put ma(X) - i n f ^ m$(X) if a is a 
limit ordinal, and for a = ß + 1 put 

ma(X) = inf (mß(T) - \D(T)\) if A(mß9 X) * 0 , 

= oo if A(niß9 X) = 0 . 

Then we have the following result [12]. 

THEOREM 4.1. If\F\ = Ko, then F e ST if and only if 

(4.4) mm{X) = 0 (VXczS). 

Steffens [60] considered the following more qualitative type of condition which is 
somewhat similar to (4.1) and very easy to state : 

(4.5) Fj <£ F(K) whenever i eI\KandF\Kis critical. 

Clearly (4.5) is necessary for F e F and Podewsky and Steffens have recently proved 
the following theorem [52]. 

THEOREM 4.2. If\F\ = Ko, then Fe^r if and only if (4.5) holds. 

Theorem 4.1 and 4.2 both fail for nondenumerable systems. A good test case is 
the system F' = <a| co ^ a < ù)\) which has no transversal by an elementary theo-

http://czT.cz


T R A N S V E R S A L T H E O R Y 1 6 3 

rem on regressive functions, However, both (4.4) and (4.5) are satisfied for this 
system. 

On the other hand, both Theorems 4.1 and 4.2 can be extended to give necessary 
and sufficient conditions for the existence of transversals of denumerable systems in 
some independence structure Jf on S. For Theorem 4.1 the only change needed is 
to replace | X | by p(X) in (4.2), where p is the rank function, The proof of [12] carries 
over with only minor modifications. In order to state the appropriate generalization 
of Theorem 4.2, call a subsystem F \K Jf-critical if Jf. (] TR(F \K) ^ 0 and if B is 
a maximal independent subset of F(K) whenever Be Jf [\ TR(JF \ K). Then it is 
easily shown [42] that, if \F\ = Ko, then Jf f| TR(F) ^ 0 if and only if 
(4.5') Fj does not depend upon F(K) whenever ie I\K and F\ Kis Jf-critical. 

5. Compactness theorems. Let K, X, ß denote infinite cardinals. The cofinality 
cardinal of K is cf K and the succesor of K is K+. We write F e S(K9 X) if\F\ = K and 
\Fj\ - 2, (Viel). Expressions like S(tc9 ̂  /I), S(K, < X) have natural interpretations. 
We say F has property ^r(ft) if F' e ST (V F' c F, \F' \ S /*)• Let T(tc9 À9 fi) be an 
abbreviation for the assertion : 

Fe S(tc, X) & Fe 3T([x) => Fe jr. 

Then Marshall Hall's theorem (Theorem 2.3) asserts that T(tc, < Ko, < Ko) is true 
for every tt. It is natural to investigate if T(tc, X, [/) holds for other triples and W. 
Gustin (see [19], [20]) in the 1950's asked if 

(5.1) -n7TN*Ko,Ki) 
is true. Erdös and Hajnal [21] noted that (5.1) holds in L. More generally, an easy 
consequence of a result of Jensen [34] is the following theorem [43]. 

THEOREM 5.1. If K is regular and not weakly compact and ifX<K, then V = L => 
—iT(tc, I, < K)9 

The hypothesis V = L is not needed to prove (5.1). For example, the system 
F = (Faß\a> Sa<a)iz%ß< ü)2>, where Faß = a x {a, ß} = [jv<a{(v9a)9 (v9 ß)}9 

satisfies Fe S(tf2> Ko) D TTXi) and F$ ST. More generally, Shelah and I proved 
the following theorem [43]. 

THEOREM 5.2, If K is regular, then 

-I/XA;, l9 < K) => - i T(K+9 I, < A;+). 

Since —\T(K+
9 K9 K) holds (consider tc+ identical sets of size K) we deduce from this 

that —ijT(Ka+»> K«, < Ka+w) (a ^ 09 I z% n < a)). However, this leaves several 
questions unanswered. For example, we cannot deduce from Theorem 5.2 whether 
~^T(/c9 Ko, < tò holds for K ^ Kw Theorem 5.1 shows that we cannot prove the 
falsity of this for K = /LL+

9 but (rather surprisingly) it is false for singular tc. Very 
recently Shelah (unpublished) has proved the following result, 

THEOREM 5.3, Ifcf K < K andl < K9 then T(K9 A, < /c). 

It is easily seen that this theorem of Shelah is best possible in the sense that X 
cannot be replaced by < tc. More precisely, we have that cf K < K=> —ïT(K9 <K9 <tc). 



164 E. C. MILNER 

To see this consider the system 

F*= <{a}\aeK\cy + ([KP,KP+1)\P < fx) + <C>, 

where /LL = cf tc < K9 C = {A:̂  | p < fx} is a closed, cofinal subset of K and [A:̂ , tcp+\) 
= {al/Cp ^ a < Kp+i}. It is easily seen that F $ ST whereas F' e &~ for every 
proper subsystem F' §i F. 

Theorem 5.3 shows that the regularity of tc is an essential hypothesis in Theorem 
5,1. So also is the condition that K not be weakly compact. We have the following 
very simple theorem. 

THEOREM 5.4. If K is weakly compact then T(K, < tc, < K). 

This can be proved in the same manner that Henkin [32] proved Marshall Hall's 
theorem. One of the several equivalent characterizations for K to be weakly compact 
is that the infinitary propositional calculus which permits the conjunction of < K 
formulae is /^-compact. Suppose F e £/>(&, < K) fi ST(< te). We can assume that F = 
<JF,.| i < K) and that Fj a tc. Consider the set of A; sentences 

S = { V pXj\ i < A;} U {-^(Pxi A pxJ)|x < K9 i 7* j < fc}9 

where pxi is a propositional variable (with intended meaning "xeFj"). The 
hypothesis ensures that any subcollection of <tc sentences of S has a model, and 
hence S has a model if tc is weakly compact, i.e., F e &~. In a similar way, as Jech re­
marked, one can prove a more exact analogue of Theorem 2.3 for large cardinals : If 
X is supercompact and tc = X, then T(tc, < X, < X). It should be possible to prove 

(5.2) T(K, <tc9 < tc) => K weakly compact, 

but at present this is still open. 
Theorems 5.1 and 5.2 show that one cannot, in general, decide if F e &~ by ex­

amining all small subsystems of F. However, we do have the following compactness 
type of result [43]. 

THEOREM 5.5. IfFQ e y>(tc, < Ko), ^ i e &tt, = X) and F = F0 + Fu then 

(5.3) Fe3ToFezr(X). 

For example, this enables us to extend Theorems 4.1 and 4.3 to the case where F 
contains countably many denumerable sets and an arbitrary number of finite sets. 
Cudnovskiï [9] has obtained the following more general theorem: If frX^v^o) 
and the infinitary language Lv+i(t} is (/j,, X)-compact, then (5.3) holds if FQ e <y(tc9 < Ko) 
andFxeSf(tJ,9 ^ v). 

I conclude this section by mentioning some related results about the properties 
@ and 0&\ introduced in § 2. First I state one of Miller's original results since there 
remains an interesting unsolved problem, Miller [40] proved that if F e £/>(K, ^ X) 
and n < Ko, then 

( V F cF)(\F'\ > X=>\Ç)F'\ <n)=>Fe<%. 
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This result is easily seen to be best possible in the sense that n cannot be replaced 
by Ko- F ° r example, let A = (Aj | / < co} be a system of Ko disjoint denumerable 
sets, let {Tp\p < 2Ko} be all the transversals of A and let {Cp\p < 2Ko} be any set 
of 2Ht almost disjoint (i.e., \Cp f| Cff\ < \Cp\ for p ^ a) infinite subsets of co. 
Then the system F *= A + (Tp\Cp\p < 2*°) e &>(2*\ Ko) and 

(5.4) | ^ n ^ | < K o O V / ) , 

but F $$, One of the problems stated in [19] which still remains unsolved is 
whether (under the assumption that 2Ko > Ki) there is FeSfâu Ko) s u c h that 
(5.4) holds and F$&. 

We say ^has property ®({JL) if F' e m (V F1 c F9 \ F' \ S /*)• Let ffl(tc9 X9 y) denote 
the assertion: Fe £P(tc, X) Sc Fe^(fJ) => Fe ffl. Similarly, we define ^\([x) and 
(%\(K9 X9 fi). Essentially the same proof used to establish Theorem 5,4 above also 
gives that B(tc9 < tc, < tc) and Bi(tc9 <K,<K) are true if A; is weakly compact. Similar 
to Gustin's problem (5.1), Erdös and Hajnal [19] asked if the statements 

(5.5) ^2?(K2, Ko, Ki), 

(5.6) -T*i(K»Ko,Ki) 

are true. Wçglorz [64] proved (5.6) assuming 2*° = K2 G-e., (5.6) is consistent) 
and recently Cudnovskiï [8] proved this without any additional assumption. The 
same authors also proved (Wçglorz assumed GCH, Cudnovskiï without GCH) 
the following theorem. 

THEOREM 5.6. BI(K9 < K9 < tc)o tc is weakly compact. 

The corresponding problems for property @, like (5.2), remain open. In this con­
nection, I should like to mention one additional new result due to Komjath and 
Hoffman [35] which gives a connection between the transversal property and 
property ^ . 

THEOREM 5.7. If Fis a system of infinite sets, then Fe^ => Feffi. 

6. Almost disjoint transversals. In this final section I shall discuss some recent 
results in set theory which relate to questions of the form : "how many almost disjoint 
transversals does a set system have?" Such questions were first considered in [22] 
and [41], and recently K. Prikry and J. Baumgartner used results of this kind to give 
elementary proofs of a remarkable new result (Theorem 6.1) of J. Silver [59]. 

Let A; be a singular cardinal not cofinal with co, i.e., co < X = cf tc < tc9 and let 
C = {tcp\p < X} be any closed cofinal set of cardinals in tc. In [22] Erdös, Hajnal 
and I proved the following result: If /LL* < tc (ju < tc) and S is a stationary subset 
ofX, and if T is a set of almost disjoint transversals of the system F = (tcp | p e 5>, 
then I r | = K. The elementary proofs given by Prikry and Baumgartner of Silver's 
theorem can be described in terms of the following extension of «this result. 

LEMMA 6.1. If jil < K((â < tc) and S is stationary in X9 and if T is a set of almost 
disjoint transversals of the system F = <A;+ | p e S} then \ T\ z% A:+P 

After Cohn [10] proved the independence of the continuum hypothesis, it was 
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natural to investigate what possible values 2H« could assume. Easton [14] proved 
that if h is any ordinal valued function satisfying (i) a ^ ß => h(a) S Kß) and 
(ii)cf(KÄ(a)) > K«, then it is consistent (with ZFC) that 2*« = KA<«) (Ka r e g u ' a r ) -
In view of this arbitrariness for the possible values of 2^ for regular /x, it was 
therefore very surprising when Silver [59] recently announced the following theorem. 

THEOREM 6.2. If co < cf tc < tc and A = {a < tc\ a cardinal and 2a = a+} is sta­
tionary in tc, then 2K — tc+. 

In particular, this shows that if GCH holds below Kw, (i.e.,2K« = Ka+i (<* < ^i)), 
then 2««, = Kan+l. 

Silver's original proof uses sophisticated model theory but Prikry and Baum­
gartner gave an elementary combinatorial proof based upon Lemma 6.1. To obtain 
Silver's theorem from the lemma we argue as follows. If A is stationary in tc, then 
[i1 < K (fj, < tc) and A f| Cis stationary, i.e., S = {p < X\2*' = KJ} is stationary 
in X. Since \0>(KP)\ = A:+ for peS, we can write 0>(tcp) = {x$\ v < tcj} (p^S). 
Then, for each X a tc, there is a transversal function cpx of F = <A:+ | p e S) defined 
by (Px(p) = voX {) tcp = x?. Clearly <pX9 <py have almost disjoint ranges if X # 
Y a tc and therefore, by the lemma, | &>(tc) | ^ tc+. 

PROOF OF LEMMA 6.1. We will assume that Tis a set of tc++ almost disjoint trans­
versal functions and deduce a contradiction. 

Note that S0 = {p e S\p a limit ordinal} is also stationary in X. For cjj, tp e Tput 
S(<j), <p) = {pe SQ\<J)(P) < (p(p)}, and let G(<p) = {0e T\ S((J>, (p) is stationary in X}. 
Gissi set mapping on /'(i.e., tp $ G(tp)) and 

(V(J>,<peT)(<J)ï<p=>(/>e G(<p) or epe G((j))) 

since S(<j), <p) U S(<p9 <J>) is a final section of So- Therefore, by a well-known theorem 
on set mappings (e.g., [26]), it follows that | G(<p0) | ^ tc+ for some <pQ e T. 

Since <pG(p) < tc^ (V peSG)9 there is an injective map hp:<pQ(p) -> A;P. Also, if 
<J) e G(<po) and p e S((p, <po)9 then there is o^p) < p such that h(<p(p)) < tca^p) 
(since {tcp\p < X) is closed and p is a limit ordinal). Now a^ is regressive on the 
stationary set S(<p, <po) and hence there are A$ c S and p<j, < X such that l ^ l = ^ 
and <7̂ (|o) < p0 (V peA^). There are only 2*->l < A:+ different pairs (.4,0 with 
A c X, C < /I, and hence there is G' c (j(po) such that | (7 | = A;+ and (A$9 p$) = 
(>4, Q (V (]) e G'). Since n{^ tc it follows that there are <J)\9(p2e &' s u c h that ^(p) = 
02(|o) (V pe A) and this is a contradiction since | >41 = X and the members of T are 
pairwise disjoint. 

It should be mentioned that Prikry has since obtained more general results than 
Lemma 6.1 and Theorem 6.2 by using refinements of the above argument. He also 
proved the following interesting companion result. 

THEOREM 6.3. Suppose that Tis a set of almost disjoint transversals of the system 
F= (Fp\p < tc)9 where \Fp\ < 2«« (p < tc) and o) < cf K = tc < 2*\ If 2^ is real-
valued measurable, then | T\ < 2Ns. 

Obviously, the condition that cf tc > œ is essential. 
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Finally, I conclude by mentioning a strong result of the Silver type which was 
obtained (independently) by Hajnal and Galvin by using an extension of these 
ideas on almost disjoint transversals. 

THEOREM 6.4. If œ < cf tc < tc ?= tfa and 2P < tc (V p < tc), then 2K < K(2-
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