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Propagation via Kernelization: the Vertex Cover

Constraint

Clément Carbonnel and Emmanuel Hebrard

LAAS-CNRS, Université de Toulouse, CNRS, INP, Toulouse, France

Abstract. The technique of kernelization consists in extracting, from
an instance of a problem, an essentially equivalent instance whose size is
bounded in a parameter k. Besides being the basis for efficient param-
eterized algorithms, this method also provides a wealth of information
to reason about in the context of constraint programming. We study
the use of kernelization for designing propagators through the example
of the Vertex Cover constraint. Since the classic kernelization rules of-
ten correspond to dominance rather than consistency, we introduce the
notion of “loss-less” kernel. While our preliminary experimental results
show the potential of the approach, they also show some of its limits. In
particular, this method is more effective for vertex covers of large and
sparse graphs, as they tend to have, relatively, smaller kernels.

1 Introduction

The fact that there is virtually no restriction on the algorithms used to reason
about each constraint was critical to the success of constraint programming. For
instance, efficient algorithms from matching and flow theory [2, 14] were adapted
as propagation algorithms [16, 18] and subsequently lead to a number of success-
ful applications. NP-hard constraints, however, are often simply decomposed.
Doing so may significantly hinder the reasoning made possible by the knowledge
on the structure of the problem. For instance, finding a support for the NValue

constraint is NP-hard, yet enforcing some incomplete propagation rules for this
constraint has been shown to be an effective approach [5, 10], compared to de-
composing it, or enforcing bound consistency [3].

The concept of parameterized complexity is very promising in the context of
propagating NP-hard constraints. A study of the parameterized complexity of
global constraints [4], and of their pertinent parameters, showed that they were
a fertile ground for this technique. For instance, a kernelization of the NValue

constraint was introduced in [12], yielding an FPT consistency algorithm. A
kernel is an equivalent instance of a problem whose size is bounded in a param-
eter k. If a problem has a polynomial-time computable kernel, then it is FPT
since brute-force search on the kernel can be done in time O∗(f(k)) for some
computable function f . Moreover, kernelization techniques can provide useful
information about suboptimal and/or compulsory choices, which can be used to
propagate. In this paper we consider the example of the vertex cover problem,



where we want to find a set of at most k vertices S of a graph G = (V,E) such
that every edge of G is incident to at least one vertex in S. This problem is a
long-time favourite of the parameterized complexity community and a number of
different kernelization rules have been proposed, along with very efficient FPT
algorithms (the most recent being the O(1.2738k + k|V |) algorithm by Chen,
Kanj and Xia [7]).

Since the complement of a minimum vertex cover is a maximum indepen-
dent set, a VertexCover constraint can also be used to model variants of the
maximum independent set and maximum clique problems with side constraints
modulo straightforward modeling tweaks. Among these three equivalent prob-
lems, vertex cover offers the greatest variety of pruning techniques and is there-
fore the most natural choice for the definition of a global constraint. Through
this example, we highlight the “triple” value of kernelization in the context of
constraint programming:

First, some kernelization rules are, or can be generalized to, filtering rules.
Since the strongest kernelization techniques rely on dominance they cannot be
used directly for filtering. Therefore, we introduce the notion of loss-less ker-
nelization which preserves all solutions and can thus be used in the context of
constraint propagation. Moreover, we show that we can use a more powerful
form of kernel, the so-called rigid crowns to effectively filter the constraint when
the lower bound on the size of the vertex cover is tight. We discuss the various
kernelization techniques for this problem in Section 3.

Second, even when it cannot be used to filter the domain, a kernel can be
sufficiently small to speed up lower bound computation, or to find a “witness
solution” and sometimes an exact lower bound. We also show that such a support
can be used to obtain stronger filtering. We introduce a propagation algorithm
based on these observations in Section 4. Along this line, the kernel could also be
used to guide search, either using the witness solution or the dominance relations
on variable assignments.

Third, because a kernel garantees a size at most f(k) for a parameter k,
one can efficiently estimate the likelihood that these rules will indeed reduce
the instance. We report experimental results on a variant of the vertex cover
problem in Section 5. These experiments show that, as expected, kernelization
techniques perform better when the parameter is small. However, we observe
that the overhead is manageable, even in unfavorable cases. Moreover, one could
dynamically choose whether costly methods should be applied by comparing the
value of the parameter k (in our case, the upper bound of the variable standing
for the size of the cover) to the input size.

2 Background and Notations

An undirected graph is an ordered pair G = (V,E) where V is a set of vertices
and E is a set of edges, that is, pairs in V . We denote the neighborhood N(v) =
{u | {v, u} ∈ E} of a vertex v, its closed neighborhood N+(v) = N(v) ∪ {v}
and N(W ) =

⋃
v∈W

N(v). The subgraph of G = (V,E) induced by a subset of



vertices W is denoted G[W ] = (W, 2W ∩ E). An independent set is a set I ⊆ V
such that no pair of elements in I is in E. A clique is a set C ⊆ V such that
every pair of elements in C is in E. A clique cover T of a graph G = (V,E) is a
collection of disjoint cliques such that

⋃
C∈T

C = V . A matching is a subset of
pairwise disjoint edges. A vertex cover of G is a set S ⊆ V such that every edge
e ∈ E is incident to at least one vertex in S, i.e., S∩e 6= ∅. The minimum vertex

cover problem consists in finding a vertex cover of minimum size. Its decision
version is NP-complete [11].

The standard algorithm for solving this problem is a simple branch and
bound procedure. There are several bounds that one can use, in this paper we
consider the minimum clique cover of the graph (or, equivalently, a coloring of
its complement). Given a clique cover T of a graph G = (V,E), we know that all
but one vertices in each clique of T must be in any vertex cover of G. Therefore,
|V | − |T | is a lower bound of the size of the minimum vertex cover of G. The
algorithm branches by adding a vertex to the cover (left branch) or adding its
neighborhood to the cover (right branch).

A constraint is a predicate over one or several variables. In this paper we
consider the vertex cover problem as a constraint over two variables: an integer

variable K to represent the bound on the size of the vertex cover, and a set

variable S to represent the cover itself. The former takes integer values in a
domain D(K) which minimum and maximum values are denoted K and K,
respectively. The latter takes its values in the sets that are supersets of a lower

bound S and subsets of an upper bound S. Moreover, the domain of a set variable
is also often constrained by its cardinality given by an integer variable |S|. We
consider a constraint on these two variables and whose predicate is the vertex
cover problem on the graph G = (V,E) given as a parameter:

Definition 1 (VertexCover constraint).
VertexCover[G](K,S) ⇐⇒ |S| ≤ K & ∀{v, u} ∈ E, v ∈ S ∨ u ∈ S

A bound support for this constraint is a solution of the VertexCover prob-
lem. Since enforcing bound consistency would entail proving the existence of two
bound supports for each element in S\S and one for the lower bound of K, there
is no polynomial algorithm unless P=NP. In this paper we consider pruning rules
that are not complete with respect to usual notions of consistencies.

3 Kernelization as a Propagation Technique

3.1 Standard Kernelization

A problem is parameterized if each instance x is paired with a nonnegative integer
k, and a parameterized problem is fixed-parameter tractable (FPT) if it can be
solved in time O(|x|O(1)f(k)) for some function f . A kernelization algorithm

takes as input a parameterized instance (x, k) and creates in polynomial time a
parameterized instance (x′, k′) of the same problem, called the kernel, such that



(i) (x′, k′) is satisfiable if and only if (x, k) is satisfiable;
(ii) |x′| ≤ g(k) for some computable function g, and
(iii) k′ ≤ h(k) for some computable function h.

While this formal definition does not guarantee that the kernel is a subin-
stance of (x, k), in graph theory kernelization algorithms often operate by ap-
plying a succession of dominance rules to eliminate vertices or edges from the
graph. In the case of vertex cover, the simplest dominance rule is the Buss rule:
if a vertex v has at least k+1 neighbors, then v belongs to every vertex cover of
size at most k; we can therefore remove v from the graph and reduce k by one.
Applying this rule until a fixed point yields an elementary kernel that contains
at most k2 edges and 2k2 non isolated vertices [6]. A more refined kernelization
algorithm works using structures called crowns. A crown of a graph G = (V,E)
is a partition (H,W, I) of V such that

(i) I is an independent set;
(ii) There is no edge between I and H , and
(iii) There is a matching M between W and I of size |W |.

Every vertex cover of G[W ∪ I] has to be of size at least |W | because of the
matching M . Since I is an independent set, taking the vertices of W over those
of I into the vertex cover is always a sound choice: they would cover all the edges
between W and I at minimum cost and as many edges in G[H ∪W ] as possible.
A simple polynomial-time algorithm that finds a crown greedily from a maximal
matching already leaves an instance G[H ] with at most 3k vertices [1]. A stronger
method using linear programming yields a (presumably optimal) kernel of size
2k [15].

3.2 Loss-less Kernelization

The strongest kernelization rules correspond to dominance relations rather than
inconsistencies. However, the Buss rule actually detects inconsistencies, that is,
vertices that must be in the cover. We call this type of rules loss-less as they
do not remove solutions. We can extend this line of reasoning by considering
rules that do not remove solutions close to the optimum: for the VertexCover

constraint, the variable K is likely to be minimized and the situation where all
solutions are close to the optimum will inevitably arise. This can be formalized
in the context of subset minimization problems, which ask for a subset S with
some property π of a given universe U such that |S| ≤ k. In the next definition
we denote by opt the cardinality of a minimum-size solution.

Definition 2. Given an integer z and a subset minimization problem parame-

terized by solution size k, a z-loss-less kernel is a partition (H,F,R, I) of the

universe U where

– F is a set of forced items, included in every solution of size at most opt+z;
– R is a set of restricted items, intersecting with no solution of size at most

opt+z;



– H is a residual problem, whose size is bounded by a function in k and

– I is a set of indifferent elements, i.e., if i ∈ I, then φ is a solution of size

at most k − 1 if and only if φ ∪ i is a solution.

An ∞-loss-less kernel is simply said to be loss-less. The Buss kernel is a loss-
less kernel for vertex cover that never puts any vertices in R (F contains vertices
of degree strictly greater than k, and I contains isolated vertices). In the case of
vertex cover, the set R is always empty unless z = 0. Note that loss-free kernels
introduced in the context of backdoors [17] are different since they only preserve
minimal solutions; for subset minimization problems those kernels are called full

kernels [9].
A kernel for vertex cover that preserves all minimum-size solutions has been

introduced in [8]. In our terminology, this corresponds to a 0-loss-less kernel.
Interestingly, this kernelization is based on a special type of crown reduction
but yields a kernel of size 2k (matching the best known bound for standard
kernelization). The idea is to consider only crowns (H,W, I) such that W is the
only minimum-size vertex cover of G[W ∪ I], as for this kind of crown vertices
of W are always a strictly better choice that those of I. Those crowns are said
rigid. The authors present a polynomial-time algorithm that finds the (unique)
rigid crown (H,W, I) such that H is rigid crown free and has size at most 2k.
Their algorithm works as follows. First, build from G = (V,E) the graph BG

with two vertices vl, vr for every v ∈ V and two edges {vl, ur}, {ul, vr} for every
edge {v, u} ∈ E. Compute a maximum matching M of BG (which can be done in
polynomial time via the Hopcroft-Karp algorithm [14]). Then, if D is the set of
all vertices in BG that are reachable from unmatched vertices via M -alternating
paths of even length, a vertex v in G belongs to the independent set I of the
rigid crown if and only if vl and vr belong to D. This algorithm is well suited to
constraint propagation as bipartite matching algorithms based on augmenting
paths are efficient and incremental.

3.3 Witness Pruning

Last, even if the standard kernel uses dominance relations, it can indirectly be
used for pruning. By reducing the size of the problem it often makes it possible
to find an optimal vertex cover relatively efficiently. This vertex cover gives a
valid (and maximal) lower bound. Moreover, given an optimal cover S we can
find inconsistent values by asserting that some vertices must be in any cover of
a given size.

Theorem 1. if S is an optimal vertex cover of G = (V,E) such that there

exists v ∈ S, J ⊆ N(v)\S with N(J) ⊆ N+(v) then any vertex cover of G either

contains v or at least |S|+ |J | − 1 vertices.

Proof. Let k be an upper bound on the size of the vertex cover, v ∈ S be a vertex
in an optimal vertex cover S. Consider J ⊆ N(v) \ S such that N(J) ⊆ N+(v).
Suppose there exists a vertex cover S′ such that |S′| < |S|+ |J | − 1 and v /∈ S′.
S′ must contain every node in N(v) and hence in J . However, we can build a



vertex cover of size at most |S| − 1 by replacing J by v, since V \ S and thus J
are independent sets. ⊓⊔

If we can manage to find a minimum vertex cover S, for instance when
the kernel is small enough so that it can be explored exhaustively, Theorem 1
entails a pruning rule. If we find a vertex v ∈ S and a set J ∈ N(v) \ S with
N(J) ⊆ N+(v) and |J | > k − |S| then we know that v must be in all vertex
covers of size ≤ k.

4 A Propagation Algorithm for VertexCover

In this section we give the skeleton of a propagation algorithm for theVertexCover

constraint based on the techniques discussed in Section 3.

Algorithm 1: PropagateVertexCover(S,K,G = (V,E), λ, ω)

1 S ← S ∪N(V \ S);

2 Hr, F r ← BussKernel(G[S \ S]);

3 if ω 6⊆ S ∨ |ω ∪ S| ≥ K then

4 Hk,W k ← Kernel(Hr);

5 if λ > 0 then ω ← F r ∪W k∪ VertexCover(Hk, λ);
6 if ω is optimal then K ← |ω| ;

7 else K ← max(K, |F r|+ |F k|+LowerBound(Hk)) ;

8 if K = K then

9 Hr, F r, Rr ← RigidKernel(G[S \ S]);

10 S ← S \ Rr;

11 else if ω is optimal & K −K ≤ 2 then S, S ← WitnessPruning(G, ω) ;
12 S ← S ∪ F r;

Algorithm 1 takes as input the set variable S standing for the vertex cover,
an integer variable K standing for the cardinality of the vertex cover, and three
parameters: the graph G = (V,E), an integer λ, and a “witness” vertex cover ω
initialised to V .

The pruning in Line 1 is a straightforward application of the definition: the
neighborhood of vertices not in the cover must be in the cover. Then, in Line 2, we
apply the ∞-loss-less kernelization (Buss rule) described in Section 3.2 yielding
a pair with a residual graph Hr and a set of nodes F r that must be in the cover.

Next, if Condition 3 fails, there exists a vertex cover (ω∪S) of size strictly less
than K. As a result, the pruning from rigid crowns cannot apply. When the cover
witness is not valid, we compute, in Line 4, a standard kernel with the procedure
Kernel(G) using crowns, as explained in Section 3.1. We then use this kernel
to compute, in Line 5, a new witness using the procedure VertexCover(G, λ)
which is the standard brute-force algorithm described in Section 2. We stop the



procedure when we find a vertex cover whose size is stricly smaller than the
current upper bound, or when the search limit of λ, in number of nodes explored
by the branch & bound procedure, is reached. In the first case, we know that the
lower bound cannot be tight hence the constraint cannot fail nor prune further
than the loss-less kernel. The second stopping condition is simply used to control
the amount of time spent within the brute-force procedure.

If the call to the brute-force procedure was complete, we can conclude that the
witness cover is optimal and therefore a valid lower bound (Line 6). Otherwise, we
simply use the lower bound computed at the root node by VertexCover, denoted
LowerBound in Line 7. If the lower bound is tight, then we can apply the pruning
from rigid crowns as described in Section 3.2. Algorithm RigidKernel returns a
triple Hr, F r, Rr of residual, forced and restricted vertices, respectively. Finally
we apply a restriction to pairs of the pruning corresponding to Theorem 1 in
Line 11, and apply the pruning on the lower bound of S corresponding to the
forced nodes computed by BussKernel and/or RigidKernel.

5 Experimental Evaluation

We experimentally evaluated our propagation algorithm on the “balanced ver-
tex cover problem”. We want to find a minimum vertex cover which is balanced
according to a partition of the vertices. For instance, the vertex cover may rep-
resent a set of machines to shut down in a network so that all communications
are interrupted. In this case, one might want to avoid shutting down too many
machines of the same type, or same client, or in charge of the same service, etc.
By varying the degree of balance we can control the similarity of the problem
to pure minimum vertex cover. We used a range of graphs from the dimacs

and snap repositories. For each graph G = (V,E), we post a VertexCover

constraint on the set variable ∅ ⊆ S ⊆ V .

Then, we compute (uniformly at random) a balanced 4-partition {s1, s2, s3, s4}
of the vertices and we post the following constraints: max({|si ∩ S| | 1 ≤ i ≤
4}) −min({|si ∩ S| | 1 ≤ i ≤ 4}) ≤ b. For each graph instance, we generated 3
instances for b ∈ {0, 4, 8} denoted “tight”, “medium” and “loose” respectively.
However, the classes p2p and ca- are much too large for these values to make
sense. In this case we used three ratios 0.007, 0.008 and 0.009 of the number of
nodes instead.

We compared 5 methods, all implemented in Mistral [13] and ran on CORE
I7 processors with a time limit of 5 minutes:

Decomposition is a simple decomposition in 2-clauses and a cardinality
constraint. Clique Cover uses only Buss kernelization and the clique cover
lower bound. It corresponds to non-colored lines in Algorithm 1. The witness is
initialised to V and never changes, and Line 4 is replaced by a simple identity
Hk ← Hr. Kernel Pruning uses kernelization, but no witness cover. It corre-
sponds to Algorithm 1 minus the instruction line 11, with λ set to 0. Kernel



Table 1: Comparison of approaches on the “Balanced Vertex Cover” problem.
Decomposition Clique Cover Kernel Pruning Kernel & witness VertexCover

#s gap cpu #nd #s gap cpu #nd #s gap cpu #nd #s gap cpu #nd #s gap cpu #nd
balancing constraint: tight

3 kel 2 2.00 9.7 0.4M 2 2.00 10.6 0.2M 2 2.00 9.1 0.2M 2 2.00 26.6 0.1M 2 2.00 41.0 0.1M
15 p h 12 5.73 8.6 0.5M 10 5.20 15.6 1.1M 11 5.20 11.2 0.6M 11 4.67 27.7 0.4M 11 4.67 28.8 0.4M
12 bro 9 3.67 0.1 11K 9 3.67 0.1 4K 9 3.67 0.1 3K 9 3.67 0.1 2K 9 3.67 0.2 2K
4 joh 1 0.00 0.1 10K 1 0.00 0.0 1K 1 0.00 0.0 1K 1 0.00 0.0 971 1 0.00 0.0 937
15 san 15 10.87 12.2 1.8M 11 9.80 13.3 1.9M 11 9.80 13.7 1.1M 11 9.80 10.8 0.6M 11 9.80 12.4 0.6M
7 c-f 3 10.29 0.2 9K 3 10.29 0.2 18K 3 10.29 0.1 7K 3 10.29 0.1 7K 3 10.29 0.1 7K
6 ham 4 9.00 26.3 2.2M 3 9.00 3.1 0.3M 3 9.00 3.4 0.2M 3 9.00 5.1 0.2M 3 9.00 5.1 0.2M
32 gra 29 40.47 24.6 2.5M 28 40.47 19.8 3.5M 28 39.22 17.6 2.0M 28 40.47 18.9 1.5M 28 41.22 9.8 0.5M
4 man 3 91.00 1.1 33K 3 91.00 1.1 51K 3 91.00 0.9 31K 3 91.00 1.4 31K 3 91.00 1.5 30K
5 mul 5 8.40 7.2 1.8M 4 7.60 41.4 6.3M 3 7.60 24.6 2.1M 3 7.60 25.1 2.1M 3 7.60 19.2 1.7M
3 fps 3 105.00 0.1 7K 3 103.67 40.5 4.2M 3 103.67 56.0 3.2M 3 103.67 61.0 3.2M 3 103.67 14.9 0.8M
3 zer 3 44.67 11.9 2.6M 3 44.67 11.4 1.6M 3 44.67 14.7 1.4M 3 44.67 13.9 1.4M 3 44.67 8.2 0.9M
3 ini 3 191.33 57.5 6.1M 3 191.33 72.7 6.1M 3 191.33 82.3 6.1M 3 191.33 82.6 6.1M 3 191.33 82.6 6.1M
5 p2p 5 38.60 1.0 8K 5 22.80 36.1 23K 2 11.80 2.8 11K 2 11.80 3.1 11K 2 11.80 3.4 11K
5 ca- 5 14.40 31.6 0.2M 4 9.00 35.6 0.2M 4 1.80 99.3 0.2M 3 2.60 102.3 0.2M 3 1.80 96.1 0.2M

balancing constraint: medium
3 kel 2 1.67 24.1 1.2M 2 0.67 35.9 1.0M 2 0.67 54.7 1.0M 2 0.00 32.8 2K 2 0.00 32.1 2K
15 p h 12 3.07 21.5 1.2M 10 1.27 24.3 0.7M 11 1.27 34.4 0.6M 10 0.87 18.6 60K 10 0.87 18.8 59K
12 bro 9 0.83 15.6 1.9M 8 0.17 17.8 1.0M 8 0.17 25.4 1.0M 8 0.17 23.9 451 8 0.17 22.2 450
4 joh 1 0.00 0.0 11 1 0.00 0.0 11 1 0.00 0.0 11 1 0.00 0.0 11 1 0.00 0.0 11
15 san 15 8.33 35.6 5.0M 7 2.67 30.4 2.4M 7 2.73 33.5 1.6M 7 1.53 42.8 0.4M 7 1.53 43.1 0.4M
7 c-f 3 4.14 0.0 40 3 4.14 0.0 40 3 4.14 0.0 40 3 4.14 0.0 40 3 4.14 0.0 40
6 ham 4 4.67 0.2 53K 2 4.67 0.0 1K 2 4.67 0.0 360 2 4.67 0.0 359 2 4.67 0.0 359
32 gra 26 29.28 32.8 2.7M 22 26.50 21.9 2.2M 22 24.44 23.8 1.4M 22 24.25 21.5 0.9M 22 24.25 23.0 0.9M
4 man 3 89.00 29.3 1.3M 3 88.75 44.6 1.6M 3 88.75 21.1 0.6M 2 88.50 29.6 0.6M 2 88.50 33.4 0.6M
5 mul 5 1.20 0.3 61K 1 1.20 0.0 1K 1 1.20 0.0 682 1 1.20 0.0 682 1 1.20 0.0 560
3 fps 3 103.00 0.0 250 1 102.67 0.0 429 1 102.67 0.0 404 1 102.67 0.0 404 1 102.67 0.0 261
3 zer 3 3.33 37.4 8.2M 1 3.00 11.6 1.5M 1 3.00 25.4 1.5M 1 3.00 14.5 1.5M 1 3.00 14.5 1.5M
3 ini 3 189.00 0.6 65K 1 189.00 0.0 4K 1 189.00 0.0 3K 1 189.00 0.0 3K 1 189.00 0.0 3K
5 p2p 5 35.40 1.0 8K 5 15.80 38.3 26K 1 4.40 3.3 11K 1 4.40 3.5 11K 1 4.40 3.8 11K
5 ca- 5 14.40 0.7 5K 4 8.60 2.3 8K 3 0.40 72.6 18K 2 1.20 74.1 16K 2 0.40 64.0 15K

balancing constraint: loose
3 kel 2 1.67 43.3 1.8M 2 0.67 20.1 0.6M 2 0.67 30.4 0.6M 2 0.00 27.7 447 2 0.00 28.0 419
15 p h 12 2.40 20.6 1.2M 10 0.73 32.1 1.0M 11 0.73 47.1 1.0M 9 0.27 18.0 3K 9 0.27 18.0 3K
12 bro 9 0.67 16.2 1.9M 8 0.00 10.6 0.7M 8 0.00 15.8 0.7M 8 0.00 13.6 264 8 0.00 13.6 264
4 joh 1 0.00 0.0 11 1 0.00 0.0 11 1 0.00 0.0 11 1 0.00 0.0 11 1 0.00 0.0 11
15 san 15 8.20 28.1 4.0M 7 2.13 40.9 2.3M 7 2.27 29.6 1.4M 5 0.27 36.8 3K 5 0.27 36.8 3K
7 c-f 2 0.71 0.0 1K 0 0.00 0.6 98K 0 0.00 0.1 7K 0 0.00 0.2 7K 0 0.00 0.2 7K
6 ham 4 2.00 0.0 118 2 2.00 0.0 118 2 2.00 0.0 118 2 2.00 0.0 118 2 2.00 0.0 118
32 gra 23 18.97 29.4 1.9M 17 12.84 12.9 0.8M 17 12.06 15.6 0.5M 17 11.56 14.5 66K 17 11.50 17.3 0.1M
4 man 3 88.50 38.1 0.8M 3 88.50 8.5 0.3M 3 87.75 30.6 0.8M 2 87.00 43.5 0.8M 2 86.50 52.4 0.8M
5 mul 5 0.00 0.0 93 0 0.00 0.0 92 0 0.00 0.0 91 0 0.00 0.0 91 0 0.00 0.0 91
3 fps 3 1.67 1.1 0.1M 1 1.00 12.6 1.0M 1 1.00 13.4 0.5M 1 1.00 13.9 0.5M 1 0.67 53.5 2.1M
3 zer 3 2.00 0.2 48K 0 1.00 2.6 0.4M 0 1.00 2.7 0.2M 0 1.00 2.6 0.2M 0 1.00 0.6 58K
3 ini 3 0.67 6.9 0.5M 0 0.00 20.9 1.3M 0 0.00 28.9 1.0M 0 0.00 31.9 1.0M 0 0.00 11.6 0.5M
5 p2p 5 33.00 1.0 8K 5 13.40 38.3 26K 1 2.00 3.4 11K 1 2.00 3.5 11K 1 2.00 3.9 11K
5 ca- 5 14.40 0.7 5K 4 8.60 2.5 8K 3 0.40 74.0 18K 2 1.20 73.9 16K 2 0.20 69.2 16K

& witness uses kernelization, and the witness cover for the lower bound K. It
corresponds to Algorithm 1 minus the instruction line 11, with λ set to 5000.
VertexCover is Algorithm 1 with λ set to 5000.

The results of these experiments are reported in Table 1. Instances are clus-
tered by classes whose cardinality is given in the first column. These classes are
ordered from top to bottom by decreasing ratio of minimum vertex cover size
over number of nodes. We report four values for each class and each method:
‘#s’ is the number of instances of the class that were not solved to optimality,



‘gap’ is the average gap w.r.t. the smallest vertex cover found, ‘cpu’ and ‘#nd’
are mean CPU time in seconds and number of nodes visited, respectively, until
finding the best solution. Notice that CPU times and number of nodes are then
only comparable when the objective values (gaps) are equal. We color the tuples
〈#s, gap, cpu, #nd〉 that are lexicographically minimum for each class1.

Instances with same value of b are grouped in the same sub-table. The “shift”
of colored cells from left to right when going from top to bottom in each subtable
was to be expected since the kernelization is more effective on instances with
small vertex cover. It should be noted that many instances from the dimacs

repository are extremely adverse to our method as they tend to have very large
vertex covers. On the other hand, kernelization is very effective on large graphs
from snap.

We can also observe another shift of colored cells from left to right when
moving to a subtable to the next. This was also an expected outcome since the
pruning on this constraint becomes more prevalent when the problem is closer
to pure vertex cover.

Last, we can observe that every reasoning step (0-loss-less kernels, lower
bound from the witness and pruning from the witness) improves the overall
results.

6 Conclusion

We have shown that the kernelization techniques can be an effective way to
reason about NP-hard constraints that are fixed parameter tractable. In order
to design a propagation algorithm we introduced the notion of loss-less kernel and
outlined several ways to benefit from a small kernel. Our experimental evaluation
on the VertexCover constraint shows the promise of this approach.

1 With a “tolerance” of 1s and 1% nodes.
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