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Abstract: Development of complex new products requires numerous decisions 
by many individuals and groups, which are often geographically and 
temporally distributed. There is a need to share and coordinate distributed 
resources and synchronise decisions. Recent advances in Information 
Technology (IT) pose an untapped potential in assisting the capture, storage, 
retrieval, and facilitated use of product development information. By sharing 
assets such as components, processes, and knowledge across a family of 
products, companies can efficiently develop differentiated products and 
increase the flexibility and responsiveness of their product realisation process. 
This paper describes a recent effort in realising an information management 
infrastructure for product family planning and platform customisation. 
Particular focus is on current research thrusts: 

• an evolutionary approach to product platforming 

• a bottom-up approach to product platforming 

• industry-based platform case studies 
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• exploration of ontologies for representing product family information 

• filtering techniques to facilitate reuse of manufacturing information in 
product families. 

Keywords: information technology; product family; mass customisation; 
software agents. 
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1 Introduction 

Development of complex new products requires numerous decisions by many individuals 
and groups that are often separated by distance and time. These decisions are supported 
by individual and collective background knowledge and new knowledge synthesised 
from gathered information during the design process. The challenge, then, is to transform 
gathered information from a vast array of diverse sources into useful knowledge for 
making effective decisions. From a computational viewpoint, this is a problem of 
distributed resource sharing and temporal synchronisation. Recent advances in 
information technology pose an untapped potential for assisting in the capture, storage, 
retrieval, and facilitated use of product development information. 

The Product Family Planning approach to product development is an important factor 
for success in many markets. By sharing assets such as components, processes, and 
knowledge across a family of products, companies can efficiently develop differentiated 
products and increase the flexibility and responsiveness of their product realisation 
process. Product Family Planning is also a way to achieve mass customisation 
by allowing highly differentiated products to be produced without consuming 
excessive resources. 

In general terms, a product family is a group of related products that is derived from a 
product platform to satisfy a variety of market niches. The key to a successful product 
family is the product platform, where the product family is derived (Meyer and Lehnerd, 
1997). As Robertson and Ulrich (1998) point out: 

“By sharing components and production processes across a platform of 
products, companies can develop differentiated products efficiently, increase 
the flexibility and responsiveness of their manufacturing processes, and take 
market share away from competitors that develop only one product at a time.” 

A product platform can also facilitate customisation by enabling a variety of quick and 
easily developed products to satisfy the needs and requirements of distinct market niches 
(Pine, II, 1993). Companies like Sony (Sanderson and Uzumeri, 1997), Volkswagen 
(Bremmer, 1999), and Black & Decker (Meyer and Lehnerd, 1997) have successfully 
employed product platform strategies to increase product variety while reducing 
development costs, manufacturing costs, and time-to-market. 

Designing a product platform and corresponding family of products are difficult 
tasks. They embody all of the challenges of product design while adding the complexity 
of coordinating the design of multiple products in an effort to increase commonality 
across the set of products without compromising their individual performance 
(distinctiveness). Regardless of whether the platform is modular or scalable, the basic 
development strategy within any product family is to leverage the product platform 
across multiple market segments or niches. 

Successful Product Family Planning places an even greater requirement on effective 
information management to exploit the potential of shared assets. As such, significant 
potential rewards can be gained from the exploration and development of information 
technology for this domain. We view information technology as both a key enabler for 
future manufacturing enterprises and a transformer of organisations and markets. By 
reducing barriers to collaboration, compressing lead-time, eliminating physical 
movement, and enriching decision making, information technology helps manufacturers 
to achieve their goals of meeting customer needs better, quicker, and cheaper. By 
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providing global reach and easy connectivity, information technology has fostered 
cooperation while increasing market competition, and heightened customer expectations. 
Advances in computer and communication technologies combined with rapid changes in 
organisations create new opportunities for exploiting information technologies in the 
entire product realisation process (Balakrishnan et al., 1999). Specifically, in the current 
context of product family design and planning, we address four classes of intelligent 
information processes: 

1 intelligent search 

2 collaboration 

3 coordination and negotiation 

4 understanding and learning. 

Our research focus synthesises streams of thought from many related disciplines in 
engineering, computer science, and management to develop a framework – a 
computational platform – for examining how information technologies can facilitate and 
influence product family planning and design.  

Inspired by the market success of ‘customer-oriented’ companies over the past 
decade, many manufacturing organisations have successfully inculcated customer focus 
as a philosophy at all management levels and in all functions. Starting with an emphasis 
on meeting specifications and commitments at downstream stages of the supply chain, 
customer orientation slowly propagated to upstream functions such as product design to 
better reflect customer preferences in design. The next step, mass customisation (Pine, II, 
1993), aims to service increasingly finer-grained market segments by, e.g., designing 
modular products that can be assembled in myriad combinations for individual niches. 
Companies have gone one step forward by offering made-to-order products (e.g., jeans, 
shoes, and bicycles) whose physical dimensions ‘perfectly’ fit individual customers. The 
product architecture is fixed, and customers must still choose from an available 
(predetermined, but extensive) menu of choices at the time of purchase. Moreover, the 
customers who provide inputs to product design are not necessarily the product 
purchasers, i.e., design is not truly customised. It is clear that future organisations will 
seek to achieve far greater levels of customer involvement, culminating in continuous 
customer engagement at all stages of manufacturing. Therefore, there is a need to support 
these activities with an open information management infrastructure. 

The strategy for the formulation of this infrastructure is based on three foundations:  

1 The development of a generalised information management infrastructure, with 
particular emphasis on capturing information regarding component-sharing and reuse 
within a family of products.  

2 Creation of a corresponding graphical modelling environment. 

3 Formulation of a software agent-based synthesis framework for product family 
planning and customisation.  

This paper begins by describing the vision for the information management 
infrastructure. Then, efforts toward a graphical modelling environment are described, 
followed by the formulation of an agent-based framework for product family planning 
and customisation. The paper highlights some industry cases that are being reviewed, as 
well as examples from actual products. Closing remarks and future work are discussed in 
the final section. 
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2 Foundations for advancing the state of the art 

2.1 Information infrastructure development 

The primary research objective is to develop a generalised information  
management infrastructure with particular emphasis on capturing information regarding 
component-sharing and reuse within a family of products. The key issue here is 
determining what constitutes critical design knowledge and how to archive it. There are 
many ways to represent a product, but to support knowledge reuse for future product 
design efforts and component-based representations of a product are needed. Based on 
our prior research (Hirtz et al., 2002), we have identified functionality, physical 
parameters (e.g., dimensions, geometry type, material) manufacturing process, 
input/output flows, performance parameters (and possibly a mathematical description of 
the performance), and interfaces as needed component knowledge for archival and reuse. 
Taken together, the abovementioned heterogeneous design knowledge constitutes a 
design repository. 

There is currently no technology on the market that is truly a design repository. 
However, there are several packages that contain elements of a design repository. Such 
computerised design packages can be grouped into three basic categories: 

1 Mechanical CAD (MCAD) packages that augment traditional CAD models with 
more abstract design knowledge. 

2 Systems engineering tool-sets that contain higher level of design information so that 
may be used to generate CAD models. 

3 Systems modelling and simulation packages which have no interaction with 
traditional CAD packages. 

Though substantial results are often promised with such systems, they require significant 
resources to implement and have been applied to very specific applications; making their 
general acceptance and expansion difficult. 

The review of current commercial offerings indicates that the concept of a design 
repository is extremely useful to automated design storage and retrieval packages and that 
industry is moving towards the vision of design repositories. A standard repository 
information management structure, supported by fundamental functional and architecture 
modelling research, is clearly needed to guide work in this area. The information 
management structure must support conceptual design, or the fuzzy front-end of the 
design process, since as much as 70% of product costs are determined during design 
(Barton and Love, 2001). One traditional hurdle to defining such structures is the 
evolving strategies and methodologies that exist for this phase of design. 

Functionality is a critical piece of the knowledge representation puzzle. It allows 
products/components to be searched based on their function. This can be used to identify 
families of products (i.e., products that perform a significant portion of the same 
functions) and overlapping functions can be used as a basis for defining a product’s core 
platform. Analogy techniques that exist to find families of products are essentially simple 
mathematical operations, i.e., project one product’s functional vector onto a repository of 
product vectors. The higher the value of the projection, the more similar the two 
compared products are. This could also be easily applied on a component level. 
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Consider the drill shown on the left of Figure 1. A common component used in  
many product families is the drill motor (Meyer and Lehnerd, 1997). The middle entity  
in Figure 1 is an Artifact representing the drill motor that is a member of a family of  
other artifacts and subartifacts. The artifact information is also shown as an overlay on 
the actual drill. For instance, the motor includes a reference to a function object, 
providing a pointer from the artifact domain into the function domain. The last entity 
represents the motor Function, which is to ‘convert’ with an input_flow and output_flow. 
Each of these contains pointers to further levels of information. For example, input_flow 
points to an object named AC_current that has its own set of objects. This example is 
only a portion of the representation (as evidenced by the presence of pointers to other 
data structures); a broader description can be found in Refs. (Shooter et al., 2000; 
Szykman et al., 2001). Ultimately, these objects such as functions and flows can be 
categorised in the structured language of the functional basis (Hirtz et al., 2002). Then, 
the next step is to extend the current representation scheme to include higher-level 
objects that signify component-sharing and platform inheritance within a family of 
products derived from a common platform. 

Figure 1 Drill example with artifact and Transfer_Function for drill motor 

2.2 Creation of a graphical modelling environment 

A recent conference by the Integrated Manufacturing Technology Initiative on ‘Applying 
Knowledge to Manufacturing and Design’ (Integrated Manufacturing Technology 
Initiative, 2003) brought together parties from industry, government agencies, and 
academia to outline necessary initiatives to advance technology in this realm. Two top 
areas identified were: 

1 the formulation of standard knowledge representations 

2 the development of intuitive graphical user-interface technology. 

Representation and visualisation go hand-in-hand. Design, in principle, is a synthesis 
activity. Hence, a graphical modelling environment that allows for artifacts to be 
connected together through visual representation with due consideration to functionality 
will be very useful. The preceding section addresses the first area. The graphical 
modelling environment discussed in this section is a critical aspect of the development of 
a coordinated information management infrastructure for product family planning. 

Artifact
{

name Drill_motor
information Drill_motor_info
type Motor
config_info Drill_motor_config
function Drill_motor_fcn
form Drill_motor_form
behaviour Drill_motor_behaviour
subartifact_of Power_transmission
is_source_of {Motor_rotation}
is_destination_of{AC_current}

}

Transfer_function
{

name Drill_motor_fcn
information Drill_motor_fcn_info
type Convert
fcn_of_artifact Drill_motor
input_flow {AC_current}
output_flow {Motor_rotation}

}
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In a similar manner, feature-based design research of the late 1980s (Ansaldi et al., 
1985; Forrest, 1986) and early 1990s (Anderson and Chang, 1990; Bronsvoort and 
Jansen, 1993; Chen and Hoffman, 1995) led to the current generation of commercial 
CAD systems. It is necessary to develop information management and higher-level 
modelling artifacts for function-based systems that can reason about families of products. 
Effective graphical modelling environments must support the planning and development 
of families of engineered products and systems for mass customisation through three key 
services including: 

1 a graphical means to select, place, and semantically connect modelling objects 
representing design functions of the product together in a cohesive model 

2 the means to capture requirement specifications and customer preferences that can be 
used to constrain this model 

3 the means to visualise results of solution synthesis and regenerate new solution 
alternatives as needed. 

A Windows form-based system enables a top-down function-based modelling 
methodology that is supported by a web-based interface for knowledge management and 
modelling (Sikand and Terpenny, 2001; 2003). This approach provides organisations 
with a means to create their own classification system and repository of reusable 
solutions to function in design. Addressing the needed transformation – among the 
intuitive environment that contains user-defined terminology and artifacts and the 
information management infrastructure of a generalised repository – is a challenging area 
for exploration. Figure 2 provides an overview of the essential elements needed in the 
proposed graphical modelling environment. 

Figure 2 Elements of proposed graphical modelling environment 



   

 

   

   
 

   

   

 

   

    Toward a multi-agent information management infrastructure 141    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Functions, Solutions, and Components are modelled as objects in this environment. The 
environment supports modelling across multiple levels of abstraction. At the highest level 
of abstraction is the Functional Model where the designer gives inputs to the system 
about the customer requirements and product specifications. At the next lower level of 
abstraction is the Solution Model where solutions to functions are identified. Solutions 
are not explicitly tied to functions; rather, they emerge with the satisfaction of 
requirements. Solutions are represented in terms of a Dynamic Systems Model to 
facilitate solution synthesis. Figure 3 shows an example of a graphical modelling 
environment used to describe the Dynamic Systems Model of the Electrical and Water 
Sub-Systems in a coffee maker. As shown, the coffee maker can be described with 
several layers, providing the greatest freedom to designers in representing design 
concepts in terms of abstraction or detail. As shown on the left-hand side of the figure, 
six domains define the types of artifacts that can be used in modelling, including 
mechanical, electrical, hydraulic, pneumatic, magnetic, and thermal. Decoupling of 
knowledge from data is achieved with the separation of the Component Model, invoked 
during configuration, and the company parts’ database. This provides for greater 
generalisation as well as reduced system maintenance. 

Figure 3 Coffee maker described in the graphical modelling environment 

2.3 Agent-based synthesis framework for product family planning 

Software agents serve as the ideal mechanism to implement the core intelligent 
information processes in design and manufacturing. A software agent is an entity that 
functions continuously and autonomously in an environment that is often inhabited by 
other agents and processes (Shoham, 1993; 1997). Software agents may be viewed as 
virtual representatives of humans, processes, or products. Constructed as independent 
software entities, agents act as participants, sentinels, and negotiators. Agents embody 
three main functional components – communicating, understanding and processing 
(reasoning), and learning. The capabilities of an agent depend on its endowments along 
three dimensions: 



   

 

   

   
 

   

   

 

   

   142 S.B. Shooter et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

1 autonomy or the extent of independent decision making 

2 intelligence, the amount and type of knowledge, reasoning, and learning capabilities 

3 mobility, the ability to move across systems. 

We envision an agent-based synthesis framework for the configuration of platform 
concepts and customised variants that will support the following steps in the 
design process: 

1 Given a customer’s functional requirements, appropriate design configurations will 
be retrieved from the design repositories and presented to the customer. 

2 From the product family set, components will be retrieved through appropriate 
functionality matching (closest functionality match). 

3 The selection of appropriate components (products from product platform)  
will be based upon the customers’ requirements, and the product will be  
iteratively configured. 

4 The new product (customised platform variant) will be presented to the customer 
after the iterated negotiation process. 

5 In case the platform does not have the components and/or products belonging to the 
family that will satisfy the requirements, based upon the repository knowledge, a 
new product will be synthesised and presented to the customer. 

Figure 4 illustrates the proposed agent-based approach to product platform planning. 
Agents in the environment will represent product variants and negotiate with one another 
to determine the components and processes that can be made in common and those 
requiring unique design. The agents will be autonomous to automate the negotiation 
process for the common platform, building upon the design repository. The platform 
optimisation will be realised in an evolutionary approach by iteratively updating the 
common base. This will depend on the evaluation feedback from each self-interested 
agent, based on its own product variant derivation from the platform. In this manner, 
global optimality at the product family level is anticipated. 

Figure 4 Proposed agent-based framework for product family planning 

Product
variant A

requirement

Functional
commonality
of products

Product
variant B

requirement

Product
variant C

requirement

Design
repository

Product
Agent A

Product
platform

agent

Modular
commonality
of products

Product
Agent C

Product
Agent B

Negotiation

Feature

Product

Product

Product

Feature
Feature
Feature
Feature

Design metrics
Evaluate at

product
family
level

Evaluate at
individual
product

level



   

 

   

   
 

   

   

 

   

    Toward a multi-agent information management infrastructure 143    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

The following computational tasks are needed to perform these design tasks: 

• Retrieve design components and related knowledge from the design 
repositories – this involves intelligent search based on very detailed low-level 
functions and features. 

• Retrieve products from the product family that will satisfy the customer 
requirements – this also involves intelligent search based on high-level functional 
and cost features. 

• In the event of synthesis of a new product from the design repository knowledge, 
there is a need to develop auction-based mechanisms since there can be several 
components that satisfy the same functional requirements. Each of the components 
will ‘bid’ to be included in the product, and this can be modelled as a market 
economy where configurations are generated through negotiation with the customer.  

• Once a new product is synthesised, it needs to be added to the product family.  

The design process can be computationally modelled using software agents. Table 1 
summarises the agents that must be designed, developed, and implemented. Table 1  
also summarises the research issues for building a computational infrastructure (Cols. 3 
and 4). The following research lists the issues that must be addressed for the development 
such an agent-based infrastructure: 

• Developing design domain (product platform) ontology for defining agent 
communication language: Agent communication requires a vocabulary, spawning 
the need for the development of an ontology for platform design which we are 
currently developing (Nanda et al., 2004). 

• Standardisation of agent communication, and reasoning: Interoperable agents in the 
current research can only be established with the standardisation of agent systems. 
Standardisation should consider agent communication, multi-modal message 
understanding, and reasoning. This language will consider negotiation protocols for 
product family formulation. 

• Multiagent behaviour evolution and learning: This must consider simple statistical 
regression techniques and multiattribute utility theory to build appropriate tools for 
modelling agent behaviour evolution and learning.  

• Integrating platform functions through the web: Distributed design facilitation is an 
important area for exploration, wherein customers, design repositories, and product 
platforms are distributed; making autonomous business process integration very 
complex. This requires the building of an agent communication language to ensure 
easier and seamless integration. 

In the past decade, agent research has advanced considerably. Several software agent 
building platforms are available both as open source and commercial packages. In terms 
of Technology Readiness Level,1 currently agent software is at Level 7 and ready to be 
rated at Level 8 in about three years. Cyebele, developed by Intelligent-Automation 
Incorporated,2 is currently being used for the development of agent based air traffic 
control under NASA’s leadership, with about 10,000 agents. Cognitive Agent Software 
(Cougaar) developed under the direction of DARPA is a complex system which 
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addresses robustness, security, and performance (survivability) and is currently 
being used for deploying agent based military logistics and planning systems.3 These 
large-scale systems prompt the authors to be confident that the research proposed in this 
paper is realisable and not just a conceptualisation. 

Table 1 Software agents for product family planning and platform customisation 

Agent 
Platform design 

domain task 
Computational 

task 
Computational 

techniques addressed 

Retrieval 
agent 

• Retrieve the 
components from the 
repository 

• Database search 

• Function-based 
matching 

• Similarity distance 
(between the required 
and specified functions 
in the design 
repository) 

• Partial information-
based matching 
(approximate 
reasoning-Bayesian) 

Customisation 
agent 

• Customer interface 

• Facilitate negotiation 
between the design 
platform and customer 

• Learn customer design 
preferences 

• Extract functional 
requirements from 
customer input 

• Present the 
configuration provide 
interaction 

• Profile learning 

• Content-based 
function matching 

• Event based message 
passing 

• Parametric and  
non-parametric 
techniques for 
customer classification 

Platforming 
agents 

• Match components 
with product platform 

• Design synthesis using 
different components 

• Perform negotiation 
with the customer for 
acceptance 

• Matching 

• Inference 

• Auction-based 
negotiation 

• Rule-based inference 

• Market economy based 
mechanism design for 
auctions 

Configuration 
agents 

• Collect different 
products satisfying the 
customer and form the 
platform  

• Similarity matching • Clustering 

• Grammar-based 
methods (syntactic 
pattern recognition) 

Archival 
agents 

• Add new components 
to design repositories 

• Add new products to 
product families 

• Database updating 

• Data dictionary 
updating 

• Forming  
meta-databases 

• Meta database design 

• Concept graphs for 
new concept addition 
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3 Current research thrusts 

It is clear that there is a multitude of possible approaches for developing an information 
management infrastructure for product family planning and platform customisation.  
It is also essential that such development includes best practices from industry as well  
as recent research advancements. Our current research is pursuing several avenues  
for identifying product platform leveraging strategies to support future product  
family planning. In particular, we are examining an evolutionary approach to product 
platforming (see Section 3.1), a bottom-up approach to product platforming  
(see Section 3.2), and industry-based platform case studies (see Section 3.3). Research 
thrusts aimed at ontology development for product families to support reuse of product 
design information (see Section 3.4) and filtering techniques to facilitate reuse of 
manufacturing information in product families (see Section 3.5) are also discussed. 

3.1 Thrust 1: evolutionary approaches to product platforming 

Our first research thrust is to examine the extent of product evolution and variety which 
influences the development of the product platform. The intent is to determine what is 
common among platforms and how platforms and differentiating elements are 
distinguished as a product evolves. Our hypothesis for this thrust is that product platforms 
form (or, are formed) during periods of slow advancement in an evolution of 
technological performance. Based on a study of Canon cameras, platforms appear to be 
associated with S-curve plateaus representing periods of slow evolution. In Figure 5, 
which represents S-curves for 70 years of Canon cameras, consider the lowest S-curve 
that begins at the label ‘knob advance’ and continues to the label ‘spool load, lever 
advance.’ This curve represents a camera’s evolution over time in terms of mechanical 
film advance mechanism performance. (Note: Each increase in performance corresponds 
to a distinct increment in loading and advancing capability, Kurtadikar et al., 2004). Note 
that in the plateaus of any given S-curve, there are typically more variants of the camera 
(indicated by the axis out of the page). During the steeply sloped portions of the curve, 
fewer variants are found. Thus, if a company’s position on the S-curve can be determined 
in real time, then designers can anticipate when it is appropriate to platform and when it 
is appropriate to prepare for a technological jump. 

Figure 5 Evolution of film load and advance function in Canon cameras 
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The aforementioned strategy is based on the S-curve effect in which a given technology 
generally exhibits a plateau during both its initial inception and during its optimisation. 
While the decision itself to platform (and therefore stabilise by choice) a given 
technology during any period along this S-curve may actually cause a plateau to appear 
that otherwise would not, the inherent plateaus during startup and final optimisation of a 
technology can, we claim, be used and leveraged as a basis for a platform. The rationale 
is that the slow technological progress associated with plateaus offers a prime opportunity 
to platform. Difficulty arises since this strategy relies on real-time knowledge of 
technological performance, which is error-prone. Additionally, usage of such an 
evolutionary approach is based on the assumption that particular opportunities afforded 
by inherent technological plateaus are relatively significant compared to opportunities 
caused by many other factors affecting the decision to platform. For example, while 
NiCad battery technology is relatively stable and therefore indicative of a platform based 
on NiCad batteries (as evidenced in the VersaPack tool family), there are clearly other 
factors that create an impact on the platform decision. When taken with its underlying 
assumptions and despite other factors involved that must be taken into account during 
platform selection, the use of an evolutionary approach appears promising in 
certain cases.  

Looking at the camera data from a slightly different perspective, Figure 6 summarises 
the impact of variant functionality on platform design. In Figure 6, the occurrence of all 
product subfunctions found in the 70 years of data is plotted. This analysis shows that 
over time, frequently occurring functions (near the top of the graph) tend to become part 
of the platform and, thus, are solved by the platform instantiation. Less frequently 
occurring functions (near the bottom of the graph) tend to be part of the differentiating 
elements of the products. In several cases, certain functions tend to become more 
frequent, indicating that they started as variant functionality and have been accepted as 
basic or required functionality in future products. As with the S-curve analysis, if 
designers can spot trends in needed functionality across several product variants, then 
they can predict what functionality to capture in the product platform. 

Figure 6 Platform and variant functionality within Canon cameras 
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3.2 Thrust 2: bottom-up approach to product platforming 

Our second research thrust is to analyse existing consumer products that are readily 
available in the market in an attempt to reverse engineering product platform strategies 
employed by different companies. We believe that it is possible to identify platform 
strategies through dissection of existing product lines by analysing common, variant, and 
unique components (and connections) within a set of products. Figure 7 shows five 
modules (rows) from seven different single-use cameras (columns) that were dissected 
and analysed. Each component and module in each product are photographed, weighed, 
and measured, and material and manufacturing processes are noted as best as possible 
(e.g., plastic injection moulded piece, stamped brass, machined aluminium). The 
components and modules are also categorised as being common, variant, and unique 
components; and numbers and colours are used in each row to identify which products 
share components. Using this information, we can compute a variety of commonality 
indices for the product family as discussed in Ref. (Thevenot and Simpson, 2004) to 
assess the amount of common assets within the family of products. 

Figure 7 Example of single-use camera dissection 
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The information is also entered into a database for which a graphical visualisation 
interface (see Figure 8) is being developed to facilitate storing, retrieving, and analysing 
information from the design repository. The visualisation interface is with the 
graph-based Java Web Start4 programme, which is developed using swing components 
and the TouchGraph library.5 TouchGraph library is an open source graph visualisation 
tool that uses spring layout and presents node content on focus. Java Web Start allows the 
applications to be deployed with a single click over the internet using JavaTM Network 
Launching Protocol (JNLP), a web-centric provisioning (distribution of software 
components) protocol. Java Web Start technology architecture is both browser and web 
server independent, ensuring that the most current version of the application is deployed 
on the client’s desktop. Product part information is presented in a hierarchical tree 
structure using swing’s ‘JTree’ component. The node structure is mapped to the graph 
library as an alternate display. For persistent storage and retrieval, any node in the tree 
structure can be serialised, or the whole graph can be exported as XML document. The 
graph structure and the tree structure can also be captured graphically and exported in to 
various common graphics formats (e.g., bmp, jpg, gif, png). The panel-based graphical 
user interface contains tools for manipulating the product tree structure. The following 
operations can be performed on the product tree: 

• Add node 

a New components can be added as nodes by the supplied graphical user interface. 

b Serialised nodes can also be attached to any existing node. 

• Modify Node 

a Component name and details can be modified and stored. 

• Delete node 

a Any node and all its child nodes can be deleted. 

• Serialise/deserialise node 

a Any Node with all its child nodes can be serialised, i.e., stored in disk and can 
be retrieved later  

• Plot graph in independent window(s) 

a Any node along with its child nodes can be plotted in a separate window. 
Display depth of the graph can be specified. The graph can be zoomed in a 
particular area. By focusing over a node, the details of the nodes can be 
displayed. The whole tree can be traversed by clicking on the nodes. 

Recent efforts on design repositories are capable of storing function-form descriptions at 
the individual product level, and we are currently developing enhancements to include a 
product platform and product family levels along with an associated ontology for 
reasoning about new product variants (Nanda et al., 2004). 

 

 

 



   

 

   

   
 

   

   

 

   

    Toward a multi-agent information management infrastructure 149    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 8 Visual representations of the single-use camera family 

3.3 Thrust 3: industry-based platform case studies 

Our third research thrust is in developing interactions with company personnel to 
explore their approach(es) to product platforms. The goal of this activity is to identify 
what is common about platform strategies that are being employed within different 
companies. As part of this process, we are examining the information capture, storage, 
and retrieval needs for implementing platform approaches by direct interaction with 
companies’ personnels. 
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One interesting case involves a small company, Innovation Factory®, which used a 
platform strategy when developing an innovative ice scraper product line (shown in 
Figure 9). Note the common scraper blade, which was intentionally designed as a 
platform. The case study (Shooter, 2005) explores the development of this product with a 
focus on the platform approach. The case examines topics such as market research, 
ideation and conceptual design, detailed design, testing, manufacturing and production, 
marketing, and distribution. In preparing the case, the range of the information materials 
involved in the development is examined, such as design notebooks, drawings, market 
research, test data, meeting notes, and cost information. The case studied the information 
stored and its modes of communication. The study of this case has prompted updates to 
the design repository to better support product family planning. 

Figure 9 Ice scraper platform approach of innovation factory® 

3.4 Thrust 4: product family ontology development 

We have proposed a methodology called Product Family Ontology Development 
Methodology (PFODM) (Nanda et al., 2004) for developing formal product ontologies 
using the semantic web paradigm. Formal Concept Analysis (FCA) is used to develop the 
conceptual models of product design artifacts upon which the product family ontology is 
formalised using Web Ontology Language (OWL). FCA is used to identify similarities 
among a finite set of design artifacts based on their properties and is used to develop and 
refine the ontology using OWL. FCA borrows its mathematical foundation from order 
theory, the theory of complete lattices in particular and is used to identify similarities 
among a finite set of design artifacts, referred, based on their properties, as ‘formal 
concepts’. Formal product representation using OWL can not only store the structure of  
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the product family but also help in capturing the evolution of different components in the 
product family. In the proposed PFODM shown in Figure 10, special importance is given 
to the tabular and graphical representation of product design artifacts and their properties 
using FCA to readily tie to an existing design repository. 

Figure 10 Product Family Ontology Development Methodology (PFODM) 

As an illustration, a group of one-time-use cameras, containing several products from the 
Kodak one-time-use camera family, is represented in OWL format. PFODM can support 
an explicit and fully documented way to develop product family design ontologies and is 
elaborated in this paper. Product family design representation using OWL promotes 
better learning of product features across products and reduced development time, system 
complexity, and product design lead-time. The ontology is illustrated in Figure 11 for the 
cover of the cameras. The class ‘Flash_Cover’ is defined with properties such as 
‘has_Weight’. All the child classes (i.e., sub-classes) inherit this property. In the example, 
the ‘APS_Flash_Cover’ class and the ‘MAX_Flash_Cover’, sub-classes of 
‘Flash_Cover’, also have ‘has_Weight’ as a property. All the sub-classes have an ‘is a’ 
relationship with their parent classes. An individual of type ‘MAX_Flash_Cover’ is a 
‘Flash_Cover’ which belongs to the ‘Cover’ domain. All the properties of class 
‘Cover’ will show up in ‘MAX_Flash_Cover’. When designing new components in the 
one-time-use camera product family, the designer extends (creates sub-class of) one or 
more of the existing components. Thus, the class diagram not only captures the 
relationship among components but also traces the evolution of the components in a 
product family. 

The method of building ontologies using PFODM imposes traceability on the 
development of formal ontologies for a product family domain. It also provides a 
systematic method of comparing alternative cross tables and restructuring the class 
hierarchy where new classes/properties can be integrated, or subtracted from existing 
representations. From the collection of these design artifact classes, a rather large number 
of combinatoric spaces can be formed from all possible composite descriptions or 
contexts to help the designers explore, redesign, and improve a product family. 
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Figure 11 OWL representation of Kodak: cover class 

3.5 Thrust 5: reuse of existing manufacturing information for product families 

A considerable problem is the reduction of costs and time for the development of the 
product platform and manufacturing of the associated products. As many companies have 
already designed and manufactured many individual products, there is an advantage to 
exploring the reuse of relevant information to design the manufacturing facility required 
to produce the associated products. The REUSE (Reuse Existing Unit for Shape and 
Efficiencies) framework is based on the relevancy, efficiencies, and configuration of 
existing knowledge. This initiative will move the process designers and factories closer to 
take advantage of the strong rules of designs and the experience from manufactured 
products. This framework is applicable from the preliminary stage to the end of the 
design process. 

In order to assess relevancy, the characteristics of both the product and the process 
must be considered, because the product and manufacturing are inextricably bound 
together and because it is preferable, in terms of optimisation, to consider the whole set 
of parameters from the beginning of the study. Thus, for each module or component, the 
Product Characteristics (PC) are used to define the product information, and the 
Manufacturing Characteristics (MC) represent the information process. Two categories of 
information must be considered: first the desired information, represented by the Product 
Characteristics desired (PCd) and the Manufacturing Characteristics desired (MCd). 
Second, the existing information identified by the existing Product Characteristics (PCe) 
and the existing Manufacturing Characteristics (MCe) are available in a repository (see 
Figure 12). The aim is to match both the product-manufacturing desired characteristics 
and the existing product-manufacturing characteristics to reuse the relevant existing 
manufacturing information. This effort has been described in (Alizon et al., 2005) and 
includes examples from the battery and air conditioning modules from vehicles. 
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Figure 12 Proposed REUSE framework for manufacturing of families of products 

4 Closing remarks and future directions 

It is clear that the formulation of an information management infrastructure for product 
platforms and mass customisation requires a concerted effort with multiple thrusts. 
Described here are five of the current thrusts undertaken by this multi-university team to 
better understand the fundamentals of product platforming: 

1 evolutionary approaches to product platforming 

2 bottom-up approaches to product platforming 

3 industry-based platform case studies 

4 exploration of ontologies for representing product family information 

5 filtering techniques to facilitate reuse of manufacturing information in 
product families.  

The long-term goal is develop representations of information that are currently 
unavailable in traditional CAD/CAM/CAE tools to support information and knowledge 
exchange in the new product development paradigm and to help avoid a proliferation of 
proprietary formats in next-generation commercial software tools. While not a standard 
development effort, it is an attempt to provide a generic representation schema that can 
serve as a foundation for development of new systems. 

Future work will continue to progress on multiple fronts with coordination efforts 
occurring through bi-monthly conference calls and 3–4 face-to-face meetings throughout 
the year. Industry involvement continues to play a major role in guiding our development 
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efforts. For instance, we are currently dissecting and analysing a family of refrigerators 
donated by a leading appliance manufacturer to test the scalability of our Product Family 
Ontology Development Method on a large-scale system. We are also in discussions with 
several companies to identify case studies related to their recent efforts in shifting to 
platform-based new product development. Finally, educational efforts are underway to 
improve students’ understanding of the importance of product platform planning and 
mass customisation. 
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