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In order to perceive meaningful speech, the auditory system must recognize different phonemes

amidst a noisy and variable acoustic signal. To better understand the processing mechanisms under-

lying this ability, evoked cortical responses to different spoken consonants were measured with

electroencephalography (EEG). Using multivariate pattern analysis (MVPA), binary classifiers

attempted to discriminate between the EEG activity evoked by two given consonants at each peri-

stimulus time sample, providing a dynamic measure of their cortical dissimilarity. To examine the

relationship between representations at the auditory periphery and cortex, MVPA was also applied

to modelled auditory-nerve (AN) responses of consonants, and time-evolving AN-based and EEG-

based dissimilarities were compared with one another. Cortical dissimilarities between consonants

were commensurate with their articulatory distinctions, particularly their manner of articulation,

and to a lesser extent, their voicing. Furthermore, cortical distinctions between consonants in two

periods of activity, centered at 130 and 400 ms after onset, aligned with their peripheral dissimilar-

ities in distinct onset and post-onset periods, respectively. In relating speech representations across

articulatory, peripheral, and cortical domains, the understanding of crucial transformations in the

auditory pathway underlying the ability to perceive speech is advanced.
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I. INTRODUCTION

To discriminate between utterances of the words bark
and park, the auditory system must differentially encode the

phonemes /b/ and /p/. Furthermore, since either word may be

spoken across a range of different styles, accents, articula-

tory contexts, rates, and background noises, the auditory sys-

tem must extract the acoustically invariant features of a

given phoneme from a highly variable signal. Despite

numerous advances in our understanding of the neural mech-

anisms underlying noise-robust speech perception, the signal

processing transformations in the auditory pathway that con-

vert a noisy, variable acoustic input into intelligible speech

are not fully understood.

Employing closed-set recognition tasks, decades of psy-

chophysical research has examined the perceived distinc-

tions between different consonants for normal hearing (NH)

and hearing-impaired (HI) listeners in both quiet and under

degraded listening conditions (Miller and Nicely, 1955;

Phatak et al., 2008; Phatak et al., 2009; Walden and

Montgomery, 1975; Phillips et al., 2010; Wang et al., 1978;

Bilger and Wang, 1976; Doyle et al., 1981). An analysis of

the resulting confusion matrices reveals the existence of

perceptually similar consonant sets, or “confusion groups.”

These perceptual distinctions are often aligned with those

based on articulatory descriptions, such as the voicing, man-

ner, and place of articulation of the consonant (Phatak et al.,
2008; Miller and Nicely, 1955; Allen, 1994). For example,

under certain listening conditions unvoiced plosives such as

(/p/, /t/, /k/) are often confusable with one another in NH and

HI English-speaking listeners, as are certain fricative conso-

nants (/S/, /s/, /f/), whereas consonant pairs that span differ-

ent manner of articulation categories (e.g., /p/ and /S/) are

perceptually distinct.

How these perceptual and articulatory distinctions are

reflected in cortex is a question of significant theoretical and

translational interest. Prior studies have used intracranial

high-density electrode arrays, or electrocorticography

(ECoG), to measure cortical activity during speech listening

(Dichter et al., 2016; Mesgarani et al., 2014; Chang et al.,
2010; see Leonard and Chang, 2014 for a review).

Mesgarani et al. (2014) showed that different electrode sites

across superior temporal gyrus responded to different subsets

of phonemes in a manner consistent with their articulatory

properties (particularly their manner of articulation). Chang

et al. (2010) uncovered neural evidence of categorical pho-

neme perception, whereby stimuli varying along an acoustic

continuum produced neurally distinct categories. In leverag-

ing the fine spatial and temporal resolution offered by

ECoG, these studies provide compelling evidence for the

neural basis of phoneme perception. However, as the
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recording procedure is highly invasive—involving special-

ized neurosurgical procedures—it remains unfeasible for

investigating speech processing in many real-world condi-

tions, sampling large listening populations, or easily embed-

ding in brain computer interface (BCI)-based listening

technologies. Furthermore, ECoG recordings are typically

anatomically restricted to a portion of the cortex, and may

therefore fail to capture more distributed components of the

neuronal population coding involved in speech (Huth et al.,
2016).

Other studies have examined the encoding of speech

using electroencephalography (EEG)—a non-invasive record-

ing technique (DiLiberto et al., 2015; Khalighinejad et al.,
2017). In particular, Khalighinejad et al. (2017) examined dif-

ferences in the event-related potentials (ERPs) corresponding

to each phoneme within a continuous speech stream. In line

with prior perceptual and neural research, phonemes with sim-

ilar phonetic features evoked similar cortical responses (e.g.,

ERPs elicited by vowels were similar to one another, while

dissimilar from that of plosive consonants). While these dis-

tinctions were resolved enough to delineate broad categories

of phonemes, it remains to be seen whether EEG offers the

finer resolution necessary to elucidate distinctions among con-
sonants, which are most impacted by noisy listening condi-

tions and hearing impairment.

The current study sought to robustly evaluate the cortical

representation of consonants using EEG, and differed from

prior work in several key aspects. Rather than continuous

speech, listeners were presented with a closed set of conso-

nants in vowel-consonant-vowel (VCV) format. This stimulus

choice has several advantages. First, current findings can be

related most directly to the extensive body of psychophysical

results employing closed set consonant recognition tasks.

Second, by minimizing the influence of higher-order semantic

and lexical effects that exist in running speech, VCVs provide

more control over potential explanatory variables and facili-

tate an isolated measurement of the neural activity associated

specifically with phoneme perception. Third, though VCVs

provided more control than running speech, we also sought to

measure an ecologically valid neural representation that hon-

ors the acoustic variability of real world listening. To manage

this trade-off, individual VCV tokens within each consonant

category contained a high degree of utterance variability (see

Sec. II for details). In addition to the stimulus design, the cur-

rent study took a novel analytical approach; applying multi-

variate pattern analysis (MVPA) to neural responses.

Specifically, binary classifiers were trained and tested on their

ability to discriminate between the EEG activity evoked by

two different consonants. Within this framework, two conso-

nants are cortically dissimilar to the extent that classifiers can

accurately discriminate between their evoked activity. In con-

trast with the ERP-based methods used previously

(Khalighinejad et al., 2017), this approach enabled a multivar-

iate characterization of spatiotemporal neural features, with-

out averaging across all sensor channels and repeat

observations. Finally, to quantify distinctions between conso-

nants at the auditory periphery, consonants were first mod-

elled in terms of their auditory nerve (AN) synapse output,

and MVPA was then applied to the AN responses. Examining

the relationship between time evolving EEG-based and AN-

based consonant representations provided a global view of

how sensory information is transformed into higher-level cor-

tical representations.

II. METHOD

A. Participants

Eighteen paid participants were recruited through the

Starkey Hearing Research Center (Berkeley, CA). Data from

three subjects were excluded from the analysis due to high

impedance values or excessive line noise. The remaining 15

subjects (10 female; mean¼ 26.1 yr, SD¼ 10.4) had normal

hearing as confirmed by clinical audiometry (ANSI/ASA

S3.21-2004 R2009).

B. Stimuli

A set of consonants were chosen whose perceptual and

articulatory properties were such that explicit hypotheses

could be formed regarding their dissimilarity structure.

Specifically, the set spanned several perceptual confusion

groups (with multiple exemplars in each), and also clustered

similarly when grouped by their articulatory properties (see

Table I). Consonants were {/b/, /d/, /g/, /p/, /t/, /k/, /m/, /n/, /s/,

/S/, /f/} presented in the medial position of vowel-consonant-

vowel (VCV) syllables. Each consonant was presented in five

different vowel contexts, each with six different speaking

styles that varied in either rate (fast, slow), effort (loud, soft),

or intonation (statement, question). Additionally, each token

contained three natural repetitions, resulting in 90 unique

utterances of each consonant [5 vowels � 6 styles � 3 repeti-
tions]. Stimuli were part of the Oldenburg Logatome Speech

Corpus (Wesker et al., 2005) and were spoken by a single

German female speaker. In pilot-testing, stimuli were selected

such that the non-English background of the speaker did not

introduce perceptible phonetic deviations from that of

American-English. Speech tokens were normalized to 99%

amplitude, low-pass filtered with 8 kHz cut-off frequency, and

presented at 48 kHz with 16-bit resolution. Temporal bound-

aries of phonemes within each VCV utterance were labelled

by the Munich automatic segmentation system (MAUS),

which used a procedure similar to hidden Markov model

TABLE I. Consonants used in the current stimulus set and their correspond-

ing articulatory features.

Consonant Voicing Manner of articulation Place of articulation

/b/ voiced plosive bilabial

/d/ voiced plosive alveolar

/g/ voiced plosive velar

/p/ unvoiced plosive bilabial

/t/ unvoiced plosive alveolar

/k/ unvoiced plosive velar

/f/ unvoiced fricative labiodental

/s/ unvoiced fricative alveolar

/S/ unvoiced fricative postalveolar

/m/ voiced nasal bilabial

/n/ voiced nasal alveolar
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forced alignment approaches (see Wesker et al., 2005 for

details).

C. Apparatus

Testing took place in a sound attenuating booth.

Subjects were seated in front of a monitor and keyboard.

Stimuli were generated in MATLAB (Mathworks, Natick, MA)

running on a PC. Audio was output at 48 kHz to ER2 insert

headphones (Etymotic Research, Elk Grove Village, IL) at a

constant sound pressure level (SPL) of 60 dB. EEG record-

ings were conducted on a BrainVision actiCHamp system

(Brain Products, Munich, Germany) and digitized at

1000 Hz. The montage consisted of 96 electrode sites plus

four electrooculogram (EOG) channels (two horizontal, two

vertical) and was referenced to a nose electrode. A trigger

with a pulse width of 100 ms and amplitude of 0.1 V was

used to ensure accurate presentation timing.

D. Procedure and design

Each unique utterance was presented three times, yield-

ing 270 observations of each consonant and a total of 2970

VCV syllables over the entire experiment. Testing was

divided into four blocks separated by 5 min breaks and

totaled approximately 1 h. Consonant presentation was ran-

domized but constrained to avoid repeat presentations of a

given VCV token. Inter-stimulus-intervals were roved

between 500 and 750 ms. During each block, subjects were

instructed to keep their gaze focused on a fixation cross in

the center of the screen. To ensure that subjects were attend-

ing to the speech tokens, 10% of the stimuli were followed

by a visually presented word. Upon viewing the word, sub-

jects responded as to whether the consonant contained in the

middle of the word was congruent or incongruent with the

VCV heard immediately prior by pressing one of two but-

tons. Subjects used one finger from each hand to register the

responses. To ensure that neural activity associated with the

motor response did not contaminate neural activity associ-

ated with acoustic-phonetic processing, words were only dis-

played on the screen 800 ms after VCV offset. As a further

precaution, the mapping of true/false to response hand (left/

right) was counterbalanced across the four blocks.

E. Analysis

1. Pre-processing

Pre-processing of EEG data was performed at the indi-

vidual subject level and implemented in MATLAB using

EEGLAB v.13. Data were first high-pass filtered using a

zero-phase 3000-point finite impulse response (FIR) filter

with a low-frequency edge of 1 Hz. Large movement arte-

facts were removed by visually inspecting the continuous

time series and rejecting affected regions. Sensor channels

were removed if: (1) they contained visually apparent non-

biological signals such as 60 Hz line noise, (2) had a mean

root mean square (RMS) value above 100 lV, or (3) an

impedance above 40 kX. Continuous data were then subject

to independent components analysis (ICA) using the logistic

infomax algorithm to decompose the data into statistically

independent components based on temporal covariance (Bell

and Sejnowski, 1995). Independent components that corre-

sponded to ocular artefacts were identified based on correla-

tion with EOG channels and inspection of scalp topology.

These oculomotor components were removed before data

were projected back into the EEG sensor space. Next, each

data channel was low-pass filtered with a high-frequency

cut-off of 40 Hz and normalized to have zero mean and unit

variance. Continuous data were then epoched from �200 to

600 ms relative to the onset of the consonant. Epoched data

were then downsampled to 200 Hz after filtering with an

eighth order Chebyshev type I low-pass filter to avoid alias-

ing. Last, epochs in which any channel had a maximum

absolute value greater than 10 z-score normalized units were

removed. On average, the combined processes of channel

and epoch rejection led to 12% of the data being excluded

from further analysis. To further boost the signal-to-noise

ratio (SNR), a blind source separation technique called

denoising source separation (DSS; deCheveign�e and Simon,

2008; S€arel€a and Valpola, 2005) was applied to the epoched

data. Using a criterion of response reproducibility across tri-

als, DSS computes a set of linear spatial filters that attempts

to partition evoked variance from measurement noise.

Critically, these linear transformation matrices are computed

on neural data pooled across all stimulus conditions so as not

to artificially introduce differences that appear as experimen-

tal effects. This technique has been demonstrated to be effec-

tive in de-noising cortical responses to speech (Ding et al.,
2016; Peelle et al., 2012; Ding and Simon, 2013, 2011).

After decomposing the EEG channels, we retained the first

DSS component (shown for one subject in Fig. 1). This com-

ponent constituted the linear combination of original sensor

channels with the greatest reproducible power across all

trials.

2. Classification

Classification was performed at the individual subject

level using the first DSS component obtained from pre-

processing. Conceptually, we sought to map the eleven con-

sonant classes to points in representational space, where the

distance between two classes corresponds to the dissimilarity

in their cortical activity. To quantify this dissimilarity, we

applied multivariate pattern analysis (MVPA; Haxby et al.,
2014), whereby a binary classifier learns features of the neu-

ral activity that best distinguishes two different classes.

Within this framework, the accuracy with which classifiers

can discriminate between the cortical activity of two given

consonants provides an intuitive measure of their representa-

tional distance in the brain (Kriegeskorte et al., 2008).

Importantly, classification was supervised such that neural

responses to different utterances of the same consonant were

given the same class label. As a consequence, classifiers nat-

urally extracted the invariant neural features of a given con-

sonant despite their acoustic variability across utterances.

Additionally, as classifiers only utilize neural information

that aids discrimination between different classes, evoked

potentials arising due to the preceding vowels (e.g., the P1-

N1-P2 complex) should logically be disregarded because all
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exemplars were the same in this respect. Classification was

performed using a naive-Bayes implementation of linear dis-

criminant analysis (LDA; Duda et al., 2012), with 10-fold

cross-validation to maximize use of the data while maintain-

ing independence of training and testing sets. Given the rela-

tively high temporal resolution of the data (see Sec. II E 1),

neural responses were classified using a sliding time window

that proceeded in adjacent 5 ms steps (Grootswagers et al.,
2017). This resulted in a curve of classifier accuracy across

time that tracked the dynamics of consonant-related informa-

tion in the cortex. We hypothesized that the information

responsible for distinguishing different consonants would

not only be contained in the spatial patterns of neural

responses, but also in the temporally evolving structure of

each evoked response. Thus, for two given consonants, we

attempted to discriminate between their neural responses in

three different classification analyses using sliding time-

windows of 20, 50, and 100 ms, respectively. Importantly,

the response at each adjacent time sample within a window

mapped onto an additional dimension in the classification

feature space [e.g., a 100 ms window and a sampling rate of

200 Hz resulted in a 20-dimensional (20-D) feature space].

In this fashion, with every increase in window size classifiers

were provided with additional temporal response structure,

and by comparing classification performance across the dif-

ferent window sizes, we were able to assess the relative

gains afforded by this additional information. To boost the

classification SNR, the neural responses of six trials within

each consonant category were averaged prior to classifica-

tion. In order to minimize the bias of classifiers toward any

one type of utterance (e.g., a question rather than statement

speaking style), averaging was constrained such that each of

the six trials pooled for averaging contained stimuli with a

different utterance style and/or vowel context.

The binary classification procedure described above was

repeated for all pairwise combinations of consonants and for

all subjects. To assess the significance of classification at the

group level [Fig. 3(A)–3(D)], Wilcoxon sign-rank tests were

carried out at each time point and corrected for multiple com-

parisons by controlling the false-discovery-rate (FDR;

Benjamini and Yekutieli, 2001). At the level of a single sub-

ject [Fig. 3(E)–3(F)], significance was determined using ran-

domization testing. Specifically, classification was performed

with randomly permuted class labels and the procedure was

repeated 1000 times. The performance of these randomized

models defined a classification noise floor, and time points

were deemed significant when the true classification perfor-

mance exceeded the 95 percentiles of the randomized runs

(FDR-corrected for multiple comparisons).

3. Cortical representation

Results were evaluated within the framework of

Representational Similarity Analysis (Nili et al., 2014;

Kriegeskorte et al., 2008). The classification performance

for all pairwise combinations of consonants defined a repre-

sentational structure that can be visualized as a dissimilarity
matrix (DSM), averaged across all subjects and time points

[Fig. 4(A)]. The DSM is diagonally symmetric, with the dif-

ferent consonant classes indexing the rows and columns.

Each cell indicates the dissimilarity of EEG responses corre-

sponding to the two referenced classes. To spatially illustrate

the structure of the cortical representation, multidimensional

scaling (MDS) was applied to the values in the mean DSM

using Kruskal’s normalized stress 1 criterion to obtain a

solution in three dimensions [Fig. 4(B)]. To evaluate the

extent to which these cortical distinctions between conso-

nants reflected their acoustic-phonetic features, the EEG

DSM was compared with three model DSMs. Specifically,

each model DSM coded the binary (1/0) dissimilarity

between consonants based on their membership within the

three respective articulatory feature groups: (1) manner of

articulation, (2) place of articulation, and (3) voicing. Model

DSMs reflecting a combination of these articulatory feature

groups were also constructed by summing the relevant artic-

ulatory DSMs. To initially evaluate their predictive capacity,

each model DSM was correlated with the time-averaged

EEG DSM. Next, to examine the temporal dynamics of the

relationship between articulatory features and cortical

responses, those articulatory features whose DSMs were sig-

nificantly correlated with the average EEG DSM were also

compared with time-varying EEG DSMs. Correlations were

computed using a rank-order measure (Kendall’s TauA; Nili

FIG. 1. Time-series corresponding to the first DSS component for one sub-

ject. Responses corresponding to each consonant are averaged across all

repeat observations for illustrative purposes only. Units are arbitrary as the

data were normalized beforehand. In all time-series plots, t¼ 0 corresponds

to the onset of the consonant. Line thickness reflects the 61 standard error

around the mean.
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et al., 2014). Additionally, to account for any covariance

between model DSMs themselves, partial correlations were

utilized, whereby the relationship between a given model

and EEG DSM was assessed while controlling for other

models. Significance of model correlations was assessed

using Wilcoxon sign-rank tests. Time-averaged comparisons

were Bonferroni corrected to control for multiple compari-

sons, while the time-evolving correlation analysis controlled

the FDR.

4. Covariance across subjects

To compare the DSMs of individual subjects with one

another, we used rank-order correlation (Kendall’s TauA).

This resulted in an nSubjects � nSubjects matrix in which

each cell indicated the correlation between the two respec-

tive subjects’ DSMs. We then averaged one half of the diag-

onally symmetric matrix to obtain the mean inter-subject

correlation. This process was repeated at each time-point to

obtain a curve of average correlation across time (Fig. 5).

Significance at each time-point was determined using ran-

domization testing, whereby the row and column labels of

individual DSMs were randomly shuffled before each repeat

correlation (n¼ 1000). The 95% confidence intervals of

these randomized runs determined the correlation noise floor

and significance was corrected for multiple comparisons by

controlling the FDR.

5. Auditory-nerve modelling

In order to probe transformations in consonant represen-

tations occurring between auditory periphery and cortex,

stimuli were modelled in terms of their discharge rate at the

output of the AN synapse. This was achieved using a phe-

nomenological model of the auditory periphery (Zilany and

Bruce, 2006; Zilany et al., 2009; Zilany et al., 2014). The

AN model has been rigorously validated against real physio-

logical AN responses to both simple and complex stimuli,

including tones, broadband noise, and speech-like sounds

(see Heinz, 2010 for a detailed review of the AN model).

Model threshold tuning curves have been well fit to the char-

acteristic frequency (CF; the frequency at which nerve fibers

respond to the lowest sound level) dependent variation in

bandwidth for normal-hearing cats. Many properties associ-

ated with nonlinear cochlear tuning are captured by the AN

model, including compression, suppression, broadened tun-

ing, and best-frequency shifts with increases in sound level.

The stochastic nature of AN responses is accounted for by a

non-homogeneous Poisson process that was modified to

include the effects of both absolute and relative refractory

periods. Although the Zilany and Bruce (2006) model was

chosen for this study, the results presented here do not

depend on this choice and several other AN models exist

that would be expected to produce similar results (see

Lopez-Poveda, 2005, for a review).

We chose to model consonants at the AN synapse stage

of auditory processing for several reasons. First, onset activ-

ity followed by neural adaptation in the AN synapse plays a

crucial role in the coding of transients, which are prominent

in many consonants. For example, Fig. 2 demonstrates the

pronounced coding of consonants at the output of the AN

synapse relative to their response earlier in the auditory path-

way along the basilar membrane. Second, as transformations

of the speech signal occurring between acoustic-to-AN

stages have already been well documented (Delgutte and

Kiang, 1984a,b), we chose to focus instead on later transfor-

mations occurring between the output of the AN synapse and

the cortex. VCVs were first resampled to 100 kHz and win-

dowed using a linear rise and fall time. The signal was then

decomposed into 128 ERB-scale frequency bands between

100 Hz and 8 kHz. Neural adaptation at the AN-synapse

FIG. 2. Modelled peripheral responses

for utterances of /apa/ (row 1) and

/ata/ (row 2). Cochleograms (column

A) model the response along the basi-

lar membrane while synaptograms

(column B) model the discharge rate at

the output of the auditory-nerve syn-

apse. In the AN synapse, neural adap-

tation following vowel onset facilitates

the coding of consonants relative to

vowels, reflected in the pronounced

response to consonants in column B

relative to column A.
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stage was modelled using both exponential and power law

dynamics (see Zilany et al., 2009, for more details). For each

VCV utterance, spectrograms of AN-synapse activity (syn-

aptograms) were computed by finding the energy in each fre-

quency channel across a 10 ms frame with a 50% overlap

between adjacent frames.

6. Auditory-nerve representation

We sought to derive distances between the different con-

sonants based on the similarity of their respective AN

responses at each time point, constituting the peripheral ana-

logue of the EEG DSMs. To achieve this, MVPA was now

applied to the peripheral data, whereby binary classifiers were

both trained and tested on their ability to discriminate between

the AN-responses of a given consonant-pair. First, the 90

unique AN synaptograms corresponding to different utteran-

ces of the same consonant were treated as “observations,” and

each frequency-channel � time synaptogram was epoched in

an identical fashion to the EEG data (from �200 to 600 ms

relative to consonant onset). We then applied principle com-

ponents analysis (PCA) to reduce the dimensionality of AN

datasets. PCA reduced the 128 frequency-channels to 18 com-

ponents while retaining 99% of the variance. Pairwise classifi-

cation of consonants was then performed in an identical

fashion to the prior EEG analysis—using a linear discriminant

classifier with 10-fold cross validation. Importantly, the tem-

poral characteristics of the sliding classification window were

identical to the earlier EEG analysis (100 ms window moving

in 5 ms steps), ensuring that comparisons made between corti-

cal and peripheral domains were temporally unbiased. To test

significance of AN classification, a noise-floor was generated

by repeatedly attempting to classify stochastically generated

AN spike-trains (n¼ 500). The classification of all pairwise

combinations of consonants based on their respective AN-

responses resulted in peripheral DSMs at each time point

[Fig. 6(B)].

7. Cortical-peripheral covariance

To examine the relationship between stimulus represen-

tations in the cortex and periphery, EEG-based DSMs at

every time-point were compared with AN-based DSMs at

every time point using rank-order correlation (Kendall’s

TauA). This resulted in a timepoints � timepoints matrix of

correlation values indexing the degree of covariance

between the two domains at various time lags (Fig. 7).

III. RESULTS

Our primary goal was to determine whether distinctions

between different consonants were observable in their

corresponding evoked EEG activity. Visually examining the

average neural responses for each consonant in one subject

(Fig. 1), we found that mean responses were ill-fit for

elucidating any distinctions between different consonants.

Because of this, we adopted a multivariate machine-learning

approach, whereby classifiers were trained and tested on

their ability to discriminate between responses based on fine-

grained spatiotemporal patterns of activation (see methods).

On average, we found that classifiers could successfully

discriminate between the neural activity evoked in response

to two different consonants. Figure 3(A) displays the average

classification accuracy for discriminating between all pair-

wise combinations of consonant-evoked responses across all

participants. Before onset, accuracy is at chance (50%)

because consonant-related information is yet to activate the

cortex. However, classifier performance rises after onset and

peaks within approximately 200–300 ms, suggesting that, on

average, cortical distinctions between consonants were max-

imal during this period. We found that average classification

performance improved monotonically with increases in the

classification-window size (from 20 to 100 ms), underscoring

the discriminant utility provided by additional temporal

information (see Sec. II E 2). Critically, the differences in

classification performance across individual consonant-pairs

were highly correlated across the three different window

sizes (all correlations had Pearson’s r� 0.96; p � 0.001),

FIG. 3. Results of MVPA. (A) Group mean classification accuracy across

time, averaged over all pairwise combinations of consonants, using three

different classification-window sizes. (B) Group mean classifier perfor-

mance when discriminating between the neural responses of phoneme pairs

that fall within the same acoustic-phonetic category (red) and across differ-

ent categories (blue). The inset bars display performance averaged across all

time-points where *** signifies p< 0.001. (C) Group-mean accuracy for dis-

criminating between the neural activity of one across-category consonant-

pair and (D) one within-category pair. Shaded regions in panels A–D indi-

cate standard errors across participants. Significance is indicated by lines

underneath curves [Wilcoxon sign-rank test (p< 0.05); FDR corrected].

(E,F) Single subject classifier performance assessed for the same respective

phoneme-pairs as C,D. Shaded regions indicate the 95-percentiles of ran-

domized classification runs with lines underneath indicating significance.
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indicating that changes in the window size did not alter the

relative pattern of discriminability between consonants, only

the absolute performance of the classifiers. For this reason,

all subsequent analyses are based on a 100 ms classification

window.

Next, we tested whether patterns of cortical similarity

between consonants reflected their perceptual and articula-

tory groupings. We hypothesized that discriminability would

be poorer (lower accuracy) when classifying EEG responses

of two consonants within the same perceptual confusion

group, but greater when classifying responses of consonant-

pairs that span multiple groups. For our stimulus set, prior

literature indicate the following confusion groups: unvoiced
plosives (/p/, /t/, /k/), voiced plosives (/b/, /d/, /g/), fricatives
(/s/, /S/, /f/), and nasals (/m/, /n/) (Miller and Nicely, 1955;

Allen, 2005; Phatak et al., 2008). The average classification

performance, assessed separately for within and across group

consonant pairs, is shown in Fig. 3(B). At the group level,

FIG. 4. Cortical representation of con-

sonants. (A) EEG dissimilarity matrix

(DSM) detailing the representational

structure of consonants in the cortex.

Values are averaged across all time-

points in the neural epoch. (B) Three-

dimensional (3-D) multidimensional

scaling (MDS) solution to the values in

the DSM. (C)-(E) Model DSMs each

coding the binary dissimilarity of con-

sonants based on three articulatory fea-

tures: manner of articulation (M),

place of articulation (P), and voicing

(V). (F) Correlations between the

time-average EEG DSM and all articu-

latory model DSMs (including

combinations). Bars indicate standard

errors across participants. *p< 0.05,

**p< 0.01, ***p< 0.001 (Wilcoxon

sign-rank test, Bonferroni corrected).

(G) Correlation between time-evolving

EEG DSMs and two model DSMs

(Manner and Voicing). Shaded regions

indicate standard errors across partici-

pants. Time points during which the

mean correlation is significantly differ-

ent from zero are indicated by colored

markers underneath [Wilcoxon sign-

rank test (p< 0.05); FDR corrected].

FIG. 5. Inter-subject correlation of DSMs. Mean correlation between the

DSMs of individual subjects at each time-point. The shaded region indicates

the upper and lower bounds of the 95% confidence intervals resulting from

randomization testing. Time points during which the average inter-subject

correlation was greater than the shaded region (FDR corrected) are indicated

by black lines.
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results were consistent with the hypothesis stated above.

That is, performance was higher, on average, when discrimi-

nating between responses of consonant pairs belonging to

different confusion groups. This was also evidenced at the

level of individual consonant pairs. For example, EEG

responses to /k/ and /s/ were highly dissimilar from one

another [Fig. 3(C)], but results suggest that the two nasals

(/m/ and /n/) evoked more similar patterns of cortical activa-

tion [Fig. 3(D)]. The same trends persisted at the single

subject level [Figs. 3(E) and 3(F)], suggesting that the above

group-level results reflect veridical neural distinctions rather

than noise. Nevertheless, the low SNR of single-subject clas-

sification, as indicated by the 95 percentile bands, precludes

a strong interpretation of current results at the resolution of

an individual listener.

Using the accuracy of each pairwise classification as a

measure of cortical dissimilarity between two given conso-

nants, we visualized the collective representational structure

in tabular form as a DSM averaged across all time-points

[Fig. 4(A); hotter color corresponds to greater dissimilarity].

Again, clustering of consonants in a manner consistent with

perceptual groupings is evident in the DSM. For example,

/k/ is similar to /t/ and /p/, but distant from /f/, /s/, and /S/.

We used multidimensional scaling (MDS) to more intui-

tively illustrate the structure of the DSM [Fig. 4(B)]. MDS

attempts to optimally preserve the structure of the DSM,

therefore the distance between two consonants in the MDS

solution can be construed as their representational distance

in the cortex. Visual inspection of the MDS solution revealed

that the nasals (/m/ and /n/) and sibilant fricatives (/s/ and

/S/) clustered together in distinct regions of representational

space. To a lesser extent, voiced (/b/, /d/, /g/) and unvoiced

(/p/, /t/, /k/) plosives were distinguished in MDS space. To

explicitly test whether EEG dissimilarities between conso-

nants reflected their articulatory features, we compared the

geometric structure of the EEG DSM with several articula-

tory model DSMs [Figs. 4(C)–4(E)] that coded dissimilarity

as a binary [1/0] measure of a given consonant-pair’s mem-

bership within the [different/same] articulatory feature

group, respectively. Correlations between the time-averaged

FIG. 6. Modelled representation of

consonants at the auditory periphery.

(A) Average AN synapse classification

accuracy across all pairwise combina-

tions of consonants. The shaded region

indicates the noise-floor determined

by classifying stochastic AN spike

trains multiple times (n¼ 500). The

black line beneath the curve indicates

time-points for which classification

accuracy is significantly above the

noise-floor (FDR-corrected). (B) Time

averaged peripheral DSM resulting

from classification of each pairwise-

combination of AN responses. (C)

Three-dimensional MDS solution to

the time-averaged peripheral DSM.

FIG. 7. Covariance matrix of cortical and peripheral representations.

Cortical and peripheral DSMs at each time point are indexed along the x-

and y-axis, respectively. Each cell in the matrix indicates rank-order correla-

tion between the two corresponding DSMs. EEG and AN DSMs during

regions of interest are displayed to the sides of the x- and y-axis, respec-

tively. Green bars along axes indicate the median consonant duration across

the entire stimulus set, with errors indicating the interquartile range (i.e.,

25%–75%).
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EEG DSM and each model DSM (as well as all combina-

tions) are shown in Fig. 4(F). While the DSM coded for

place of articulation (P) did not significantly predict cortical

distinctions, DSMs coded for both manner of articulation

(M) and voicing (V)—and any combination including at

least one of the two—were significantly predictive of EEG

DSMs. Given this, we next sought to examine the dynamics

of the relationship between the significant articulatory fea-

ture DSMs (M/V) and time-evolving EEG DSMs. As the M

and V model DSMs were also likely correlated with each

other, we accounted for their covariance by running partial

correlations with the EEG DSM at each time point [Fig.

3(G)]. Results indicated that M was the dominant predictor

of cortical distinctions at early latencies in the time course

(50 to 150 ms post consonant onset), whereas V was signifi-

cantly predictive over a later broad period beginning at

200 ms and extending to 450 ms. Notably, after returning to

noise floor, M DSMs were again correlated with EEG DSMs

during a subsequent period such that both models (M and V)

significantly predicted the cortical representation at rela-

tively long latencies, centered 400 ms after consonant onset.

We next examined the extent to which the observed rep-

resentational structure was consistent across listeners. Figure

5 displays the mean correlation between individual subject

DSMs at each time-point. A strong inter-subject correlation

suggests a relatively “universal” representation across listen-

ers. Before onset, we hypothesized that DSMs will be rela-

tively uncorrelated, as consonant-related information is yet

to be represented in cortex. However, across normal-hearing

listeners, we expected a consistent representational structure

to emerge following onset. Indeed, this appeared to be the

case; whereas correlation failed to rise above the noise floor

before onset, inter-subject correlation was significantly high

from onset until approximately 300 ms. Interestingly, we

also found subsequent periods of relative consistency re-

emerging across listeners (from 400 to 500 ms and again, to

a lesser extent, from 550 to 600 ms).

Last, we examined how the time evolving representa-

tional structure of consonants in the cortex relates to their

sensory representation at earlier stages of auditory process-

ing. First, raw audio stimuli for each VCV were passed

through a phenomenological model of the auditory periphery

to estimate the discharge rate at the output of the AN syn-

apse. For each VCV, the model produced a time-series of

AN-synapse activity across 128 different frequency bands

(see Sec. II E 5). We sought the most equitable comparison

between modelled AN and observed EEG responses. Thus,

in order to estimate AN-based dissimilarities between conso-

nants, the same implementation of MVPA previously used to

classify EEG responses was applied to AN-responses. To do

this, the 90 modelled AN-responses corresponding to each

unique utterance of a consonant were treated as

“observations” on which to train and test a binary classifier.

The average accuracy for discriminating between the

AN-responses of all pairwise consonant-combinations is

shown in Fig. 6(A). Performance rose to a maximal accuracy

of approximately 90% for a sustained period from 50 to

200 ms. On average, performance began to rise 150 ms

before consonant onset, indicating the presence of

consonant-related information in the acoustic signal preced-
ing the labelled onset time, likely due to anticipatory coarti-

culations (see Sec. IV). The DSM in Fig. 6(B) illustrates the

peripheral representation resulting from classifying all pair-

wise combinations of AN-responses, averaged across all

time points. Though consonants are generally more resolved

from one another than in their cortical counterpart, the

peripheral DSM still shows clear similarity structure, with

clustering along the diagonal intuitively suggesting that pho-

nemes with similar acoustic-phonetic properties share simi-

lar sensory features. The MDS solution to the peripheral

DSM [Fig. 6(C)] provides a visually intuitive description of

this representational structure.

Cortical DSMs (based on classification of measured

EEG responses) at each time point were then compared with

peripheral DSMs (based on classification of modelled AN

responses) at all time points. This produced a temporal

covariance matrix (Fig. 7), in which each cell indicates the

correlation between the peripheral and cortical DSMs at

time-points indexed by that cell’s row and column, respec-

tively. Visual inspection clearly revealed that regions of high

correlation were located in the lower right half of the matrix

(below the diagonal). Intuitively, this suggests a latency,

whereby stimulus features represented at the periphery take

time to reach the cortex. Additionally, we found two distinct

periods of high correlation. First, peripheral DSMs during

the 100 ms window approaching onset (reflecting a mixture

of anticipatory coarticulations and onset bursts) were corre-

lated with cortical DSMs at a later period, from 50 to 200 ms

after onset. Note that the above-chance classification of AN-

responses prior to t¼ 0 [Fig. 6(A)] is consistent with the

existence of consonant-specific information in peripheral

DSMs during this pre-onset period. Second, we observed a

later correlation, whereby the pattern of peripheral dissimi-

larities during a broad period from 0 to 300 ms were corre-

lated with cortical dissimilarities around 400 ms.

Importantly, the large vertical spread of this correlation is

consistent with the relatively large variance in the physical

duration of consonants across the entire stimulus set

(median¼ 140 ms, inter-quartile range¼ 80 to 190 ms).

IV. DISCUSSION

A major aim of the current study was to evaluate

whether distinctions between consonants could be observed

based on their corresponding evoked EEG activity. To this

end, MVPA was used to discriminate between the spatiotem-

poral patterns of neural activity elicited by consonants. In

general, the extent to which classifiers could discriminate

between the responses of two consonants was commensurate

with their perceptual and articulatory distinctions [Fig. 3(B);

Fig. 4]. In particular, consistent with prior cortical studies,

we found that the differences in consonants’ manner of artic-

ulation were most strongly predictive of cortical distinctions

(Mesgarani et al., 2014). Several pieces of evidence suggest

that the observed EEG dissimilarities reflect veridical

distinctions in the cortex rather than measurement noise.

First, the overall pattern of dissimilarities that emerged after

physical onset of consonants was consistent across subjects
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(Fig. 5). Second, by generating a classification noise floor,

we determined that the relative discriminability between

consonants at the individual subject level generally corrobo-

rated group trends [Figs. 3(E) and 3(F)]. However, given the

low SNR, no other assertions are currently made regarding

the significance of individual subject classification.

Concerning the feasibility of EEG for probing real-time

speech representations, results suggest further work aimed at

increasing the SNR of measurements is necessary in order to

elucidate phoneme-level distinctions in the individual

listener.

To obtain a peripheral representation of the speech stim-

uli, MVPA was also applied to modelled AN responses to

VCVs. In assessing AN classification accuracy, we found

that, on average, performance began to rise 150 ms before
consonant onset, indicating the presence of consonant-

related information in the acoustic signal preceding the

labelled onset [Fig. 6(A)]. This is consistent with anticipa-

tory coarticulations, whereby properties of the target conso-

nant heavily modify the formant trajectories of the preceding

context (Martin and Bunnell, 1981, 1982). However, it is

important to note that temporal boundaries between pho-

nemes are often acoustically ill-defined and were determined

here using a probabilistic model (Wesker, 2005). Given the

potential ambiguity in transition boundaries, it seems likely

that AN classification runs approaching t¼ 0 were influ-

enced by the onset transients of consonants in addition to

coarticulations. The combined influence of coarticulatory

and onset features on AN classification during this “pre-

onset” period cannot be dissociated, and the influence of

each are likely to vary with properties of the given

consonant-pair in question (for example, strong onset bursts

are characteristic of unvoiced plosives, while voiced plosives

may contain substantial coarticulations in addition to onset

bursts).

Modelling and classifying AN responses to VCVs

served our second aim, which was to examine the relation-

ship between the same speech stimuli represented at the cor-

tex and the peripheral auditory system. Importantly,

dissimilarity analyses of EEG and AN responses were locked

to the same temporal grid, enabling an unbiased comparison

of peripheral and cortical representational structures as they

temporally unfolded. In doing so, we uncovered two distinct

cross-temporal regions in which cortical distinctions aligned

with stimulus distinctions encoded at the periphery (Fig. 7).

First, the peripheral representation of coarticulatory and

onset features was reflected in the cortex 100 to 150 ms after

onset. This time course is consistent with the latency of

event-related potential components sensitive to acoustic

onsets in speech. For example, the speech-evoked mismatch

negativity (MMN), thought to cortically index pre-attentive

speech discrimination, is typically elicited 100–250 ms after

the onset of a deviant speech sound (Martin et al., 2008).

Additionally, the strong representation of onset features in

the cortex is consistent with research showing that cortical

coding is dominated by onset responses (Rabinowitz et al.,
2013). The temporal covariance of EEG and AN structures

also revealed a later period of correlation, whereby periph-

eral encoding in the 250 ms following onset was reflected in

the cortex at 400 ms. It seems probable that the perception of

a consonant is emergent, arising from the encoding of acous-

tic features throughout it is time course, from its coarticula-

tion with the preceding vowel to its offset. The cortical

activity at 400 ms thus likely reflects the encoding of acous-

tic properties post-onset. Additionally, the relatively large

vertical spread of this correlational region suggests that the

cortex only represents these differences after the gradual

accumulation of sensory evidence.

Finally, a further scrutiny of the correspondence

between EEG-based and AN-based representations high-

lights important cortical transformations occurring in the

ascending auditory pathway. First, if the cortex merely rep-

resented the acoustic properties of speech in a linear fashion,

albeit with a latency in processing time, we would expect the

temporal covariance analysis (Fig. 7) to feature a single

unbroken “strip” of correlation that was right-shifted with

respect to the diagonal. Clearly this is not the case. Instead,

the structure of EEG-AN correlations suggests that cortical

processing is divided into two independent and temporally

distinct onset and post-onset stages. Furthermore, the two

correlational regions were not adjacent to one another in the

cortical domain. Instead, a period from 200 to 350 ms exists

in which EEG DSMs were not strongly correlated with any

AN DSMs. Interestingly, this period coincides with the time

at which the average EEG-classification curve was maximal

[200 to 300 ms; Fig. 3(A)]. Taken together, these results

indicate that the time at which cortical distinctions between

consonants were greatest did not coincide with a period in

which those distinctions strongly reflected sensory differ-

ences. This may be evidence of further computations per-

formed in cortex, beyond a linear analysis of acoustic input,

thus enabling such distinctions to emerge. Future work

should focus on more explicitly testing the hypotheses aris-

ing from these observations. Additionally, although the cur-

rent study was limited by the number of observations within

a given consonant category, future work should characterize

the neural representational structure of both within-category

(across various utterance types) and across-category distinc-

tions within a unified representational space. By comparing

time-evolving representational structures across peripheral

and cortical domains, we lay the groundwork for better

understanding the neural transformations involved in per-

ceiving meaningful speech.
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