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Abstract. Acquiring the knowledge about the volume of customers for
places and time of interest has several benefits such as determining the
locations of new retail stores and planning advertising strategies. This
paper aims to estimate the number of potential customers of arbitrary
query locations and any time of interest in modern urban areas. Our idea
is to consider existing established stores as a kind of sensors because the
near-by human activities of the retail stores characterize the geographi-
cal properties, mobility patterns, and social behaviors of the target cus-
tomers. To tackle the task based on store sensors, we develop a method
called Potential Customer Estimator (PCE), which models the spatial
and temporal correlation between existing stores and query locations
using geographical, mobility, and features on location-based social net-
works. Experiments conducted on NYC Foursquare and Gowalla data,
with three popular retail stores, Starbucks, McDonald’s, and Dunkin’
Donuts exhibit superior results over state-of-the-art approaches.

Keywords: Customer prediction · Retail stores · Location-based social
network · Check-in data · Store sensor

1 Introduction

Modern big cities, such as New York City, London, Paris, and Taipei, are densely
and crowded areas, where not only million of people live but also a great number
of business established. As time proceeds, people move around in such urban
areas in either a periodic or unpredicted manner. Various kinds of retail stores
(e.g. Starbucks, McDonald’s and Dunkin’ Donuts) usually choose the locations
possessing higher potential to attract more customers to construct new venues
expecting more people can bring more revenue. In other words, the number of
potential customers becomes one of the most important factor for business to
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determine their geographical placement or launch campaign events. It would be
very practical and useful to acquire the knowledge about where and when a
particular business can attract more consumers or audience.

In this paper, we aim to estimate the potential customers of an arbitrary loca-
tion and at a given time in an urban area. By referring the number of potential
customers as the number of people visited there, we propose to exploit the check-
in records, place information, and social connections in location-based social
networks (e.g. Foursquare and Gowalla) for estimating potential customers. The
central idea is to consider existing stores of the target retail business (e.g. Star-
bucks) as a kind of sensors to estimate its potential customers at other locations
without stores at any time. We use Figure 1 to elaborate our idea of estimating
potential customers anywhere and anytime. Take the stores of Starbucks in New
York City as examples, as marked by red circles. From location-based services,
we might know the historical customers (i.e., the number of check-ins) of each
store month by month, illustrated by the histogram of check-in numbers in terms
of months. Now Starbucks would like to construct a new store or hold a market-
ing campaign, with two arbitrary locations in mind, as labeled as A and B. The
problem is to estimate the number of potential customers of such two locations
month by month so that it is possible to acquire the knowledge which one can
bring more profit when a new business or event is launched. Given the potential
customers over time, Starbucks can further understand which months are more
profitable.

Fig. 1. An example for estimating potential customers anywhere and anytime.

Estimating the number of potential customers for arbitrary locations over
time is a challenging problem. The characteristics of a location’s geo-spatial
neighborhood is usually one of the major factors that determine the potential
customers. Such geo-spatial characteristics include population, spatial density,
traffic flows, competitiveness (i.e., number of the same category of retail chain),
how people interact and transit between different categories of venues, and the
structure of underlying social connections in the near-by area. One major chal-
lenge of this task lies in how to model the complex composition of venues and
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various moving behaviors of people in its geo-neighborhood. On the other hand,
the number of potential customers of a location might change and evolve over
time. Both the temporal factors of periodic growth and decline (e.g. high vs.
slack seasons and weekdays vs. weekend) and special activities (e.g. anniversary
and seasonal discount campaign) can affect the customer numbers. Consequently,
there might not exist regular patterns to be used to predict the potential cus-
tomers of a location over time. This work tries to bring such temporal impact
into our estimation model.

Given some locations in a city, certain time periods of interest, and a set of
stores of a target retail chain (e.g. Starbucks) that already has venues established
with historical check-in data, our goal is to estimate the number of potential
customers for the given locations at the designated time periods (e.g. weeks or
months). To deal with this problem, we devise a model called Potential Customer
Estimator (PCE), whose idea is three-fold. First, we construct a Correlation
Graph (CG), which is a multi-layer graph, to represent the spatial and tempo-
ral correlation between existing stores and the query locations. We investigate
three categories of features, geographical, mobility, and social, to model the cor-
relation between locations in CG. Second, since different features have different
effects on the estimation target, we estimate the location correlation separately
by investigating the predictability of each feature. The correlation values derived
are represented as edge weights in CG. Third, based on the CG with location
correlation values on edges, we develop a Customer Inference Algorithm (CIA),
which iteratively adjusts the estimated number of potential customers of the
query locations till convergence.

2 Related Work

Investigating Location Popularity. The most relevant study is Geo-
Spotting [8], which is to identify the popular locations for optimal retail store
placement. Nevertheless, there are two differences. First, they formulate the task
as a ranking problem: ranking areas such that popular areas are at the top of
the list. However, we aim to estimate the exact number of potential customers,
which might be more useful to calculate the potential profit of the placement.
Second, while what Geo-Spotting considers is the overall popularity (i.e., the
accumulated number of check-ins), ours is capable of estimating the number
of location check-ins for a particular week, month, and season, which can be
regarded as a kind of reflection of the weekly, monthly, and seasonal revenues,
to facilitate the advertising strategy for the retail chain. Though the studies of
Li et al. [11] investigate the common characteristics of popular locations, Kisile-
vich et al. [9] analyze the geo-spatial properties of attractive areas, Tiwari and
Kaushik [20] design a new popularity measure based on user category, visiting
frequency, and stay time, they do not make the prediction of future popularity.
For other relevant work, Fu et al. [5] propose to rank the residential real estate
based on investment values by mining the opinions from online user reviews and
offline human mobility. Chen et al. [2] use the road network data to find loca-
tions to set up new servers such that the cost of clients being served by nearest
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servers is minimized. Liu et al. [13] leverage the technique of matrix factor-
ization to recommend locations by modeling the geographical characteristics of
their neighborhoods. In addition, Hsieh et al. [6] develop a graph-based model to
infer miss sensor values through learning the correlation between heterogeneous
features and air quality values.

Human Mobility Prediction. Human mobility prediction is to predict the
next locations that the user might visit before. Monreale et al. [16] predict
the next location of a moving object with an assumption: people tend to fol-
low common paths. With mined frequent trajectory patterns capturing common
paths, they construct a decision tree-like structure, T-pattern Tree, as a pre-
dictor of the next location. Ying et al. [21] leverage the semantic information,
which describes the activities (in the form of tags and types) of locations. Given
the recent moves of a user, they compute the matching score geographically and
semantically between mined frequent sub-trajectories and the given moves to
find the the next location. Sadilek et al. [18] predict the most likely location of
a user at any time, given the historical trajectories of his/her friends. They use
the discrete dynamic Bayesian network to model the motion patterns of users
from their friends.

3 Problem Statement

We define the number of potential customers, followed by the problem definition.

Definition 1: Number of Potential Customers. The number of potential
customers pc(v) of a location v ∈ L is the number of check-ins performed at v,
where pc(v) is a positive integer, and L is the set of locations in the check-in data.
In addition, the number of potential customers of location v at time ti, denoted
by pc(v(ti)), is the number of potential customers derived from a certain time
period ti (e.g. a week or a month).

We use Foursquare check-in data in the work. We denote the maximum num-
ber of potential customers in a check-in data to be pcmax. Note that throughout
this paper we use terms “number of potential customers”, “number of check-ins”,
and “popularity” interchangeably.

Problem Definition: Estimating Potential Customer Number Any-
where & Anytime. Given a target retail chain and a set of its stores geo-
graphically established in the city, with the historical check-in data of the stores
in time periods T = 〈t1, t2, ..., tn〉, the set L of all venues in the city, the under-
lying social network G = (V,E) among people (V is the set of users and E is the
set of social relationships between V), an arbitrary query locations v in the city
(v /∈ L), the goal is to estimate the number of potential customers pc(v(ti)) of
location v in each time period ti ∈ T .
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4 Dataset

We aim to estimate the number of potential customers of query location by
utilizing the check-in and venue data from the most well-known location-
based service Foursquare1 and the commonly-used location-based social net-
work data Gowalla2. Since Foursquare had been launched in 2009, the vol-
ume of users, check-in records, and venue information are accumulated rapidly.
Up to the end of 2013, there are 45 million users, 5 billion check-ins, and
60 million venues. Although Foursquare does not allow developers to directly
access the check-in data, they allow users to share their check-ins pub-
licly on Twitter3. Therefore, with the help of Geo-Spotting [8], we have
the check-in data from Twitter and the venue data from Foursquare. To
have adequate data for the experiments, we focus on New York City where
Foursquare was launched and thus has significantly more users than any city in
the world. The collected data in New York City contains 47,581 geo-tagged
venues and 4,337,663 check-ins in a period of ten months (December 2010
to September 2011), i.e., forty weeks in total. Note that this data subset
of NYC accounts for approximately 55% of all venues collected. As for the
Gowalla location-based social network, which is collected by Cho et al. [3],
there are totally 196,591 users, 950,327 social connections between users, and
6,442,890 check-in records collected from February 2009 to October 2010.

Fig. 2. Data Statistics: (a) Cumulative distribution function (CDF) of total
check-ins per store for three retail chains. (b) The average check-ins of stores
over weeks. (c) The average check-in of stores over months.

We target at the stores of three popular retail chains, Starbucks (SB),
McDonald’s (MC), and Dunkin’ Donuts (DD). The statistics of each retail chain
is reported as – the number of stores: 245, 89, and 149 for SB, MC, and DD;
the total number of check-ins: 1,051,398, 100,520, and 187,704 for SB, MC,
and DD respectively. The cumulative distribution of check-ins are also shown
1 https://foursquare.com/
2 https://snap.stanford.edu/data/loc-gowalla.html
3 https://twitter.com/

https://foursquare.com/
https://snap.stanford.edu/data/loc-gowalla.html
https://twitter.com/
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in Figure 2(a). We can find that the check-in patterns of coffee shops (e.g.
Starbucks) are different from those of fast food restaurants (e.g. McDonald’s).
Starbucks has the most number of stores as well as the most number of check-ins,
in which its average number of check-in per store is almost four times than the
other two chains. In addition, about 60% of Starbucks stores have check-in num-
bers higher than 3,000, which is significantly more than the other two as well.
We believe it is because the time people take to stay in coffee shops is usually
longer than that in fast food restaurants, and longer staying time would lead
to higher possibility of performing check-ins. Since our goal is to estimate the
number of potential customers, i.e., the evolution of check-in numbers over time,
in Figure 2(b) and 2(c) we report the average number of check-ins per store over
time in terms of weeks and months respectively. In general the check-in behav-
iors of three chains are different, except for a burst in the thirty week and in the
eighth month. The average potential customer numbers of weeks fluctuate more
significantly, comparing to those of months. These statistics show the difficulty
of estimating potential customers.

5 Potential Customer Estimator (PCE)

5.1 Geographical, Mobility, and Social Features

We consider the following features to estimate potential customers. We calculate
the features from the set of venues N(v) = {u : dist(u, v) < r} in the near-by area
with a disk of radius r centered at location v to be estimated, where dist(u, v) is
the geographical distance between venue u and location v. Note that we refer a
venue to be a place that some kind of business has been established. We choose
the radius r to be 200 meters in default according to the optimal neighborhood
size suggested by the urban planning community [14]. There are three main
categories of features. The first is the geographical features (GF), which describe
the category distribution and the geographical interactions between venues. The
specific feature items include:

– Density is the number of venues in the geographical neighborhood N(v) of
location v. The formation definition of density of location v is given by:
Density(v) = | {u ∈ L : dist(u, v) < r} |, where L is the set of all venues in
the data.

– Neighbor Entropy measures the heterogeneity of venue categories in N(v). By
denoting the set of venues with category ci in the neighborhood of location
v as Nci(v) and the entire set of venue categories as C, the neighbor entropy
can be defined as: NbrEntropy(v) = −∑

ci∈C
|Nci

(v)|
|N(v)| · log |Nci

(v)|
|N(v)| .

– Competitiveness is the proportion of venues whose categories are the same as
the category of the target store (e.g. ”fast food restaurant” for McDonald’s).
Given the category of location v, denoted by cv, its competitiveness is given
by: Compete(v) = − |Ncv (v)|

|N(v)| . Locations with lower competitiveness scores tend
to be promising ones.
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– Attractiveness is to capture the deployment and interactions between venue
categories. If a location of a certain venue category can attract more locations
with other venue categories in its neigborhood, such location is said to be
more attractive. The attractiveness of location v is defined as: Attract(v) =∑

ci∈C log(κci→cv ) ·(|Nci(v)|−|N ′
ci(v)|), where |N ′

ci(v)| is the average number
of neighboring locations of category ci in the neighborhood of all the locations
of category cv. In addition, κci→cv denotes the inter-category coefficient from
category ci to cv. Such inter-category coefficient can be defined as: κci→cv =
|N |−|Nci

|
|Nci

|·|Ncv |
∑

u∈L
|Ncv (u)|

|N(u)|−|Ncu (u)| , where N is the entire set of locations in the
dataset, Ncu is the set of near-by locations of cu.

The second category is the mobility features, which aim to model how users
move and transit between venues. The specific feature items include:

– Area Popularity is the total number of check-ins for venues in N(v). The
formal definition of area popularity for location v is given by: AreaPop(v) =
|{(CI(u) ∈ M : dist(u, v) < r}|, where CI(u) denotes the set of check-in
records at location u and M is the set of all check-ins in the data.

– Transition Density is the density of transitions between venues within N(v). By
denoting the set of consecutive check-in transitions between each pair of loca-
tions x and y as TS((x, y) ∈ TS), the measure of transition density is defined
as: TransDensity(v) = | {(x, y) ∈ TS : dist(x, v) < r ∧ dist(y, v) < r} |.

– Incoming Flow estimates the transitions from venues outside N(v) to those
in N(v). The incoming flow score of location v is given by: InF low(v) =
| {(x, y) ∈ TS : dist(x, v) > r ∧ dist(y, v) < r} |.

– Transition Attractiveness is designed to estimate the probability of transitions
between all other types of venues and venues of the same type as the target
store. That says, assume people prefer to travel from locations of category cu
to locations of category cv, if the near-by locations u ∈ N(v) of location v can
gather higher check-in numbers, then the transition attractiveness of location v
tends to be high. The transition attractiveness is given by: TransAttract(v) =∑

u∈N(v) ρcu→cv ·Mu, where Mu is the set of check-ins at location u, and ρcu→cv

is the probability of transitions from category cu to category cv. Such inter-
category transition probability can be defined by the average percentage of all
the check-ins from cu to cv: ρcu→cv = | {(x, y) ∈ TS : x = u ∧ cy = cv} | · 1

|Mu| .

For the mobility features, we further consider two feature sets according to the
time periods used to compute the feature values: based on the current time
period to be estimated and based on the cumulative time periods from past to
now. Therefore, we have two mobility feature sets: temporal mobility features
(TMF), and cumulative mobility features (CMF). The third category is the social
features, which characterize the social interactions for users who had ever visited
the near-by area of location v. The specific feature items include:

– Cohesiveness is to model the structure connectivity of the graph G[N(v)]
induced by users who had ever visit N(v). This is designed to characterize the
extent of cohesion or separation for people who live or visit locations within



Estimating Potential Customers Anywhere and Anytime 583

N(v). We employ the density and the clustering coefficient of G[N(v)] as the
feature values. In addition, we also compute the number of components in
G[N(v)] to be another indicator of cohesiveness.

– Social Groups estimates the number of groups of potential customers on the
location-based social network G. We consider a community as a group of
potential customers, and calculate the number of communities for people who
had ever visited N(v) as the feature value. The Louvian method [1] is used for
community detection.

– Network Centrality measures the importance of users on the location-based
social network G. We compute the values of degree, closeness, betweenness,
PageRank, and SimRank, and consider the maximum, minimum, and average
scores over users who had ever visit N(v) as feature values.

– Geo-Social Metrics aim to quantify the geo-social influence of a user within
the near-by area of location v. We employ four well-known geo-social metrics:
spatial degree centrality [12], spatial closeness centrality [12], node novelty
[19], and geographic clustering coefficient [19]. We compute the maximum,
minimum, and average values over users who had ever visited N(v).

5.2 Correlation Graph

We construct the Correlation graph to model the spatial and temporal cor-
relations between existing and query locations. What follows first defines and
elaborates the correlation graph, and then describes how to exploit the features
extracted above to derive the correlation between locations as edge weights.

Definition: Correlation Graph (CG). A CG is a multi-layer weighted con-
nected graph G = 〈Gt1 , Gt2 , ..., Gtn〉, in which t is the total number of layers
for time periods t1, t2, ..., tn, and Gti = (V,E,W ) is the layer graph in at the
ti-th time period, where V is the set of locations, E is the set of edges between
locations, and W = W ti +W ti,tj is the matrix representing edge weights, where
W ti and W ti,tj are edge weights learned from nodes within time period ti and
across time periods ti and tj(i �= j) respectively. The node set V consists of (a)
existing locations of retail stores whose potential customer numbers have known,
denoted by labeled nodes V•, and (b) the query locations, denoted by unlabeled
nodes V◦, where V = V• ∪ V◦. Each labeled node v• ∈ V• is associated with
its potential customer numbers pc(v•(ti)). The edge set E also consists of two
parts: the set of edges E� connecting nodes within each layer graph Gti , and
the set of edges E� connecting the same nodes across different layer graphs Gti

and Gtj (i �= j), where E = E� ∪ E�.
The construction of correlation graph consists of three parts. First, because

we aim to use existing stores to estimate the numbers of potential customers for
query locations, we connect each unlabeled node v◦ ∈ V◦ to all the labeled nodes
u• ∈ V• within each time period. Second, owing to the fact that the potential
customer number of a store is highly correlated to its historical values, we connect
each unlabeled node within time period tj to the corresponding unlabeled node
within each of its previous time period ti(i < j). Third, since the potential
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Fig. 3. An illustration to the correlation graph.

customer numbers of near-by locations have higher possibility to be close to one
another (due to sharing similar volume of crowds), each unlabeled node v◦ ∈ V◦
is connected to the near-by unlabeled ones u◦ ∈ V◦ within a geographical radius
r (r = 200 meters), where dist(u◦, v◦) < r.

We illustrate the correlation graph using Figure 3. There are seven loca-
tions as nodes V = {v1, v2, ..., v7}, in which five are labeled nodes V• =
{v1, v2, v4, v6, v7} and two are unlabeled nodes V◦ = {v3, v5}. Since there are
n time periods t1, t2, ..., tn, we construct n layer graphs sharing the same node
set V . In each layer graph Gti , a set of internal edges E� are constructed, as
illustrated using bold lines. For any two layer graphs Gti and Gtj (i �= j), we
construct a set of external edges eij ∈ E� connecting the same unlabeled nodes
v◦ ∈ V◦ between Gti and Gtj , as shown using dash lines. We will describe the
way to determine edge weights W ti through feature-aware location correlation
in the following.

5.3 Location Correlation

Learning edge weights in CG from location features plays a key role in the esti-
mation of potential customer numbers for unlabeled nodes. We aim to model the
correlation between a labeled and an unlabeled node as their edge weight. The
idea is that for a certain time period, if two locations with higher correlation,
they tend to have closer potential customer numbers. In other words, for an unla-
beled node v ∈ V◦, its number of potential customer will be close to that of the
location with higher correlation to each other. The geographical, mobility, and
social features are exploited to characterize the correlation between locations. In
general, two locations whose features have lower difference should share closer
potential customer numbers, while higher difference should make their potential
customer numbers far away. Nevertheless, various feature might have different
degree of effect on the correlation of potential customer numbers between the fea-
ture difference. For example, though lower feature differences of Area Popularity
and Density between two locations make their potential customer numbers close,
one should have more significant effect on the other. Therefore, the importance
of separate feature should be considered.
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For a certain store, we estimate the feature-aware location correlation based
on their differences with respect to each feature. Then we combine the values of
feature-aware location correlation of all the features through weighted sum. The
weight multiplied by each feature location correlation will be determined based
on its predictability of potential customers.

Definition 7: Feature-aware Location Correlation (FLC). Given a partic-
ular feature fk, the feature-aware location correlation flcfk(u(ti), v(tj)) between
nodes u and v, (u, v) ∈ E, in time periods ti and tj respectively can be derived
from their feature difference flcfk(u(ti), v(tj)) = Δfk(u(ti), v(tj)), where Δfk is
their feature difference, defined by Δfk = ‖fk(u(ti)) − fk(v(tj))‖.

Given a set of features F = {f1, f2, ..., fm}, we combine feature-aware location
correlation value flc(u(ti), v(tj)) between nodes u and v, (u, v) ∈ E, in time
periods ti and tj , via the weighted sum of their correlation flcfk , given by:

flc(u(ti), v(tj)) = exp(−
m∑

k=1

πk × flcfk(u(ti), v(tj))), (1)

where πk is the weight of feature fk. The combined correlation is considered as
the edge weight wu(ti),v(tj) = flc(u(ti), v(tj) between nodes u and v in CG.

Feature-based Top Store Detection. To determine feature weight πk, we use
the values of each feature fk on existing stores to detecting stores with higher
check-in numbers, and if fk leads to higher precision scores, it will be assigned
a higher feature weight. We use Precision@X% to evaluate the goodness of
each feature. An instance is a store at a certain time period ti, and there are
|S| × |T | instances in total, where S is the set of all the stores. We denote
the set of all instances to be ST . By setting X% = 10%, 20%, 30% of stores
with top/higher check-in numbers, we define the scores of Precision@X% as
|STfk,X% ∩STX%|/|STX%|, where STX% is the set of stores with top X% check-
in numbers, and STfk,X% is the set of stores with top X% values of feature
fk. Features with higher precision scores provide more benefit on estimating
potential customer numbers of stores. Therefore, we compute the weight πk of
each feature fk by normalizing the average precision scores of fk over all the
features, πk = [0, 1].

5.4 Customer Inference Algorithm

We estimate the potential customer numbers of arbitrary locations over time
t1, t2, ..., tn using the correlation graph. The idea is to iteratively update the
number of potential customers pc(v◦) of each unlabeled node v◦ until the change
of their potential customer numbers converges. Since the correlation of poten-
tial customer numbers among locations or stores is described by the correlation
graph, we compute the potential customer number pc(v◦) from its neighboring
labeled or unlabeled nodes. This is fulfilled by averaging the potential customer
numbers of v◦’s neighbors, which are weighted by edge weights. Since the corre-
lation graph provides benefits on modeling the temporal and spatial correlation
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Algorithm 1. Potential Customer Estimation (PCE)
Input: (a) a set of existing store locations V• with existing potential customer

numbers pc(v•) (v• ∈ V•), (b) a set of query locations V◦, (c) the time
periods to be observed T = t1, t2, ..., tn

Output: pc(v◦(ti)), where v◦ ∈ V◦ and ti ∈ T
1 V ← V• ∪ V◦;
2 fk(v) ← extracting feature fk, k = 1, 2, ..., m, v ∈ V ;
3 Construct CG from V and fk(v), v ∈ V ;
4 Compute feature weights πk by Precision@X% with normalization;
5 wuv ← exp(−∑m

k=1 πk × flcfk(u(ti), v(tj)));
6 Initialize the potential customer number of each unlabeled node

pc(v◦(ti)) ←∑u∈N(v◦(ti))&u∈V• wv◦(ti),u × pc(u);

7 ΔavgPc ← 1
|V◦| ×∑v◦(ti)∈V◦ pc(v◦(ti));

8 while ΔavgPc > ε do
9 for v◦(ti) ∈ V◦ do

10 pc(v◦(ti)) ←∑u∈N(v◦(ti))
wv◦(ti),u × pc(u);

11 ΔavgPc ← 1
|V◦| ×∑v◦(ti)∈V◦ pc(v◦(ti));

12 return pc(v◦(ti)).

of potential customers, stores with higher correlation with v◦ contribute more
weights on the estimation of potential customer numbers for unlabeled nodes.

We give the complete algorithm of Potential Customer Estimator (PCE) in
Algorithm 1. We first use both existing stores (i.e., labled nodes V•) and query
locations (i.e., unlabeled nodes V◦) to construct the correlation graph based on
the extracted features fk for each node (line 1-3). With the feature-based top store
detection, we can derive the weight of each feature πk and use feature weight to
initialize the edge weight wuv in the correlation graph (line 4-5). Then we can fur-
ther initialize the potential customer number of each unlabeled node pc(v◦(ti))
from the set of v◦(ti)’s neighboring labeled nodes N(v◦(ti)) ⊂ V• (line 6).
We also initialize the difference of the average potential customer numbers
between iterative rounds ΔavgPc by the sum of the initialized potential cus-
tomer numbers of unlabeled nodes (line 7). In the iterative updating (line 8-11),
we continue adjusting the potential customer numbers of unlabeled nodes based
on those of its neighboring labeled and unlabeled nodes and the edge weights.
This iterative process will terminate until ΔavgPc converges.

6 Experiments

We conduct experiments to exhibit the performance the proposed PCE model.
The objective is three-fold. First, we aim to understand the effectiveness of PCE,
comparing to a series of competitors. Second, we are eager to know whether or
not PCE can successfully detect the locations with higher potential customer
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numbers. Three, we wonder how different combinations of features and different
feature settings affect the performance of PCE.

6.1 Evaluation Plans

Competitive Methods. We compare PCE with a series of competitive meth-
ods, which are divided into four categories. The first is spatial k-nearest neigh-
bors; the second category is two interpolation-based methods, i.e., Inverse Dis-
tance Weighting and Ordinary Kriging; the third is two conventional learning
methods (i.e., Artificial Neural Network and Support Vector Regression); and the
fourth is two state-of-the-art semi-supervised learning methods, i.e., Co-Training
and Radial Basis Function-based SSL. Note that SVR is one of the methods that
have the best performance popularity ranking on Geo-Spotting [8].

– Spatial k-Nearest Neighbors (kNN) considers the average potential cus-
tomer number from the potential customer numbers of the k closet geograph-
ical neighboring locations as the estimated value.

– Inverse Distance Weighting (IDW) is a well-known interpolation method
[4]. IDW assigns values of unlabeled locations by calculating the weighted aver-
ages of the values available on labeled locations. Locations lower geographical
distances have higher weights.

– Ordinary Kriging (OK) [17] is a state-of-the-art method of spatial point
interpolation. The prediction is calculated as weighted averages of geo-
graphical neighbors, in which the weights are determined by finding the
semi-variogram values for instances between known locations and the semi-
variogram values for instances between each unknown location and all known
locations. Then a set of simultaneous equations are solved by minimizing the
estimation error of each unknown location.

– Artificial Neural Network (ANN) with the commonly-used back propa-
gation technique is used as another baseline. The constructed ANN contains
one hidden layer in the experiments for the generality. We set a linear function
for the neurons in the input layer and assign a sigmoid function for those in
the hidden and output layers.

– Support Vector Regression (SVR). A version of SVM for regression is
choose chosen to estimate the potential customer numbers. SVR utilizes the
historical check-in data on locations as the training data and learn a cost
function to build the predictive model.

– Co-Training (CT) is proposed by Nigam and Ghani [15] and serves as the
state-of-the-art method for learning the correlation between real values. The
co-training model consists of two separated classifiers. One is a spatial classifier
based on artificial neural network to model the spatial correlation of labels.
The other is a temporal classifier based on a linear-chain conditional random
field (CRF) [10] to model the temporal dependency of labels.

– Radial Basis Function-based Semi-supervised Learning (SSL), which
is a state-of-the-art graph-based learning method [23], serves as a strong com-
petitor. To apply RBF-SSL, the potential customer numbers of query loca-
tions within each time period are estimated separately, in which a graph is
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constructed for each time period based on geographical distance. In addition,
we quantize the potential customer numbers of locations as ten discrete labels,
and consider the mean value of the predicted label to be the result.

Evaluation Metrics. We use two metrics in the experiments: Hit Rate and Nor-
malized Discounted Cumulative Gain (NDCG). For a location v◦ in the query
set of locations V◦ within time period ti ∈ T (T = t1, t2, ..., tm), assume its esti-
mated potential customer number is pc(v◦(ti)) and the ground-truth potential
customer number is p̃c(v◦(ti)). Then the hit rate is defined as:

HitRate =

∑
v◦∈V◦,ti∈T hit(pc(v◦(ti)), p̃c(v◦(ti)))

|V◦| · |T | , (2)

where hit(pc(v◦(ti)), p̃c(v◦(ti))) = 1 if p̃c(v◦(ti)) − γ ≤ pc(v◦(ti)) ≤ p̃c(v◦(ti)) +
γ, otherwise: hit(pc(v◦(ti)), p̃c(v◦(ti))) = 0, where the parameter γ determines
the strictness of the evaluation through varying the granularity of the ground-
truth potential customer numbers. A higher γ value indicates a loose generous
evaluation and every methods would have higher accuracy in general; a lower
γ value refers to a strict evaluation, and thus the accuracy tends to be lower
for different methods. We choose to have a strict evaluation with γ = 30. The
second evaluation metric is NDCG [7]. We use NDCG to estimate the ranking
quality between the potential customer numbers estimated by a method and the
ground-truth potential customer number. Higher scores of Hit Rate and NDCG
mean better performance.

Basic Settings. To evaluate PCE, we use the potential customer numbers of
stores of three retail chains, Starbucks (SB), McDonald’s (MC) and Dunkin’
Donuts (DD). We choose such three retail chains because their stores are three
of the most popular and the most widely scattered in New York City. Such
three retail chains are considered as three evaluation subsets. For each retail
chain, we divide its stores into training and test parts. Assume there are nS

stores and nT time periods, we randomly select 80% stores as training instances
(80%×nS ×nT ) and the other 20% stores are regarded as test instances, whose
locations are used as the query and their potential customer numbers within each
time period are removed and served as the ground truth. For the parameters used
in the experiments, we have the following settings by default: (a) the geographical
neighboring radius of feature extraction r = 200 meters, (c) two categories of
time period granularity are considered: week and month, (d) all the three feature
sets, geographical features (GF), temporal mobility features (TMF), cumulative
mobility features (CMF), and social features (SF) are used together, and (e) the
strictness parameter γ = 30 for the evaluation metric of accuracy.

Detailed Plans. To reach the three goals mentioned above, we have the follow-
ing four detailed evaluation plans. The first is the general evaluation, in which
the proposed PCE is compared to seven competitors. The general evaluation will
be conducted under time periods of weeks and months for the three retail chains.
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The second is the top potential customers evaluation, which is designed to under-
stand whether or not the proposed PCE can successfully detect locations with
higher potential customer numbers. The third is the feature importance evalu-
ation. Through reporting the performance of PCE using different combinations
of feature sets, including GF, TMF, CMF, and SF we can know which feature is
more important in the estimation of potential customer numbers. The fourth is
the feature range evaluation. Recall the feature values computed are constrained
to a certain geographical radius r of neighborhood. We aim to present the perfor-
mance by varying the radius r, to understand the predictability of geographical
areas.

6.2 Experimental Results

General Evaluation. The results for the three retail chains under time periods
of weeks and months are shown in Table 1. We can find that PCE significantly
outperforms all of the competitors under all the cases. We think such promising
results come from not only the investigation of location correlation as well as
feature-aware location ranking, but also the simultaneous consideration of spatial
and temporal dependency between locations and stores in the correlation graph.
However, most of the competitors that purely learn the correlation between
features and potential customer numbers. In more details, it can be observed
that the accuracy is hard to exceed 0.8 under time periods of weeks, especially
for the competitors. We think it is because we choose a strict evaluation with
γ = 30 in the experiments. In addition, we can find that the performance of
months is much better than that of weeks. It is due to the fact that the popularity
value accumulated in each month is higher than that of each week. Therefore,
the potential customer numbers of months tend to be a bit far apart from each
other and make it a bit easier to be estimated.

Top Potential Customers Evaluation. We test if the proposed PCE is able
to detect the locations with higher potential customer numbers. Following the
settings described in the section of Feature-based Top Store Detection and using
and the same evaluation metric Precision@X%, we aim to present the esti-
mated potential customer numbers by PCE by varying the percentage of loca-
tions with the highest potential customer numbers from 5% to 35%. We report
the Precision@X% scores in Figure 4. We can find that the precision scores by
PCE can have 0.8 precision scores for top 20% stores with the highest potential
customer numbers. Such results exhibit the practical usages of PCE on estimat-
ing and finding hot zones in a city, and demonstrate the effectiveness of using
stores as sensors to estimate the numbers of potential customers.

Feature Importance Evaluation. To understand which feature set is more
important on potential customer estimation, we report the performance of dif-
ferent combinations of feature sets (i.e., GF, TMF, CMF, and SF) using PCE,
as shown in Table 2. We can find that comparing to GF, CMF, and SF, TMF
obtains the better results with higher scores of NDCG scores in general under
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Table 1. General Evaluation Results on weeks and months.

Week Month
nDCG HitRate nDCG HitRate

SB MC DD SB MC DD SB MC DD SB MC DD

kNN 0.15 0.30 0.25 0.11 0.12 0.12 0.26 0.33 0.39 0.13 0.14 0.14
IDW 0.17 0.30 0.25 0.11 0.12 0.12 0.24 0.31 0.38 0.13 0.14 0.14
OK 0.18 0.35 0.28 0.19 0.24 0.23 0.29 0.34 0.39 0.16 0.16 0.15
ANN 0.53 0.58 0.60 0.52 0.54 0.53 0.57 0.61 0.64 0.69 0.67 0.69
SVR 0.58 0.61 0.62 0.58 0.60 0.56 0.62 0.64 0.65 0.72 0.73 0.75
CT 0.56 0.67 0.65 0.56 0.52 0.60 0.64 0.70 0.69 0.74 0.74 0.75
SSL 0.63 0.71 0.69 0.63 0.66 0.68 0.68 0.74 0.72 0.74 0.74 0.74
PCE 0.71 0.79 0.78 0.79 0.84 0.81 0.76 0.82 0.80 0.83 0.88 0.88

Fig. 4. Evaluation of Top Potential Customers using PCE, by varying the per-
centage of stores with the highest potential customer numbers.

both weeks and months and for all the three retail chains. We think the reason
could be the TMF is capable of describe the neighboring human flows at the sep-
arate time periods while CMF can only capture the historical volume of human
flow traveling in the neighborhood of a location, which reflects the total numbers
of potential customers. As for GF and SF, what it captures is the properties and
distributions of location categories and social activities in the neighborhood, and
thus cannot directly exhibit the volume of potential customers. Therefore, GF
and SF derives the worse estimation accuracy than CMF and TMF.

Feature Range Evaluation. Since the features extracted are constrained
within a certain neighborhood via the radius r (in meters), we would like to
which r is more effective and leads to better performance in PCE. The results
are shown in Figure 5. We can find the performance of using r = 300 is the best
for time periods of weeks while using r = 200 is the best for months. Too small
or large radius values r leads to worse performance because features extracted
constrain on a small area could not fully and precisely describe the neighborhood
while constraining on a large area might include irrelevant features. The feature
neighborhood radius r = 300 and r = 200 also is quite close to and responses to
the optimal neighborhood radius 200 meters suggested by urban planning [14].
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Table 2. Feature Importance Evaluation: the NDCG scores of different feature
sets.

Geographical Feat. (GF) Temporal Mobility Feat. (TMF)

Week Month Week Month
SB DD MC SB DD MC SB DD MC SB DD MC

kNN 0.159 0.256 0.303 0.256 0.385 0.331 0.159 0.256 0.303 0.256 0.385 0.331
IDW 0.171 0.252 0.305 0.244 0.377 0.312 0.171 0.252 0.305 0.244 0.377 0.312
OK 0.189 0.284 0.352 0.289 0.393 0.342 0.189 0.284 0.352 0.289 0.393 0.342
SVR 0.322 0.332 0.455 0.355 0.514 0.648 0.541 0.582 0.656 0.589 0.635 0.731
ANN 0.329 0.342 0.452 0.368 0.522 0.651 0.517 0.568 0.632 0.552 0.622 0.722
CT 0.334 0.351 0.452 0.369 0.524 0.652 0.533 0.578 0.649 0.561 0.642 0.729
SSL 0.341 0.382 0.464 0.431 0.529 0.668 0.557 0.580 0.658 0.562 0.657 0.712
PCE 0.349 0.401 0.481 0.462 0.552 0.681 0.582 0.619 0.713 0.663 0.685 0.756

Cumulative Mobility Feat. (CMF) Social Feat. (SF)

Week Month Week Month
SB DD MC SB DD MC SB DD MC SB DD MC

kNN 0.159 0.256 0.303 0.256 0.385 0.331 0.132 0.247 0.280 0.194 0.375 0.316
IDW 0.171 0.252 0.305 0.244 0.377 0.312 0.168 0.255 0.271 0.195 0.379 0.284
OK 0.189 0.284 0.352 0.289 0.393 0.342 0.172 0.259 0.337 0.206 0.380 0.309
SVR 0.426 0.368 0.531 0.526 0.588 0.645 0.393 0.327 0.498 0.475 0.561 0.583
ANN 0.418 0.354 0.520 0.513 0.543 0.638 0.391 0.333 0.460 0.428 0.517 0.604
CT 0.426 0.391 0.536 0.535 0.596 0.659 0.432 0.369 0.555 0.396 0.520 0.637
SSL 0.435 0.408 0.519 0.529 0.585 0.673 0.471 0.388 0.526 0.466 0.594 0.650
PCE 0.587 0.455 0.603 0.613 0.633 0.724 0.477 0.412 0.539 0.498 0.604 0.704

Fig. 5. Feature Range Evaluation, by varying the neighrborhood radius r using
PCE.

7 Conclusion

Being able to acquire the knowledge about where and when the customers will
show up can lead to many useful applications, including determining the loca-
tions of new business, choosing the right time and place to host campaign to
maximize the advertise effect. This paper proposes a method to estimate the
number of potential customers in an urban area. We leverage stores as a kind of
sensors to estimate the potential customers of of any location during any given
time span. A PCE model is developed and validated with promising perfor-
mance. In the future, we aim to go beyond location-based services and further
consider more heterogeneous urban information into the modeling of potential
customers, such as traffic status, weather, and near-by activities.
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