
Dynamic Reconfiguration of Two-Level Cache

Hierarchy in Real-Time Embedded Systems*

Weixun Wang and Prabhat Mishra

Department of Computer and Information Science and Engineering

University of Florida

Gainesville, FL, 32601, USA

{wewang, prabhat}@cise.ufl.edu

Address:

CSE 577, University of Florida

Department of Computer and Information Science and Engineering

Gainesville, FL, 32601, USA

Email: wewang@cise.ufl.edu

Date of Receiving: to be completed by the Editor

Date of Acceptance: to be completed by the Editor

* This work was partially supported by NSF grant CCF-0903430 and SRC grant 2009-HJ-1979.

Dynamic Reconfiguration of Two-Level Cache

Hierarchy in Real-Time Embedded Systems

Weixun Wang and Prabhat Mishra

Abstract — System optimization techniques based on efficient dynamic reconfiguration have been

widely adopted in recent years. Cache reconfiguration is a promising optimization technique for

reducing memory hierarchy energy consumption with little or no impact on overall system

performance. While cache reconfiguration is successful in desktop-based and embedded systems, it is

not directly applicable in real-time systems due to timing constraints. Existing scheduling-aware

cache reconfiguration techniques consider only one-level cache. It is a major challenge to

dynamically tune multi-level caches since the exploration space is prohibitively large. This paper

efficiently integrates cache reconfiguration in real-time systems with a unified two-level cache

hierarchy. We propose a set of exploration heuristics for our static analysis which effectively reduces

the exploration time while keeps the generated profile results beneficial to be leveraged during

runtime. Our experimental results have demonstrated 40 - 58% energy savings with minor impact on

performance.

Keywords — Low-power, real-time systems, embedded systems, cache, memory

1 INTRODUCTION

Energy is one of the most stringent resources in embedded systems due to the fact that most of the

devices are driven by batteries. Many low-power techniques and energy-aware algorithms are

proposed, targeting at different system components and design levels, by changing tunable system

parameters during runtime. These dynamic reconfiguration techniques offer the ability to meet each

application's unique requirement. They mainly focus on determining when and how to reconfigure the

system to achieve higher energy efficiency and performance. Memory subsystem nowadays is

responsible for as much as 50% of the energy consumption of a microprocessor system [2] [3]. Cache

hierarchy, which has much higher access frequency and made of more power expensive SRAM than

main memory, occupies the majority part of the memory subsystem’s energy consumption [35].

According to Amdahl's law, such a large contribution to the overall energy consumption makes cache

a good candidate for optimization. Cache hierarchy reconfiguration could lead to significant energy

saving by meeting application's diverse cache requirements [4] [5]. Specifically, the working set of

the application favors different cache sizes while its spatial locality determines favored line size.

Furthermore, cache associativity reflects the application's temporal locality.

Real-time embedded systems have been widely studied over the last decades with most of them

focusing on scheduling, resource allocation and management. Real-time embedded systems have

unique design considerations and optimization constraints that tasks must meet their deadlines. A task

set is said to be schedulable if there exists a feasible schedule that can satisfy all timing constraints.

Hence optimizations in real-time systems must be aware of the task schedulability in order to

guarantee the system's service quality. Hard real-time systems require that every task must be

completed within its specified deadline and any violation will cause catastrophic consequences. Soft

real-time systems, including multimedia systems, provide a more relaxed environment where a few

tasks are allowed to be dropped or miss their deadlines. In other words, for soft real-time systems,

minor deadline violation could result in temporary service degradation but the system remains

effective. Periodic tasks normally have known characteristics, including worst case execution time

(WCET), period and deadline, before execution. Earliest Deadline First (EDF) and Rate Monotonic

(RM) [6] are the two most frequently referenced fundamental scheduling algorithms for periodic task

sets in real-time system research community. For sporadic and aperiodic task sets, each task's

information is not fully known a priori and, therefore, can arrive at any time instance. Sporadic tasks

usually have hard time constraints and are accepted into the system only if they pass the

schedulability test when they arrive. On the other hand, aperiodic tasks are scheduled whenever there

is enough slack time. Hence, aperiodic tasks normally have soft deadlines and can only be scheduled

as soon as possible. Scheduling algorithms for sporadic and aperiodic tasks can be found in [7] [6] [8].

While dynamically reconfigurable cache has been well studied for desktop as well as traditional

embedded systems [9] [10], it is still a major challenge to employ cache reconfiguration in real-time

systems. Both determining the appropriate configuration and tuning the cache hierarchy introduce

runtime overhead if done dynamically. Changing cache configuration on-the-fly will also change the

task's execution time, which may lead to unpredictable system behavior. Direct application of

reconfigurable cache in real-time systems without careful consideration may not even be beneficial.

Soft real-time system provides unique flexibility to utilize cache reconfiguration to exploit

considerable energy saving at the cost of minor impacts on service levels. Our previous work [11] has

explored the use of one-level reconfigurable cache in soft real-time systems. However, it remains a

challenge to dynamically tune multi-level caches since the exploration space is prohibitively large. In

this paper, we efficiently employ cache reconfiguration in soft real-time systems with a unified two-

level cache hierarchy. We develop a set of exploration heuristics for our static analysis to effectively

decrease the exploration time while keeping the generated profile results beneficial.

The rest of the paper is organized as follows. Section 2 presents a survey of related research areas.

Section 3 describes background on configurable cache architecture and phase-based static profiling

techniques. Section 4 describes our design space exploration and dynamic cache tuning technique.

Section 0 presents our experimental results. Finally, Section 6 concludes the paper.

2 RELATED WORK

2.1 Energy-aware Real-Time Scheduling Techniques

Dynamic Power Management (DPM) [12] and Dynamic Voltage Scaling (DVS) [13] are the most

prominent techniques used in energy-aware scheduling for real-time systems. DPM takes advantage

of the processor idle time (slack time) to reduce the overall energy consumption by putting the

system into an ultra-low power sleep mode. DVS methods, on the other hand, can be employed to

achieve the same goal by adjusting the processor voltage level (along with operating frequency) at

runtime [14] [15] [16] [17] [18]. The reason behind DVS's ability to save energy consumption is that

lowering voltage level will lead to quadratic power consumption reduction but nearly linear

performance slow down. In both cases, timing constraints of tasks (e.g., deadlines) must be

considered during decision making. A survey on energy-aware scheduling techniques can be found in

[19]. Unfortunately, none of them considers cache reconfiguration. Our proposed approach is

complementary to any of these techniques.

2.2 Caches in Real-Time Systems

While being ubiquitous in nearly all desktop level computing systems, incorporating caches into real-

time embedded systems is still a hotspot issue. The difficulty mainly comes from the unpredictability

nature of caches in terms of timing behavior. Fortunately, a great deal of research efforts has been

carried out to employ caches in real-time systems. Cache-aware WCET analysis predicts the impact

on task execution time from cache behaviors during design time [20]. Puant et al. [21] present a

technique in which cache lines in use are ―locked‖ when a task is preempted so that these blocks will

not be replaced to accommodate the new incoming task. Cache partitioning [22] partitions the cache

into multiple preserved regions, each of which can only be used by a dedicated task. Obviously, both

cache locking and cache partitioning have the drawback that the cache space per task is reduced.

Cache-aware execution time analysis [23] [24] improves the precision of worst-case execution time

estimation by taking cache effects into the preemption delay calculation. However, these approaches

do not address dynamic cache reconfiguration.

2.3 Dynamic Cache Reconfiguration

Many general and application specific reconfigurable cache architectures have been proposed over

the years. Motorola M*CORE processor [2] provides way shut-down and way management, which

has the ability to specify the content of each specific way (instruction, data, or unified way).

Modarresssi et al. [25] developed a cache architecture which can be dynamically partitioned and

resized to improve the performance of object-oriented embedded systems. Settle et al. [26] proposed

a dynamically reconfigurable cache specifically designed for chip multi-processors. Zhang et al. [27]

proposed an efficient and highly configurable cache architecture which imposes almost no overhead

to the critical path.

A lot of research efforts are spent in finding efficient automated techniques to reconfigure the cache

hierarchy. Dynamic and static analyses are two possible ways to solve the problem. Both methods

explore possible candidates and decide a profitable configuration to tune to at a given moment. If

applications are unknown a priori, dynamic analysis is obviously the only option. However, its

intrusive nature makes dynamic analysis infeasible in real-time systems since it imposes

unpredictable performance overhead during exploration. Gordon-Ross et al. [28] proposed a non-

intrusive, N-experts based analysis technique in which an auxiliary structure is used to evaluate all

cache configurations simultaneously. However, the auxiliary data structure is too power expensive

and thus not applicable in real-time embedded systems, especially when multi-level cache hierarchy

is considered. In many cases, the applications are known during the design time. It makes static

analysis attractive to real-time systems due to its non-intrusive nature. Static analysis explores design

space to predetermine the best cache configuration for either the whole application or a part of it. The

former strategy is called application-based tuning [10] while the latter is called phase-based tuning

[28] [29]. Previous works for tuning two-level cache hierarchy focused on design space reduction in

desktop-based systems. Exploration heuristics introduced in [9] and [10] are designed for a

configurable cache hierarchy with separate level-one caches [2] and with a unified level-two cache,

respectively. However, none of these works is designed for systems with real-time constraints.

Furthermore, existing exploration heuristics are not enough to make flexible tradeoff between

running time and solution quality.

Our previous work on cache reconfiguration in real-time systems is presented in [11], which utilized

a single level cache subsystem. As embedded system's capability keeps improving nowadays, two-

level cache is becoming common. However, two-level cache hierarchy has a much larger design

space than single-level cache since a cross product of two configuration spaces of two cache levels

needs to be considered. This may lead to prohibitively long searching time if brute force algorithm is

used. We propose four heuristics to tune two levels of caches in an efficient fashion. We also propose

the algorithm to utilize the static profiling information dynamically to tune the cache hierarchy. Our

work is based on soft real-time systems with preemptive scheduling. Both periodic and aperiodic task

sets are applicable as long as static profiling can be effectively carried out for each task.

3 BACKGROUND

In our previous work [11], we statically profiled each task and stored the analysis results in a lookup

table which is fully utilized at runtime to make reconfiguration decisions. In this section, we

summarize the background on configurable cache architecture and our static profiling technique.

3.1 Configurable Cache Architecture

The configurable caches used in our work are based on the architecture described in [27]. As shown

in Figure 1 (a), the underlying cache architecture consists of four separate banks where each of them

acts as a separate way. The cache tuner can be implemented either as a small custom hardware or

lightweight software running on a co-processor which changes the cache configuration through

special registers. In order to enable associativity reconfigurability, way concatenation, shown in

Figure 1 (b), can logically concatenate ways together. Varying cache size is achieved by shutting

down certain ways as shown in Figure 1 (c). Cache line size is configured by setting a unit-length

base line size and then fetching subsequent lines if the line size increases as illustrated in Figure 1 (d).

We extend the single level configurable cache in [27] to a two-level cache hierarchy by utilizing a

level two data cache as a unified cache. Therefore, our target architecture has separate level one

caches -- instruction level one cache (IL1) and data level one cache (DL1) -- as well as a unified

level two cache (L2).

3.2 Phase-based Cache Tuning

Earlier works have found that different application have distinct favored L1 cache configurations [5]

[27] [30]. However, as shown in Table 1, optimal L2 cache configurations (both in terms of energy

and performance) vary among different applications. For example, a 8KB L2 cache with 4-way

associativity and 32-byte line size is sufficient for exploiting cjpeg's locality and results in the

minimum amount of energy consumption. However, for epic, the L2 cache configuration with 16KB

capacity turns out to be most energy efficient since the miss rate is too high for 8KB L2 cache
1
.

Clearly, by dynamically changing the configuration of the cache hierarchy, we can satisfy each task's

requirement and therefore achieve system optimization goals.

Research also shows that application's operating requirements varies throughout the execution [31].

Hence, the energy savings by tuning configurable parameters for the whole application still has

potential for improvement. Since a preemptive real-time system is considered, executing tasks may

1
 For ease of discussion, we use the dotation ―XXKB_XXW_XXB‖ to represent the cache configuration with XX KB

capacity, XX-way associativity and XX bytes line size.

be interrupted and preempted at any time by newly arrived tasks with higher priorities. Due to this

nature, tuning the cache hierarchy at the granularity of execution intervals may yield more energy

savings and less performance unpredictability.

Within a single task, potentially there exist several intervals of different lengths having distinct

operating behaviors. However, it is not feasible to utilize these intrinsic intervals because preemption

could happen at any point throughout the execution. In other words, when a preempted task resumes,

the cache requirement of the remaining part may greatly differ from the entire task due to its

distinguishing behaviors. So the best option is to use a Monte Carlo style method. As shown in

Figure 2, each task is evenly divided with n predefined potential preemption points. A phase is

defined as the execution interval from one partition point to task completion. The number of partition

points is defined as partition factor. Experiments in our earlier work [11] show that a partition factor

around four to seven is sufficient to yield the majority of energy savings. Here, , ..., represent

the chosen cache configurations for each phase. Note that since we are considering two-level caches,

each actually stands for three cache configurations (IL1 cache, DL1 cache and L2 cache).

The phase-based profiling generates a profile table which stores optimal cache configurations for

each phase of a task. For each task, the energy- and performance- optimal cache configurations of all

phases are found and stored in the profile table. It also stores the total number of execution cycles

required in each phase. Differing from [11], we also take L2 cache into account. Both energy-optimal

configuration for L1 cache (
 ,

) and L2 cache
 of the phase of

task i are stored. represents the phase's execution time if the caches are tuned to these

configurations. Similarly, the same set of information is stored for the performance-optimal cache

configurations. Table 2 shows an example of a profile table.

4 RECONFIGURATION OF TWO-LEVEL CACHES

In this section, we present our work on cache reconfiguration for soft real-time systems with a two-

level cache hierarchy. First, we describe how to generate profile table with profitable cache

configurations using efficient heuristics. Next, we present an algorithm on how to use the profile

table to dynamically reconfigure cache hierarchy.

4.1 Design Space Exploration for Reconfigurable Two-Level Caches

Tuning a two-level cache faces the difficulty of exploring an enormous configuration space. In this

paper, we examine typical exploration parameters of conventional embedded systems. We explore

cache sizes of 1KB, 2KB and 4KB, line sizes of 16, 32 and 64 bytes, and direct-mapped, 2- and 4-

way set associativity for the L1 cache. We use a 4KB cache architecture proposed in [5] with four

banks each of which is 1KB. Since the reconfiguration of associativity is achieved by way

concatenation as described in Section 3.1, 1KB L1 cache can only be direct-mapped as other three

banks are shut down. For the same reason, 2KB cache can only be configured to direct-mapped or 2-

way associativity. Therefore, there are 18 (= 3 + 6 + 9) configuration candidates for L1 caches. Let

 and denote the size of exploration space for IL1 cache and DL1 caches, respectively. So we

have = 18 and = 18. For simplicity, which is also practically true in most scenarios, IL1 and

DL1 has the same exploration space which is denoted by . For L2 cache, we choose 8KB, 16KB

and 32KB as cache sizes; 32, 64 and 128 bytes as line sizes; 4-, 8- and 16-way set associativity with a

32KB cache architecture composed of four separate banks. Similarly, there are 18 possible

configurations (= 18). For comparison, we have chosen a base cache hierarchy, which reflects a

fixed configuration for all the tasks if cache reconfiguration is not available, consisting of two 2KB,

2-way set associative L1 caches with a 32 byte line size (2KB_2W_32B), and a 16KB, 8-way set

associative unified L2 cache with a 64 byte line size (16KB_8W_64B). The remainder of this section

describes our proposed exploration techniques.

4.1.1 Exhaustive Exploration

Intuitively, if the two levels of caches can be explored independently, one can easily profile one level

at a time while holding the other level to a typical configuration, which will result in a much small

exploration space. However, it is not reasonable to claim that the combination of three independently

found energy-optimal configurations actually is or ever close to the global optimal one. The two

cache levels affect each other's behavior in various ways. For instance, L2 cache's configuration

determines the miss penalty of the L1 caches. Also, the number of L2 cache accesses directly

depends on the number of L1 cache misses.

Therefore, the only way to obtain the optimal configuration is to search the entire space exhaustively.

Since the instruction cache and the data cache could have different configurations, there are 324

(= *) possible configurations for L1 cache. Addition of the L2 cache increases the design

space size
2
 to 4752. Moreover, the phase-based static profiling strategy we use makes this number

even larger. For a single task, if the partition factor is 4, we have to explore for all four phases,

leading to a total of 19008 task phase executions. Obviously it is infeasible. We use the exhaustive

method for comparison with the heuristics presented in the following sections.

4.1.2 Same Level One Cache Tuning – SLOT

As discussed above, the design space explosion is resulted from the cross-product of three separate

design spaces: IL1, DL1 and L2. The most straightforward optimization is to remove one dimension

(i.e., space) so that the total exploration time is drastically reduced while the solution quality is

mostly preserved. Our studies show that, for many real applications, the favored (both in terms of

energy efficiency and performance) IL1 and DL1 cache configurations are similar to each other (at

least in cache size).

2
 Not equal to S_il1* S_dl1* S_ul2 because candidates whose L2 cache's line size is smaller than L1 are eliminated.

Therefore, we propose SLOT -- Same Level One Cache Tuning heuristic -- during which IL1 and

DL1 caches always use the same configuration while exploring with all L2 cache configurations. This

method results in a total of 288 configurations -- a considerable cut down (94%) of the original

quantity (4752), though still not small enough.

4.1.3 Two-Step Tuning – TST

By examining the results generated by SLOT, we find that some very unprofitable L1 cache

configurations are also explored 18 (=) times with L2 cache, resulting in still relatively inferior

energy efficiency and performance when combined together as the cache hierarchy configuration.

These non-beneficial configurations are likely to be discarded. Therefore, just like in single level

cache tuning, we only have to consider configurations which offer Pareto-optimal tradeoff points. In

other words, for each individual cache, candidates which have both lower performance and higher

energy consumption than any other one(s) can be safely eliminated during exploration. Then, the

design space which contains the cross-product of all three sets of Pareto-optimal points is explored.

Our proposed Two-Step Tuning (TST) heuristic is summarized below:

 Hold DL1 and L2 as the base cache. Tune IL1 and record all its Pareto-optimal configurations.

Let denote the number of recorded IL1 configurations.

 Hold IL1 and L2 as the base cache. Tune data cache and record all its Pareto-optimal

configurations. Let denote the number of recorded DL1 configurations.

 Hold both L1 caches as the base cache. Tune L2 and record all its Pareto-optimal

configurations. Let denote the number of recorded L2 configurations.

 Explore all the combinations from each set of Pareto-optimal configurations recorded in the

previous steps and find the energy- and performance- optimal cache hierarchy configurations.

The first three steps explore 54 (= + +) candidates while the last step explores * *

 candidates. Based on our experimental results, the number of Pareto-optimal configurations

varies from application to application but normally around 3 to 5. Therefore, the total exploration

space is reduced to roughly 81 - 179 (a reduction of 38% to 72%), though in some worst cases the

number could be larger than SLOT's space size (288).

4.1.4 Independent Level One Cache Tuning – ILOT

While different cache levels are dependent on each other, our experimental results demonstrate that

instruction cache and data cache are relatively independent. In this study, we fix one's configuration

while changing the other's to see whether the varying one has impact on the fixed one. We observe

that the profiling statistics for the instruction cache almost remain identical with different data caches

and vice versa. It is mainly due to the fact that access pattern of L1 cache is purely determined by the

application's characteristics, and the instruction and data streams are relatively independent from each

other. Furthermore, factors affecting the instruction cache's energy consumption as well as

performance (such as hit energy, miss energy and miss penalty cycles) have very little dependency on

the data cache and vice versa.

This observation offers an opportunity to further reduce the exploration space. We can use the same

configurations for IL1 and DL1 while L2 is fixed to base cache to find the ―local optimal‖

configurations for L1 caches. Specifically, throughout the static analysis, we record the energy

consumptions and miss cycles of each cache individually. The local energy-optimal IL1 cache is the

one with the lowest energy consumption of itself (and same for DL1 cache and L2 cache). The local

performance-optimal cache is determined by the number of miss cycles for each cache. ILOT is

summarized as below:

 Hold L2 as the base cache. Explore all L1 cache configurations during which IL1 and DL1 are

always configured to the same configuration. Local optimal (both energy- and performance-)

configurations for both IL1 and DL1 are recorded.

 Hold IL1 and DL1 as the energy-optimal configurations found in the last step. Explore all L2

cache configurations and record local energy-optimal L2 cache configuration. The process is

repeated for performance-optimal L2 configuration also.

 The energy- (performance-) optimal configuration for the cache hierarchy is composed of the

three local energy- (performance-) optimal caches for each separate cache.

Clearly, the first step simulates 18 (=) configurations while the second step requires 36 (= * 2)

explorations. If some local optimal IL1 and DL1 configurations happen to be identical, the second

step may take less number of explorations. The last step potentially takes 2 simulations. In total,

discarding repeating configurations, ILOT has an exploration space of no more than 54

configurations.

4.1.5 Interlaced Tuning – ILT

Gordon-ross et al. [9] designed a tuning heuristic named TCaT -- Two-level Cache Tuning -- in a

interlaced manner for desktop systems with unified level one and level two caches. In their approach,

cache parameters are tuned in the order of their importance to the overall energy consumption, which

is cache size followed by line size and finally associativity. TCaT claims to find the configuration

with energy consumption close to the optimal one by only exploring tens of candidates. We adapt the

strategy used in TCaT and propose ILT -- Interlaced Tuning heuristic -- which finds both energy- and

performance- optimal parameters throughout the exploration. Therefore, as opposed to [9], in each

step other than the first, we need to set the already-explored parameters to energy- and performance-

optimal ones separately during the exploration of the current parameter. In order to increase the

chances of finding optimal L2 cache size, which we found has the highest importance, we combine

the exploration of L2 cache's size and associativity together. We sacrifice a certain amount of

exploration time for better profiling results. ILT is summarized as below:

 First, tune by cache size. Hold the IL1's line size, associativity as well as DL1 to the smallest

configuration. L2 is set to the base cache. Explore all three instruction cache sizes (1KB, 2KB

and 4KB) and find out the energy- and performance-optimal one(s). Same explorations are

performed for DL1 cache size. In L2 size exploration, we try all the associativities (4W, 8W

and 16W) with each L2 cache size (8KB, 16KB and 32KB) and repeat the process twice to

find the energy- and performance-optimal size(s), separately. We set L1 sizes to the energy-

(performance-) optimal ones in the corresponding process of finding energy- (performance-)

optimal L2 size(s).

 Next, tune by line size. We set the cache sizes and L2 cache's associativity to the energy-

(performance-) optimal ones found in the first step during exploring energy- (performance-)

optimal line sizes for each cache (16B, 32B and 64B for L1 caches while 32B, 64B and 128B

for L2 cache), respectively. These two tasks are repeated for both L1 caches and L2.

 Finally, tune by associativity. We set the cache sizes and line sizes to the energy- and

performance-optimal ones when we explore for the energy- and performance-optimal

associativity (1W, 2W and 4W), respectively. Note that we only explore associativities for L1

caches in this step. During the process of finding DL1's optimal associativities, we already

have all the other parameters we need to compute the total numbers of execution cycles that

are required in the profile table.

At the beginning, we do not have any explored parameter so the L1 cache size tuning is done in one-

shot for both IL1 and DL1, which lead to 6 (= 3 + 3) configurations. During L2 cache size tuning,

there are 9 (= 3 * 3) possible combinations with the associativity and the process has to be done twice

for both energy- and performance- optimal L1 cache sizes. Hence, the first step requires to explore 24

(= 6 + 9 * 2) configurations. Similarly, the second step explores all three lines sizes for each cache

separately twice which leads to 18 (= 3 * 2 * 3) candidates. The final step explores 12 (= 3 * 2 * 2)

configurations since L2 associativity has already been examined in the first step. Therefore, in the

worst case, ILT explores 54 (= 24 + 18 + 12) configurations. However, in most cases, we observe that

there are a lot of repetitive configurations throughout the process which we only have to profile once.

For example, the L1 configuration 2KB_1W_16B in the second step has already been explored in the

first step. Furthermore, all the configurations composed of invalid cache parameter combinations are

also discarded. In practice, ILT has a exploration space size of around 35 configurations.

4.2 Scheduling-Aware Reconfiguration

This section describes the algorithm we propose to reconfigure the cache hierarchy at runtime using

the static analysis results stored in the profile table. Additionally, as exhibited in Table 3, there is a

task list that maintains necessary book keeping information for each task instance. Current Phase ()

denotes the last partition point which the task execution has just passed through. Like common real-

time systems, a ready task list (RTL) is also maintained as a priority queue comprising all the tasks

ready to execute ordered by priority
3
.

Algorithm 1 illustrates cache configuration selection algorithm. This algorithm is called either when a

new task with a higher priority than the current executing task arrives in the system or when the

current task finishes its execution. In other words, this procedure decides the cache hierarchy

configuration whenever there is a context switch. In the former case, Step 1 first uses the executed

instruction number (EIN) to calculate the Current Phase (CP) for the preempted task. This

information is stored in the preempted task's list entry and is used by the algorithm when it gets

resumed. The ready-to-execute (i.e. current) task is obviously the preempting task. In the latter

case, is the one with the highest scheduling priority in RTL. Step 2 checks the schedulability of all

the task instances in RTL by iteratively checking whether each task can meet its deadline if all the

preceding tasks, including itself, use performance-optimal cache configurations. This process is done

in the order of tasks' priority (from highest to lowest) to achieve least discarded tasks. Step 2 is

3
 Here the priority means the dynamic scheduling priority decided by the scheduler.

skipped if RTL is empty. In Step 3, the appropriate cache configuration for is selected based on

whether it is safe to use the energy-optimal one. Specifically, it is unsafe (and performance-optimal

configuration will be used) when using energy-optimal configuration will violate 's own deadline

or any other deadline of the tasks left in RTL if they all use the performance-optimal configurations.

Note that the next incoming phase
 + 1 is used in the time estimation for other tasks in RTL. It is

an underestimation and thus may have more chance to select the energy-optimal cache. This

algorithm runs in time of where p is the partition factor and m is the total number of

tasks in RTL. Obviously, it is efficient enough to be executed at runtime.

5 EXPERIMENTS

5.1 Experiment Setup

To evaluate our exploration heuristics and scheduling algorithm, we selected six benchmarks from

each of the following benchmark suits: MediaBench [32] (cjpeg, epic, pegwit, rawcaudio, mpeg2,

toast), MiBench [33] (CRC32, dijkstra, FFT, pktflow, qsort, rijndael, susan) and EEMBC [34]

(A2TIME01, AIFFTR01, AIFIRF01, BITMNP01, IDCTRN01, RSPEED01). These benchmarks are all

specially designed for embedded systems and suitable for the cache configuration parameters

described in Section 4.1. Table 4 shows our seven task sets, each of which consists of six selected

benchmarks. Task set 1 consists of benchmarks from MediaBench, set 2 from MiBench, set 3 from

EEMBC and set 4 - 7 are mixtures from all threes suites. In order to avoid the situation where one or

two tasks dominate the total energy consumption, tasks in each set are chosen to have comparable

sizes. All the tasks are executed with the default input sets provided with the benchmark suites.

Our energy model is adapted from the one used in [11] and extended to incorporate a unified L2

cache. In order to fill up the energy model with the actual dynamic cache access energy consumption

of each configuration, we obtained values using CACTI 4.2 [35] with a 0.18 μm technology. We

implemented the energy model and cache tuning heuristics using Perl scripts, which we used to drive

the SimpleScalar toolset [36] to do the phase-based task profiling. In order to get the optimal cache

configurations for each phase, we utilized checkpointing and fastforwarding capabilities provided in

SimpleScalar which allow us to execute specified intervals of a task. Once we have the profile tables

for all the tasks, we use a task scheduler to simulate the system. The scheduler calls another script

which contains the cache configuration selection algorithm (Algorithm 1) to reconfigure the cache.

5.2 Results

5.2.1 Optimal Cache Configuration Selection

First we evaluate our proposed design space exploration heuristics by comparing the energy-

(performance-) optimal cache configurations found using each heuristic to the exhaustive approach.

This comparison directly reflects the effectiveness of each heuristic (the closer to the exhaustive

approach the better). Since these design space exploration results are used to construct the profile

table, it will have impact on the scheduling-aware reconfiguration algorithm.

Figure 3 and 4 show the heuristic searching results for selected benchmarks. From Figure 3, we can

observe that, for most of the time, all four heuristics behaves well in finding energy-optimal cache

hierarchy configurations. For example, for benchmark dijkstra, cjpeg, rawcaudio and RSPEED01, all

four heuristics are able to find configurations which are very close to the optimal. However, in certain

cases, some heuristics may lead to inferior exploration results. For example, both ILOT and ILT do

not work well for pegwit. Generally speaking, with respective to energy consumption, SLOT and

TST behave consistently well among all benchmarks. ILOT behaves very close to TST, sometimes

even better (e.g., cjpeg, AIFIRF01), but could be inferior in other cases. ILT, though having the

smallest exploration space and thus being fastest, is only able to find the optimal configurations with

the quality 30% away from the optimal on average.

Figure 4 shows the exploration results in terms of performance. In other words, the execution time of

the performance-optimal cache configuration found by each heuristic is compared with the

exhaustive search. It can be observed that SLOT and TST are able to consistently find the actual

performance-optimal configurations or at least very close ones. On the other hand, although behaves

very well in terms of energy consumption, ILOT is not good at finding the performance-optimal

configuration for a number of benchmarks. In this aspect, ILT outperforms ILOT.

5.2.2 Energy Saving

We quantify the cache subsystem energy savings using our approach by comparing to the base cache

scenario. We use five cache exploration methods -- exhaustive, SLOT, TST, ILOT and ILT -- to

generate profile tables for all the task sets. Figure 5 presents the total cache hierarchy energy

consumption normalized to the base cache for all the seven task sets using each exploration technique.

As expected, exhaustive exploration generated the highest energy saving (58% on average). SLOT

achieves 56% average energy saving which is comparable to the exhaustive approach. TST

outperforms SLOT in some task sets but on average saves 52% of the energy consumption. While

ILOT and ILT perform the worst, we can still achieve 46% and 40% of energy savings, respectively.

Figure 5 also shows the relative comparison of each heuristic. On an average, SLOT, TST, ILOT and

ILT make the system consume 2.8%, 9.1%, 25.6% and 43.1% more energy than the exhaustive

method.

5.2.3 Insights behind Results

It is helpful to examine some insights behind the results shown above. SLOT simply discards the

flexibility and benefit of running IL1 and DL1 cache separately. Therefore, when optimal

configurations for IL1 and DL1 are different, SLOT will have to suffer from decreased energy

efficiency and/or performance in either IL1 or DL1. TST only considers Pareto-optimal

configurations at the cost of losing the chance of finding more efficient cache combinations which

actually consists of non-beneficial ones. Specifically, when searching for the Pareto-optimal points

for each cache, the other two caches are fixed to the base case. In other words, it is assumed that the

Pareto-optimal configuration set for each individual cache is independent of the other cache's

configuration. However, the assumption does not always hold. One of the reasons is that a less energy

efficient (due to oversize) L1 cache may cause fewer accesses to L2 cache. Hence an appropriate L2

cache may make this non-beneficial L1 cache overall better. The reason for ILOT not finding the

optimal configurations is that, although relatively independent from each other, IL1 and DL1 both

have impact on the L2 cache which has effect back on L1 caches. So they are essentially indirectly

dependent on each other through the L2 cache. Furthermore, varying one of them, say DL1, will lead

to different total execution time and thus the static power consumption of the other (IL1) is also going

to change. Therefore, although miss rate is unaffected, IL1 and DL1 do have impact on each other in

terms of energy consumption as well as performance. ILT behaves worst due to the fact that it could

miss the optimal parameter easily when exploring with other unknown but fixed parameters.

5.2.4 Exploration Efficiency

The four heuristics, though exhibits less energy savings, are much more efficient than exhaustive

method in the static profiling stage. Table 5 presents the total number of cache configurations

explored by each exploration heuristics
4
 for each benchmark. Our experience is that it normally takes

days to profile a task using exhaustive method while a few minutes if ILT is employed. For example,

exhaustive exploration of all configurations for qsort takes about 5 days and 16 hours while only 44

minutes are required for ILT heuristic. Our approach would be more valuable in multi-core scenarios

where the design space is even larger. In general, designers can decide which heuristic to use based

on the profiling time they have and the expected overall energy savings. For example, if 20 hours per

task is permitted, SLOT should be adopted for best energy savings. If design time is limited, ILOT or

ILT could be used for best performance.

6 CONCLUSIONS

Dynamic reconfiguration techniques are widely used in designing efficient embedded systems.

4
 For simplicity, these numbers only count for the task on the whole in each set but not for every phase.

Dynamic cache reconfiguration is a promising approach to improve both energy efficiency and

overall performance. In this paper, we present a novel methodology to apply a two-level configurable

cache hierarchy in soft real-time systems. Our methodology employs an efficient combination of

static analysis and dynamic tuning of cache parameters with very minor impact on timing constraints.

Four cache exploration heuristics, which greatly improve the static analysis efficiency, are designed

and compared with the exhaustive method. Our results show that up to 40 - 58% energy of the cache

hierarchy can be saved using our approach.

REFERENCES

[1] W. Wang and P. Mishra, ―Dynamic reconfiguration of two-level caches in soft real-time

embedded systems,‖ Proceedings of IEEE Computer Soceity Annual Symposium on VLSI,

(2009), pp. 145-150.

[2] A. Malik, B. Moyer, and D. Cermak, ―A low power unified cache architecture providing

power and performance flexibility,‖ Proceedings of International Symposium on Low Power

Electronics and Design, (2000), pp. 241-243.

[3] S. Segars, ―Low power design techniques for microprocessors,‖ Proceedings of International

Solid State Circuit Conference, (2001).

[4] D. H. Albonesi, ―Selective cache ways: On-demand cache resource allocation,‖ Proceedings of

International Symposium on Microarchitecture, (1999), pp. 248-259.

[5] C. Zhang, F. Vahid, and R. Lysecky, ―A self-tuning cache architecture for embedded systems,‖

Proceedings of Design, Automation and Test Conference in Europe, (2004), pp. 10142.

[6] J. Liu, Real-Time Systems, Prentice Hall, (2000).

[7] B. Sprunt, Aperiodic task scheduling for real-time systems, Ph.D. dissertation, Carnegie

Mellon University, (1990).

[8] B. Andersson, K. Bletsas, and S. Baruah, ―Scheduling arbitrary-deadline sporadic task systems

on multiprocessors,‖ Proceedings of Real-Time Systems Symposium, (2008), pp. 385-394.

[9] A. Gordon-Ross and F. Vahid, ―Automatic tuning of two-level caches to embedded

applications,‖ Proceedings of Design, Automation and Test Conference in Europe, (2004), pp.

208-213.

[10] A. Gordon-Ross, F. Vahid, and N. Dutt, ―Fast configurable-cache tuning with a unified

second-level cache,‖ Proceedings of International Symposium on Low Power Electronics and

Design, (2005), pp. 323-326.

[11] W. Wang, P. Mishra and A. Gordon-Ross, ―SACR: Scheduling-aware cache reconfiguration

for real-time embedded systems,‖ Proceedings of International Conference on VLSI Design,

(2009), pp. 547-552.

[12] L. Benini, R. Bogliolo, and G. D. Micheli, ―A survey of design techniques for system-level

dynamic power management,‖ IEEE Transactions on VLSI Systems, (2000), Vol. 8, pp.299-

316.

[13] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B. Srivastava, ―Power optimization of

variable-voltage core-based systems,‖ IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, (1999), Vol. 18, pp.1702-1714.

[14] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez, ―Power-aware scheduling for periodic

real-time tasks,‖ IEEE Transactions on Computers, (2004), Vol. 53, N° 5, pp. 584-600.

[15] J. Chen, T. Kuo, and C. Shih, ―1 + ε approximation clock rate assignment for periodic real-

time tasks on a voltage-scaling processor,‖ Proceedings of International Conference on

Embedded Software, (2005), pp. 247-250.

[16] R. Jejurikar and R. Gupta, ―Energy-aware task scheduling with task synchronization for

embedded real-time systems,‖ IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, (2006), Vol. 25, pp.1024-1037.

[17] G. Quan and X. S. Hu, ―Energy efficient dvs schedule for fixed-priority real-time systems,‖

ACM Transactions on Design Automation of Electronic Systems, (2007), Vol. 6, pp.1-30.

[18] W. Wang and P. Mishra, ―PreDVS: Preemptive dynamic voltage scaling for real-time systems

using approximation scheme,‖ Proceedings of Design Automation Conference, (2010).

[19] J. Chen and C. Kuo, ―Energy-efficient scheduling for real-time systems on dynamic voltage

scaling (dvs) platforms,‖ Proceedings of International Conference on Embedded and Real-

Time Computing Systems and Applications, (2007), pp. 28-38.

[20] I. Puant, ―Cache analysis vs static cache locking for schedulability analysis in multitasking

real-time systems,‖ Proceedings of International Workshop on worst-case execution time

analysis, (2002).

[21] I. Puant and D. Decotigny, ―Low-complexity algorithms for static cache locking in

multitasking hard real-time systems,‖ Proceedings of IEEE Real-Time Systems Symposium,

(2002), pp. 114-125.

[22] A. Wolfe, ―Software-based cache partitioning for real-time applications,‖ Proceedings of

International Workshop on Responsive Computer Systems, (1993).

[23] J. Staschulat, S. Schliecker, and R. Ernst, ―Scheduling analysis of real-time systems with

precise modeling of cache related preemption delay,‖ Proceedings of Euromicro Conference

on Real-Time Systems, (2005), pp. 41-48.

[24] Y. Tan and V. J. Mooney, ―Timing analysis for preemptive multitasking real-time systems

with caches,‖ ACM Transactions on Embedded Computing Systems, (2007), Vol. 6, N° 1.

[25] M. Modarressi, S. Hessabi, and M. Goudarzi, ―A reconfigurable cache architecture for object-

oriented embedded systems,‖ Proceedings of Canadian Conference on Electrical and Computer

Engineering, (2006), pp. 959-962.

[26] A. Settle, D. Connors, and E. Gibert, ―A dynamically reconfigurable cache for multithreaded

processors,‖ Journal of Embedded Computing, (2006), Vol. 2, pp. 221-233.

[27] C. Zhang, F. Vahid, and W. Najjar, ―A highly configurable cache for low energy embedded

systems,‖ CM Transactions on Embedded Computing Systems, (2005), Vol. 6, pp. 362-387.

[28] A. Gordon-Ross and F. Vahid, ―A self-tuning configurable cache,‖ Proceedings of Design

Automation Conference, (2007), pp. 234-237.

[29] A. Gordon-Ross, J. Lau, and B. Calder, ―Phase-based cache reconfiguration for a highly-

configurable two-level cache hierarchy,‖ Proceedings of the 18th ACM Great Lakes

symposium on VLSI, (2008), pp. 379-382.

[30] A. Gordon-Ross, P. Viana, F. Vahid, W. Najjar, and E. Barros, ―A one-shot configurable-

cache tuner for improved energy and performance,‖ Proceedings of Design, Automation and

Test Conference in Europe, (2007), pp. 755-760.

[31] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder, ―Discovering and exploiting

program phases,‖ Proceedings of International Symposium on Microarchitecture, (2003), pp.

84-93.

[32] C. Lee, M. Potkonjak, and W. H. Mangione-smith, ―Mediabench: A tool for evaluating and

synthesizing multimedia and communications systems,‖ Proceedings of International

Symposium on Microarchitecture, (1997), pp. 330-335.

[33] M. Guthaus, J. Ringenberg, D.Ernest, T. Austin, T. Mudge, and R. Brown, ―Mibench: A free,

commercially representative embedded benchmark suite,‖ Proceedings of IEEE International

Workshop on Workload Characterization, (2001), pp. 3-14.

[34] EEMBC, The Embedded Microprocessor Benchmark Consortium, http://www.eembc.org/.

[35] CACTI 5.3, HP Labs, http://www.hpl.hp.com/.

[36] D. Burger, T. M. Austin, and S. Bennett, " Evaluating future microprocessors: The

simplescalar tool set,‖ University of Wisconsin-Madison, Tech. Rep. (1996).

http://www.eembc.org/

FIGURES AND TABLES

Figure 1 Cache configurability: (a) base cache bank layout, (b) way concatenation, (c) way shutdown,

and (d) configurable line size.

Figure 2 Phase-based cache tuning: task is partitioned at n potential preemption points resulting in n

phases.

Figure 3 Normalized energy consumption of the searched energy-optimal cache configuration using

heuristics.

Figure 4 Normalized execution time of the searched performance-optimal cache configuration using

heuristics.

0.8
0.85

0.9
0.95

1
1.05

1.1
1.15

1.2
1.25

1.3
1.35

1.4
1.45

1.5

N
o

rm
al

iz
e

d
 E

n
e

rg
y

C
o

n
su

m
p

ti
o

n

Exhaust SLOT TST ILOT ILT

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

N
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e

Exhaust SLOT TST ILOT ILT

Figure 5 Cache hierarchy energy consumption using four heuristics.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7

N
o

rm
al

iz
e

d
 T

o
ta

l E
n

e
rg

y
C

o
n

su
m

p
ti

o
n

Base Exhaust SLOT TST ILOT ILT

Table 1 Energy optimal (EO) and performance optimal (PO) cache hierarchy configurations for

different applications. Each configuration is denoted by its total capacity in kilobytes (KB), followed by

the associativity in number of ways (W), followed by the line size in bytes (B).

 IL1 DL1 UL2

cjpeg EO 4KB_2W_16B 4KB_1W_16B 16KB_4W_32B

PO 4KB_4W_64B 4KB_4W_64B 32KB_16W_64B

epic EO 2KB_2W_16B 4KB_1W_16B 16KB_4W_32B

PO 4KB_2W_64B 4KB_1W_32B 32KB_4W_64B

pegwit EO 4KB_1W_32B 1KB_1W_16B 8KB_4W_32B

PO 4KB_2W_32B 4KB_4W_16B 32KB_4W_32B

rawcaudio EO 1KB_1W_16B 2KB_1W_16B 8KB_4W_32B

PO 4KB_4W_64B 4KB_2W_32B 32KB_8W_128B

AIFFTR01 EO 4KB_2W_16B 4KB_2W_32B 16KB_4W_32B

PO 4KB_4W_64B 4KB_2W_64B 32KB_16W_64B

RSPEED01 EO 4KB_1W_32B 2KB_2W_16B 16KB_4W_32B

PO 4KB_2W_64B 2KB_2W_16B 32KB_16W_64B

Table 2 Static profile table of task i with a partition factor p.

Task i Partition Factor: p

phase 0
 ,

 ,
 ,

 ,

 ,
 ,

phase 1
 ,

 ,
 ,

 ,

 ,
 ,

phase 2
 ,

 ,
 ,

 ,

 ,
 ,

……

phase p-1
 ,

 ,
 ,

 ,

 ,
 ,

Table 3 Task list entry sample.

Task ID: i Partition Factor: p

Current Phase () Deadline ()

Total Instruction Number () Executed Instruction Number ()

Table 4 Task sets consisting of real benchmarks

Sets Tasks

Set 1 cjpeg, epic, pegwit, rawcaudio, mpeg2, toast

Set 2 CRC32, dijkstra, FFT, pktflow, qsort, rijndael

Set 3 A2TIME01, AIFFTR01, AIFIRF01, BITMNP01, IDCTRN01, RSPEED01

Set 4 cjpeg, pegwit, qsort, susan, A2TIME01, IDCTRN01

Set 5 epic, rawcaudio, dijkstra, CRC32, AIFFTR01, BITMNP01

Set 6 mpeg2, toast, pktflow, rijndael, AIFIRF01, RSPEED01

Set 7 pegwit, mpeg2, qsort, FFT, BITMNP01, IDCTRN01

Table 5 Cache hierarchy configuration explored using different exploration methods.

 Exhaust SLOT TST ILOT ILT

cjpeg 4752 288 192 54 31

epic 4752 288 70 54 31

pegwit 4752 288 128 36 36

rawcaudi

o

4752 288 452 54 33

CRC32 4752 288 318 54 33

dijkstra 4752 288 92 54 32

FFT 4752 288 165 52 36

pktflow 4752 288 114 54 37

qsort 4752 288 116 54 37

rijndael 4752 288 58 54 31

susan 4752 288 352 54 33

A2TIME

01

4752 288 92 54 34

AIFFTR

01

4752 288 120 54 31

AIFIRF0

1

4752 288 79 54 38

BITMNP

01

4752 288 68 54 38

IDCTRN

01

4752 288 84 54 36

RSPEED

01

4752 288 116 53 37

ALGORITHMS

Algorithm 1: Cache configuration selection

Input: Task list entry, ready task list and profile table.

Output: An appropriate cache configuration combination.

Step 1: Select executing task .

if The algorithm is called when preemption happens then

 Calculate the preempted task ’s CP.

 for i = 0 to p – 1 do

 if × i / p ≤ < × (i + 1) / p then

 = i / p;

 end if

 end for

 = preempting task;

else

 = the task with maximum priority from RTL;

end if

Step 2: Sort all task in RTL by priority, to , from highest to lowest, t represents the current time

instant.

for j = 1 to m do

 if t + + ∑

 >

 then

 Task is subject to be discarded;

 end if

end for

Step 3: Select cache configuration for . Let be the number of tasks in RTL left after Step 2.

if t + > then

 EP_OK = false;

else

 EP_OK = true;

 for j = 1 to do

 if t + + ∑

 >

 then

 EO_OK = false;

 end if

 end for

end if

if EO_OK then

 =

 ;
 =

 ;
 =

 ;

else

 =

 ;
 =

 ;
 =

 ;

end if

Return:
 ,

 ,

BIOGRAPHIES

Weixun Wang received his B.E. degree in software engineering from the Software Institute, Nanjing

University, Nanjing, China, in 2007. He is currently pursuing his Ph.D. degree in the Department of

Computer and Information Science and Engineering, University of Florida, Gainesville, USA. His

research interests include the area of design automation of embedded systems with focus on dynamic

cache reconfiguration, energy optimization, temperature management, design space exploration and

lossless data compression.

Prabhat Mishra is an Associate Professor in the Department of Computer and Information Science

and Engineering at the University of Florida. His research interests include design automation of

embedded systems, hardware/software verification, and low-power reconfigurable architectures. He

received his B.E. from Jadavpur University, Kolkata in 1994, M.Tech. from the Indian Institute of

Technology, Kharagpur in 1996, and Ph.D. from the University of California, Irvine in 2004 -- all in

computer science and engineering. Prior to joining University of Florida, he spent several years in

various semiconductor and design automation companies including Intel, Motorola, Synopsys and

Texas Instruments. He has published two books, nine book chapters and more than 60 research

articles in premier international journals and conferences. His research has been recognized by

several awards including the 2003 CODES+ISSS Best Paper Award, 2005 European Design

Automation Association Outstanding Dissertation Award, and 2008 National Science Foundation

CAREER Award. He has also received the International Educator of the Year Award from the UF

College of Engineering for his significant international research and teaching contributions.

Prof. Mishra currently serves as the Information Director of ACM Transactions on Design

Automation of Electronic Systems, Guest Editor of IEEE Design & Test of Computers, and as a

program/organizing committee member of several premier ACM and IEEE conferences including

DATE, ASPDAC, CODES+ISSS, VLSI Design, VLSI-SoC, GLSVLSI, and ISVLSI. He has also

served as General Chair of IEEE High Level Design Validation and Test (HLDVT) 2010, Program

Chair of HLDVT 2009, and Guest Editor of Springer Journal of Electronic Testing and International

Journal of Parallel Programming. He is a senior member of ACM, and a senior member of IEEE.

