

 134 Int. J. Mass Customisation, Vol. 1, No. 1, 2005

 Copyright © 2005 Inderscience Enterprises Ltd.

Toward a multi-agent information management
infrastructure for product family planning and mass
customisation

Steven B. Shooter*
Department of Mechanical Engineering
Bucknell University, Lewisburg, PA 17837, USA
E-mail: shooter@bucknell.edu
*Corresponding author

Timothy W. Simpson and
Soundar R.T. Kumara
Department of Industrial and Manufacturing Engineering
The Pennsylvania State University, University Park, PA 16802, USA
E-mail: tws8@psu.edu E-mail: skumara@psu.edu

Robert B. Stone
Basic Engineering Department
University of Missouri – Rolla, Rolla, MO 65409–0210, USA
E-mail: rstone@umr.edu

Janis P. Terpenny
Department of Engineering Education
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061, USA
E-mail: terpenny@vt.edu

Abstract: Development of complex new products requires numerous decisions
by many individuals and groups, which are often geographically and
temporally distributed. There is a need to share and coordinate distributed
resources and synchronise decisions. Recent advances in Information
Technology (IT) pose an untapped potential in assisting the capture, storage,
retrieval, and facilitated use of product development information. By sharing
assets such as components, processes, and knowledge across a family of
products, companies can efficiently develop differentiated products and
increase the flexibility and responsiveness of their product realisation process.
This paper describes a recent effort in realising an information management
infrastructure for product family planning and platform customisation.
Particular focus is on current research thrusts:

• an evolutionary approach to product platforming

• a bottom-up approach to product platforming

• industry-based platform case studies

 Toward a multi-agent information management infrastructure 135

• exploration of ontologies for representing product family information

• filtering techniques to facilitate reuse of manufacturing information in
product families.

Keywords: information technology; product family; mass customisation;
software agents.

Reference to this paper should be made as follows: Shooter, S.B.,
Simpson, T.W., Kumara, S.R.T., Stone, R.B. and Terpenny, J.P. (2005)
‘Toward a multi-agent information management infrastructure for product
family planning and mass customisation’, Int. J. Mass Customisation, Vol. 1,
No. 1, pp.134–155.

Biographical notes: Steven B. Shooter is Associate Professor of Mechanical
Engineering at Bucknell University where he teaches design and mechatronics.
His research involves information management in design and mechatronic
systems’ design. As a registered Professional Engineer, he is also actively
engaged in applied projects with industry that involve product development or
the development of product realisation infrastructure. He received his BSME
(1988), MSME (1990), and PhD (1995) from Virginia Tech.

Dr. Timothy W. Simpson is Associate Professor of Mechanical Engineering
and Industrial Engineering at Penn State University. Dr. Simpson received a BS
degree in Mechanical Engineering from Cornell University in 1994 and MS
and PhD degrees in Mechanical Engineering from Georgia Tech in 1995 and
1998, respectively. His teaching and research interests include product family
and product platform design, mass customisation, and product dissection. He is
the Director of the Product Realisation Minor at Penn State and is an active
member of ASME, AIAA, ASEE, and SAE.

Soundar R.T. Kumara is distinguished Professor of Industrial and
Manufacturing Engineering. He holds joint appointments with the Department
of Computer Science and Engineering and School of Information Sciences and
Technology at Pennsylvania State University. He finished his BTech and
MTech degrees in India, and PhD in Purdue University. He is an elected active
member of the International Institute of Production Research.

Robert B. Stone is currently Associate Professor in the Interdisciplinary
Engineering Department of the University of Missouri-Rolla. Dr. Stone’s
research interests are design theory and methodology, specifically product
architectures, functional representations, and design languages. He is Director
of the School of Engineering’s Student Design Center where he oversees the
design competition activities of eight teams and guides the Center’s new
engineering design and experiential learning initiative.

Janis Terpenny is Associate Professor in the Department of Engineering
Education with affiliated positions in Mechanical Engineering and Industrial
and Systems Engineering at Virginia Tech. She is co-Director of the NSF
multi-university Center for e-Design. Her research interests focus on
conceptual design of engineered products and systems. She is currently a
member of ASEE (chair of the Engineering Economy Division), ASME, IIE,
SWE, and Alpha Pi Mu. She is the Design Economics Area Editor for The
Engineering Economist journal.

 136 S.B. Shooter et al.

1 Introduction

Development of complex new products requires numerous decisions by many individuals
and groups that are often separated by distance and time. These decisions are supported
by individual and collective background knowledge and new knowledge synthesised
from gathered information during the design process. The challenge, then, is to transform
gathered information from a vast array of diverse sources into useful knowledge for
making effective decisions. From a computational viewpoint, this is a problem of
distributed resource sharing and temporal synchronisation. Recent advances in
information technology pose an untapped potential for assisting in the capture, storage,
retrieval, and facilitated use of product development information.

The Product Family Planning approach to product development is an important factor
for success in many markets. By sharing assets such as components, processes, and
knowledge across a family of products, companies can efficiently develop differentiated
products and increase the flexibility and responsiveness of their product realisation
process. Product Family Planning is also a way to achieve mass customisation
by allowing highly differentiated products to be produced without consuming
excessive resources.

In general terms, a product family is a group of related products that is derived from a
product platform to satisfy a variety of market niches. The key to a successful product
family is the product platform, where the product family is derived (Meyer and Lehnerd,
1997). As Robertson and Ulrich (1998) point out:

“By sharing components and production processes across a platform of
products, companies can develop differentiated products efficiently, increase
the flexibility and responsiveness of their manufacturing processes, and take
market share away from competitors that develop only one product at a time.”

A product platform can also facilitate customisation by enabling a variety of quick and
easily developed products to satisfy the needs and requirements of distinct market niches
(Pine, II, 1993). Companies like Sony (Sanderson and Uzumeri, 1997), Volkswagen
(Bremmer, 1999), and Black & Decker (Meyer and Lehnerd, 1997) have successfully
employed product platform strategies to increase product variety while reducing
development costs, manufacturing costs, and time-to-market.

Designing a product platform and corresponding family of products are difficult
tasks. They embody all of the challenges of product design while adding the complexity
of coordinating the design of multiple products in an effort to increase commonality
across the set of products without compromising their individual performance
(distinctiveness). Regardless of whether the platform is modular or scalable, the basic
development strategy within any product family is to leverage the product platform
across multiple market segments or niches.

Successful Product Family Planning places an even greater requirement on effective
information management to exploit the potential of shared assets. As such, significant
potential rewards can be gained from the exploration and development of information
technology for this domain. We view information technology as both a key enabler for
future manufacturing enterprises and a transformer of organisations and markets. By
reducing barriers to collaboration, compressing lead-time, eliminating physical
movement, and enriching decision making, information technology helps manufacturers
to achieve their goals of meeting customer needs better, quicker, and cheaper. By

 Toward a multi-agent information management infrastructure 137

providing global reach and easy connectivity, information technology has fostered
cooperation while increasing market competition, and heightened customer expectations.
Advances in computer and communication technologies combined with rapid changes in
organisations create new opportunities for exploiting information technologies in the
entire product realisation process (Balakrishnan et al., 1999). Specifically, in the current
context of product family design and planning, we address four classes of intelligent
information processes:

1 intelligent search

2 collaboration

3 coordination and negotiation

4 understanding and learning.

Our research focus synthesises streams of thought from many related disciplines in
engineering, computer science, and management to develop a framework – a
computational platform – for examining how information technologies can facilitate and
influence product family planning and design.

Inspired by the market success of ‘customer-oriented’ companies over the past
decade, many manufacturing organisations have successfully inculcated customer focus
as a philosophy at all management levels and in all functions. Starting with an emphasis
on meeting specifications and commitments at downstream stages of the supply chain,
customer orientation slowly propagated to upstream functions such as product design to
better reflect customer preferences in design. The next step, mass customisation (Pine, II,
1993), aims to service increasingly finer-grained market segments by, e.g., designing
modular products that can be assembled in myriad combinations for individual niches.
Companies have gone one step forward by offering made-to-order products (e.g., jeans,
shoes, and bicycles) whose physical dimensions ‘perfectly’ fit individual customers. The
product architecture is fixed, and customers must still choose from an available
(predetermined, but extensive) menu of choices at the time of purchase. Moreover, the
customers who provide inputs to product design are not necessarily the product
purchasers, i.e., design is not truly customised. It is clear that future organisations will
seek to achieve far greater levels of customer involvement, culminating in continuous
customer engagement at all stages of manufacturing. Therefore, there is a need to support
these activities with an open information management infrastructure.

The strategy for the formulation of this infrastructure is based on three foundations:

1 The development of a generalised information management infrastructure, with
particular emphasis on capturing information regarding component-sharing and reuse
within a family of products.

2 Creation of a corresponding graphical modelling environment.

3 Formulation of a software agent-based synthesis framework for product family
planning and customisation.

This paper begins by describing the vision for the information management
infrastructure. Then, efforts toward a graphical modelling environment are described,
followed by the formulation of an agent-based framework for product family planning
and customisation. The paper highlights some industry cases that are being reviewed, as
well as examples from actual products. Closing remarks and future work are discussed in
the final section.

 138 S.B. Shooter et al.

2 Foundations for advancing the state of the art

2.1 Information infrastructure development

The primary research objective is to develop a generalised information
management infrastructure with particular emphasis on capturing information regarding
component-sharing and reuse within a family of products. The key issue here is
determining what constitutes critical design knowledge and how to archive it. There are
many ways to represent a product, but to support knowledge reuse for future product
design efforts and component-based representations of a product are needed. Based on
our prior research (Hirtz et al., 2002), we have identified functionality, physical
parameters (e.g., dimensions, geometry type, material) manufacturing process,
input/output flows, performance parameters (and possibly a mathematical description of
the performance), and interfaces as needed component knowledge for archival and reuse.
Taken together, the abovementioned heterogeneous design knowledge constitutes a
design repository.

There is currently no technology on the market that is truly a design repository.
However, there are several packages that contain elements of a design repository. Such
computerised design packages can be grouped into three basic categories:

1 Mechanical CAD (MCAD) packages that augment traditional CAD models with
more abstract design knowledge.

2 Systems engineering tool-sets that contain higher level of design information so that
may be used to generate CAD models.

3 Systems modelling and simulation packages which have no interaction with
traditional CAD packages.

Though substantial results are often promised with such systems, they require significant
resources to implement and have been applied to very specific applications; making their
general acceptance and expansion difficult.

The review of current commercial offerings indicates that the concept of a design
repository is extremely useful to automated design storage and retrieval packages and that
industry is moving towards the vision of design repositories. A standard repository
information management structure, supported by fundamental functional and architecture
modelling research, is clearly needed to guide work in this area. The information
management structure must support conceptual design, or the fuzzy front-end of the
design process, since as much as 70% of product costs are determined during design
(Barton and Love, 2001). One traditional hurdle to defining such structures is the
evolving strategies and methodologies that exist for this phase of design.

Functionality is a critical piece of the knowledge representation puzzle. It allows
products/components to be searched based on their function. This can be used to identify
families of products (i.e., products that perform a significant portion of the same
functions) and overlapping functions can be used as a basis for defining a product’s core
platform. Analogy techniques that exist to find families of products are essentially simple
mathematical operations, i.e., project one product’s functional vector onto a repository of
product vectors. The higher the value of the projection, the more similar the two
compared products are. This could also be easily applied on a component level.

 Toward a multi-agent information management infrastructure 139

Consider the drill shown on the left of Figure 1. A common component used in
many product families is the drill motor (Meyer and Lehnerd, 1997). The middle entity
in Figure 1 is an Artifact representing the drill motor that is a member of a family of
other artifacts and subartifacts. The artifact information is also shown as an overlay on
the actual drill. For instance, the motor includes a reference to a function object,
providing a pointer from the artifact domain into the function domain. The last entity
represents the motor Function, which is to ‘convert’ with an input_flow and output_flow.
Each of these contains pointers to further levels of information. For example, input_flow
points to an object named AC_current that has its own set of objects. This example is
only a portion of the representation (as evidenced by the presence of pointers to other
data structures); a broader description can be found in Refs. (Shooter et al., 2000;
Szykman et al., 2001). Ultimately, these objects such as functions and flows can be
categorised in the structured language of the functional basis (Hirtz et al., 2002). Then,
the next step is to extend the current representation scheme to include higher-level
objects that signify component-sharing and platform inheritance within a family of
products derived from a common platform.

Figure 1 Drill example with artifact and Transfer_Function for drill motor

2.2 Creation of a graphical modelling environment

A recent conference by the Integrated Manufacturing Technology Initiative on ‘Applying
Knowledge to Manufacturing and Design’ (Integrated Manufacturing Technology
Initiative, 2003) brought together parties from industry, government agencies, and
academia to outline necessary initiatives to advance technology in this realm. Two top
areas identified were:

1 the formulation of standard knowledge representations

2 the development of intuitive graphical user-interface technology.

Representation and visualisation go hand-in-hand. Design, in principle, is a synthesis
activity. Hence, a graphical modelling environment that allows for artifacts to be
connected together through visual representation with due consideration to functionality
will be very useful. The preceding section addresses the first area. The graphical
modelling environment discussed in this section is a critical aspect of the development of
a coordinated information management infrastructure for product family planning.

Artifact
{

name Drill_motor
information Drill_motor_info
type Motor
config_info Drill_motor_config
function Drill_motor_fcn
form Drill_motor_form
behaviour Drill_motor_behaviour
subartifact_of Power_transmission
is_source_of {Motor_rotation}
is_destination_of{AC_current}

}

Transfer_function
{

name Drill_motor_fcn
information Drill_motor_fcn_info
type Convert
fcn_of_artifact Drill_motor
input_flow {AC_current}
output_flow {Motor_rotation}

}

 140 S.B. Shooter et al.

In a similar manner, feature-based design research of the late 1980s (Ansaldi et al.,
1985; Forrest, 1986) and early 1990s (Anderson and Chang, 1990; Bronsvoort and
Jansen, 1993; Chen and Hoffman, 1995) led to the current generation of commercial
CAD systems. It is necessary to develop information management and higher-level
modelling artifacts for function-based systems that can reason about families of products.
Effective graphical modelling environments must support the planning and development
of families of engineered products and systems for mass customisation through three key
services including:

1 a graphical means to select, place, and semantically connect modelling objects
representing design functions of the product together in a cohesive model

2 the means to capture requirement specifications and customer preferences that can be
used to constrain this model

3 the means to visualise results of solution synthesis and regenerate new solution
alternatives as needed.

A Windows form-based system enables a top-down function-based modelling
methodology that is supported by a web-based interface for knowledge management and
modelling (Sikand and Terpenny, 2001; 2003). This approach provides organisations
with a means to create their own classification system and repository of reusable
solutions to function in design. Addressing the needed transformation – among the
intuitive environment that contains user-defined terminology and artifacts and the
information management infrastructure of a generalised repository – is a challenging area
for exploration. Figure 2 provides an overview of the essential elements needed in the
proposed graphical modelling environment.

Figure 2 Elements of proposed graphical modelling environment

 Toward a multi-agent information management infrastructure 141

Functions, Solutions, and Components are modelled as objects in this environment. The
environment supports modelling across multiple levels of abstraction. At the highest level
of abstraction is the Functional Model where the designer gives inputs to the system
about the customer requirements and product specifications. At the next lower level of
abstraction is the Solution Model where solutions to functions are identified. Solutions
are not explicitly tied to functions; rather, they emerge with the satisfaction of
requirements. Solutions are represented in terms of a Dynamic Systems Model to
facilitate solution synthesis. Figure 3 shows an example of a graphical modelling
environment used to describe the Dynamic Systems Model of the Electrical and Water
Sub-Systems in a coffee maker. As shown, the coffee maker can be described with
several layers, providing the greatest freedom to designers in representing design
concepts in terms of abstraction or detail. As shown on the left-hand side of the figure,
six domains define the types of artifacts that can be used in modelling, including
mechanical, electrical, hydraulic, pneumatic, magnetic, and thermal. Decoupling of
knowledge from data is achieved with the separation of the Component Model, invoked
during configuration, and the company parts’ database. This provides for greater
generalisation as well as reduced system maintenance.

Figure 3 Coffee maker described in the graphical modelling environment

2.3 Agent-based synthesis framework for product family planning

Software agents serve as the ideal mechanism to implement the core intelligent
information processes in design and manufacturing. A software agent is an entity that
functions continuously and autonomously in an environment that is often inhabited by
other agents and processes (Shoham, 1993; 1997). Software agents may be viewed as
virtual representatives of humans, processes, or products. Constructed as independent
software entities, agents act as participants, sentinels, and negotiators. Agents embody
three main functional components – communicating, understanding and processing
(reasoning), and learning. The capabilities of an agent depend on its endowments along
three dimensions:

 142 S.B. Shooter et al.

1 autonomy or the extent of independent decision making

2 intelligence, the amount and type of knowledge, reasoning, and learning capabilities

3 mobility, the ability to move across systems.

We envision an agent-based synthesis framework for the configuration of platform
concepts and customised variants that will support the following steps in the
design process:

1 Given a customer’s functional requirements, appropriate design configurations will
be retrieved from the design repositories and presented to the customer.

2 From the product family set, components will be retrieved through appropriate
functionality matching (closest functionality match).

3 The selection of appropriate components (products from product platform)
will be based upon the customers’ requirements, and the product will be
iteratively configured.

4 The new product (customised platform variant) will be presented to the customer
after the iterated negotiation process.

5 In case the platform does not have the components and/or products belonging to the
family that will satisfy the requirements, based upon the repository knowledge, a
new product will be synthesised and presented to the customer.

Figure 4 illustrates the proposed agent-based approach to product platform planning.
Agents in the environment will represent product variants and negotiate with one another
to determine the components and processes that can be made in common and those
requiring unique design. The agents will be autonomous to automate the negotiation
process for the common platform, building upon the design repository. The platform
optimisation will be realised in an evolutionary approach by iteratively updating the
common base. This will depend on the evaluation feedback from each self-interested
agent, based on its own product variant derivation from the platform. In this manner,
global optimality at the product family level is anticipated.

Figure 4 Proposed agent-based framework for product family planning

Product
variant A

requirement

Functional
commonality
of products

Product
variant B

requirement

Product
variant C

requirement

Design
repository

Product
Agent A

Product
platform

agent

Modular
commonality
of products

Product
Agent C

Product
Agent B

Negotiation

Feature

Product

Product

Product

Feature
Feature
Feature
Feature

Design metrics
Evaluate at

product
family
level

Evaluate at
individual
product

level

 Toward a multi-agent information management infrastructure 143

The following computational tasks are needed to perform these design tasks:

• Retrieve design components and related knowledge from the design
repositories – this involves intelligent search based on very detailed low-level
functions and features.

• Retrieve products from the product family that will satisfy the customer
requirements – this also involves intelligent search based on high-level functional
and cost features.

• In the event of synthesis of a new product from the design repository knowledge,
there is a need to develop auction-based mechanisms since there can be several
components that satisfy the same functional requirements. Each of the components
will ‘bid’ to be included in the product, and this can be modelled as a market
economy where configurations are generated through negotiation with the customer.

• Once a new product is synthesised, it needs to be added to the product family.

The design process can be computationally modelled using software agents. Table 1
summarises the agents that must be designed, developed, and implemented. Table 1
also summarises the research issues for building a computational infrastructure (Cols. 3
and 4). The following research lists the issues that must be addressed for the development
such an agent-based infrastructure:

• Developing design domain (product platform) ontology for defining agent
communication language: Agent communication requires a vocabulary, spawning
the need for the development of an ontology for platform design which we are
currently developing (Nanda et al., 2004).

• Standardisation of agent communication, and reasoning: Interoperable agents in the
current research can only be established with the standardisation of agent systems.
Standardisation should consider agent communication, multi-modal message
understanding, and reasoning. This language will consider negotiation protocols for
product family formulation.

• Multiagent behaviour evolution and learning: This must consider simple statistical
regression techniques and multiattribute utility theory to build appropriate tools for
modelling agent behaviour evolution and learning.

• Integrating platform functions through the web: Distributed design facilitation is an
important area for exploration, wherein customers, design repositories, and product
platforms are distributed; making autonomous business process integration very
complex. This requires the building of an agent communication language to ensure
easier and seamless integration.

In the past decade, agent research has advanced considerably. Several software agent
building platforms are available both as open source and commercial packages. In terms
of Technology Readiness Level,1 currently agent software is at Level 7 and ready to be
rated at Level 8 in about three years. Cyebele, developed by Intelligent-Automation
Incorporated,2 is currently being used for the development of agent based air traffic
control under NASA’s leadership, with about 10,000 agents. Cognitive Agent Software
(Cougaar) developed under the direction of DARPA is a complex system which

 144 S.B. Shooter et al.

addresses robustness, security, and performance (survivability) and is currently
being used for deploying agent based military logistics and planning systems.3 These
large-scale systems prompt the authors to be confident that the research proposed in this
paper is realisable and not just a conceptualisation.

Table 1 Software agents for product family planning and platform customisation

Agent
Platform design

domain task
Computational

task
Computational

techniques addressed

Retrieval
agent

• Retrieve the
components from the
repository

• Database search

• Function-based
matching

• Similarity distance
(between the required
and specified functions
in the design
repository)

• Partial information-
based matching
(approximate
reasoning-Bayesian)

Customisation
agent

• Customer interface

• Facilitate negotiation
between the design
platform and customer

• Learn customer design
preferences

• Extract functional
requirements from
customer input

• Present the
configuration provide
interaction

• Profile learning

• Content-based
function matching

• Event based message
passing

• Parametric and
non-parametric
techniques for
customer classification

Platforming
agents

• Match components
with product platform

• Design synthesis using
different components

• Perform negotiation
with the customer for
acceptance

• Matching

• Inference

• Auction-based
negotiation

• Rule-based inference

• Market economy based
mechanism design for
auctions

Configuration
agents

• Collect different
products satisfying the
customer and form the
platform

• Similarity matching • Clustering

• Grammar-based
methods (syntactic
pattern recognition)

Archival
agents

• Add new components
to design repositories

• Add new products to
product families

• Database updating

• Data dictionary
updating

• Forming
meta-databases

• Meta database design

• Concept graphs for
new concept addition

 Toward a multi-agent information management infrastructure 145

3 Current research thrusts

It is clear that there is a multitude of possible approaches for developing an information
management infrastructure for product family planning and platform customisation.
It is also essential that such development includes best practices from industry as well
as recent research advancements. Our current research is pursuing several avenues
for identifying product platform leveraging strategies to support future product
family planning. In particular, we are examining an evolutionary approach to product
platforming (see Section 3.1), a bottom-up approach to product platforming
(see Section 3.2), and industry-based platform case studies (see Section 3.3). Research
thrusts aimed at ontology development for product families to support reuse of product
design information (see Section 3.4) and filtering techniques to facilitate reuse of
manufacturing information in product families (see Section 3.5) are also discussed.

3.1 Thrust 1: evolutionary approaches to product platforming

Our first research thrust is to examine the extent of product evolution and variety which
influences the development of the product platform. The intent is to determine what is
common among platforms and how platforms and differentiating elements are
distinguished as a product evolves. Our hypothesis for this thrust is that product platforms
form (or, are formed) during periods of slow advancement in an evolution of
technological performance. Based on a study of Canon cameras, platforms appear to be
associated with S-curve plateaus representing periods of slow evolution. In Figure 5,
which represents S-curves for 70 years of Canon cameras, consider the lowest S-curve
that begins at the label ‘knob advance’ and continues to the label ‘spool load, lever
advance.’ This curve represents a camera’s evolution over time in terms of mechanical
film advance mechanism performance. (Note: Each increase in performance corresponds
to a distinct increment in loading and advancing capability, Kurtadikar et al., 2004). Note
that in the plateaus of any given S-curve, there are typically more variants of the camera
(indicated by the axis out of the page). During the steeply sloped portions of the curve,
fewer variants are found. Thus, if a company’s position on the S-curve can be determined
in real time, then designers can anticipate when it is appropriate to platform and when it
is appropriate to prepare for a technological jump.

Figure 5 Evolution of film load and advance function in Canon cameras

1
9
3
3

1
9
3
5

1
9
3
7

1
9
3
9

1
9
4
1

1
9
4
3

1
9
4
5

1
9
4
7

1
9
4
9

1
9
5
1

1
9
5
3

1
9
5
5

1
9
5
7

1
9
5
9

1
9
6
1

1
9
6
3

1
9
6
5

1
9
6
7

1
9
6
9

1
9
7
1

1
9
7
3

1
9
7
5

1
9
7
7

1
9
7
9

1
9
8
1

1
9
8
3

1
9
8
5

1
9
8
7

1
9
8
9

1
9
9
1

1
9
9
3

1
9
9
5

1
9
9
7

1
9
9
9

2
0
0
1

2
0
0
3

knob advance spool load, lever advance

ÒQLÓ load
system

Kodak film cartridge

110 film

double loading cassette

auto load / auto advance

APS

 146 S.B. Shooter et al.

The aforementioned strategy is based on the S-curve effect in which a given technology
generally exhibits a plateau during both its initial inception and during its optimisation.
While the decision itself to platform (and therefore stabilise by choice) a given
technology during any period along this S-curve may actually cause a plateau to appear
that otherwise would not, the inherent plateaus during startup and final optimisation of a
technology can, we claim, be used and leveraged as a basis for a platform. The rationale
is that the slow technological progress associated with plateaus offers a prime opportunity
to platform. Difficulty arises since this strategy relies on real-time knowledge of
technological performance, which is error-prone. Additionally, usage of such an
evolutionary approach is based on the assumption that particular opportunities afforded
by inherent technological plateaus are relatively significant compared to opportunities
caused by many other factors affecting the decision to platform. For example, while
NiCad battery technology is relatively stable and therefore indicative of a platform based
on NiCad batteries (as evidenced in the VersaPack tool family), there are clearly other
factors that create an impact on the platform decision. When taken with its underlying
assumptions and despite other factors involved that must be taken into account during
platform selection, the use of an evolutionary approach appears promising in
certain cases.

Looking at the camera data from a slightly different perspective, Figure 6 summarises
the impact of variant functionality on platform design. In Figure 6, the occurrence of all
product subfunctions found in the 70 years of data is plotted. This analysis shows that
over time, frequently occurring functions (near the top of the graph) tend to become part
of the platform and, thus, are solved by the platform instantiation. Less frequently
occurring functions (near the bottom of the graph) tend to be part of the differentiating
elements of the products. In several cases, certain functions tend to become more
frequent, indicating that they started as variant functionality and have been accepted as
basic or required functionality in future products. As with the S-curve analysis, if
designers can spot trends in needed functionality across several product variants, then
they can predict what functionality to capture in the product platform.

Figure 6 Platform and variant functionality within Canon cameras

 Toward a multi-agent information management infrastructure 147

3.2 Thrust 2: bottom-up approach to product platforming

Our second research thrust is to analyse existing consumer products that are readily
available in the market in an attempt to reverse engineering product platform strategies
employed by different companies. We believe that it is possible to identify platform
strategies through dissection of existing product lines by analysing common, variant, and
unique components (and connections) within a set of products. Figure 7 shows five
modules (rows) from seven different single-use cameras (columns) that were dissected
and analysed. Each component and module in each product are photographed, weighed,
and measured, and material and manufacturing processes are noted as best as possible
(e.g., plastic injection moulded piece, stamped brass, machined aluminium). The
components and modules are also categorised as being common, variant, and unique
components; and numbers and colours are used in each row to identify which products
share components. Using this information, we can compute a variety of commonality
indices for the product family as discussed in Ref. (Thevenot and Simpson, 2004) to
assess the amount of common assets within the family of products.

Figure 7 Example of single-use camera dissection

 148 S.B. Shooter et al.

The information is also entered into a database for which a graphical visualisation
interface (see Figure 8) is being developed to facilitate storing, retrieving, and analysing
information from the design repository. The visualisation interface is with the
graph-based Java Web Start4 programme, which is developed using swing components
and the TouchGraph library.5 TouchGraph library is an open source graph visualisation
tool that uses spring layout and presents node content on focus. Java Web Start allows the
applications to be deployed with a single click over the internet using JavaTM Network
Launching Protocol (JNLP), a web-centric provisioning (distribution of software
components) protocol. Java Web Start technology architecture is both browser and web
server independent, ensuring that the most current version of the application is deployed
on the client’s desktop. Product part information is presented in a hierarchical tree
structure using swing’s ‘JTree’ component. The node structure is mapped to the graph
library as an alternate display. For persistent storage and retrieval, any node in the tree
structure can be serialised, or the whole graph can be exported as XML document. The
graph structure and the tree structure can also be captured graphically and exported in to
various common graphics formats (e.g., bmp, jpg, gif, png). The panel-based graphical
user interface contains tools for manipulating the product tree structure. The following
operations can be performed on the product tree:

• Add node

a New components can be added as nodes by the supplied graphical user interface.

b Serialised nodes can also be attached to any existing node.

• Modify Node

a Component name and details can be modified and stored.

• Delete node

a Any node and all its child nodes can be deleted.

• Serialise/deserialise node

a Any Node with all its child nodes can be serialised, i.e., stored in disk and can
be retrieved later

• Plot graph in independent window(s)

a Any node along with its child nodes can be plotted in a separate window.
Display depth of the graph can be specified. The graph can be zoomed in a
particular area. By focusing over a node, the details of the nodes can be
displayed. The whole tree can be traversed by clicking on the nodes.

Recent efforts on design repositories are capable of storing function-form descriptions at
the individual product level, and we are currently developing enhancements to include a
product platform and product family levels along with an associated ontology for
reasoning about new product variants (Nanda et al., 2004).

 Toward a multi-agent information management infrastructure 149

Figure 8 Visual representations of the single-use camera family

3.3 Thrust 3: industry-based platform case studies

Our third research thrust is in developing interactions with company personnel to
explore their approach(es) to product platforms. The goal of this activity is to identify
what is common about platform strategies that are being employed within different
companies. As part of this process, we are examining the information capture, storage,
and retrieval needs for implementing platform approaches by direct interaction with
companies’ personnels.

Product Family Top-Level
Individual Product Level

 150 S.B. Shooter et al.

One interesting case involves a small company, Innovation Factory®, which used a
platform strategy when developing an innovative ice scraper product line (shown in
Figure 9). Note the common scraper blade, which was intentionally designed as a
platform. The case study (Shooter, 2005) explores the development of this product with a
focus on the platform approach. The case examines topics such as market research,
ideation and conceptual design, detailed design, testing, manufacturing and production,
marketing, and distribution. In preparing the case, the range of the information materials
involved in the development is examined, such as design notebooks, drawings, market
research, test data, meeting notes, and cost information. The case studied the information
stored and its modes of communication. The study of this case has prompted updates to
the design repository to better support product family planning.

Figure 9 Ice scraper platform approach of innovation factory®

3.4 Thrust 4: product family ontology development

We have proposed a methodology called Product Family Ontology Development
Methodology (PFODM) (Nanda et al., 2004) for developing formal product ontologies
using the semantic web paradigm. Formal Concept Analysis (FCA) is used to develop the
conceptual models of product design artifacts upon which the product family ontology is
formalised using Web Ontology Language (OWL). FCA is used to identify similarities
among a finite set of design artifacts based on their properties and is used to develop and
refine the ontology using OWL. FCA borrows its mathematical foundation from order
theory, the theory of complete lattices in particular and is used to identify similarities
among a finite set of design artifacts, referred, based on their properties, as ‘formal
concepts’. Formal product representation using OWL can not only store the structure of

 Toward a multi-agent information management infrastructure 151

the product family but also help in capturing the evolution of different components in the
product family. In the proposed PFODM shown in Figure 10, special importance is given
to the tabular and graphical representation of product design artifacts and their properties
using FCA to readily tie to an existing design repository.

Figure 10 Product Family Ontology Development Methodology (PFODM)

As an illustration, a group of one-time-use cameras, containing several products from the
Kodak one-time-use camera family, is represented in OWL format. PFODM can support
an explicit and fully documented way to develop product family design ontologies and is
elaborated in this paper. Product family design representation using OWL promotes
better learning of product features across products and reduced development time, system
complexity, and product design lead-time. The ontology is illustrated in Figure 11 for the
cover of the cameras. The class ‘Flash_Cover’ is defined with properties such as
‘has_Weight’. All the child classes (i.e., sub-classes) inherit this property. In the example,
the ‘APS_Flash_Cover’ class and the ‘MAX_Flash_Cover’, sub-classes of
‘Flash_Cover’, also have ‘has_Weight’ as a property. All the sub-classes have an ‘is a’
relationship with their parent classes. An individual of type ‘MAX_Flash_Cover’ is a
‘Flash_Cover’ which belongs to the ‘Cover’ domain. All the properties of class
‘Cover’ will show up in ‘MAX_Flash_Cover’. When designing new components in the
one-time-use camera product family, the designer extends (creates sub-class of) one or
more of the existing components. Thus, the class diagram not only captures the
relationship among components but also traces the evolution of the components in a
product family.

The method of building ontologies using PFODM imposes traceability on the
development of formal ontologies for a product family domain. It also provides a
systematic method of comparing alternative cross tables and restructuring the class
hierarchy where new classes/properties can be integrated, or subtracted from existing
representations. From the collection of these design artifact classes, a rather large number
of combinatoric spaces can be formed from all possible composite descriptions or
contexts to help the designers explore, redesign, and improve a product family.

 152 S.B. Shooter et al.

Figure 11 OWL representation of Kodak: cover class

3.5 Thrust 5: reuse of existing manufacturing information for product families

A considerable problem is the reduction of costs and time for the development of the
product platform and manufacturing of the associated products. As many companies have
already designed and manufactured many individual products, there is an advantage to
exploring the reuse of relevant information to design the manufacturing facility required
to produce the associated products. The REUSE (Reuse Existing Unit for Shape and
Efficiencies) framework is based on the relevancy, efficiencies, and configuration of
existing knowledge. This initiative will move the process designers and factories closer to
take advantage of the strong rules of designs and the experience from manufactured
products. This framework is applicable from the preliminary stage to the end of the
design process.

In order to assess relevancy, the characteristics of both the product and the process
must be considered, because the product and manufacturing are inextricably bound
together and because it is preferable, in terms of optimisation, to consider the whole set
of parameters from the beginning of the study. Thus, for each module or component, the
Product Characteristics (PC) are used to define the product information, and the
Manufacturing Characteristics (MC) represent the information process. Two categories of
information must be considered: first the desired information, represented by the Product
Characteristics desired (PCd) and the Manufacturing Characteristics desired (MCd).
Second, the existing information identified by the existing Product Characteristics (PCe)
and the existing Manufacturing Characteristics (MCe) are available in a repository (see
Figure 12). The aim is to match both the product-manufacturing desired characteristics
and the existing product-manufacturing characteristics to reuse the relevant existing
manufacturing information. This effort has been described in (Alizon et al., 2005) and
includes examples from the battery and air conditioning modules from vehicles.

 Toward a multi-agent information management infrastructure 153

Figure 12 Proposed REUSE framework for manufacturing of families of products

4 Closing remarks and future directions

It is clear that the formulation of an information management infrastructure for product
platforms and mass customisation requires a concerted effort with multiple thrusts.
Described here are five of the current thrusts undertaken by this multi-university team to
better understand the fundamentals of product platforming:

1 evolutionary approaches to product platforming

2 bottom-up approaches to product platforming

3 industry-based platform case studies

4 exploration of ontologies for representing product family information

5 filtering techniques to facilitate reuse of manufacturing information in
product families.

The long-term goal is develop representations of information that are currently
unavailable in traditional CAD/CAM/CAE tools to support information and knowledge
exchange in the new product development paradigm and to help avoid a proliferation of
proprietary formats in next-generation commercial software tools. While not a standard
development effort, it is an attempt to provide a generic representation schema that can
serve as a foundation for development of new systems.

Future work will continue to progress on multiple fronts with coordination efforts
occurring through bi-monthly conference calls and 3–4 face-to-face meetings throughout
the year. Industry involvement continues to play a major role in guiding our development

Study (desired)

Module,
component

Features

Processes

PCd

MCd

Repository (existing)

Module,
component

Product form

MCe

PCe

Resources

Features…

Processes

Relevant
manufacturing

information ?
- Operator/robots
- Storage
- Assistant
- Handling tools
- Specific equipment

Workstations

Manufacturing

 154 S.B. Shooter et al.

efforts. For instance, we are currently dissecting and analysing a family of refrigerators
donated by a leading appliance manufacturer to test the scalability of our Product Family
Ontology Development Method on a large-scale system. We are also in discussions with
several companies to identify case studies related to their recent efforts in shifting to
platform-based new product development. Finally, educational efforts are underway to
improve students’ understanding of the importance of product platform planning and
mass customisation.

Acknowledgements

This work was funded by the National Science Foundation through Grant
Nos. IIS-0325402, IIS-0325321, IIS-0325279, and IIS-0325415. Any opinions, findings,
and conclusions or recommendations presented in this paper are those of the authors and
do not necessarily reflect the views of the National Science Foundation.

References

Alizon, F., Shooter, S.B. and Simpson, T.W. (2005) ‘A collaborative framework for knowledge
reuse in manufacturing of platform-based products’, ASME Journal of Computing and
Information Science in Engineering, under review.

Anderson, D.C. and Chang, T.C. (1990) ‘Geometric reasoning in feature-based design and process
planning’, Computers and Graphics, Vol. 14, No. 2, pp.225–235.

Ansaldi, S., De Floriani, L. and Falcidieno, B. (1985) ‘Geometric modeling of solid objects by
using a face adjacency graph representation’, Computer Graphics, Vol. 19, No. 3, pp.131–139.

Balakrishnan, A., Kumara, S.R.T. and Sundaresan, S. (1999) ‘Manufacturing in the digital age:
exploiting information technologies for product realization’, Frontiers of Information Systems,
Vol. 1, No. 1, pp.25–50.

Barton, J.A. and Love, D.M. (2001) ‘Design determines 70% of cost? A review of implications for
design evaluation’, Journal of Engineering Design, Vol. 12, No. 1, pp.47–58.

Bremmer, R. (1999) ‘Cutting-edge platforms’, Financial Times Automotive World, September,
pp.30–38.

Bronsvoort, W.F. and Jansen, F.W. (1993) ‘Feature modeling and conversion key concepts to
concurrent engineering’, Computers in Industry, Vol. 21, No. 1, pp.61–86.

Chen, X.P. and Hoffmann, C.M. (1995) ‘On editability of feature-based design’, Computer-Aided
Design, Vol. 27, No. 12, pp.905–914.

Forrest, A. (1986) ‘User interfaces for three-dimensional geometry modeling’, in F. Crow and
S. Pizer (Eds.) Proceedings 1986 Workshop on Interactive 3D Graphics, New York: ACM
Press, pp.237–249.

Hirtz, J., Stone, R., McAdams, D., Szykman, S. and Wood, K. (2002) ‘A functional basis for
engineering design: reconciling and evolving previous efforts’, Research in Engineering
Design, Vol. 13, No. 2, pp.65–82.

Integrated Manufacturing Technology Initiative (2003) Notes from Applying Knowledge to Design
and Manufacturing: The Fall 2003 Workshop, Nasville, Tennessee, October.

Kurtadikar, R., Stone, R., Van Wie, M. and McAdams, D. (2004) ‘A customer needs motivated
conceptual design methodology for product portfolios’, ASME Design Engineering Technical
Conferences – Design Theory and Methodology Conference, Salt Lake City, UT: ASME.

Meyer, M.H. and Lehnerd, A.P. (1997) The Power of Product Platforms: Building Value and Cost
Leadership, New York, NY: Free Press.

 Toward a multi-agent information management infrastructure 155

Nanda, J., Thevenot, H., Simpson, T.W., Kumara, S.R.T. and Shooter, S.B. (2004) ‘Exploring
semantic web technologies for product family modeling’, ASME Design Engineering
Technical Conferences – Design Automation Conference, Salt Lake City, UT: ASME, Paper
No. DETC2004/CIE-57683.

Pine, II, B.J. (1993) Mass Customization: The New Frontier in Business Competition, Boston, MA:
Harvard Business School Press.

Robertson, D. and Ulrich, K. (1998) ‘Planning product platforms’, Sloan Management Review,
Vol. 39, No. 4, pp.19–31.

Sanderson, S.W. and Uzumeri, M. (1997) Managing Product Families, Chicago, IL: Irwin.

Shoham, Y. (1993) ‘Agent oriented programming’, Artificial Intelligence, Vol. 60, No. 1,
pp.51–92.

Shoham, Y. (1997) ‘An overview of agent oriented programming’, in M. Bradshaw (Ed.) Software
Agents, Menlo Park, CA: AAAI Press/MIT Press.

Shooter, S.B. (2005) ‘Product platform development at innovation factory’, in T.W. Simpson,
Z. Siddique and J. Jiao (Eds.) to appear in Product Platform and Product Family Design:
Methods and Applications, Kluwer Academic/Plenum Publishers, expected publication June.

Shooter, S.B., Keirouz, W., Szykman, S. and Fenves, S. (2000) ‘A model for the flow of design
information in product development’, Journal of Engineering with Computers, Vol. 16,
pp.178–194.

Sikand, A. and Terpenny, J.P. (2001) ‘Collaborative and distributed design: current status and
research opportunities’, Proceedings of Flexible Automation and Intelligent Manufacturing
(FAIM) International Conference, Dublin, Ireland, 16–18 July, pp.389–398.

Sikand, A. and Terpenny, J.P. (2003) ‘A web-based framework for product knowledge exchange
and distributed design’, IIE Transactions on Design and Manufacturing, under review.

Szykman, S., Fenves, S., Keirouz, W. and Shooter, S. (2001) ‘A foundation for interoperability in
next-generation product development systems’, Journal of Computer Aided Design, Vol. 33,
pp.545–559.

Thevenot, H. and Simpson, T.W. (2004) ‘A comparison of commonality indices for product family
design’, ASME Design Engineering Technical Conferences, Salt Lake City, UT: ASME, Paper
No. DETC2004/DAC-57141.

Notes:

1 www.asc.nasa.gov/aboutus/trl-introduction.html

2 www.i-a-i.com

3 www.Cougaar.org

4 http://java.sun.com/products/javawebstart/

5 http://touchgraph.sourceforge.net/index.html

