
1Scientific RepoRts | 7:42084 | DOI: 10.1038/srep42084

www.nature.com/scientificreports

Cognitive impairment categorized 
in community-dwelling older adults 
with and without dementia using 
in-home sensors that recognise 
activities of daily living
Prabitha Urwyler1,2,3, Reto Stucki1, Luca Rampa3, René Müri1,4, Urs P Mosimann1,2,3 & 
Tobias Nef 1,2

Cognitive impairment due to dementia decreases functionality in Activities of Daily Living (ADL). 
Its assessment is useful to identify care needs, risks and monitor disease progression. This study 
investigates differences in ADL pattern-performance between dementia patients and healthy controls 
using unobtrusive sensors. Around 9,600 person-hours of activity data were collected from the 
home of ten dementia patients and ten healthy controls using a wireless-unobtrusive sensors and 
analysed to detect ADL. Recognised ADL were visualized using activity maps, the heterogeneity and 
accuracy to discriminate patients from healthy were analysed. Activity maps of dementia patients 
reveal unorganised behaviour patterns and heterogeneity differed significantly between the healthy 
and diseased. The discriminating accuracy increases with observation duration (0.95 for 20 days). 
Unobtrusive sensors quantify ADL-relevant behaviour, useful to uncover the effect of cognitive 
impairment, to quantify ADL-relevant changes in the course of dementia and to measure outcomes of 
anti-dementia treatments.

Cognitive impairment due to Alzheimer’s disease and other forms of dementia affect patient’s ability to main-
tain activities of daily living (ADL)1. This has severe implications on patient’s independence and quality of life2. 
Impaired ADL function is also the main reason for increased need for care or institutionalization3.

ADL refers to self-care tasks, comprising of activities performed on a daily basis4,5 that a person needs to 
perform autonomously. ADL are classified in two groups; those involving core tasks of everyday life such as eat-
ing, dressing and bathing, termed as basic ADL4,5, and those involving complicated higher-level tasks involving 
interactions with “instruments” such as preparing meals, managing finances and using the telephone, termed as 
Instrumental ADL (IADL)3. To live safe and independently at home a person needs to perform ADL from both 
groups, reliable and autonomously. Though both, basic ADL and IADL are important for safe and independent 
living, competence in IADL is necessary criteria for living independently in community-dwelling setup3,6. In this 
manuscript we use ADL generally, to refer to both groups. ADL are important predictors of quality of life7,8 and are 
assessed by clinicians to benchmark the physical and cognitive abilities of patients3, to determine care needs, iden-
tify risks in daily living and monitor disease progression or the effect of anti-dementia treatment1. Traditionally, 
ADL are assessed using self-rated patient questionnaires or informant based questionnaires (e.g. Katz Activities 
of Daily Living3, Stanford Health Assessment Questionnaire9 and the Barthel ADL Index10) or by direct observa-
tion of the patient when doing a task. Task observations are time-consuming and prone to transfer errors from 
lab to reality. A downside of questionnaires lies in their reliance on subjective ratings of participant or relatives 
and, therefore, subject to bias and errors linked to cognitive impairment or lack of insight into impairments11.  
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Moreover, as many patients live alone and are supported for a few hours a week, it is difficult to get a reliable and 
comprehensive clinical picture of the patient’s ADL status.

Sensor-based technologies for quantifying ADL can add new dimensions to existing clinical assessment. 
Based on constant monitoring, it can help in earlier disease and risk detection12,13, delay in institutionalization by 
adjusting care to the patient’s needs and thus lower cost of medical care14,15. Such sensor-based recognition sys-
tems belong to the field of assistive technologies which aim at prolonging independent living in one’s own home16. 
The most important components of sensor-based recognition systems are the sensors which collect the data in the 
patient’s environment (ambient sensors) or directly on the patient (body-mounted sensors), the wireless trans-
mission protocol responsible for transferring collected data to the receptor unit, and the central computing unit 
with necessary algorithms for data interpretation and analysis.

Recognizing ADL in home settings using sensor systems has been well-reported in literature17–21 classifying 
them into five main types of monitoring technologies: passive infrared motion sensors (PIR), body-mounted sen-
sors, pressure sensors, video monitoring, and multicomponent sensors. Of these, ambient sensor systems21 and 
body-mounted systems22 are widely reported for recognizing ADL; while only few studies have tried to combine 
data from both or multiple sensors17. Ambient sensors such as PIR sensors are sensitive to body emitted infrared 
light and detect presence of residents in rooms, thus allowing recognition of patterns in daily activity19,21, while 
body-mounted sensors systems have the ability to measure activity and mobility directly on the patient’s body22. 
Several authors suggest that the usability and acceptance of ambient sensors is better compared to body-mounted 
systems because patients are not in direct contact with the sensors20.

The use of sensor-based measurement generates large amounts of data, which requires recognition techniques 
to infer an activity. ADL recognition from ambient data is usually done using training data or prior knowledge 
based algorithms such as probabilistic based23,24, rule based21,25, Naïve Bayes24, K-Means clustering25 and Random 
Forest26. Another general approach to activity recognition is to design and use machine learning methods to map 
a sequence of sensor events to a corresponding activity label19,24.

In this study, we used a wireless unobtrusive (ambient, non-wearable, non-camera based and not requiring 
any interaction with the user) sensor network to capture ambient environmental data in the home of ten dementia 
patients and ten age-matched healthy controls for twenty consecutive days. To date, sensor-based ADL recogni-
tion studies generally include healthy elderly subjects in home setups or living lab setups, while the scope of our 
trial includes ten dementia patients with moderate to severe dementia living in a community setup. Qualitatively, 
the recognized ADL are visualized using colour coded ambulatograms for the cumulative measurement duration, 
to generate activity maps27. Inspired by the Poincaré plot (PP)28,29 technique, we quantified ADL performance 
using PP, in addition to the data analysis methods to qualitatively classify and recognize ADL. Receiver Operating 
Characteristic (ROC)30 were used to analyse discriminatory capability of the ADL performance and classification. 
The primary aim of this study is to investigate the extent of difference in ADL (both basic ADL and IADL) pat-
terns between the healthy controls and dementia patients and to investigate if the difference in ADL can be used 
to classify the subjects into the two groups. The secondary aim of the study was to investigate the influence of the 
measurement duration on the classification performance. We hypothesize that irregularities in ADL and dysfunc-
tions in daily routine can be recognized and quantified with the aid of an unobtrusive sensor-based recognition 
system. In addition, we hypothesize that a non-intrusive system, which does not use body-mounted sensors, 
avoids video-based imaging and microphone recordings, would be better suited for use in dementia patients due 
to less patient compliance.

Results
Difference of ADL patterns between dementia patients and healthy age-matched control. The 
classification process recognized 4562 ADL in total for both patients and healthy controls. Table 1 shows the 
apportionment of the determined ADL in detail. Although the sensitivity and specificity of the circadian activity 
rhythm (CAR) classifier27 used to classify ADL is high (94.36% and 98.17% respectively)27, it is possible that 
specific measurement errors exist which could confound the results and analysis presented here. The number of 
recognized ADL did not vary much between the healthy controls and the dementia patients. However, the conti-
nuity and regularity of the ADL performed showed a difference as seen in the activity map (Fig. 1).

Figure 1 shows a comparison of the activity map of a healthy subject (Age =  87 years, female, MMSE =  28) 
(left) and an Alzheimer patient (Age =  82 years, female, MMSE =  13) (right) for the measurement duration of 20 
days. The activity map easily points out the main periods of activity and inactivity and temporal frequencies of 
the activities.

An example of the PP for a healthy subject and an Alzheimer patient for the complete measurement duration 
is shown in Fig. 2. The PP descriptors such as long axis, short axis and centroid are also marked in Fig. 2. On 
quantifying the variability in ADL performance over 20 days using PP centroid, a significant difference in perfor-
mance of most of the ADL (Sleeping, Getting ready for bed, watching TV, Toileting, Cooking, Seating Activities) 
was found between healthy controls and dementia patients as shown in Table 1. The heterogeneity in ADL perfor-
mance of the dementia patients was higher than the healthy controls for all ADL.

Classification performance and the influence of observation duration. With the aid of the ROC30 
(w.r.t. PP centroids), an optimal cut-off value of 69 was deduced as a discriminative power for distinction between 
the healthy subjects and the dementia patients (Fig. 3). As seen in Fig. 3, the accuracy, sensitivity and specificity of 
the ADL classification and recognition increases with increasing duration of measurement. After 20 consecutive 
days of measurement, an accuracy of 0.95, sensitivity of 0.90, and specificity of 1.00 was reached with a starting 
accuracy of 0.75, sensitivity of 0.64, and specificity of 0.85 on day 1. On an average, the accuracy gains 1.01%, the 
sensitivity gains 1.30% and the specificity gains 0.72% with every additional day of measurement.
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ADL Classification Poincaré plot Centroid

Total 
ADL

Healthy 
Controls 
(n = 10)

Dementia 
Patients 
(n = 10)

Healthy 
Controls 
(n = 10)

Dementia 
Patients (n = 10)

pn = 10 n = 10 n = 10 n = 10

Sleeping 512 234 278 55.28 ±  3.9 90.33 ±  11.5 0.009

Grooming 395 211 184 49.33 ±  3.3 84.52 ±  14.6 0.028

Toileting 614 276 338 59.10 ±  6.0 100.03 ±  10.4 0.002

Getting ready 
for bed 387 208 179 55.27 ±  3.2 104.94 ±  13.3 0.001

Cooking 408 221 187 54.35 ±  4.4 106.6 ±  9.5 0.001

Eating 548 231 317 54.73 ±  3.8 103.6 ±  16.7 0.028

Watching TV 644 317 327 47.03 ±  2.3 77.92 ±  7.3 0.003

Seating activity 342 162 180 58.75 ±  4.5 105.84 ±  8.1 0.001

Visitors 416 85 331 n.a. n.a. n.a.

Out of home 296 152 144 n.a. n.a. n.a.

Total 4562 2097 2465

Table 1.  ADL classification and Poincaré plot quantification. Data are mean ±  standard error of mean. 
ADL =  activity of daily living. Statistical Test: Mann-Whitney U Test, p <  0.01 significant; n.a =  non-applicable.

Figure 1. Activity maps of a healthy control (left) and a dementia patient (right) visualized from data 
measured continuously for 20 consecutive days. 

Figure 2. Poincaré Plot of a healthy control (Age = 79 years, female, MMSE = 29) (left) and an Alzheimer 
patient (Age = 84 years, female, MMSE = 20) (right) from all activity of daily living (ADL) related datasets 
of 20 consecutive days (Δtime = 24 hours). The blue dotted line indicates the long axis, the red line indicates 
the short axis. The centroid corresponds to the point where the long axis intersects the short axis.
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Discussion
In this observational study, we investigated ADL behaviour patterns and ADL performances of ten healthy con-
trols and ten patients with dementia from data collected using an unobtrusive wireless sensor network in the 
home of the participants for 20 consecutive days. As hypothesized, the irregularities in ADL performance, as well 
as dysfunctions in daily routine can be recognized and quantified using unobtrusive sensor-based recognition 
system and activity map based visualization techniques. Differences in ADL patterns were significant between 
healthy controls and patients and the accuracy of the classification performance increased with the duration of 
measurement. There were no drop-outs from the recruitment group and infers the acceptance of the unobtrusive 
sensor system by healthy older adults and dementia patients. Such sensor-based recognition systems can be vital 
for monitoring changes in health status, which are needed to optimize formal and informal care as well as apprise 
medical treatment18.

Very few studies have reported monitoring dementia patients in their home using wireless multi-sensor  
systems31, while most of the studies reported in literature were evaluated with elderly subjects using  
different modalities of sensors20. This study adds to the information supplied by our validation study of the  
sensor devices21 and to the classifier performance studies27,32 published earlier. In addition to the eight clinically  
relevant ADL often studied21,27, two ADL (Visitors, Out of home) important for social life and mobility were also 
detected in this study which is a great step towards reliable ADL monitoring in real life. The results gathered from 
community-dwelling healthy adults and patients are first of its kind and can be translated to other domicile types.

For statistical and clinical validation, it is important to discriminate the ADL behaviour between healthy 
controls and patients using quantitative values. Our results show that PP techniques which have already been 
established to study heart rate variability in other diseases28,33 can also be successfully applied to distinguish the 
variability of ADL performance. The high variability in ADL performance in dementia patients may be attributed 
to the influence of cognition on ADL34, as patients may tend to start an activity, interrupt the current activity and 
start another one, finally losing track of activities and their completeness, leading to dissolving patterns resulting 
in chaotic daily routines. The speciality of the PP technique is that it can be applied to any subset of temporal 
interval (as long as the data is continuous or repetitive) allowing different visualisation and quantification of the 
data.

Studies in the neuropsychological field have shown that it is possible to distinguish between healthy and cog-
nitively impaired subjects based on differences in their behavioural patterns35. Our activity maps which visualize 
the ADL behaviour of the participants in a qualitative way revealing abnormal behaviours over a time period 
support these findings. The structured pattern observed in the healthy controls compared to non-structured 
routine in the dementia patients are in line with findings reported by Volicer et al.2 and Paavilainen et al.36. Trend 
analysis would facilitate early identification of abnormal behaviour patterns which can be valuable to clinicians to 
make decisions or diagnoses or send reminders to the patient if required. In addition, these anomalous behaviour 
patterns can also be used by machine learning algorithms to train cognitive models.

To date, the functional capability of dementia patients is traditionally assessed using questionnaires in a brief 
clinic visit. In contrast, sensor-based measurement systems allow to continuously monitor patients in their natu-
ral environment, provide ecologically valid feedback on their functional capacity and also offers an opportunity to 
gain valuable and fine-grained information (e.g.: time and duration of ADL, cognitive status, medication-related 
improvements, physical ability, sleep problems, disrupted circadian rhythms and emotional state of the patients) 
that cannot be obtained through paper and pencil measures. The large pool of monitoring data can give rise to 
finger prints of patient behaviour, trends and anomalies37. The deep data mining techniques applied to the sensor 
data has great potential for a preventive approach in healthcare services. Sensor based systems provide longer and 

Figure 3. Discriminating ability between healthy controls and dementia patients in dependence of 
measurement duration, where days of measurement refer to 20 consecutive days. 
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reliable assessment and are ideal for patients living on their own. Owing to their discreet approach, the sensor 
system also maintains a high level of privacy. In a recent sensor based study on multi-domain mild cognitive 
impairment (MCI) and amnestic MCI patients, Seeyle et al.38 showed significant correlation between the cog-
nitive health status of the subject and the level of assistance required to complete a transcripted ADL. Similarly, 
abnormal behaviours in ADL can be related to the cognitive status of the patient.

The average CDR (1.2 ±  0.4) of the patient population in our study supports the discrimination in ADL perfor-
mance between healthy and moderate to severe dementia patients. The discriminatory power for early dementia 
patients or early transition to MCI is questionable due to the subtle and small changes in ADL patterns. The best 
approach, irrespective of the outcome of future studies, might be a cutoff derived in concurrence with the clinical 
values such as MMSE39, CERAD40, CDR41 etc. Studies with patients at different levels of cognitive impairment are 
thus required to detect the sensitivity of the discriminatory power of the recognition system. Increasing accuracy, 
specificity and sensitivity with increasing duration of measurement, justify further longitudinal measurement 
studies to check the face-validity and reliability of the discrimination between healthy controls and dementia 
patients. Moreover, longitudinal studies with huge amount of data for training the ground truth can make way 
for trends of a small magnitude to be detectable. Future work should also address the case of multi-inhabitants 
and outdoor activities.

In summary, unobtrusive sensor-based recognition systems are economical, reliable and promising technique 
for detecting decline in cognitive abilities via ADL monitoring. It has the potential to provide doctors and patients 
with tools to predict and detect changes in health status. Longitudinal and follow-up studies are required to study 
ADL patterns which can be potential surrogate markers of a person’s dementia and to be able to predict clinically 
significant changes in the course of the patient’s disease. Furthermore, these systems provide an additional value 
for families who require information regarding the need for support within the home to facilitate the independ-
ence of their family member14. Certain environmental modifications may be necessary and will need to be studied 
in detail to make this possible in the future. To surmise, sensor-based recognition systems over the long run can 
help to make “aging in place” a possibility for elderly people and patients suffering from dementia.

Methods
Study design and participants. We conducted an observational study with ten dementia patients 
recruited via the Memory Clinic of the University Hospital of Old Age Psychiatry, Bern, Switzerland and ten 
healthy controls recruited via advertisement in the Senior University of Bern. The study was carried in accordance 
with the current version of the Declaration of Helsinki and approved by the Ethics Committee of the Canton of 
Bern, Switzerland. All procedures related to the study were explained to the participants and a written informed 
consent was obtained prior to participation. No compensation for participation was provided. All data collected 
were anonymized at source.

Probable dementia was diagnosed either using ICD-1042 or according to the guidelines set by the National 
Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer’s Disease and Related 
Disorders Association criteria43. All patients were assessed with the standardized CERAD test battery40, the 
informant-based Barthel ADL score (BADLS)10 and the clinical dementia rating (CDR)41. All patients and healthy 
controls on inclusion underwent the Mini-Mental State Examination (MMSE)39, Clock drawing Test (CDT)44, the 
Trail Making Test A and B (TMT-A, TMT-B)45 and the “Timed Up & Go” Test46 to assess cognition and mobility.

The main inclusion criteria were age >  60 years and living alone in community. In addition, the inclusion cri-
teria for healthy controls were no cognitive impairment (MMSE score >  26), or no significant motor impairment 
(“timed Up & Go” Test <  12 s). Patients and healthy controls were age- and gender- matched, while the cognitive 
and executive parameters differed significantly between the two groups (Table 2).

Sensor-based measurement system. An unobtrusive sensor network comprising of ten wireless sensor 
boxes and a central computer unit (CCU)21 were installed in the home of the participants. The sensor boxes, each 
(l × w × h =  15 mm ×  30 mm ×  60 mm, weight =  80 g) comprising of five sensors (temperature [°C] (DS18B20, 
Dallas Inc.), humidity [g/m3] (SHT21P, SENSIRION), luminescence [lx] (AMS302, Panasonic Inc.), presence [V] 
(passive infrared radiation EKMB1101111, Panasonic Inc.), acceleration [m/s2] (ADXL345, Analog Device) cap-
ture ambient data with a sampling frequency of 1/5 Hz and transmits them to the CCU using a wireless protocol. 
The sensor boxes were installed at a height of 1.8–2.2 m such that there was no obstruction of view, facing towards 
the middle of the room as illustrated in Fig. 4. Additional sensor boxes were placed in the kitchen (in the fridge 
door) and bathroom (on the flush handle). Once set up and initialized, the sensor boxes recorded around 9,600 
person-hours of the five ambient sensor values autonomously and continuously for twenty consecutive days.

Data analysis. Eight ADL namely “Sleeping”, “Grooming”, “Toileting”, “Getting ready for bed”, “Cooking”, 
“Eating”, “Watching TV” and “Seated activity”21 and two socially important activities, namely “Out of home” 
and “Visitors”, were defined for recognition. The eight ADL consisting of both basic ADL and IADL may require 
certain degree of cognitive ability for execution and were used to discriminate between healthy controls and 
dementia patients based on their ADL performance. The two ADL “Out of home” and “Visitors” are important 
indicators of mobility and social life. Their recognition was just informative to give completeness to the activity 
pattern of the participants and not of primary interest in this study.

As a pre-analysis step, the ambient data was sorted room-based, followed by a chronological sort of the indi-
vidual room-related data21. An in-house developed CAR classifier27, built on the idea of pattern recognition, 
was applied to detect and recognize ADL from the sorted ambient data. The ADL recognition within the CAR 
classifier is based on the assumption that irrespective of the daily routine and cognitive status of the participants, 
specific patterns with specific duration and timing occur every day. The CAR classifier validated in a prior study 
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(sensitivity 94.36% and specificity of 98.17%)27 does not require training data and was applied in the same manner 
for ADL recognition in this study.

The recognized ADL were then plotted against the time period of twenty days to generate an activity map27. 
The activity map is a temporal representation of the recognised ADL over the complete measurement duration 
and helps to visualize the behaviour patterns of the participants by introducing colour codes for each ADL. The 
recognised ADL are stored as lines of time series to build a list. This list is plotted such that the x-axis is the day of 
measurement and the y-axis displays the time and duration of the corresponding ADL. Thus for each subject, the 
activity map consisted of colour coded ADL arranged according to the point of ADL initiation and its duration 
in time.

The difference in the ADL performed by the healthy controls and patients were quantified using the Poincaré 
plot (PP)29. Poincaré theorem is a mathematical tool developed by Jules Henri Poincaré (1854–1912) for analysing 
complex systems. Classical PP graph the value of one data point of the original time series against the next and 
can be used to distinguish chaos from randomness. We apply this technique to analyse an entire recording of a 
subject at once, such that the PP is a scatter plot of the current ADL (ADLtime) plotted against the preceding rec-
ognised ADL (ADLtime – Δtime, where Δ time =  24 hours). The PP technique summarizes the data, at the same time 
allowing to extract the information on short- and long-time behaviour of the participants28. Delays of 24 hours are 
of special interest to us, as it allows us to analyse how activity patterns repeat themselves from day to day.

The PP for a subject’s ADL data vector (equation (1)), composed of recognised ADL data points (si) and length 
N (number of recognised ADL datasets over the complete measurement duration)

= …
s s s s{ , , , } (1)N1 2

consists of ordered pairs (equation (2)) such that each point in the plot corresponds to two adjacent points (equa-
tion (3), (equation (4)).

= … −+ −s s i N{ , } 1 1 (2)i i

Figure 4. Floor plan of an apartment showing placement of sensor boxes (red circle). Each sensor box (inset 
photo) captures light, temperature, humidity, movement and acceleration. The floor plan was created using 
Sweet Home 3D version 5.2a. Sweet Home 3D, Copyright (c) 2005–2016 Emmanuel PUYBARET/eTeks <  info@
eteks.com >. 

Healthy Controls Dementia Patients

Statistic pn = 10 n = 10

Age (years) 73.9 ±  6.7 76.7 ±  8.2 F =  0.687 0.537

Gender (% male) 30 30 χ 2 =  0.000 1.000*

MMSE [max =  30] 29.1 ±  1.1 23.0 ±  5.1 F =  8.127 0.012

CDT [max =  9] 9.0 ±  0.0 4.5 ±  2.8 F =  4.366 0.050

TMT-A (sec) 39.1 ±  20.0 73.6 ±  7.9 F =  4.221 0.056

TMT-B (sec) 62.6 ±  32.3 178.0 ±  45.6 F =  4.662 0.045

BADL [max =  100] n.a. 94.5 ±  2.1 n.a. n.a.

CDR n.a. 1.2 ±  0.4 n.a. n.a.

Table 2.  Clinical and demographic characteristics (n = 20). Data are mean ±  standard deviation or %. 
Statistical tests: ANOVA, *Chi-Square tests; MMSE =  Mini-Mental State Examination, CDT =  Clock Drawing 
Test, TMT =  Trial Making Test, BADL =  Barthel Activity of Daily Living, CDR =  Clinical Dementia Rating; 
n.a. =  not available.

mailto:info@eteks.com
mailto:info@eteks.com
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= …+
−

s s s s{ , , , } (3)N1 2 1

= …−s s s s{ , , , } (4)N2 3

The PP technique was applied on the recognised eight ADL related datasets from dementia patients and 
healthy controls, whereby elongated cloud of points oriented along a line of identity were obtained (Fig. 2). In 
case of close resemblance of day-to-day activity patterns, the data points tend to concentrate in the vicinity of 
the identity line. The quantitative analysis of PP by means of mathematical characterization of the shape of the 
plot (Ellipse-Fitting technique) introduces various descriptors (e.g.: centroid, long/major axis, short/minor axis) 
which quantifies the information contained within the plot47. The PP centroid is the center of mass of the ellipse 
and lies on the line of identity (y =  x) where the major axis intersects the minor axis. The centroid, long axis, and 
short axis of the PP were calculated for each participant and each ADL to condense the information of the plot to 
three independent quantities48. Of the three PP quantities, the centroid was selected to depict the heterogeneity 
in ADL performance.

To quantify the discriminative power of the ADL recognition system the accuracy, sensitivity and specificity 
were analysed over time. With the aid of the ROC analysis30, an optimal cutoff to distinguish healthy subjects 
from dementia patients, was calculated. ROC give us the ability to assess the performance of the classifier over its 
entire operating range. An optimal cutoff or threshold needs to be found, such that there are minimum false diag-
noses, finding a tradeoff between specificity and sensitivity. To find the optimal cutoff, the mean heterogeneity 
defined by the centroid of the PP was calculated for each individual over 20 days and averaged for the two groups. 
The final cutoff value to distinguish between healthy controls and dementia patients resulted from the arithmeti-
cal mean of the average heterogeneity (PP centroids) of the two groups. The cutoff was calculated dynamically 
with every additional dataset within each fold of the cross-validation. Based on this cutoff the discriminative 
power was analysed with the aid of a leave-one-out cross validation. The function was trained on all the data 
except for one data point and a prediction (healthy subject or dementia patient) was made for that point. The rate 
of false positives (FP), false negatives (FN), true positives (TP), and true negatives (TN) was computed, which 
was then used to calculate the sensitivity (equation (5)), specificity (equation (6)) and accuracy (equation (7)) 
of the system over the 20 consecutive days of measurement. Sensitivity is the proportion of TP that are correctly 
identified, while specificity is the proportion of TN that are correctly identified by the system.

=
+

Sensitivity TP
TP FN (5)

=
+

Specificity TN
TN FP (6)

=
+

+ + +
Accuracy TP TN

TP FP TN FN (7)

All algorithms were implemented in Matlab R2007b (The MathWorks, Inc.).

Statistical analysis. Statistical analysis was performed using the Statistical Package for Social Sciences (SPSS 
Version 20, IBM). Normal distribution of data was examined using Q-Q plots. Means and standard deviations 
(SD) were calculated. Chi-square tests and one-way analysis of variance (ANOVA) were used for the demograph-
ics. The heterogeneity in ADL performance (PP centroids) was analyzed using the Mann-Whitney U Test. All 
reported p-values are two-tailed and a p <  0.05 was considered significant for comparing demographics, while 
p <  0.01 was considered significant for comparing ADL performance.
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