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Trivia: in how many different ways can the log canonical threshold of a polynomial
be computed? At least six ways in general, plus four more ways with some luck. This
richness of approaches reflects the central place that log canonical thresholds and, more
generally, multiplier ideals have in singularity theory. Singularity theory is a subject deeply
connected with many areas of mathematics and emerged with the works of Milnor and
Arnold. The Milnor fiber is the main object of interest in classical singularity theory. More
sophisticated approaches were developed since then by Deligne, Malgrange, and Kashiwara,
with the introduction of the vanishing cycles functor and its version in terms of D-modules.
The theory culminated with the introduction of mixed Hodge structures on Milnor fibers
by Steenbrink, Varchenko, Navarro-Aznar, and M. Saito. Modern approaches to singularity
theory evolved with the introduction of the motivic Milnor fiber of Denef-Loeser, of arc spaces
and jet schemes, and connections with number theory were highlighted via the Monodromy
Conjecture and the test ideals.

In these lectures we will review some of these constructions and will explain how mul-
tiplier ideals are related to them. The purpose will be to place on the general map of local
singularity invariants the role played by multiplier ideals.

We will start in section 1 with the topological point of view: Milnor fibers and local
systems. Although we will not prove anything, this part forms the geometric intuition
for later. In section 2 we will use log resolutions to define the multiplier ideals, jumping
numbers, and inner jumping multiplicities. In section 3 we introduce another point of view on
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singularities coming from mixed Hodge structures. This forms the bridge between multiplier
ideals and Milnor fibers. More precisely, we show using the Denef-Loeser motivic Milnor
fiber that inner jumping multiplicities are multiplicities in the Hodge spectrum. In the
next section, we explicit the Hodge filtration on rank one local systems. We apply this to
understand the Hodge spectrum of homogeneous polynomials and to show how multiplier
ideals are related to Hodge numbers of finite abelian coverings. In section 4 we introduce
another invariant coming from log resolutions, the topological zeta function, and state the
conjecture relating it with the Milnor fiber. This is the Monodromy Conjecture. In the last
section we introduce generalized b-functions, their relation with Milnor fibers, topological
zeta functions, and multiplier ideals. The example of hyperplane arrangements will be
discussed in detail throughout the exposition.

For the complete answer to the trivia question above see the survey [1]. This survey is
a guide to results and literature covering topics wider than these lectures. For a thorough
reference list, please consult this survey. From these notes we left out the analytic approach
to multiplier ideals and their connections with Frobenius map and test ideals. These are
covered by the lectures of S. Boucksom and K. Smith.

These notes are for lectures at the Conference on Multiplier Ideals, CIRM, Luminy,
January 2011. I would like to thank the organizers for this opportunity, and to A. Dimca
and M. González Villa for some corrections. This work has been sponsored in part by NSF,
NSA, and the H.J. Kenna endowment at University of Notre Dame. I would like to thank
Johns Hopkins University and Prof. S. Zucker for their hospitality while these notes were
written.

1. Milnor fibers and local systems

In this section we describe topological point of views on singularities. While topological
invariants of singularities are difficult to compute unless tied with more algebraic approaches,
they form the ground upon which geometric intuition builds in local singularity theory.

Let f be a polynomial in C[x1, . . . , xn] vanishing at the origin in Cn. More generally
we can let f be a hypersurface singularity germ at the origin in Cn. Let ε be a very small
positive real number and let Bε be the ball of radius ε around the origin in Cn. Let

Mt := f−1(t) ∩Bε .

Theorem 1.1. (Milnor, Hamm) For small values of ε and even smaller values of |t|, the
diffeomorphism class of Mt is constant.

Definition 1.2. Mt is called a Milnor fiber of f at the origin in Cn. Fix once and for all
a Milnor fiber Mt and we will denote its diffeomorphism class by Mf,0. The cohomology
vector spaces H i(Mf,0,C) of the Milnor fiber admit a C-linear action T called monodromy
generated by going once along a loop starting at t around 0.

Theorem 1.3. (Brieskorn) The eigenvalues of the monodromy action T are roots of unity.

Example 1.4. If the origin is a nonsingular point of f , that is if the derivatives ∂f/∂x1,
. . ., ∂f/∂xn do not all vanish at 0, then Mf,0 is contractible to a point. So the reduced

cohomology H̃ i(Mf,0,C) = 0.
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If the origin is a singular point of f , how does one compute the Milnor cohomology, the
monodromy, and its eigenvalues? Here are some examples, but we will talk later about how
this is accomplished in general by algebraic approaches.

Example 1.5. (Milnor) If the origin is an isolated singular point of f , that is if the deriva-
tives ∂f/∂x1, . . ., ∂f/∂xn vanish simultaneously at 0 but at no other point in a small open
neighborhood of 0 in f−1(0), then the Betti numbers of the Milnor fiber are

dimCH
j(Mf,0,C) =


0 for j 6= 0, n− 1,
1 for j = 0,

dimC C[[x1, . . . , xn]]/
(
∂f
∂x1
, . . . , ∂f

∂xn

)
for j = n− 1.

The last value for j = n− 1 is denoted µ(f) and called the Milnor number of f .

Example 1.6. Let f = y2 − x3 be the cusp. Then the Milnor number µ(f) = 2. The
monodromy on H1(Mf,0,C) = C2 is diagonalizable with eigenvalues e2πi·1/6 and e2πi·5/6.

Example 1.7. (Milnor) If f is a homogeneous polynomial of degree d, the Milnor fiber of
f at 0 is, up to diffeomorphism,

Mf,0 = f−1(1) ⊂ Cn.

Let h : f−1(1) → f−1(1) be the map given by a 7→ e2πi/d · a. Then the monodromy on the
Milnor cohomology is T = h∗. The monodromy T is diagonalizable and the eigenvalues are
d-th roots of unity. This example will lead us to introduce the following.

Definition 1.8. A local system V on a complex manifold X is a locally constant sheaf of
finite dimensional complex vector spaces. The rank of V is the dimension of a fiber of V . If
X is a nonsingular algebraic variety, a local system on X will mean a local system on the
underlying complex manifold.

Example 1.9. Rank one local systems on X together with their tensor product form a
group. This group is Hom(H1(X,Z),C∗). A unitary local system of rank one corresponds
to an element of Hom(H1(X,Z), S1). For example, CX is unitary, and so is any rank
one local system of finite order. Higher rank local systems are given by representations of
the fundamental group of X. For higher rank, unitary local systems are given by unitary
representations of the fundamental group.

Example 1.7 - continued. We show now how local systems arise naturally in questions
related to Milnor fibers. Let U be the complement in Pn−1 of the zero locus of f . Use the
shorter notation M for Mf,0 = f−1(1). Let

p : M → U

be the natural projection. The group 〈h〉 = Z/dZ acts on M freely, the quotient can be
identified with U , and p is the quotient map. The direct image of the constant sheaf CM is
a rank d local system p∗CM on U . There is a decomposition

p∗CM = ⊕dk=1Vk,
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where Vk is the rank one local system on U given by the e−2πik/d-eigenspaces of fibers of the
local system p∗CM . Then, since p is finite, by the Leray spectral sequence one has

H i(M,C)e−2πik/d = H i(U,Vk)
for 1 ≤ k ≤ d. In other words, by 1.7, the eigenspaces of the Milnor monodromy are
computed by rank one local systems in this case. It will be useful later to know that the
monodromy of Vk around a general point of an irreducible component of the complement
of U is given by multiplication by e2πikm/d, where m is the vanishing order of f along this
component.

Example 1.10. Let f be a hyperplane arrangement, that is f a product of linear polyno-
mials. We can assume that f is central, or in other words a product of linear forms. Using
the notation of the previous example, Orlik-Solomon showed that the cohomology algebra
H∗(U,Z) is a combinatorial invariant of f , that is it only depends on how the hyperplanes
intersect but not on their position. Rybnikov showed that the fundamental group π1(U)
is not a combinatorial invariant of f . One can think of cohomology H∗(U,V) of rank one
local systems on U as lying somewhere between H∗(U,Z) and π1(U). This is the reason
why the following folklore conjecture is the current “holy grail” of the theory of hyperplane
arrangements.

Conjecture 1.11. The dimensions of the monodromy eigenspaces, and hence the Betti num-
bers of the Milnor fiber, of a hyperplane arrangement are combinatorial invariants.

Even the simplest unknown case, the cone over a planar line arrangement with at most triple
points, is surprisingly difficult.

Example 1.9 is a particular case of a more general situation in the following sense. Let
X be a nonsingular complex projective variety, D = ∪i∈SDi a divisor on X with irreducible
components Di, and let U = X −D. Let G be a finite abelian group, and G∗ = Hom(G,C∗)
the dual group of G.

Definition 1.12. A map Y → X is a G-cover if it is a finite map together with a faithful
action of G on Y such that the map exhibits X as the quotient of Y via G. Two covers are
said to be equivalent if there is an isomorphism between them commuting with the cover
maps.

The first part of the following is a classical result in topology. The second, due to
Grauert-Remmert, is its algebraic counterpart.

Theorem 1.13. (Grauert-Remmert) The morphisms of H1(U,Z) onto G are in one-
to-one correspondence with the equivalence classes of unramified G-covers of U . These, in
turn, are in one-to-one correspondence with equivalence classes of normal G-covers of X
unramified above U . The group G is recovered as the group of automorphisms of the cover
commuting with the cover map.

Example 1.14. The canonical surjection

H1(U,Z)→ H1(U,Z/NZ)

defines an unramified cover UN of U , and a corresponding normal cover XN of X. These are
called congruence covers.
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Corollary 1.15. The equivalence classes of unramified G-covers of U , or equivalently of
normal G-covers of X unramified above U , are into one-to-one correspondence with subgroups
G∗ of the group Hom(H1(U,Z), S1) of rank one unitary local systems on U .

Proof. It is a standard exercise in duality that there is an one-to-one equivalence between
surjections H1(U,Z)→ G and subgroups G∗ ⊂ Hom(H1(U,Z), S1). �

Example 1.9 -continued. An algebro-geometric description of rank one local systems
on a nonsingular projective variety X is as the group Picτ (X) × H0(X,Ω1

X) of so-called
”Higgs line bundles”. Here Picτ (X) = ker[c1 : Pic(X) → H2(X,R)] and it consists of
finitely many disjoint copies of the Picard variety Pic0(X). To a local system V given by
ρ ∈ Hom(H1(X,Z),C∗) one attaches (E, φ) in Picτ (X)×H0(X,Ω1

X), where, as a holomorphic
line bundle, E = OX ⊗C V , and φ is the (1, 0)-part of log |ρ| viewed as a cohomology
class via H1(X,R) ∼= Hom(H1(X,Z),R). Under this equivalence, the unitary local systems
correspond to the elements of Picτ (X). We will describe an algebro-geometric description
of the unitary local systems of rank one on nonsingular quasi-projective varieties later, see
Theorem 4.2.

One can construct many natural susbspaces of rank one local systems, such as the
following.

Definition 1.16. The characteristic subvarieties of the space of rank one local systems on
X are the sets of type

{V | dimHm(X,V) ≥ i},
with m and i fixed.

In the nonsingular projective case, the characteristic varieties have quite a rigid structure
involving subtori of Pic0(X). We have just seen in the above example the relation of this
group with local systems. A quasi-projective version of this structure result will be mentioned
later.

Theorem 1.17. (Green-Lazarsfeld, Arapura, Simpson) Let X be a nonsingular projec-
tive complex variety. The characteristic varieties of X are finite unions of torsion-translated
complex subtori of the space of rank one local systems.

2. Multiplier ideals

Next, we describe a point of view on singularities coming from birational geometry:
multiplier ideals. We introduce the jumping numbers and, a more local notion, the in-
ner jumping numbers. Later we will describe a relation between multiplier ideals and the
topological point of views, where inner jumping numbers play a major role.

Let X be a nonsingular complex variety.

Definition 2.1. A log resolution of a collection of closed subschemes Z1, . . . , Zr in X is a
map µ : Y → X such that Y is nonsingular, µ is birational and proper, and: the exceptional
locus, the inverse image of each Zi, the support of the determinant of the Jacobian of µ, and
the union of these are simple normal crossings divisors.
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Log resolutions always exist by Hironaka. Denote by KY/X the divisor given by the
determinant of the Jacobian of µ. Note that KY/X = KY − µ∗KX , where K are canonical
divisors. Let c1, . . . , cr be positive real numbers. Let bHc denote the round-down of the
coefficients of the irreducible components of the divisor H. The following is the key result
that we use. A proof can be found in [5], along with a history of the subsequent definition.

Theorem 2.2. Let µ : Y → X be a log resolution of Z1, . . . , Zr in X. Denote by Hi the divi-
sor µ−1Zi, the scheme-theoretic inverse image of Zi. Then µ∗OY (KY/X−bc1H1 + . . .+ crHrc)
is independent of the choice of µ and Riµ∗OY (KY/X − bc1H1 + . . .+ crHrc) = 0 for i > 0.

Definition 2.3. The multiplier ideal of (X, c1 · Z1 + . . .+ cr · Zr) is

J (X, c1 · Z1 + . . .+ cr · Zr) := µ∗OY (KY/X − bc1H1 + . . .+ crHrc) ⊂ OX .
This is an ideal sheaf since it is included in µ∗OY (KY ) = OX .

Multiplier ideals should be viewed as invariants of singularities in the following sense:
smaller multiplier ideals means worse singularities.

Example 2.4. (Howald) The multiplier ideals of a scheme Z in X = Cn defined by a
monomial ideal I are

J (X, cZ) = 〈xu | u+ 1 ∈ Interior(cP (I))〉,
where P (I) is the convex closure in Rn

≥0 of {u ∈ Zn | xu ∈ I}.

Let Z be a closed subscheme of X.

Definition 2.5. The jumping numbers of Z in X are those numbers c > 0 such that

J (X, cZ) 6= J (X, (c− ε)Z)

for all ε > 0. The log canonical threshold of (X,Z) is denoted lct (X,Z) and is the smallest
jumping number.

Proposition 2.6. (Ein-Lazarsfeld-Smith-Varolin) The list of jumping numbers contains
finitely many numbers in any compact interval, all rational numbers, and is periodic.

Exercise 2.7. Let KY/X =
∑

i kiEi and µ−1Z =
∑

i aiEi be the irreducible decompositions.
Then

lct (X,Z) = min
i

{
ki + 1

ai

}
.

Exercise 2.8. Let f = x2 − y3. Then the jumping numbers are 5/6, 1, 11/6, 2, . . ..

Example 2.9. (Mustaţă, Teitler) Let D = {f = 0} be a hyperplane arrangement in
X = Cn, with irreducible components Di = {fi = 0}. An edge of D is any intersection of
Di. The poset of edges, ordered by inclusion, is denoted L. For an edge V we define

rV := codimV, aV := #{Di ⊃ V },
where the last count takes into account multiplicities. A hyperplane arrangement A is
indecomposable if there is no linear change of coordinates on Cn such that A can be written
as the product of two non-constant polynomials in disjoint sets of variables. An edge V is
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called dense if the hyperplane arrangement DV = {fV = 0} given by the image of ∪Di⊃VDi

in Cn/V is indecomposable. For example, Di is a dense edge for every i.
Then the multiplier ideals are

J (X, cD) =
⋂

dense V ∈L

I
bcaV c+1−rV
V .

This can be seen by letting µ : Y → X be the successive blow up, by decreasing codimension,
of the dense edges. Denoting by EV the exceptional divisor corresponding to a dense edge
V , we have

KY/X =
∑

dense V ∈L

(rV − 1)EV , and µ∗D =
∑

dense V ∈L

aVEV .

Mustaţă conjectured that the jumping numbers of D are combinatorial invariants of the
arrangement, that is they depend only on the poset L together with the function r and the
multiplicities of the components of D. We will see how this is proved later.

To measure the contribution of a singular point x ∈ Z to a jumping number c, we
introduce the following.

Definition 2.10. For a point x in Z, the inner jumping multiplicity of c at x is the vector
space dimension

mx(X, c · Z) := dimC J (X, (c− ε)Z)/J (X, (c− ε)Z + δ{x}),
where 0 < ε � δ � 1. We say that c is an inner jumping number of (X,Z) at x if
mx(X, c · Z) 6= 0.

We will prove that this multiplicity is well-defined, is finite, and that inner jumping
numbers are jumping numbers.

Let µ : Y → X be a common log resolution of Z and {x} in X. Let S = {i | ai 6= 0}
be the index set of the irreducible decomposition of E = µ−1Z =

∑
i aiEi. For any subset

I ⊂ S, let EI =
⋃
i∈I Ei. Let E∅ = ∅. For a positive integer d, let Sd = {i ∈ S | d|ai}. Let

Sd,x = {i ∈ Sd | µ(Ei) = {x} }. Write c = r/d with r and d nonnegative integers such that
gcd(r, d) = 1. Having fixed c, define

F = ESd,x , G = ESd\Sd,x .

By comparing coefficients, we have:

Lemma 2.11. Let H be the effective divisor on Y such that µ−1x = H. Then

KY/X − bcEc+G = KY/X − b(c− ε)Ec − F
= KY/X − b(c− ε)E + δHc,

where 0 < ε� δ � 1.

Lemma 2.12. (1) µ∗OY (KY/X − bcEc + G) is independent of the log resolution and
Riµ∗OY (KY/X − bcEc+G) = 0 for i > 0.

(2) For 0 < ε� 1, µ∗(OF (KY/X − b(c− ε)Ec)) is independent of the log resolution and
Riµ∗(OF (KY/X − b(c− ε)Ec)) = 0 for i > 0.
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(3) µ∗(OG(KY/X −bcEc+G)) is independent of the log resolution and Riµ∗(OG(KY/X −
bcEc+G)) = 0 for i > 0.

Proof. By Lemma 2.11,

µ∗OY (KY/X − bcEc+G) = J (X, (c− ε)Z + δ{x})

for 0 < ε� δ � 1. This shows (1) by Theorem 2.2. For all small ε > 0, consider the exact
sequence

0 −→ OY (A− F ) −→ OY (A) −→ OF (A) −→ 0,

where A = KY/X − b(c− ε)Ec. By (1) and Lemma 2.11, the first sheaf pushes forward to
a multiplier ideal on X and has no higher direct images. The second sheaf pushes forward
to J (X, (c− ε)Z) and has no higher direct images by Theorem 2.2. This implies (2). (3) is
similar. �

Let

K(X, cZ) = J (X, (c− ε)Z)/J (X, cZ),

and

Kx(X, cZ) = J (X, (c− ε)Z)/J (X, (c− ε)Z + δ{x}),

for 0 < ε� δ � 1. Remark that K(X, cZ) = µ∗(OF+G(KY/X − b(c− ε)Ec)). Similarly, the
proof of Lemma 2.12-(2) gives:

Proposition 2.13. With the above notation, we have:

(1) Kx(X, cZ) = µ∗(OF (KY/X − b(c− ε)Ec)), where 0 < ε� 1.
(2) mx(X, cZ) = χ(Y,OF (KY/X −b(c− ε)Ec), where χ is the sheaf Euler characteristic.

Proposition 2.14. If c is an inner jumping number of (X,Z) at x then c is a jumping
number of (X,Z).

Proof. Consider the exact sequence

0 −→ OG(KY/X − bcEc+G) −→ OF+G(KY/X − b(c− ε)Ec)
−→ OF (KY/X − b(c− ε)Ec) −→ 0.

None of the three sheaves has higher direct images for µ and the last two sheaves push-
forward to K(X, cZ) and, respectively, Kx(X, cZ). If Kx(X, cZ) 6= 0 then K(X, cZ) 6= 0. �

Remark 2.15. If x is an isolated singularity of Z, and if X is replaced by a small open
neighborhood of x if necessary, then all non-integral jumping numbers are inner jumping
numbers. This is because we can assume G = ∅ and so K(X, cZ) = Kx(X, cZ).

Exercise 2.16. Let D be the plane cuspidal cubic. Then m0(C2, 5/6 · D) = 1. However,
m0(C2, D) = 0 although 1 is a jumping number.
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3. Hodge filtration I: Milnor fibers

Next, we will see how mixed Hodge structures give yet another point of view on sin-
gularities. Using them we describe a relation between multiplier ideals and Milnor fibers
and local systems. We should mention that there is now a more general theorem, relating
multiplier ideals with D-modules. Although we will not talk about it in these lectures, we
will see some consequences of this later.

We will keep things very simple and talk only about the Hodge filtration. This means
we will be talking about vector spaces V with a decreasing filtration F •V of subspaces. We
let GrpFV = F pV/F p+1V be the graded p-piece of the filtration.

Example 3.1. If X is a smooth projective complex variety, the Hodge filtration and its
graded pieces on Hm(X,C) are

F pHm(X,C) =
⊕
i≥p

Hm−i(X,Ωi
X) and GrpFH

m(X,C) = Hm−p(X,Ωp
X).

Example 3.2. If U is a smooth quasi-projective complex variety of dimension n, then

GrpFH
m(U,C) = Hm−p(Y,Ωp

Y (logE)),

where: Y is any smooth compactification of U with complement E = Y −U a simple normal
crossings divisor; Ω1

Y (logE) is the OX-module locally generated by dx1/x1, . . . , dxr/xr,
dxr+1,. . . ,dxn where x1, . . . , xr are local equations for the irreducible components of E; and
Ωp
Y = ΛpΩ1

Y .

Example 3.3. (Deligne, Timmerscheidt) More generally, let U be a smooth quasi-
projective complex variety of dimension n and V a unitary local system on U . Then

GrpFH
p+q(U,V) = Hq(Y,Ωp

Y (logE)⊗ V),

where V is a vector bundle called the “canonical Deligne extension” of V .

We will come back and make this example very explicit, but let’s see first where all this
leading to.

Theorem 3.4. (Steenbrink, Varchenko, Navarro Aznar, M. Saito) Let f be a hyper-
surface germ. There is a canonical mixed Hodge structure on the cohomology of the Milnor
fiber of f , compatible with semi-simple part of the monodromy.

We will not give the construction of the Hodge filtration of this theorem. But we will
still be able to understand concretely what it says. Let us assume for example that f is a
homogeneous polynomial. We have seen in 1.7 that the Milnor fiber is the smooth quasi-
projective variety given by f − 1. Moreover, we have seen that the Milnor fiber cohomology
is given by unitary local systems of rank one on U , the complement in Pn−1 of the zero locus
of f . The canonicity of the Hodge filtration of the Milnor fiber means that this is the same
filtration as the one given by 3.3. We will make 3.3 explicit in the next section.

There is yet another way to understand concretely what the Hodge filtration on the
Milnor fiber is, provided that one is happy to work only with numerical invariants. Let us
describe this now.
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Definition 3.5. (Steenbrink) Let f be a hypersurface germ at the origin in Cn. The Hodge
spectrum of f at 0 is

Sp(f, 0) =
∑
α∈Q

nα,0(f) · tα,

where the spectrum multiplicities

nα,0(f) :=
∑
i∈Z

(−1)i−n+1 dimC Gr
bn−αc
F H̃ i(Mf,0,C)e−2πiα

record the generalized Euler characteristic on the bn− αc-graded piece of the Hodge filtration
on the exp(−2πiα)-monodromy eigenspace on the reduced cohomology of the Milnor fiber.

It turns out that one can write the Hodge spectrum more economically as:

Proposition 3.6.

Sp(f, 0) =
∑

α∈Q∩(0,n)

∑
bn−αc≤i<n

(−1)i−n+1 dimC Gr
bn−αc
F H i(Mf,0,C)e−2πiα · tα.

Let us give a formula for the Hodge spectrum in terms of log resolutions. Given a
positive integer d, fix for once and for all a generator of Z/dZ. For a complex variety Z with
an action of Z/dZ, and for a rational number α ∈ [0, 1) there is a well-defined class

[Z, α] =
∑
i∈Z

(−1)i[(H i
c(Z,C)e2πiα , F )]

in the Grothendieck ring of the abelian category of filtered vector spaces. This class is a
generalized Euler characteristic and it behaves as expected: satisfies additivity and a Mayer-
Vietoris formula. We will see how this works in practice. To get numerical invariants we will
further apply to such classes the functor

grp(H,F ) := dimGrpFH.

Let L be the class such that grp(H · Lm) = grp−m(H).

Let X be a nonsingular complex variety of dimension n and f a regular function defining
a divisor D. Let µ : Y → X be a log resolution of (X,D). Let µ∗D =

∑
i aiEi, where Ei are

the irreducible components. Fix α ∈ [0, 1) a rational number, and write α = r/d where r
and d are nonnegative integers with gcd(r, d) = 1. If α = 0, let d = 1. Let J = {i | ai 6= 0}
and Jd = {i ∈ J | d|ai}. For I ⊂ J , let EI = ∩i∈IEi and EI = ∪i∈IEi. Let E∅ = Y and
E∅ = ∅. For I ⊂ J , let Eo

I = EI − EJ\I .

Let p : Ỹ → Y be the degree-d cyclic cover obtained by taking the d-th root of the
local equations of the divisor R =

∑
i∈J\Jd aiEi. That is, locally Ỹ is the normalization of

the subvariety of Y × C given by yd = s, where s defines R. A more conceptual way to
construct this covering is given in Exercise 4.14. For any locally closed subset W ⊂ Y let

W̃ = p−1(W ).

Theorem 3.7. (Denef-Loeser) Define

Sα,x :=
∑
I⊂Jd

[(Eo
I ∩ µ−1(x))̃ , α](1− L)|I|−1.
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For c ∈ Q ∩ (0, 1] the multiplicity of c in the Hodge spectrum Sp(f, x) is

nc,x(f) = (−1)n−1grn−1(S1−c,x).

What Denef and Loeser did is more general, cf. [3]. The class Sα,x is defined via motivic
integration in an appropriate Grothendieck ring of varieties. These classes, for varying α,
recover the whole Hodge spectrum of f and the monodromy zeta function of f , see 5.3. They
form the so-called “motivic Milnor fiber”. The motivic Minor fiber can be obtained from a
“motivic zeta function”. This motivic zeta function recovers the topological zeta function
which will be introduced later see 5.1.

The following connects multiplier ideals with the Milnor fiber. More precisely, it connects
the inner jumping multiplicities from 2.10 with the Hodge spectrum multiplicities.

Theorem 3.8. (B.) Let X be a nonsingular complex variety. Let D be a hypersurface in X
and x ∈ D be a point. Let f be any local equation of D at x. Then for any c ∈ (0, 1],

mx(X, cD) = nc,x(f).

Corollary 3.9. For all α ∈ (0, 1],

(1) α appears in the Hodge spectrum of f if and only if α is an inner jumping number of
(X,D) at x;

(2) (M. Saito) the multiplicity nα(f) is ≥ 0;
(3) (Varchenko) if x is an isolated singularity of D and α 6= 1, then, replacing X by an

open neighborhood of x if necessary, α appears in the Hodge spectrum if and only if
α is a jumping number.

Example 3.10. Let f = x2 − y3. Then Sp(f, 0) = t5/6 + t7/6.

Proof of Theorem 3.8. We will use Theorem 3.7. We can assume that f is a regular function
on X and D is the divisor of f . Let µ : Y → X be a common resolution of the point x and
of the divisor D.

Let α be a rational number in [0, 1). Let M = {I ⊂ Jd | I ∩ Jd,x 6= ∅}. We have

Sα,x =
∑
I∈M

[Ẽo
I , α](1− L)|I|−1 = ?,

because µ−1(x) is a divisor whose components have nonzero multiplicity in µ∗D. By addi-
tivity,

? =
∑
I∈M

([ẼI , α]− [(EI ∩ EJ\I )̃ , α])(1− L)|I|−1.

Using Mayer-Vietoris on (EI ∩ EJ\I )̃ ,

? =
∑
I∈M

∑
L⊂J\I

(−1)|L|[ẼI∪L, α](1− L)|I|−1.

If L 6⊂ Jd then EI∪L is included in EI ∩ EJ\Jd . This implies that the Z/d-action on ẼI∪L
factors through a Z/d′-action with d′ < d. This further implies that [ẼI∪L, α] = 0. Therefore

? =
∑
I∈M

∑
L⊂Jd\I

(−1)|L|[ẼI∪L, α](1− L)|I|−1.
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Then

grn−1(Sα,x) =
∑
I∈M

∑
L⊂Jd\I

|I|−1∑
i=0

(−1)|L|+i
(
|I| − 1

i

)
grn−1−i[ẼI∪L, α] = ? ? .

The varieties ẼI∪L are locally for the Zariski topology quotients of nonsingular varieties by
finite abelian groups. Since I ∩ Jd,x 6= ∅, they are finite over closed subvarieties of µ−1(x)

and therefore projective. It is known then that grn−1−i[ẼI∪L, α] = 0 if n− 1− i > dim ẼI∪L.

Since the divisors Ei are in normal crossing, the dimension of ẼI∪L is n − |I| − |L|. Hence
in the summation above it suffices to take i = |I| − 1 and L = ∅, i.e.

?? =
∑
I∈M

(−1)|I|−1grn−|I|[ẼI , α].

The Hodge theory of ẼI behaves as if ẼI is smooth, a fact which is holds, more generally,
for varieties with rational singularities. So

?? =
∑
I∈M

(−1)|I|−1
∑
i

(−1)i dimH i(ẼI ,OẼI )1−α,

where H∗(ẼI ,OẼI )1−α is the part of the cohomology of OẼI on which the our fixed generator

of Z/dZ acts by multiplication with e2πi(1−α). Since the covering p : ẼI → EI is a finite mor-
phism, we can replace OẼI by p∗OẼI in ??. By Exercise 4.14, the eigensheaf decomposition
of p∗OẼI gives

?? =
∑
I∈M

(−1)|I|−1χ(OEI ⊗OY (b(1− α)µ∗Dc)),

where χ stands for the sheaf Euler characteristic. The varieties EI are projective and non-
singular by assumption. Let ωEI be the canonical-dualizing sheaf. By duality,

?? = (−1)n−1
∑
I∈M

χ (ωEI ⊗OY (−b(1− α)µ∗Dc))

= (−1)n−1
∑

∅6=L⊂Jd,x

[χ (ωEL ⊗OY (−b(1− α)µ∗Dc)) +

+
∑

∅6=K⊂Jd\Jd,x

χ(ωEL∪K ⊗OY (−b(1− α)µ∗Dc)] .

Let G = EJd\Jd,x . Using a (coherent) Mayer-Vietoris for G ∩ EL for the last sum,

?? = (−1)n−1
∑

∅6=L⊂Jd,x

[χ (ωEL ⊗OY (−b(1− α)µ∗Dc)) +

+χ (ωG∩EL ⊗OY (−b(1− α)µ∗Dc))] ,

where ωG∩EL is the dualizing sheaf of G ∩ EL. By adjunction for G ∩ EL in EL,

?? = (−1)n−1
∑

∅6=L⊂Jd,x

χ(ωEL ⊗OY (−b(1− α)µ∗Dc+G)).

12



Let F = EJd,x . Using a (coherent) Mayer-Vietoris for F ,

?? = (−1)n−1χ(ωF ⊗OY (−b(1− α)µ∗Dc+G)).

By adjunction for F ⊂ Y , ωF ' OF ⊗OY (KY + F ) and therefore

?? = (−1)n−1χ(OF ⊗OY (KY/X − b(1− α− ε)µ∗Dc)),
for small ε > 0. Letting α = 1− c, the claim follows by Proposition 2.13. �

Next, we go back to making 3.3 explicit. As we noted already, this will give an explicit
description of the Hodge filtration on the Milnor fiber of homogeneous polynomials. Not
surprisingly, multiplier ideals will appear again.

4. Hodge filtration II: local systems

We now describe explicitly the Hodge filtration on the cohomology of unitary local
systems. We will work only with rank one unitary local systems and we will use a geometric
description of these as a black-box. One of the outcomes is a relation between multiplier
ideals and the Hodge filtration on local systems. We prove then that Hodge spectrum and
the jumping numbers of a hyperplane arrangement are combinatorial invariants. We also
show how multiplier ideals relate to Hodge numbers of finite abelian coverings.

Let X be a smooth complex projective variety of dimension n. Let D be a reduced
effective divisor on X with irreducible decomposition D = ∪i∈SDi, for a finite set of indices
S. Let U = X −D be the complement of D in X.

Definition 4.1. The group of realizations of boundaries of X on D is

Picτ (X,D) :=

{
(L, α) ∈ Pic(X)× [0, 1)S : c1(L) =

∑
i∈S

αi · [Di] ∈ H2(X,R)

}
,

where the group operation is

(L,α) · (L′, α′) = (L⊗ L′ ⊗OX(−bα + α′c ·D)), {α + α′}) .
Here α ·D means the divisor

∑
i∈S αiDi, and b.c (resp. {.}) is taking the round-down (resp.

fractional part) component-wise.

Note that the inverse of (L, α) is (M,β) where M = L∨ ⊗OX(
∑

αi 6=0 Di), and βi is 0 if

αi = 0 and is 1− αi otherwise. The black-box that we will use from [2] is:

Theorem 4.2. (Mochizuki, B.) Let X be a smooth projective variety, D a divisor on X,
and let U = X −D. There is a natural canonical group isomorphism

Picτ (X,D)
∼−→ Hom(H1(U,Z), S1)

between realizations of boundaries of X on D and unitary local systems of rank one on U .

Using a second compactification of U , we get an isomorphism between the realizations
of boundaries of the two compactifications. Let us state next the precise form of this iso-
morphism. Fix a log resolution

µ : Y → X
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of (X,D) which is an isomorphism above U . Let E = Y −U with irreducible decomposition
E = ∪j∈S′Ej.

Proposition 4.3. The map Picτ (X,D)→ Picτ (Y,E) given by

(L, α) 7→ (µ∗L− bµ∗(αD)c, β)

is an isomorphism, where βj is the fractional part of the coefficient of Ej in µ∗(αD).

The following can be taken as the definition of the isomorphism between Picτ (Y,E) and
Hom(H1(U,Z), S1) if one knows what the canonical Deligne extension V of a local system
V is. Or, the other way around, which is what we want, it can be taken as the definition of
the canonical Deligne extension.

Lemma 4.4. Let V be a rank one unitary local system on U . Then V corresponds to (M,β)
in Picτ (Y,E) where M = V ⊗ OY (

∑
βj 6=0 Ej) and βj ∈ [0, 1) is such that the monodromy of

V around a general point of Ej is multiplication by exp(2πiβj).

Exercise 4.5. Let f ∈ C[x1, . . . , xn] be a homogeneous polynomial of degree d. Let f =∏
i∈S f

mi
i be the irreducible decomposition of f , and di be the degree of fi. Denote by D

(resp. Di) the hypersurface defined by f (resp. fi) in X = Pn−1. Let U = X −D. Let Vk be
the local systems on U from Example 1.7 computing the Milnor fiber of f . Let (L(k), α(k))
be the elements in Picτ (X,D) corresponding to Vk . Then, using the last remark of 1.7,

α
(k)
i =

{
kmi

d

}
, L(k) = OX

∑
i∈S

α
(k)
i di

 .

Let us come back to making Example 3.3 very explicit. In fact we do something more
in the next Theorem. Namely, we start with a smooth compactification of U such that the
boundary divisor does not necessarily have only simple normal crossings. In this way we
obtain a relation between the multiplier ideals of the divisor and the Hodge filtration of local
systems.

Theorem 4.6. Let V be a rank one unitary local system on U corresponding to (L, α) in
Picτ (X,D). Then:

(a) GrpFH
p+q(U,V∨) = Hn−q(Y,Ωp

Y (logE)∨ ⊗ ωY ⊗ µ∗L⊗OY (−bµ∗(α ·D)c))∨ ;

(b) GrpFH
p+q(U,V) = Hq(Y,Ωn−p

Y (logE)∨⊗ωY ⊗µ∗L⊗OY (−bµ∗((α− ε) ·D)c)), for all
small ε > 0, if αi 6= 0 for all i ∈ S ;

(c) Gr0
FH

q(U,V∨) = Hn−q(X,ωX ⊗ L⊗ J (X,αD))∨ ;

(d) GrnFH
n+q(U,V) = Hq(X,ωX ⊗ L ⊗ J (X, (α − ε)D)) for all small ε > 0, if αi 6= 0

for all i ∈ S. This space is 0 if q 6= 0 and L− (α− ε)D is nef and big, by Nadel vanishing.

Proof. (a) By 3.3,
GrpFH

p+q(U,V∨) = Hq(Y,Ωp
Y (logE)⊗ V∨).

Consider the element corresponding to V from 4.3, and the corresponding tuple β. By
calculating the inverse in the group Picτ (Y,E) of this element, the dual local system V∨
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corresponds to (µ∗L∨ ⊗OY (bµ∗(αD)c+
∑

βj 6=0Ej), γ) in Picτ (Y,E), where γj is 0 if βj = 0

and is 1− βj if βj 6= 0. Hence, by Lemma 4.4,

V∨ = µ∗L∨ ⊗OY

bµ∗(αD)c+
∑
βj 6=0

Ej −
∑
γj 6=0

Ej


= µ∗L∨ ⊗OY (bµ∗(αD)c).

The conclusion follows by Serre duality.

(b) By Lemma 4.4,

V = µ∗L⊗OY

−bµ∗(αD)c −
∑
βj 6=0

Ej

 ,

which we plug into 3.3. Now we use the isomorphism

Ωp
Y (logE) ∼= Ωn−p

Y (logE)∨ ⊗ ωY ⊗OY

(∑
j

Ej

)
.

If αi 6= 0 for all i, that is if V is not the restriction to U of a local system over a larger open
subset of X, then the coefficients of Ej in µ∗(α ·D) are nonzero. Hence

−bµ∗(αD)c+
∑
βj=0

Ej = −bµ∗((α− ε)D))c,

for all 0 < ε� 1. The conclusion follows.

(c) We let p = 0 in (a) and use the definition of multiplier ideals. The identification of
Hn−q of the OY -module from (a) with Hn−q of the OX-module ωX ⊗ L⊗ J (X,αD) is due
to the triviality of the Leray spectral sequence that follows from the projection formula and
the local vanishing from Theorem 2.2.

(d) We let p = n in (b), then proceed as in (c). The vanishing for q 6= 0 is Nadel’s
vanishing theorem. �

Exercise 4.7. Now we draw some conclusions about the Hodge spectrum of a homogeneous
polynomial. We keep the notation of Exercise 4.5. Together with 3.6, it says that the only
rational numbers that can have nonzero multiplicity in Sp(f, 0) are of the type

(1) α =
k

d
+ p ∈ (0, n), with k, p ∈ Z, 1 ≤ k ≤ d, 0 ≤ p < n.

Let µ : (Y,E)→ (X,D) be a log resolution which is an isomorphism above U . With α, k, p,
as in (1), define

β
(k)
i :=

{
−kmi

d

}
, M (k) := OX

∑
i∈S

β
(k)
i di

 ,

Eα := Ωn−p−1
Y (logE)∨ ⊗ ωY ⊗ µ∗M (k) ⊗OY

(
−bµ∗

(
β(k) ·Dred

)
c
)
,
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where in the last sheaf the tensor products are over OY . Let α be as in (1). Then the
multiplicity of α in Sp(f, 0) is

nα,0(f) = (−1)n−p−1χ(Y, Eα).

Exercise 4.8. With the same notation as in the previous exercises, if α = k/d ∈ (0, 1), then

nα,0(f) = dimH0(Pn−1,O(k − n)⊗ J (Pn−1, (k/d− ε)D)) .

This can also be proved using Theorem 3.8 instead of Theorem 4.6.

Theorem 4.9. (B. - M. Saito) The jumping numbers and the Hodge spectrum of a hyper-
plane arrangement are combinatorial invariants.

Proof. We can assume the arrangement is central. By the previous exercise, the Hodge
spectrum can be written in terms of the Euler characteristic of vector bundles on a log
resolution Y . By Hirzebruch-Riemann-Roch theorem, the Euler characteristic of a vector
bundle is computed from the cohomology ring of Y . Let us use the canonical log resolution of
a hyperplane arrangement from 2.9. Then, a theorem of De Concini and Procesi guarantees
that the cohomology ring of Y is a combinatorial invariant.

For jumping numbers, it is enough to restrict to those in (0, 1). We can assume that
the arrangement is essential, that is the smallest edge is the origin. Let f be the polynomial
defining the arrangement D. We claim that α ∈ (0, 1) is a jumping number if and only if
there is an edge V such that α is a spectral number for fV in Cn/V , where fV is defined in
2.9. Indeed, if α is a spectral number for fV , then α is an inner jumping number for fV at
the origin in Cn/V , by Theorem 3.8. So α is a jumping number of fV by Proposition 2.14.
Now, take a point p ∈ V − ∪Di 6⊃VDi. After choosing a splitting of V ⊂ Cn, we have locally
around p, D = DV × V ⊂ Cn = Cn/V × V and f = fV · u, where u is a (locally) invertible
function. Hence α is a jumping number of f . Conversely, suppose α is a jumping number
for f . By 2.9, the support of the quotient

K = J (Cn, (α− ε)D) / J (Cn, αD)

is a union of edges. If K has zero-dimensional support, then Supp(K) = {0}, and α is an
inner jumping number. Thus it is spectral number of f = f0. Otherwise, let V be a top-
dimensional irreducible component of Supp(K). Restricting f to a transversal at a general
point of V , we obtain that α is an (inner) jumping number of fV , and thus a spectral number
of fV . �

Example 4.10. The precise formula for the Hodge spectrum multiplicities of a hyperplane
arrangement in terms of Eα in 4.7, plus the explicit combinatorial description of the ring
H∗(Y,Z) due to De Concini-Procesi, leads to the following. Let f be a reduced central
essential hyperplane arrangement in C3. That is, it is the cone over a line arrangement D
in P2, not all lines passing through one point. Then nα(f) = 0 if αd /∈ Z, and we have for
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α = i
d
∈ (0, 1] with i ∈ [1, d] ∩ Z

nα(f) =

(
i− 1

2

)
−
∑
m≥3

νm

(
dim/de − 1

2

)
,

nα+1(f) = (i− 1)(d− i− 1)−
∑
m≥3

νm (dim/de − 1) (m− dim/de) ,

nα+2(f) =

(
d− i− 1

2

)
−
∑
m≥3

νm

(
m− dim/de

2

)
− δi,d,

where νm is the number of points of multiplicity m in D, and δi,d = 1 if i = d and 0 otherwise.

Example 4.11. (continuation of previous example) A number α ∈ (0, 1) is a jumping
number of f if and only if there is an integer m ≥ 3 such that mα ∈ Z ∩ [2,m) and νm 6= 0
or there is i ∈ Z ∩ [3, d) such that α = i

d
and nα(f) 6= 0.

Another fact that can be proved using the explicit description of the Hodge filtration
on local systems from Theorem 4.6 is a formula, in terms of multiplier ideals, for the Hodge
numbers hq,0 = h0,q of finite abelian coverings ramified over a given divisor. To get there,
we start first with a geometric characterization of finite abelian covers, which is immediate
from Theorem 4.2 and Corollary 1.15.

Corollary 4.12. Let G be a finite abelian group. The equivalence classes of normal G-
covers of X unramified above U are into one-to-one correspondence with the subgroups G∗ ⊂
Picτ (X,D).

We can now prove the formula for Hodge numbers of finite abelian coverings. This was
done by Libgober in the case X = PN and proposed by him as a conjecture in the general
case we are dealing with.

Theorem 4.13. (Libgober, B.) Let π : X̃ → X be a normal G-cover of X unramified above
U corresponding to an inclusion G∗ = {(Lχ, αχ) | χ ∈ G∗} ⊂ Picτ (X,D). Let H0(Y,Ωq

Y )

denote the space of global q-forms on a nonsingular model Y of X̃. Then

H0(Y,Ωq
Y ) ∼=

⊕
χ∈G∗

Hn−q(X,ωX ⊗ Lχ ⊗ J (X,αχ ·D)).

Proof. We have Hq(Y,OY ) = Gr0
FH

q(π−1U,C) by 3.2. This in turn equals

Gr0
FH

q(U, π∗C) =
⊕
χ∈G∗

Gr0
FH

q(U,Vχ),

where Vχ is represented by (Lχ, αχ) in Picτ (X,D). Now we use part (c) of Theorem 4.6. �

Example 4.14. Since we are talking about finite abelian covers, let us indicate how one can
prove a fact used in the proof of Theorem 3.8. With the notation of Theorem 3.8, let I ⊂ Jd
and let W = EI . The Z/dZ-action gives an eigensheaf decomposition

p∗OW̃ =
⊕

0≤j<d

OW ⊗OY (b j
d
µ∗Dc),
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and the Z/dZ-action on each term is given by multiplication by e2πij/d. To prove this, we
use that

π∗OX̃ =
⊕
χ∈G∗

L−1
χ ,

in Theorem 4.13. Now, Ỹ is the normal Z/dZ-cover of Y unramified above Y − EJ corre-
sponding to the cyclic subgroup of Picτ (Y,E) generated by(

OY
(
−b1

d
µ∗Dc

)
,
{ai
d

}
i∈J

)
.

This is almost correct, and it would be enough if Y would be projective. If Y is not projective,
we can compactify it by adding a simple normal crossings divisor.

Now that we have formulas for the birational Hodge numbers of finite abelian covers,
one can ask what can be said about the behavior of these numbers when we consider the
congruence covers. It turns out that they form quasi-polynomial functions.

Definition 4.15. A function f on the set {1, 2, 3, . . .} is a quasi-polynomial if there exists a
natural number M and polynomials fi(x) ∈ Q[x] for 1 ≤ i ≤ M such that f(N) = fi(N) if
N ≡ i (mod M).

Recall from 1.14 that UN and XN are the coverings of U and, respectively, X given by
the surjections H1(U,Z)→ H1(U,Z/NZ). The following was proved for the surface case by
E. Hironaka, using intersection theory on singular surfaces, and generalized in [2].

Theorem 4.16. (E. Hironaka, B.) Let hq(N) denote the Hodge numbers hq,0 = h0,q of
any nonsingular model of the congruence cover XN . Then, for every q, the function hq(N)
is quasi-polynomial.

The proof involves a multiplier ideal analog of the characteristic varieties, see 1.16.
Define

V q
i (X,D) := {(L, α) ∈ Picτ (X,D) : hq(X,ωX ⊗ L⊗ J (α ·D)) ≥ i}.

Let

B(X,D) :=
{
α ∈ [0, 1)S : c1(L) = α · [D] ∈ H2(X,R) for some L ∈ Pic(X)

}
,

so that there is an exact sequence

0→ Picτ (X)→ Picτ (X,D)→ B(X,D)→ 0.

To prove Theorem 4.16 we use the following quasi-projective version of the structure of
characteristic varieties of Theorem 1.17.

Theorem 4.17. (B.) There exists a decomposition of B(X,D) ⊂ RS into a finite number of
rational convex polytopes P such that for every q and i the subset V q

i (X,D) of Picτ (X,D) is
a finite union of sets of the form P ×U , where U is a torsion translate of a complex subtorus
of Picτ (X). Any intersection of sets P × U is also of this form. Pointwise, the subset of
V q
i (X,D) corresponding to P × U consists of the realizations (L + M,α) with α ∈ P and
M ∈ U , for some line bundle L depending on P which can be chosen such that (L, α) is
torsion for some α ∈ P .
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The proof is based on reduction to the projective case. Related results are given by
Arapura and Libgober. For more details and for a more general statements, see [2].

Sketch of proof of Theorem 4.16. The subgroup H1(U,Z/NZ)∗ of Picτ (X,D) is the N -torsion
part. Denote by V q

i the sets V q
i (X,D). By Theorem 4.13,

hq(N) =
∑

(L,α)∈Picτ (X,D)[N ]

hn−q(X,ωX ⊗ L⊗ J (X,α ·D))

=
∑
i≥1

i ·#
[
(V n−q

i − V n−q
i+1 )[N ]

]
,

where S[N ] denotes the set of N -torsion elements of Picτ (X,D) lying in the subset S. Since
V q
i+1 ⊂ V q

i ,

hq(N) =
∑
i≥1

#V n−q
i [N ].

Now, using the structure of V n−q
i from Theorem 4.17, one can boil it down to showing that,

for a convex rational polytope Q in Rm, the function

f(N) = # [Zn ∩NQ]

is a quasi-polynomial in N . This is a theorem of E. Ehrhart. �

5. Zeta functions

Next, we introduce with the help of log resolutions one more invariant of singularities,
the topological zeta function. The connection with Milnor fibers is the statement of the
well-known Monodromy Conjecture. We prove it for hyperplane arrangements. In a later
section we will return to this invariant and state a stronger conjecture. Then we introduce
the K-log canonical threshold, defined for complete fields K of characteristic zero. The p-
adic zeta function, which is a p-adic analog of the topological zeta function, is related to this
type of log canonical thresholds.

The setup is the familiar one: X is nonsingular complex algebraic variety, Z is a closed
subscheme, µ : Y → X denotes a log resolution of (X,Z), the scheme-theoretic inverse image
of Z is

∑
i∈S aiEi, and KY/X =

∑
i∈S kiEi. Define for a subset I of the index set S the set

Eo
I := ∩i∈IEi − ∪j∈S\IEj.

Definition 5.1. (Denef-Loeser) The topological zeta function of (X,Z) is

Ztop(X,Z)(s) :=
∑
I⊂S

χ(Eo
I ) ·
∏
i∈I

1

ais+ ki + 1
.

When Z is a hypersurface given by a regular function f , we will use the notation Ztop
f (s).

The point is that this invariant is well-defined. Denef-Loeser have showed this first by using
motivic integration. This a rather mysterious invariant of singularities, and its relation with
the Milnor fiber is the subject of the following conjecture. We state it for a hypersurface,
but a similar conjecture can be made for closed subschemes. The origin of this conjecture is
in number theory and is due to Igusa. This is a geometer-friendly version due to Denef and
Loeser, and inspired by a more general, motivic version.
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Monodromy Conjecture (topological version). If s = c is a pole of Ztop
f (s) then e2πic

is an eigenvalue of the monodromy on H i(Mf,x,C) for some i and some x ∈ f−1(0).

A more general conjecture will be stated soon. It is an open question whether−lct (X,Z)
is the biggest pole of Ztop(X,Z)(s). This is shown by Veys for n = 2.

Example 5.2. (Docampo) Let M be the space of all matrices with complex coefficients of
size r×s, with r ≤ s . The k-th generic determinantal variety is the subvariety Zk consisting
of matrices of rank at most k. Then

Ztop(M,Zk)(s) =
∏
c∈Ω

1

1− sc−1
,

where

Ω =

{
− r2

k + 1
,−(r − 1)2

k
,−(r − 2)2

k − 1
, . . . ,−(r − k)2

}
.

A typical, but limited, tool employed in the study of the poles of the topological zeta
function is the following.

Definition 5.3. Let f be a hypersurface germ at the origin in Cn. The monodromy zeta
function of f at 0 is

Z(s) :=
∏
j∈Z

det(1− sT,Hj(Mf,0,C))(−1)j .

The m-th Lefschetz number of f at 0 is

Λ(m) :=
∑
j∈Z

(−1)j Trace (Tm, Hj(Mf,0,C)).

The Lefschetz numbers recover the monodromy zeta function: if Λ(m) =
∑

i|m si for m ≥ 1,

then Z(s) =
∏

i≥1(1− ti)si/i. And the Lefschetz numbers can be read from a log resolution,
see [4]:

Theorem 5.4. (A’Campo)

Λ(m) =
∑
ai|m

ai · χ(Eo
i ∩ µ−1(0)),

In the remaining part of this section we will prove the following.

Theorem 5.5. (B.-Mustaţă-Teitler) The Monodromy Conjecture holds for hyperplane
arrangements.

Lemma 5.6. If g ∈ C[x1, . . . , xm] with deg g = d gives an indecomposable central hyperplane
arrangement in Cm, then {exp(2πik/d) | k = 1, . . . , d} is the union of the sets of eigenvalues
of the monodromy action on H i(Mg,0,C) with i = 0, . . . ,m− 1.

Proof. By 1.7, each eigenvalue of the action of the monodromy on the cohomology of the
Milnor fiber is of the form exp(2πik/d). Conversely, let µ be the canonical log resolution
obtained by blowing up the dense edges of g, as in 2.9. Then, since µ−1(0) = E0, we have

20



by 5.4 that Λ(n) equals d · χ(U) if d divides n, and 0 otherwise, where U is the complement
of the zero locus of g in Pm−1. Hence the monodromy zeta function of g at 0 is

Z(s) = (1− td)χ(U).

It is known that indecomposability is equivalent to χ(U) 6= 0. Hence for every k, exp(2πik/d)
is an eigenvalue of the monodromy on Hj(Mg,0,C), for some j. �

Proof of Theorem 5.5. We explain the case when the arrangement D = {f = 0} is central.
Using the canonical log resolution as in 2.9, the poles of Ztop

f (s) are included in the set{
− rV
aV
| V ∈ L dense

}
.

If V ∈ L is dense, then DV is indecomposable and is the zero locus of a product fV of
linear forms on Cn/V , with deg(fV ) = aV . By Lemma 5.6, exp(−2πirV /aV ) is an eigenvalue
of the monodromy on the Milnor cohomology of fV at the origin in Cn/V . Now, take a
point p ∈ V − ∪Di 6⊃VDi. After choosing a splitting of V ⊂ Cn, we have locally around p,
D = DV × V ⊂ Cn = Cn/V × V and f = fV · u, where u is a (locally) invertible function.
Hence the Milnor fiber of fV at the origin is a deformation retract of Mf,p. Therefore
exp(−2πirV /aV ) is an eigenvalue of the monodromy on the cohomology of the Milnor fiber
of f at p. �

For the rest of this section, we will describe a number theoretic point of view on singu-
larities, the p-adic analog of the topological zeta function. Let us start with introducing a
variant of the log canonical threshold.

Let K be a complete field of characteristic zero. For example, K can be C,R,Qp, or a
finite extension of Qp. For a scheme X of finite type over K, we denote by XK the associated
K-analytic space consisting of the set X(K) of K-points of X with the induced topology,
together with the sheaf of K-analytic functions of X(K). Let X be a smooth scheme of finite
type over K (i.e. XK is a K-analytic manifold, e.g. X = Kn), and Z a closed subscheme.
By Hironaka, there exists a K-analytic log resolution µ : YK → XK . Let µ∗ZK =

∑
i aiEi,K

and KYK/XK =
∑

i kiEi,K .

Definition 5.7. The K-log canonical threshold of (X,Z) is

lctK(X,Z) = min
i

{
ki + 1

ai
| Ei,K 6= ∅

}
.

Note that when K ⊂ C, we have lctC(X,Z) = lct(XC, ZC), but in general lctC(X,Z) ≤
lctK(X,Z).

Example 5.8. Let f = (x2 + y2 + z2)2 + (xy5 + y6). Let X be the affine 3-space and D
the divisor given by D. We want to compute lctR(X,D) and compare it with lctC(X,D).
Blowup the origin. For example, in one affine chart, with x = t1z and y = t2z, the total
transform of f is z4[(t21 + t22 + 1)2 + z2(t1 + t62)]. Let E1 be the exceptional divisor and E0

be the proper transform of D. Then the total transform of DR is E0,R + 4E1,R and this is
a simple normal crossings divisor. The pullback of dx ∧ dy ∧ dz is z2dt1 ∧ dt2 ∧ dz. Hence
lctR(X,D) = 3/4. However, E0,C + 4E1,C is not a simple normal crossings divisor, and one
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has to blowup the quadric x2 + y2 + z2 inside E1,C = P2. Using the vanishing orders of the
exceptional divisor of this blowup, we get lctC(X,D) = 2/3 which is < lct R(X,D).

Let us focus on the affine case X = SpecK[x1, . . . , xn], where K is a finite extension of
Qp, and Z is given by f = (f1, . . . , fr) with fi ∈ K[x1, . . . , xn]. Let R be the valuation ring
of K, and P be the maximal ideal of R. Let q be the cardinality of the residue field R/P .
The absolute value on XK = Kn is defined by |z|K = max1≤i≤n q

−ord(zi).

Definition 5.9. (Igusa) The p-adic zeta function of (X,Z) over K is

ZK(X,Z)(s) :=

∫
Rn
|f(x)|sKdx,

with s ∈ C, Re (s) > 0, where dx is the Haar measure on Kn normalized such that Rn has
measure 1.

Theorem 5.10. (Igusa, Meuser, Veys - Zuniga Galindo) The p-adic zeta function
ZK(X,Z)(s) admits a meromorphic continuation to the complex plane as a rational function
of q−s. The poles have the form

−ki + 1

ai
− 2π

√
−1

log q

j

ai
, j ∈ Z,

where ai and ki are the vanishing orders in a K-analytic log resolution of (XK , ZK) as in
5.7.

The proof is to use theK-analytic log resolution to reduce the computation of ZK(X,Z)(s)
to the p-adic zeta function of a monomial.

The connection between K-log canonical thresholds and p-adic zeta functions is the
following.

Theorem 5.11. (Igusa, Veys - Zuniga Galindo) The biggest real part of a pole of
ZK(X,Z)(s) is −lctK(X,Z).

The proof is to show that qlctK(X,Z) is the radius of convergence of ZK(X,Z)(s) as a
function in q−s. Again, this is reduced to a monomial computation via a K-analytic log
resolution.

This result has the consequence that lctK(X,Z) can be computed by counting solutions
modulo prime powers.

Corollary 5.12. Let Nj be the number of solutions of f1(x) ≡ . . . ≡ fr(x) ≡ 0 mod P j in
R/P j. Then

lim sup
j→∞

(Njq
−nj)

1
j = q−lctK(X,Z).

The proof is to notice that
∑

j≥0Nj(q
−nt)j = (1− tZK(X,Z)(s))/(1− t), where t = q−s.

The original p-adic version of the Monodromy Conjecture, posed by Igusa, says that when
Z is a hypersurface given a polynomial f ∈ K[x1, . . . , xn], if s = c is a pole of ZK(X,Z)(s),
then exp(2πiRe(c)) is an eigenvalue of the monodromy for f viewed as a polynomial with
coefficients in C.
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6. B-functions

An algebraic way of obtaining eigenvalues of monodromy on Milnor fibers is via b-
functions. We introduce generalized b-functions and discuss their relation with Milnor fibers,
topological zeta functions, and multiplier ideals.

Let X be a nonsingular complex variety of dimension n and Z a closed subscheme. We
denote by DX the sheaf of algebraic differential operators DX defined locally as

DX =
loc

C
[
x1, . . . , xn,

∂

∂x1

, . . . ,
∂

∂xn

]
.

Definition/Theorem 6.1. (Bernstein, Sato) If X = Cn and Z is a hypersurface given
by a polynomial f , there exists a nonzero polynomial b(s) ∈ C[s] such that

b(s)f s = Pf s+1

for some operator P ∈ DX [s]. The monic polynomial of minimal degree among the b(s) is
the b-function of f and it is denoted bf (s).

Example 6.2. (Cayley) This is the oldest example of a nontrivial b-function. Let f =
det(xij) be the determinant of an n×n matrix of indeterminates. Then bf (s) = (s+1) . . . (s+
n) and the differential operator from the definition of the b-function is P = det(∂/∂xij).

Example 6.3. Let f = x2 + y3. Then bf (s) = (s + 5
6
)(s + 1)(s + 7

6
) and the differential

operator from the definition of the b-function is P = ∂3
y/27 + y∂2

x∂y/6 + ∂3
xx/8.

Theorem 6.4. (Malgrange, Kashiwara) The roots of bf (s) are negative rational numbers.
The set consisting of e2πic, where c are the roots of bf (s), is the set of eigenvalues of the Milnor
monodromy at points along Z.

Let us introduce a more general b-function. Let f = (f1, . . . , fr) be r polynomials in
C[x1, . . . , xn]. We define bijective DX-linear actions t1, . . . , tr onOX [

∏
i f
−1
i , s1, . . . , sr]

∏
i f

si
i

as follows. For 1 ≤ i, j ≤ r, let ti act on sj by leaving it alone if i 6= j, and replacing si with
si + 1. For example: tj

∏r
i=1 f

si
i = fj

∏r
i=1 f

si
i . Define sij := sit

−1
i tj.

Definition/Theorem 6.5. (B. - Mustaţă - Saito) If X = Cn and Z is a closed subscheme
given by an ideal with generators f = (f1, . . . , fr), for any g ∈ OX there exists a nonzero
polynomial b(s) ∈ C[s] such that

b(s1 + . . .+ sr)g
r∏
i=1

f sii =
r∑

k=1

Pk(fkg
r∏
i=1

f sii ),

for some operators Pk in DX [sij]1≤i,j≤r. The monic polynomial of minimal degree among the
b(s) is called the generalized b-function and is denoted bf,g(s), or in case g = 1, we denote it
bf (s).

It is a fact that the generalized b-functions bf,g(s) do not depend on the choice of gen-
erators of the ideal of Z.
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Definition/Theorem 6.6. (BMS) Let X be a nonsingular complex variety and Z a closed
subscheme. Define the b-function of (X,Z)

b(X,Z)(s)

to be the lowest common multiple of the polynomials bf (s) obtained from local equations of
Z in different charts of X. The polynomial

bZ(s) := b(X,Z)(s− codim (X,Z))

depends only on the scheme Z, and so it deserves the name b-function of the scheme Z.

In view of 6.4, the following is a generalization of the Monodromy Conjecture. We refer
to the second part of [1] for the current status of these conjectures.

Strong Monodromy Conjecture (topological version). Let X be a nonsingular com-
plex variety and Z a closed subscheme. If s = c is a pole of the topological zeta function
Ztop(X,Z)(s), then c is a root of b(X,Z)(s).

Although b-functions are difficult to compute in general, the set of roots contains jumping
numbers. We describe this next, along with the relation between b-functions and multiplier
ideals.

Theorem 6.7. (BMS) Let X be a nonsingular complex variety and Z a closed subscheme.
Then the multiplier ideals of Z are locally given by

J (X, cZ) =
loc
{g ∈ OX | c < α if bf,g(−α) = 0}

for c > 0, where f = (f1, . . . , fr) are local equations for Z in X.

The current proof of this theorem, as well as that of Theorem 6.5, goes through the
theory of V -filtrations of Malgrange and Kashiwara, and through log resolutions, and we
will not explain it. It would be interesting if a direct analytic proof, not involving log
resolutions, can be found.

The following is a generalization from the hypersurface case of results of Kollár and
Ein-Lazarsfeld-Smith-Varolin, which were obtained by analytic methods.

Corollary 6.8. Let X be a nonsingular complex variety and Z a closed subscheme.

(a) The biggest root of the b-function b(X,Z)(s) is −lct (X,Z).

(b) If lct (X,Z) ≤ c < lct (X,Z) + 1 and c is a jumping number of Z in X, then

b(X,Z)(−c) = 0.

Sketch of Proof. We can assume X = Cn and Z is given by f = (f1, . . . , fr). Part (a) is
immediate from Theorem 6.7. For part (b), note that it is enough to prove: if bf,g(−c) = 0
and c ∈ [lct (f), lct (f) + 1), then bf (−c) = 0. We will point out how the V -filtration helps
to prove this.

First, we claim that bf,g(s) is the minimal polynomial of the action of s = s1 + . . . + sr
on

D(g
∏
i

f sii )/
r∑

k=1

tkD(g
∏
i

f sii ),
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where D := DX [sij]1≤i,j≤r. This is a quotient of subspaces of OX [
∏

i f
−1
i , s1, . . . , sr]

∏
i f

si
i .

Denote D(g
∏

i f
si
i ) by Ng, and

∑r
k=1 tkD(g

∏
i f

si
i ) by N ′g. We have that

{
∑
k

Pkfkg
∏
i

f sii | Pk ∈ D} = {
∑
k

Pktkg
∏
i

f sii | Pk ∈ D} = N ′g,

where the last equality follows from the commutator rules:

sijtk = tksij if i 6= k ,

skjtk = tkskj − tj .
Since g

∏
i f

si
i ∈ Ng, it follows that bf,g(s) divides the minimal polynomial of s on Ng/N

′
g.

Conversely, the commutator rule

s · sij = s · sit−1
i tj = sij · (s1 + . . .+ (si + 1) + . . .+ (sj − 1) + . . . sr) = sij · s

implies that bf,g(s)Ng ⊂ N ′g. Hence the minimal polynomial of s on Ng/N
′
g divides bf,g(s),

and so they must be equal.

Denote by N and N ′ the spaces N1 and N ′1, respectively. We have an exact sequence of
quotients of subspaces of N with an action of s that admits minimal polynomials:

(2) 0→ Ng ∩N ′

N ′g
→ Ng

N ′g
→ N

N ′

Let c0 = lct (X,Z) and c ∈ [c0, c0 + 1) such that bf,g(−c) = 0. We need to show that s + c
does not divide the minimal polynomial of s on the space on the left. This is provided by
the V -filtration as below. In imprecise terms, we could summarize this as saying that there
exists a lift to N of the Jordan decomposition of s on N/N ′.

Define a decreasing filtration V α(N/N ′) of N/N ′, indexed by the roots α of bf (−s), by

V α(N/N ′) = {n ∈ N/N ′ |
∏
β≥α

(s+ β)n = 0},

where the product is over roots β ≥ α of bf (−s) taken with their multiplicity. In particular
N/N ′ = V c0(N/N ′) by part (a). Similarly, using just like here the minimal polynomials of
s, we have filtrations V α on the other two quotients in (2).

The crucial point is that there exists a lift of this filtration to N . More precisely, there
is a decreasing filtration V αN , parametrized by a discrete set of positive rational numbers
α, such that:

• s+ α is nilpotent on GrαVN = V αN/V >αN ,
• tkV αN ⊂ V α+1N , and
• V α(N/N ′) = V αN/N ′ ∩ V αN .

We have then that N = V c0N and N ′ ⊂ V c0+1N . For a subspace M ⊂ N , let V αM =
M ∩ V αN . Since N ′g ⊂ N ′, we have N ′g ⊂ V c0+1(Ng). Then

GrcV

(
Ng ∩N ′

N ′g

)
= GrcV (Ng ∩N ′) = 0.

This means that s+ c does not divide the minimal polynomial of s on Ng ∩N ′/N ′g, which is
what we wanted to show. �
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Remark 6.9. The original p-adic version of the Strong Monodromy Conjecture can be stated
using the real parts of poles of p-adic zeta functions. According to 5.11, a particular open
case of this p-adic version is that

b(X,Z)(−lctK(X,Z)) = 0,

where K is any p-adic field, with a fixed embedding in C, such that (X,Z) is defined over
K. When K = C, this is true as we have seen. When K = R, this is also true, by M. Saito.

Remark 6.10. It is known that b-functions and D-modules are suitable for algorithms
based on Gröbner bases. Because of this, Theorem 6.7 is at the heart of all implemented
algorithms for computation without case restriction of multiplier ideals, jumping numbers,
and non-hypersurface log canonical thresholds, cf. [1].

Let us come back to the Strong Monodromy Conjecture and look at the case of hyper-
plane arrangements. For the various definitions see 1.10, 2.9.

Conjecture 6.11. (B. - Mustaţă - Teitler) If g ∈ C[x1, . . . , xm] is a polynomial of degree
d, such that (g−1(0))red is an indecomposable, essential, central hyperplane arrangement,
then −m

d
is a root of the Bernstein-Sato polynomial bg(s).

Theorem 6.12. (BMT) Let f ∈ C[x1, . . . , xn] define a hyperplane arrangement in Cn. If
Conjecture 6.11 holds for all fV , where V are the dense edges, then the Strong Monodromy
Conjecture holds for f .

Proof. We explain the central case. We assume that for all m, d > 0, and for all polynomials
g of degree d in m variables defining an indecomposable, essential, central hyperplane ar-
rangement, we have bg(−m/d) = 0. As in the proof of Theorem 5.5, the candidate poles of
Ztop
f (s) are −rV /aV , where V are the dense edges. Then rV /aV = dim(Cn/V )/ deg fV , with

fV indecomposable (and automatically essential and central) in Cn/V . By assumption, we
have bfV (−rV /aV ) = 0. On the other hand, bfV (s) equals the local b-function of f in a small
neighborhood of a point p as in the proof of Theorem 5.5. But bf (s) is the least common
multiple of the local b-functions. Hence every candidate pole as above is a root of bf (s). �

We will not prove the strongest results known for hyperplane arrangements about the
Strong Monodromy Conjecture or Conjecture 6.11, see [1]. However, a lot examples are
provided by the following combinatorial condition.

Definition 6.13. A hyperplane arrangement f is of moderate type if the following condition
is satisfied:

(3)
rV
aV
≤ rV ′

aV ′
for any two dense edges V ⊂ V ′.

Theorem 6.14. (Saito) If f is a hyperplane arrangement of moderate type, then for any
dense edge V , −rV /aV is a root of bf (s). So Conjecture 6.11 and the Strong Monodromy
Conjecture hold in this case.

Proof. We will show that rV /aV is a jumping number of f for any dense edge V . For any
given dense edge V , we may assume that there is strict inequality in (3) by replacing V
with an edge containing it without changing rV /aV . The conclusion follows directly from
the formula for multiplier ideals in terms of dense edges of 2.9. �
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Remark 6.15. Even in the case of hyperplane arrangements defined by a reduced polynomial
g, in general it is not the case that one can prove Conjecture 6.11 by showing that m/d is a
jumping number for the multiplier ideals of g. For example, if g = xy(x− y)(x+ y)(x+ z),
then 3/5 is not a jumping number as it follows from 4.11. However, this arrangement is
decomposable and the Strong Monodromy Conjecture actually holds. In order to get an
indecomposable example, we consider an arrangement with d = 10, ν7 = 1, ν3 = 3, and with
νm′ = 0 for 7 6= m′ > 3, recalling the notation of 4.11. In this case we see by 4.11 that 3/10
is not a jumping number. For example, we may take

g = xy(x+ y)(x− y)(x+ 2y)(x+ 3y)(x+ 4y)(2y + z)(x+ 2y + z)z.

On the other hand, −3/10 is indeed a root of bg(s), since Conjecture 6.11 holds for reduced
arrangements in three variables, cf. [1].
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