
 Physics Procedia 25 (2012) 700 – 707

1875-3892 © 2012 Published by Elsevier B.V. Selection and/or peer-review under responsibility of Garry Lee
doi: 10.1016/j.phpro.2012.03.146

2012 International Conference on Solid State Devices and Materials Science

Decentralized Checking Context Inconsistency in Ubiquitous
Mobile Computing Environments1

Daqiang Zhang1,2, Zhijun Yang1,2, Hongyu Huang3, Qin Zou4

1School of Computer Science, Nanjing Normal University
2Jiangsu Research Centre of Information Security & Confidential Engineering

3Department of Computer Science, Chongqing University
4School of Remote Sensing and Information Engineering, Wuhan University

Abstract

Contexts are often noisy in ubiquitous mobile computing environments due to user mobility, unreliable wireless
connectivity and resource constraints. Various schemes have been proposed to check context inconsistency for
ubiquitous mobile applications. However, most of them require central control. This requirement inhibits their
working in ubiquitous mobile environments, which are characterized by the asynchronous coordination among
computing devices. In this paper, we propose DCCI scheme – Decentralized Checking Context Inconsistency for
ubiquitous mobile applications by exploiting the preference-based locality that denotes context inconsistency occurs
among the nodes that impose various restrictions on the same context. According to this locality, DCCI constructs a
preference-based shortcut structure to check inconsistency within shortcuts. Extensive experiments show that DCCI
can accurately and efficiently check context inconsistency in a fully distributed manner.

© 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of [name organizer]

1. Introduction

Ubiquitous mobile computing allows users to share services without knowing underlying technologies
by seamlessly integrating networked computing devices with users and their ambient environments [1, 2,
3]. This is mainly accomplished by context-awareness, assisting mobile applications in automatically
adapting to changeable contexts [4]. Contexts, including application requirements, device capability, user
location and behaviors, and relationships among users, denote the pieces of information that capture the
characteristics of ubiquitous mobile computing environments. Contexts can be gathered by various
devices, such as hand-held devices, wireless sensors and RFID.

1
This work is supported by the National Natural Science Foundation of China (Grant Nos. 61073118 and 61003247).

Available online at www.sciencedirect.com

© 2012 Published by Elsevier B.V. Selection and/or peer-review under responsibility of Garry Lee
Open access under CC BY-NC-ND license.

Open access under CC BY-NC-ND license.

 Daqiang Zhang et al. / Physics Procedia 25 (2012) 700 – 707 701

Contexts are inherently imprecise and noisy so that context inconsistency frequently occurs, e.g.,
different observations for the same temperature from two sensors, and contradictions in a computation
task’s context [5, 6, 7]. This is partially because sensor technology is prone to error. The sources of errors
consist of, but are not limited to, inaccuracies in the measurement and noise from internal components.
This is also because contexts are highly complex. For instance, in asynchronous and heterogeneous
mobile environments, contexts easily become obsolete and dynamically vary with users. Detailed reasons
for inevitably noisy contexts for ubiquitous mobile computing can be found in [8].

2. DCCI: a decentralized scheme for checking context inconsistency

In this section, we introduce DCCI: a Decentralized Scheme for Checking Context Inconsistency. We
first describe our system model. Then we present the detail design of DCCI, followed by discussions.

Fig. 1. Illustration of the system model of DCCI, which is constructed by creating shortcuts among nodes that impose
diverse constraints on the same context.

2.1System Model

The design philosophy of DCCI is to seek a simple, robust, fully distributed and scalable system that
can efficiently check context inconsistency. DCCI is inspired by a simple and efficient principle called
preference-based locality, denoting that the nodes taking advantage of the same context can check
constraints over various context instances. These nodes, preferring the same context with distinct
constraints on context attributes, are called pNeibor nodes and they form a preference-based list named
pNeiborLst. In Figure 1(b), pNeibor nodes 5 and 8 impose different constraints on the same context and
thus they comprise a preference-based list pNeiborLst, while pNeibor nodes 1 and 4 add constraints on a
type of contexts and form another pNeiborLst. Suppose a node in a pNeiborLst collects a context, it and
its neighbors in the pNeiborLst can rapidly check whether context inconsistency does exist or not by
evaluating their constraints on context properties, respectively. Intuitively, by exploiting the
preference-based locality, DCCI assists pervasive applications in remarkably narrowing the checking
scope of context inconsistency detection, rather than broadcasting over the entire network. Meanwhile,
DCCI specifies the targeted destinations to which the being checked contexts should be disseminated.
Which significantly reduces the communication overhead and accelerates the context dissemination and
checking. Given the various requirements from every node, DCCI is supposed to provide a function for
checking diverse constraints on contexts. For instance, we assume the location of a user at the specified
time should be unique, i.e., the location of this user can not be totally different at the same time snapshot.
As a result, the problem of context inconsistency checking turns out to the maintenance of the
preference-based locality.

702 Daqiang Zhang et al. / Physics Procedia 25 (2012) 700 – 707

In DCCI, pervasive computing applications are modeled as a loosely-coupled distributed system
without any central control or shared memory. All nodes are equivalent and may frequently switch
scenarios, i.e., joining or leaving a pervasive network. Without loss of generality, we assume that all
nodes (participating devices and users) are uniformly distributed in a pervasive space where they can
independently move during a finite period of time t with a speed randomly chosen in the interval 0

 2m/s (the upper bound is set according to the average human walking speed that is about
1.3m/s) in arbitrary directions to reflect user displacements. At the end of the period t, a node may stay,
leave or move on. Note that the speed of nodes can be altered if necessary so that these nodes may
continue their movements until reaching a border. These nodes communicate by message-passing to form
an overlay. Communications suffer from finite but unbounded message delay, and all communications are
directional (i.e., unidirectional communication can be detected and hidden at the network layer).

Figure 1 illustrates the system model of DCCI, consisting of three types of links: physical links from
the physical network, logical links from the underlying the network overlay, and shortcuts from the
shortcut structure that is built on top of the network overlay. Physical links denote that nodes can
communicate directly, whereas logical links and the shortcut structure represent nodes can communicate
logically. In order to construct the structure, i.e., linking pNeibor nodes that are in the same pNeiborLst,
DCCI builds an overlay, identifies nodes that are associated with the pNeibor relationship, and then
discovers shortcuts by the preference-based locality.

2.2DCCI’s Steps

Fig. 2. The detailed design of DCCI, involving three steps – constructing an overlay, identifying preference-based
locality and building a locality-based shortcut structure.

Figure 2 illustrates the DCCI scheme, which checks context inconsistency by three steps –
constructing an overlay, identifying preference-based locality and building locality-based structure. In
addition, DCCI provides a function to maintain the network under frequent node churns (e.g., node
joining and leaving). In Sections II-B1, II-B2, II-B3, we will detail these steps. Meanwhile, DCCI
provides a maintaining service in Section II-B4. It is worth emphasizing that DCCI is compatible with
most existing overlays, such as Chord, CAN and Gnutella. Pervasive applications is capable of
customizing the locality and this locality based structure in light of their requirements. Thus, DCCI
demonstrates that the locality-based structure may be a performance enhancement.

 Daqiang Zhang et al. / Physics Procedia 25 (2012) 700 – 707 703

1) Constructing an overlay: This step aims to construct an overlay by organizing all the nodes in a
logical ring, which is adapted for pervasive computing applications to locate the source without flooding
in the network.

Each node and key assign themselves through a consistent hashing function such as SHA algorithm as
well as its various variants. The identifiers for nodes and keys are generated by hashing node addresses
and keys, respectively. Thus, the keys are mapped to the overlay and handled by their nearest nodes on a
logical ring. Each node keeps track of a successor and a predecessor all the times, thus building a logical
overlay.

Concurrent node churns (i.e., nodes join and leave concurrently) occur frequently due to unpredictable
mobility, resource limitation and unreliable wireless connection in pervasive computing environments
characterized by asynchronous coordination among computing devices. The lack of consideration of
concurrency and device heterogeneity inhibits the effectiveness of most existing schemes from
peer-to-peer and network coding fields. On the other side, concurrent churns can be handled by lock
mechanisms, which definitely incur many communication overheads. Given that the targeted applications
are not real-time systems, DCCI leverages the underlying overlay to capture and reflect the node churn,
which guarantees the best performance of context consistency checking in most cases.

Suppose a node n joins the overlay network in DCCI, and ID is between nodes ns and nt. Nodes n, nt

and ns initiate an joincheck process, respectively. At the beginning, node n sets nt and ns as its successor
and predecessor. Then, node n checks whether node ns set it as a successor. If not, node n will notify ns.
Node n does the same process for node nt. Finally, the system reaches a stable and correct status.
However, due to network latency as well as other failures, the above step may not be correctly executed.
Consequently, the joining node will periodically check affected nodes to update their information (once in
DCCI). The pseudo-code of concurrent join operation is given as Algorithm 1.

When a node leaves a specific pervasive network, it is committed to notify its predecessor and
successor, who will update their information correspondingly. Owing to the unexpected failures and
exceptions such as device failures and network latencies, all nodes have to periodically check their
neighbors.

2) Identifying preference-based locality: Based on the above network overlay, DCCI aims at
identifying the preference-based locality. The simplest method is broadcasting the preferences of every
node over the entire network, which causes a huge number of communication overheads. Most
forwarding algorithms reduces the cost associated with flooding the network by forwarding only to good

704 Daqiang Zhang et al. / Physics Procedia 25 (2012) 700 – 707

relays. However, it is difficult to decide whether an encountered node is good relay at the moment of
encounter.

In order to successfully identifying preference-based locality at low costs, DCCI extends the
delegation forwarding protocol by limiting the number of forwarding. The extended protocol helps a node
to only forward a message to nodes with quality greater than any observed nodes so far for its message. In
DCCI, it dramatically reduces the communication overheads.

3) Building a locality-based shortcut structure: In this section, DCCI intends to create a shortcut
structure by discovering shortcuts among nodes that impose constrictions on the same context, i.e.,
linking the pNeibor nodes in the same pNeiborLst and then checking context inconsistency among the
nodes in the pNeiborLst.

When a node n joins the system, it may have no idea about other nodes’ preference in context
requirements. It joins the underlying overlay network by hashing its address using consistent hashing, and
certain keys previously assigned to the n’s successor now become assigned to the n. Then, node n checks
other nodes’ context requirements with its requirements by searching over the underlying network. Once
a pNeibor node n’ is located, node n will ignore the reply from any other pNeibor nodes. It will copy the
pNeiborLst of node n’ , create shortcuts with related pNeibor nodes and notify them to add it in their
respective pNeiborLsts. Thus, nodes in pNeiborLst know their pNeibor nodes’ location and subsequent
context consistency checking go through the pNeibor nodes with known addresses in the specific
pNeiborLst. If a node cannot find pNeibor nodes, it will issue a request to the underlying overlay network.
Upon a context conflict is detected, the detecting node will immediately notify the dependent applications
to deal with this conflict. The pseudo-code of constructing a shortcut structure is illustrated as Algorithm
2.

In DCCI, the locality-based structure is just a performanceenhancement. If context consistency can be
checked in pNeibor nodes within a specific pNeiborLst, it can always be checked in the underlying
overlay network. Moreover, the overlay can also detect some kinds of context inconsistency that cannot
be detected by the locality-based structure. For example, two nodes that are located remotely and impose
two different constraints on the context of Joanne’ location – unique and redundant. At this time, DCCI
does not incorporate these two nodes into its locality-based structure such that DCCI can not detect the
location inconsistency.

 Daqiang Zhang et al. / Physics Procedia 25 (2012) 700 – 707 705

4) Maintenance under node churns: In pervasive applications, frequent node churn leads to the change
in network topology. Therefore, the shortcut structure must be adapted dynamically. The adaptation in the
underlying overlay is discussed in Section II-B1, and thus this section will concentrate on the adaptation
in the shortcut structure.

In DCCI, each peer continuously keeps track of its shortcuts’ performance and updates its shortcut
ranking. Once it fails, all of its assigned keys are reassigned to its successor. Any other keys and their
respective assigned nodes’ location remain unchanged. In the shortcut structure, at least one of the
neighbors of the failure nodes will detect the failure and notify the others to adapt. Thus, the shortcut
structure is kept up-to-date.

With respect to concurrent operations in the physical network, DCCI has to spend much time adapting
the underlying overlay. In order not to increase the maintenance burden at the busy time, DCCI defers the
maintenance of the shortcut structure.

3. Evaluation

In order to evaluate whether the proposed scheme is appealing for context consistency checking in
pervasive computing environments, we carried out a series of experiments. We select success rate to
measure the accuracy of checking context inconsistency, which is defined as a percentage of successfully
detecting the inconsistency among all context inconsistency.

In the following, we first describe the experimental settings, and then analyze the evaluation results.

3.1Experimental settings

We evaluated DCCI over OMNet++, which is an extensible, modular, component-based C++
simulation library and framework for communication networks, queuing networking and performance
evaluation (See http://www.omnetpp.org/ for detail information). We ran experiments in Windows XP
(SP3) with 2.0 GB memory and 2.4 GHz CPU, selected averaged values over ten times as results and
selected the ideal flooding scheme (i.e., the scheme works without influence of noise, congestion and
latency) as our benchmark. Note that we are also developing a prototype over the multi-campus to
evaluate the validness of DCCI in practice. We currently deploy various sensors, RFID, bluetooth into the
environment and asks participants to randomly move.

In accordance with the presentation in Section II-A, we randomly generated 500, 2,000 and 5,000
static and mobile nodes as E500, E2000 and E5000, respectively. We assume that at most 8% of all nodes
impose different constraints on the same context, i.e., context inconsistency occurs within less than 10%
of all nodes. The characteristics of experiment configurations are listed in Table1.

Table 1 statistical feature of experiment configurations

706 Daqiang Zhang et al. / Physics Procedia 25 (2012) 700 – 707

In our experiments, the overall performance of DCCI is evaluated by the success rate, which is
defined as the ratio that the successfully checked inconsistency to the total number of context
inconsistency.

3.2Success rate

We first conducted several experiments over E500, E2000 and E5000 to check the overall success rate,
and then to check the performance of preference-based shortcuts in success rate.

Figure 3 illustrates the averaged results of success rate over different experiment configurations for
each inconsistency detection. The x axis is the success rate and the y axis is the sample time when the
observation was made. The averaged success rate for E500 and E2000 is as high as 80% – 97%, although
it decreases in E5000 when the numbers of nodes, contexts and context constrictions increase remarkably.
The results show that DCCI achieves the high levels of success rate in checking context inconsistency,
which indicates that DCCI slightly affects the checking accuracy compared with the ideal flooding
scheme. The differences between DCCI and the flooding scheme are mainly caused by network latency,
nodes’ movement and unreliable connection.

Fig. 3. The overall success rate over E500, E2000 and E5000 experiment configurations

Fig. 4. Number of shortcuts added in context consistency checking over E500, E2000 and E5000 experiment
configurations

Figure 4 illustrates how much the preference-based locality affects the averaged success rate,
indicating the more shortcuts added, the better success rate that DCCI can achieve. The horizontal axis is

 Daqiang Zhang et al. / Physics Procedia 25 (2012) 700 – 707 707

the number of shortcuts added during the sample time, and the vertical axis is the averaged success rate.
With the growth of the number of shortcuts added, DCCI is able to obtain the higher levels of checking
accuracy. After the number of the shortcuts added is about 600, DCCI achieves the best success rate.
While the number of the shortcuts continues increase, the success rate diminishes. This is partially
because the success rate is also dramatically affected by various environmental factors as it does in Figure
3. This is also because that the sizes of pNeibor nodes and pNeiborLst groups lead to a great amount of
communication overhead as well as latency, alleviating the performance of preference-based locality.

6. Conclusion

In this paper, we have studied context inconsistency checking without central control in pervasive
computing environments. Toward this objective, we have proposed DCCI: a scheme for Decentralized
Checking Context Inconsistency, which checks context inconsistency by evaluating the constraints on the
certain type of context instances and patterns over a shortcut structure. In order to construct the structure,
DCCI first builds a simple overlay network and then leverages a preference-based locality. DCCI is a
promising scheme for pervasive applications because it introduces a shortcut mechanism based on locality
for performance enhancement. DCCI exploits the preference-based locality that nodes requiring the same
context can check the inconsistency on this type of contexts. This locality can be tailored to according to
the application requirements so as to achieve application goals.

However, DCCI currently suffers from several problems. We will investigate how to further reduce
the message complexity during the maintenance of the underlying overlay network and the shortcutbased
layer. We will also study how many shortcuts should be created such that DCCI can achieve best
performance in terms of accuracy and efficiency for checking context inconsistency. Finally, we will
study how to detect and interpret concurrent contexts in asynchronous and dynamic pervasive computing
environments.

References

[1] M. Romn, C. Hess, R. Cerqueira, A. Ranganathan, R. H. Campbell, and K. Nahrstedt, “A middleware infrastructure for

active spaces,” IEEE Pervasive Computing, vol. 1, no. 4, pp. 74–83, 2002.

[2] M. Weiser, “The computer for the 21st century,” Scientific American, vol. 265, pp. 66–75, 1991.

[3] W. Xue, H. Pung, P. P. Palmes, and T. Gu, “Schema matching for context-aware computing,” in Proc. of the 11th Intl.

Conf. on Ubiquitous Computing, 2008, pp. 292–301.

[4] A. Harter, A. Hopper, P. Steggles, A. Ward, and P. Webster, The anatomy of a context-aware application,” in Proc.

of the 5th Annual ACM/IEEE Intl. Conf. on Mobile Computing and Networking, 1999, pp. 59–68.

[5] C. Xu, S. C. Cheung, W. K. Chan, and C. Ye, “Heuristicsbased strategies for resolving context inconsistencies in

pervasive computing applications,” in Proc. of the 28th IEEE Intl. Conf. on Distributed Computing Systems, 2008, pp. 713–721.

[6] H. Lu, W. Chan, and T. Tse, “Testing pervasive software in the presence of context inconsistency resolution services,”

in Proc. of the 30th Intl. Conf. on Software Engineering, 2008, pp. 61–70.

[7] S. R. Jeffery, M. Garofalakis, and M. J. Franklin, “Adaptive cleaning for rfid data streams,” in Proc. of the 32nd Intl.

Conf. on Very Large Data Bases, 2006, pp. 163–174.

[8] E. Elnahrawy and B. Nath, “Cleaning and querying noisy sensors,” in Proc. of the 2nd ACM Intl. Conf. on Wireless

Sensor Networks and Applications, 2003, pp. 78–87.

