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Motivation is a crucial part of animal and human mental development, fostering

competence, autonomy, and open-ended development. Motivational constructs have

proved to be an integral part of explaining human and animal behavior. Computer

scientists have proposed various computational models of motivation for artificial agents,

with the aim of building artificial agents capable of autonomous goal generation.

Multi-agent systems and swarm intelligence are natural extensions to the individual

agent setting. However, there are only a few works that focus on motivation theories in

multi-agent or swarm settings. In this study, we review current computational models of

motivation settings, mechanisms, functions and evaluation methods and discuss howwe

can produce systems with new kinds of functions not possible using individual agents.

We describe in detail this open area of research and the major research challenges it

holds.

Keywords: intrinsic motivation, artificial intelligence, cognitive development, swarms, multi-agent systems,

exploration, curiosity

INTRODUCTION

Artificial intelligence has come a long way toward developing intelligent systems. We are in
an era where autonomous cars are on the verge of roaming the streets, chess programs can
beat grandmasters, and handheld devices understand and translate speech in real-time. However,
we are still far from developing artificial agents capable of demonstrating, human-like adaptive
behavior, and open-ended learning. Research areas such as autonomous mental development
(Thomaz and Breazeal, 2006) and developmental cognitive robotics (Asada et al., 2009) aim to
address these challenges.

One of the important features of the artificial agents of the future will be their ability to
gain knowledge and learn skills without explicit feedback from humans as well as adapt the
behavior according to external and internal needs. As described in Russell and Norvig (2016),
agent behavior can be guided by goals and utilities. In this paper we define motivation as
a mechanism that generates goals as an intermediary between sensation and action selection
in an agent. These “motivated” agents will use their acquired knowledge and skills to build
increasingly complex repertoires of behaviors. Computational models of motivations have been
proposed, drawing inspiration and insight from biological (Gatsoulis and Mcginnity, 2015), neural
(Gottlieb et al., 2016), and evolutionary (Singh et al., 2010) perspectives. Computational models of
motivation enables artificial agents to gather knowledge, seek competence, and select goals based
on a combination of their individual experiences, preferences, and environmental characteristics
(Merrick and Shafi, 2011). While the general concept of motivation is broad and has many facets,
in our paper we focus on how motivation has been defined in artificial agents. Essentially a human
and animal trait, researchers have used various notions, mathematical models, and frameworks to
define motivation for artificial agents.
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Inspired by insights from human psychology, these
motivational models propose to incorporate open-ended
learning, autonomous skill acquisition, and progressive learning
in artificial agents. However, the current computational models
of motivation have seldom been extended and explored in
the social context- where multiple artificial agents exist,
communicate and interact. Multi-agent systems and swarms are
two examples of such contexts.

Multi-agent systems are a logical extension of the single
agent idea. Studies involving multi-agent systems include the
communication and behavior (Panait and Luke, 2005) among
multiple artificial agents. With combined goals, actions, domain
knowledge, and interactions (Stone and Veloso, 2000), these
systems pose unique challenges that are absent in single agent
settings. They can be robust and scalable, while introducing
complexity in cooperation and communication, and capable of
providing a platform to build social intelligence for artificial
agents (Dautenhahn, 1995).

The term “Swarm intelligence” was first coined by Beni
and Wang (1993). As they explained (Beni, 2004), a machine
can be defined as “intelligent” if it demonstrates behavior
which is “neither random nor predictable.” Following this
definition, an intelligent swarm was defined as a group of non-
intelligent agents that can collectively demonstrate intelligent
behavior. Swarm intelligence is inspired by behavior occurring
in insects, birds, fish and other organisms in nature. These
biological systems have existed for millennia, and they have
been efficiently solving complex problems through apparently
simple rules. The current approach to swarm intelligence is a
culmination of observations and findings from both biologists
(Beekman et al., 2008) and computer scientists (Brambilla et al.,
2013).

In this paper, we review the state of the art of the
computational models of motivation and present a
comprehensive review of this research. We talk about the
various aspects of the current works and discuss the scope of
extending them to multi-agent systems and swarms. This article
has the following main contributions:

1. We review existing computational models of motivation,
based on their setting, mechanism, function, and evaluation
methods. This provides a structured overview of the existing
research and a framework in which to introduce multi-agent
systems and swarms to the study of computational motivation.

2. We characterize the open area of research that involves
computational models of motivation in a social context,
specifically, multi-agent systems, and swarms. We do this by
examining motivation on the traditional axes of competence
and knowledge, while introducing a new axis of social vs.
individual agents.

3. Finally we determine the major challenges and benefits
of designing computational motivation for multi-agent and
swarm settings.

In the related works section, we discuss the existing surveys
on computational models of motivation and justify the position
of this survey. In the next section, we present the main
contribution of this paper. It starts with a discussion on

motivation and intrinsic motivation (IM), then provides a
structural summary of the current works on computational
models of intrinsic motivation. It concludes by presenting
an outlook and summary on computational motivation in a
social context. In the discussion section, we discuss the social
side of intrinsic motivation from various aspects, present the
major research challenges in that context, and conclude the
paper.

RELATED WORK

A number of surveys have been produced in the area of
computational motivation. This section discusses the focus of
each of the existing surveys and justifies the need for a new survey
studying computational motivation in a social context.

Oudeyer and Kaplan (2007) provided a typology of
computational approaches to motivation. They assumed
that any particular Computational Reinforcement Learning
(CRL) framework could be used to realize motivation signals.
Hence, their typology is based on the formal definition of the
reward used in a framework. Characterizing a robot by having a
number of sensor channels and motor channels, they classified
motivation models into the following categories:

1. Knowledge-based: Knowledge-based systems use “measures
that are related to the capacity of the system to model
its environment” (Mirolli and Baldassarre, 2013b). The
knowledge, for example, can be computed from the past
sensorimotor values. Once the knowledge is acquired, the
difference between the estimated knowledge and the actual
perceived value can be used to design the reward. For example,
the intrinsic reward can be proportional to the improvement
of the prediction. In this case, the robot will be “intrinsically
motivated” to maximize prediction progress, i.e., to minimize
the prediction errors. In essence, knowledge-based models put
the emphasis on how much an artificial agent “knows” about
the environment.

2. Competence-based: In these models, the reward for intrinsic
motivations is designed based on what an agent “can do” with
respect to a particular goal or task. In these models, intrinsic
rewards are associated with an agent’s ability to reach a certain
state or perform a certain activity. For example, a robot can
be rewarded proportionally to the progress in learning a
task, driving it toward goals that are rapidly improvable and
deterring it from situations that are too difficult or too easy to
gain enough competence.

In the survey section, we will use these categories as the
baseline from which we introduce motivation in a social
context. A related review (Oudeyer et al., 2007) describes
a robot as having two modules—a learning machine and
meta-learning machine. While the learning machine learns
to predict the sensorimotor consequences of an executed
action, the meta-learning machine learns to predict the
errors of the learning machine. The prediction made by
the meta-predictor is used as an intrinsic reward. The
authors divided the existing approaches in three categories
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based on how these predictions are exploited to generate
intrinsic motives. These are error maximization (Thrun,
1995; Huang and Weng, 2002; Barto et al., 2004; Marshall
et al., 2004), progress maximization (Herrmann et al., 2000;
Kaplan and Oudeyer, 2003), and similarity-based progress
maximization (Schmidhuber, 1991). This survey provides an
effective classification of the computational motivation models
by distinguishing between learning and meta-learning with a
focus on how agents can explore environments to gather effective
information.

While the previously mentioned surveys discussed the
mechanisms of intrinsic motivation, they do not provide a
clear insight on the functional roles of motivation. (Mirolli
and Baldassarre, 2013a,b) focus on the knowledge-based and
competence-based models of intrinsic motivation from the
functional aspect. They argued that “the ultimate function of
intrinsic motivation is to support the cumulative learning of
skills rather than knowledge.” They have analyzed some of the
knowledge-based mechanism regarding their contribution to
competence acquisition. They argue that to facilitate cumulative
skill acquisition based on intrinsic motivation, one has to
focus on the hierarchy and modularity of the skill organization
framework. In this framework, knowledge-based reward signals
can act at a lower level to learn the world-model, while
competence-based signals can work as a selector deciding which
skill is to learn.

Schmidhuber (2010) proposed a typology of intrinsic
motivation from a different perspective. He pointed out that
most of the intrinsically motivated systems have the following
components:

1. A model/encoder/predictor that captures the sensory inputs,
internal states, reinforcement signals and actions.

2. An intrinsic reward scheme that determines the learning
progress of the model.

3. A reinforcement learner that maximizes the future expected
reward.

Hence, this typology can be created considering the types of
these components. A set of companion questions for each of the
components is added and answering the questions can help build
a detailed topology. Schmidhuber presented a general, theoretical
framework that one can use to build a typology of intrinsically
motivated systems. This typology is based on the consideration
that intrinsic motivation will always be implemented through
reinforcement signals.

Barto (2013) provides an overview of intrinsic motivation
with regard to Reinforcement Learning (RL). He highlighted
the suitability of RL to capture the principles of motivation
in artificial systems by connecting drive theory with reward
maximization. Barto pointed out that RL framework “does not
care” where the reward signal is coming from. This makes
it possible to introduce an “intrinsic reward” which would
be generated from within the organism but won’t affect the
whole RL mechanism. Hence it can naturally accommodate
intrinsic motivation. In addition to that, he highlighted that
intrinsic reward signals can mimic the evolutionary success of
organisms.

Computational models of motivations were surveyed as a
part of computational value systems (Merrick, 2017). Value
systems define behavioral responses of intelligent beings with
regard to the external environment. The term “computational
value systems” extends the idea toward artificial agents such as
robots. A brief summary on the implementation of motivated
reinforcement learning as value systems is provided. Merrick
(Merrick, 2013) further reviews the existing novelty-based
models of intrinsicmotivation with a focus on building combined
motivation models and integrated learning architecture.

In a more recent work (Roohi et al., 2018), application of
intrinsic motivation in player modeling and game testing was
reviewed. This work concludes that while a few parameters of
intrinsic motivation are frequently implemented in the existing
works, some important features are generally overlooked. They
also point out the need for more complex motivational models
and better ways to evaluate them. The purpose of our paper
is to extend the existing views on intrinsic motivation beyond
individual agents to multi-agent and swarm settings.

A summary of the existing surveys is presented in Table 1.
It is evident from the table that there is no recent survey on
computational intrinsic motivation that provides insight into its
use in a social context. Till now, the most commonly referred
to survey of intrinsic motivation is the typology provided by
Oudeyer and Kaplan (2007). Their seminal work provides a
comprehensive view of a formal framework for motivation. It
provides a review of the then existing computational models of
IM. Since their work in 2007, intrinsic motivation has become
one of the most attractive research areas in cognitive science and
autonomousmental development.Moreover, with the emergence
of areas such as deep learning (Sigaud and Droniou, 2016; Wong,
2016) on autonomous mental development (Lake et al., 2017),
computational models of motivation have become relevant in
newer dimensions. In this survey, we categorize the existing
approaches and argue the benefits of extending them to social
settings- specifically multi-agent or swarm settings.

SURVEY: FROM MOTIVATION IN
INDIVIDUAL AGENTS TO MOTIVATION IN
SOCIAL SETTINGS

In the Motivation and Intrinsic Motivation from a Psychological
Perspective section, we introduce motivation from a
psychological perspective. The next section focuses specifically
on intrinsic motivation, as it has been used in computational
settings. In the Computational Motivation in Swarm and
Multi-Agent Settings section, we survey the current approaches
into multi-agent and swarm settings and discuss the possible
extensions.

Motivation and Intrinsic Motivation From a
Psychological Perspective
Ryan and Deci (2000a) succinctly defined motivation “to be
motivated means to be moved to do something.” Motivation is
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TABLE 1 | Summary of reviews on intrinsic motivation in artificial agents and

contribution of our survey.

Survey Comment

Oudeyer and Kaplan, 2007 Provides typology based on motivation

theory

Oudeyer et al., 2007 Categorizes existing approaches based on

learning and meta-learning

Highlights difference between

knowledge-based vs. competence-based

motivation models

Schmidhuber, 2010 Provides typology based on reward theory

Barto, 2013 Discusses intrinsic motivation with relation

to reinforcement learning

Merrick, 2017 Intrinsic motivation is surveyed as a part of

computational value systems

Roohi et al., 2018 Intrinsic motivation is surveyed as a tool to

build player models in computer games

In this study Introduces computational motivation in a

social context

the mechanism that makes humans and animals commit various
tasks.Motivation shapes our behavior throughout our life. On the
simplest terms, motivation may seem like a straightforward tool
that helps an organism to survive. However, a little deliberation
can show us the depth, variety and effect of motivation on a
grander scale. For example, motivations vary in degree and in
type for different people. In a classroom situation, two students
doing their homework can be motivated by completely different
influences. One of the students may finish the homework for
getting high scores in tests, and the other may do it as she finds
the subject highly intriguing. Furthermore, a third student may
be influence by a combination of both of these motivations, along
with a multitude of others.

Researchers from various fields have tried to explain
motivation from their respective view. A plethora of concepts
on the definition, function, and characteristics of motivation is
provided by ethologists (Epstein, 1982), psychologists (Ryan and
Deci, 2000a) neuroscientists (Watts and Swanson, 2002; Daw and
Shohamy, 2008), and behavioral neuroscientists (Berridge, 2004),
among others. The psychological perspective is particularly
relevant to our survey. We only provide a brief overview of
the psychological theories here. A comprehensive review can be
found in Savage (2000).

One of the most influential theories of motivation in
psychology is the drive concept, most productively formulated
by Hull (1951, 1952). The drive theory states that behavior of
an organism is motivated by drives such as hunger and thirst.
These drives arise as a response to reduce physiological needs
and they motivate behavior which results in the necessary deficit.
The theory of drive is centered on the concept of “homeostasis”
(Cannon, 1932), where “bodily conditions are maintained in
approximate equilibrium despite external perturbations.” This
theory, which says motivated behavior is a response to encounter
changes in equilibrium condition, has influenced many other
theories on motivation. Moreover, as described by Savage

(Savage, 2000), the theory of drive is an attractive option tomodel
motivational systems for artificial agents. The reason for this is
the reduction of drive can be translated to a system’s reward
mechanism which monitors different variables and respond
appropriately (i.e., reduce the deficit in the particular need) when
they change. However, because drive theory only explains a
subset of animal and human behaviors, other theories have been
proposed.

Another motivational theory (Toates, 1986), defines
motivation as a multiplicative combination of internal state
and an incentive factor. According to this, motivation in an
organism will arise as an interaction between an internal state
of the organism (e.g., thirst) and an external incentive factor
(availability of drinking water). Other motivational theories
include the hedonic theories, which state we seek pleasurable
activities and keep away from the unpleasant ones.

The shortcomings of the drive theory of motivation become
evident if we consider certain human and animal behavior.
Human infants perform activities that are not driven toward
reducing needs such as hunger or thirst. In one experiment
(Harlow et al., 1950), a group of monkeys spontaneously
attempted to solve a complex puzzle without any specific
reward. Likewise, humans perform various activities such as
painting, traveling, and playing sports, which do not directly
bring any obvious external rewards. This kind of curious and
exploratory behavior are not well-modeled by the drive theory
of motivation. White (1959) and Berlyne (1960, 1966) pointed
out the abundance of such intrinsically rewarding activities that
are driven by curiosity, play and exploration and in absence of
explicit reward. This is where the notion of intrinsic motivation
gets introduced. Intrinsic motivation is defined as themechanism
that encourages organisms to perform an activity “for the inherent
satisfaction rather than some separable consequence” (Deci and
Ryan, 1985). Intrinsically motivated activities are conducted for
the fun and challenge rather than achieving external rewards.

As soon as we introduce the notion of intrinsic motivation,
the next question is- “what are the factors that make an activity
intrinsically motivating?” Psychologists have proposed quite a
few theories in this context. Influenced by drive theory, some
psychologists proposed these activities are caused by “drive for
exploration” (Montgomery, 1954) and “drive to manipulate”
(Harlow et al., 1950). However, as criticized by White (1959),
these approaches have shortcomings. Indeed, these exploratory
activities are not homeostatic, in contrast to what drive theory
has proposed. An alternative stream of the idea to explain
intrinsicallymotivated activities is that of “optimal level theories”.
Dörner and Güss (2013) conducted an experiment that involved
rats going through various stimulating activities. The experiment
provided some key ideas toward intrinsic motivation. It was
observed that if animals continue getting a certain level of
environmental complexity, they become used to it and eventually
gets bored. If they are provided with a slightly complex stimulus,
they become curious again. However, if they encounter a stimulus
which is too complex compared to their current situation, it
confuses them and they tend to avoid it. In effect, an animal
will be intrinsically motivated by the activities and stimuli that
are optimally difficult and sit in the middle between familiarity
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and extreme novelty. Berlyne (1960) explored similar notions.
As pointed out by Barto (2013), optimal level theories have
important applications in varied areas such child development,
architecture, city planning, music, and so on.

Deci and Ryan (1985) further presented the Cognitive
Evaluation Theory (CET). CET states that intrinsically
motivating activities are the ones that satisfy innate psychological
needs such as competence, autonomy and relatedness. In
classroom situations, factors such as competence, autonomy and
self-determination facilitate intrinsic motivation whereas threats,
deadlines, competitions, and tangible rewards diminish intrinsic
motivation (Ryan and Deci, 2000a). Berlyne (1966) suggested
novelty, incongruity, surprise and complexity as underlying
factors that affect intrinsic motivation. As we will see in the latter
part of this paper, these factors are extensively used in modeling
computational intrinsic motivation.

We have detailed the psychological theories behind
intrinsically motivated activities and their distinction from
extrinsic motivations. A relevant question after this discussion
can be- what are the effectual differences between intrinsic and
extrinsic motivation and why would one be interested in intrinsic
motivation? One answer to this was provided by Baldassarre
(2011). He argued that from an evolutionary perspective,
extrinsic motivations guide learning of skill, knowledge and
behavior which directly increases the “fitness” (defined as
survival and reproductive chances) of an individual, whereas
intrinsic motivation produces behavior that increase the fitness
only at a later stage. We believe this aspect makes intrinsic
motivation more complex and interesting. If we want to build
human-like artificial intelligent systems, we need to implement
mechanisms inducing intrinsic motives and learn skills and
knowledge that may not seem useful now. This is where we need
to connect the psychological concepts with the computational
models.

Structuring Existing Approaches to
Computational Motivation
In this section, we provide a review of the current computational
models of motivation from four different aspects: setting,
mechanism, function and evaluation. We base our discussion on
the concept of an agent which can sense the state of its world,
reason about this state and act.While the motivationmechanism,
i.e., how motivation is defined, is central to the broader idea, the
peripheral concepts are quite relevant as well. Figure 1 illustrates
these concepts, which are further defined in the sections below.
The significance of each of these aspects is described in the
relevant section, followed by the salient features in the existing
work.

Setting
The first aspect we examine is the settings in which
computational models of motivation are used. By setting,
we mean the artificial intelligence framework into which
computational motivation has been embedded. Examples
include learning and planning settings. In Table 2, we list a cross-
section of the areas where computational models of motivation

FIGURE 1 | Visualization of the relationship between Setting, Mechanism,

Function, and Evaluation. The setting is the artificial intelligence framework

wrapped around the motivation mechanism. The motivation mechanism

influences the action of the agent, which together produces a measurable

function.

TABLE 2 | Settings in which computational models of motivation are used.

Settings References

Reinforcement

Learning

Barto et al., 2004; Simşek and Barto, 2006; Schembri

et al., 2007; Sequeira et al., 2011; Kompella et al., 2012;

Baldassarre and Mirolli, 2013; Metzen and Kirchner,

2013; Di Nocera et al., 2014; Frank et al., 2015; Hester

and Stone, 2015

Deep Learning Mohamed and Rezende, 2015; Kulkarni et al., 2016;

Achiam and Sastry, 2017; Zhelo et al., 2018

Hierarchical

Structure

Schembri et al., 2007; Baranes and Oudeyer, 2010;

Baldassarre and Mirolli, 2013; Santucci et al., 2013;

Frank et al., 2015; Kulkarni et al., 2016

Active Learning Oudeyer et al., 2007; Baranes and Oudeyer, 2009,

2010, 2013; Kompella et al., 2017; Pathak et al., 2017

Motion Planning Frank et al., 2015

Affordance

Discovery

Hart et al., 2008; Hart, 2009

Goal

Discovery/Goal

Generation

Salgado et al., 2016; Santucci et al., 2016; Kompella

et al., 2017

Multiple skill

learning

Santucci et al., 2013

Attention

Allocation

Di Nocera et al., 2014; Gatsoulis and Mcginnity, 2015

are used. The rows of the table are not mutually exclusive—a
single reference can be present in multiple rows.

In Reinforcement Learning (RL), an agent learns from
experience as it deals with a sequential decision problem.
The agent interacts with an “environment” which contains a
“critic” that provides the agent with rewards by evaluating
the behavior. Through trial-and-error, the agent maximizes
the reward over time. With the introduction of intrinsically
motivated reinforcement learning (IMRL; Singh et al., 2010),
the reward is designed to be a combination of extrinsic reward
and intrinsic reward. While the extrinsic rewards are closely
related to the environment itself, the intrinsic reward is used to
introduce the effect of factors that are considered to underlie
intrinsic motivation. These include novelty, surprise, incongruity
etc., which are relative to the agent’s learning and memory. With
this approach, the intrinsic reward is brought to the fore. Though
it may not be directly related to the task the agent is supposed to
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accomplish, these reward can provide the agent with information
that are useful to improve performance (Sorg et al., 2010). This
philosophy is in line with the psychological perspectives on
intrinsic motivation. Deep neural networks have been used to
provide “rich representations” for high-dimensional RL tasks
successfully (Mnih et al., 2016). IMs mechanisms have been used
as reward functions in Deep Reinforcement Learning (DRL).
Intrinsic Motivation in DRL showed improved performance
in challenging environments with sparse rewards by providing
efficient exploration strategies.

Many of the computational models of IM have organized
their structures hierarchically. Typically, a two-level or two-
module structure is used. This approach makes it possible to
compartmentalize IM from sensorimotor learning. For example,
the upper level module generates IM based goals while the lower
level explores the environment for reaching particular goal and
necessary actions.

In many real-word scenarios, reinforcement learning agents
suffer due to the extremely sparse nature of extrinsic rewards.
Besides, in an open-ended learning scenario where we would
want an agent to learn from the large sensorimotor space by itself.
This calls for active learning approaches which can guide an agent
by organized and constrained exploration. Intrinsic motivation
is used in active learning as a heuristics that helps to maximize
learning progress.

Real-world scenarios pose similar problems to artificial agents
in many of the other fronts as well. These agents need to be
able to plan their motion by finding a path among arbitrary
and previously unknown obstacles. Exhaustive searching is
computationally expensive- this makes the agents slow, which
is quite the opposite of the features we would like to see in a
humanoid robot.

Another related trait is an organism’s ability to perceive its
environment and interact with it. In real world, this would
translate to a robot’s ability to navigate and using tools in
appropriate manner by itself. This resulted in to apply intrinsic
motivation to discover object utilities and use them accordingly.

A hallmark of human intelligence is the ability to self-
determine goals to achieve particular skills. To be truly
autonomous, an artificial system has to discover and select
goals on its own. Based on the complexity of these goals, the
system may need to decompose it into sub-goals. These sub-
goals may not have any tangible rewards at a certain time.
Thus, goal discovery and identification from a large space and
working toward that by identifying sub-goals become a complex
proposition. Intrinsic motivation can be useful in this regard.

While skill acquisition for artificial agents is a complex issue
itself, it gets more complicated with the presence of multiple
learnable skills. While for humans it is intuitive to choose to learn
skills in terms of increasing need and complexity, this is difficult
for artificial agents. Closely related to this is the ability to focus
attention on a task that is learnable and useful. Computational
models of motivation can be used in these cases as well.

The settings listed in Table 2 denote fields which carry
significant importance in autonomous mental development. A
true autonomous human-like autonomous agent must be able
to plan its motions in the continuous space while taking into

TABLE 3 | Reward mechanisms in computational models of motivation.

Mechanism Reference

Prediction error Barto et al., 2004; Metzen and Kirchner, 2013

Empowerment Salge et al., 2014; Mohamed and Rezende, 2015

Learning

Progress/Information

Gain/KL

Divergence

Oudeyer et al., 2007; Baranes and Oudeyer, 2009;

Kompella et al., 2012; Frank et al., 2015; Hester and

Stone, 2015

Curiosity Kompella et al., 2012; Di Nocera et al., 2014; Frank

et al., 2015; Pathak et al., 2017; Zhelo et al., 2018

Novelty Metzen and Kirchner, 2013; Gatsoulis and Mcginnity,

2015; Hester and Stone, 2015; Salgado et al., 2016

Surprise Schembri et al., 2007; Hamann, 2015; Achiam and

Sastry, 2017

consideration its own constraints. Throughout its lifetime, it
will encounter novel objects and will have to learn about the
affordances of objects and how to manipulate them. To acquire
competence, it needs to be able to identify goals by itself, learn
to compose multiple skills into more complex ones, and allocate
attention to learnable situations. As we have predicted, this table
provides us with aspects that are fundamental to designmachines
that help an artificial agent appear to think and act like a human.

Mechanism
As we said earlier, in this paper we view the motivation
mechanism as a goal generator. It takes the agent’s sensations of
its world state, and memories of past sensations, as inputs and
generates goals that in turn influence action selection. These goals
have been expressed in different ways in the literature, ranging
from explicit goal structures to implicit utility feedback.

In this section, we describe a number of computational models
of intrinsic motivation with respect to the specific nature of the
motivation mechanism. A list of possible formal mechanisms
of intrinsic motivations was provided in Oudeyer and Kaplan
(2007). The list in Table 3 mostly concurs with that typology.
The intrinsic reward mechanism works as a part of the organism
itself in the reinforcement learning framework. Rewards based on
novelty, curiosity and uncertainty are defined with respect to the
visited states. Hester and Stone (2015) measured novelty as the
distance of the unexplored region of states from the previously
visited states. The intrinsic reward is given as proportional to
this distance. This motivates the agent to explore the state-actions
that are the most different from the ones that are already visited.

Using prediction error is inspired by dopamine neurons. In
its most basic form, the reward for an event is proportional to
the error that was made for a certain event. As agents make
prediction of future events based on current ones, this intrinsic
reward can enable an agent to focus on an event that has a
larger error associated with it. As an agent repeatedly learns more
about the event and achieves more success, the intrinsic reward
decreases.

Empowerment is a measure of the causal influence an
agent has on the perceived world (Klyubin et al., 2005).
In computational motivational models, empowerment is
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typically implemented as a measure of maximizing information
or minimizing uncertainty. This provides the agents with
adaptability to deal with dynamic environments.

Learning progress or information gain is another highly used
reward measure. In this case, the system generates rewards if
predictions improve over time, i.e., it tries to minimize prediction
errors. By doing this, an agent can focus on states or activities
that offer the highest progress. Using learning progress as a
reward measure is a robust solution to changing environments.
Moreover, learning progress based mechanism result in strategies
that autonomously progress from simpler to more complex tasks
(Gottlieb et al., 2016).

Curiosity is one of the most widely used measurements
of computational intrinsic motivation. In effect, curiosity is
defined as a function of learning progress or prediction error.
In curiosity-driven exploration, agents are intrinsically rewarded
to explore regions which shows higher learnability. Curiosity-
driven agents are demonstrated to learn even in situations
without any extrinsic rewards (Pathak et al., 2017).

Novelty can be an effective mechanism to implement
intrinsic motivation. By encouraging agents to explore states
that are highly different than the already visited ones, efficient
exploration can be achieved.Measuring novelty typically involves
a comparison between the current stimuli and the previous ones.
Furthermore, it can also include factors such as habituation,
which involves the temporal effects of similar stimuli on novelty.

Surprise is defined as the difference between expectation
and outcome. In that case, prediction error can be used as a
measurement of surprise and intrinsic rewards. In some other
models, surprise is defined as the degree of not expecting an
incident.

Some of the implementations have combined the
aforementioned reward measures and defined their own
(Baranes and Oudeyer, 2010; Sequeira et al., 2011; Hester and
Stone, 2015).

Function
In this category, we provide a list of functions that result from the
implementation of a motivation mechanism in artificial agents.
We opted for this aspect with the idea that it would complement
the settings that we described previously.

One of the major functions imparted by intrinsic motivation
is that of efficient exploration. Agents demonstrate features
such as achieving significant states with sparse and delayed
rewards, scalability in computationally extensive scenarios. In
case of autonomous self-organization, agents could discover their
sensorimotor skills by virtue of intrinsic motives without any
explicit guidance. It was also shown that computational models
of intrinsic motivations foster progressive learning. Intrinsically
motivated agents initially spend time in easier situations and then
allocate attention to situations with increasing difficulty. This
tendency is directly related to the next function of composing
complex task by learning simpler tasks first. Artificial agents
with intrinsic motivations were significantly faster in completing
complex tasks.

The features are listed in Table 4. Various autonomous
activities feature prevalently here, with exploratory actions

TABLE 4 | List of functions resulted from computational models of intrinsic

motivation.

Function References

Efficient

Exploration

Frank et al., 2015; Hester and Stone, 2015; Mohamed

and Rezende, 2015; Kulkarni et al., 2016; Salgado et al.,

2016; Santucci et al., 2016; Achiam and Sastry, 2017;

Pathak et al., 2017

Autonomous

self-organization

Oudeyer et al., 2007

Progressive

learning

Oudeyer et al., 2007; Hester and Stone, 2015

Task composition Schembri et al., 2007

TABLE 5 | Methods used to evaluate computational models of intrinsic motivation.

Evaluation methods References

Comparison with extrinsic

reward

Cameron and Pierce, 1994; Barto et al., 2004; Di

Nocera et al., 2014; Hester and Stone, 2015

Goal accomplishment Kulkarni et al., 2016

Comparison with random

and least tried states

Frank et al., 2015

Comparison with greedy

approach

Sequeira et al., 2011

Comparing single and

multiple intrinsic rewards

Sequeira et al., 2011

Analyzing performance over

time

Gatsoulis and Mcginnity, 2015

topping the list. This concurs with the very nature and definition
of motivated behavior. Intrinsic motivation is supposed to foster
exploration and curious behavior that may or may not aid
immediate competence and skill acquisition. This demonstrates
that existing implementations of computational motivation,
irrespective of the settings or reward mechanism, introduces
exploratory actions in artificial agents.

Evaluation Methods
The behavior of an agent comprises the sequences of actions
it performs. Evaluating the behavior of an agent driven by
computational motivation is not a straightforward task. In
case of a motivated agent, we not only want to measure
the completion rate for a particular task, but also intend to
observe, and measure, the effect of the intrinsic reward on
the agent’s behavior, organization, and long-term competence
and knowledge acquisition. The evaluation methods used in the
existing literature are listed in Table 5.

As a baseline, many of the proposals compare the intrinsically
motivated behavior with that of extrinsic reward only. While
this largely demonstrates the effectiveness of intrinsic rewards,
one may fail to understand the particular influences of intrinsic
motivation if it is not extended further. Similar evaluation
approaches include comparing intrinsically motivated behavior
with random or greedy method. Novel tools to aid the research
in computational intrinsic motivation are proposed by groups of
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researchers from various fields (Natale et al., 2013; Stafford et al.,
2013; Taffoni et al., 2013).

Computational Motivation in Swarm and
Multi-agent Settings
While the previous sections examined literature on
computational models of motivation, here we focus on the
concept of motivation in a social context. This can be a swarm
of robots, particles in an optimisation setting, or a multi-agent
setting. By providing a summary of the existing works, we point
out the fact that in these cases, computational motivation has
been used in a limited capacity, almost identical to that of single
agent scenarios. We then discuss few of the possible extensions
of computational motivation that can be applicable to swarm
and multi-agent settings.

Merrick (2015) demonstrated the effects of motive profiles in
game-playing agents. With the help of two-player game settings,
it was shown that power, achievement, and affiliation motives
can lead to various emergent behaviors. Moreover, in case of
evolutionary algorithm for creating motivated agents, it was
shown that motivated agents were more diverse and achieve
higher incentive than their non-motivated versions. Evolutionary
models of intrinsically motivated agents were simulated in a
multi-agent setting in by Shafi et al. (2012). A static incentive
model was used to generate agents that change their motives over
time.

Hardhienata et al. (2012, 2014a,b) incorporate achievement,
power, affiliation and leadership motivation in a Particle Swarm
Optimization (PSO) setting. The application area the agents are
tested in is task allocation. Incentives are defined as distance of
the agent from the task and the number of agents around the task.
The incentive value, along with motive profiles, help inform an
agent which task and neighborhood to choose. Their work shows
the effect of motivational profiles on an established algorithm
such as PSO and task allocation.

Klyne and Merrick (2016) used computational models of
motivation to generate dynamic fitness functions for PSO. The
convergence of the swarm on the generated fitness function
is tested in a workplace hazard mitigation scenario. The two
approaches to model motivation in this framework were novelty
and curiosity. Curiosity was implemented via K-Means neural
network. The results showed this approach is more applicable
for decentralized data sources. In case of a centralized source,
background subtraction was used. This is an image processing
technique to detect novel objects in successive image frames.
Evaluation metrics include ability of goal generation and
convergence of swarm once the goal is generated. In some cases,
the generated fitness function has too many local maxima for the
swarm to converge on the right place.

Saunders and Gero (2004) used flocking and a social force
model to design curious agents. These agents perform evaluations
of environments which are designed to prompt exploration, e.g.,
art galleries. Interestingness is modeled using the Wundt curve:
the most interesting situations are the ones that have moderate
novelty. Situations are measured with hedonistic values and
agents will move toward stimuli having higher value. Their results

showed that these curious agents spend significantly more time in
environments which were designed “better.” Linkola et al. (2016)
used novelty to create a group of creative and curious agents. A
society of homogenous agents is created, with each one having an
individual memory. The behavior of the population is modeled
via iterations. In each iteration, each agent creates a candidate
artifact bases on the current location and memory. The agents
then collectively decide which of the candidate artifacts can be
added the repository. The agents are self-critical and have veto
power. As the results show, self-criticism lowers the amount of
collaborative effort in evaluating candidate artifacts while veto
power increases novelty. Galvao et al. (2015) implement the
notion of novelty search (Lehman and Stanley, 2011) in PSO.

Table 6 summarizes the existing work that incorporates
motivation in multi-agent and swarm settings using the headings
of setting, mechanism, and function introduced in the previous
section. As the settings column demonstrates, most of the works
have been implemented in PSO and game-theoretic settings.
Moreover, in many of these works the focus was on the function
rather than the motivation mechanism. As a result, they lack
a detailed analysis of the implications of motivation being
implemented in a social context. This is where our proposals of
the newer settings and possibilities come in.

Figure 2 hypothesizes about the new functions that we may
achieve in motivated agents if augment the field with new
multi-agent and swarm settings. The two extremes of the
vertical axis in Figure 2 represent the knowledge-based and
competence-based mechanisms of intrinsic motivation. As we
pointed out earlier, this is the most general categorization of
the computational models, which covers a range of detailed
mechanisms discussed in Section Mechanism. In the upper part
of the vertical axis, we have the knowledge-based models which
produce exploratory functions and acquire knowledge about the
surrounding environment or the world. In the lower part, we
have the competence-based models which function to improve
skills. On the other hand, the horizontal axis represents an
expanded view of possible e agent settings. On the right-hand
side, we have individual agent settings. On the left side, we
introduce multi-agent and swarm settings. We hypothesize that
these settings will see motivated agents performing new functions
including leadership, for example leading agents that do not have
intrinsic motives, and scaling and communication functions. By
this we mean that extension to the multi-agent settings permits
intrinsically motivated agents to scale to problems that cannot be
solved by a single agent.

In addition to enabling new functions, we hypothesize a
range of ways that motivation may be embedded in multi
agent or swarm settings. For example, motivation may be
distributed among multiple agents or it may be shared. In the
first case, the motivation mechanism of each agent is processed
and acted upon by itself. The group behavior rules, such as
flocking, will still affect the emergent behavior. In case of
shared motivation, agents will interact with each other while
constructing the motivated behavior. The underlying assumption
in this case is that the interpersonal factors, such as aligning
one’s goal to a friend’s interests, will play an important factor
to determine the group behavior. With the introduction of
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TABLE 6 | A summary of the work using motivation in social context in terms of their setting, function and mechanism.

Setting Function Mechanism Reference

Various Games Game theoretic analysis Motive Profiles Merrick, 2015

Prisoner’s Dilemma Game theoretic analysis Motive Profiles Shafi et al., 2012

PSO Task Allocation Motive Profiles Hardhienata et al., 2012, 2014a,b

PSO Generating dynamic fitness function Curiosity Novelty Klyne and Merrick, 2016

Flocking, Social Force Model Design Evaluations Curiosity Saunders and Gero, 2004

Multi-agent systems Generating Creative Artifacts Novelty Linkola et al., 2016

PSO Grammatical Swarm Novelty Galvao et al., 2015

FIGURE 2 | Expanding the view of settings for computational models of motivation also expands possible functions.

this concept, we can explore notions such as conformity,
divergence and living up to the expectations of others. These
concepts have been investigated in human psychology (Fishbach
et al., 2016) but not yet in the computational motivation
research.

Moreover, all agents in a group may have the same motives
or they may have different motives. While some agents in a
group can be motivated to improve personal knowledge and
competence, others can pursue that knowledge for gaining
control over the group. This can result in homogeneous and
heterogeneous groups of motivated agents. Some of the existing
works investigated the effects of different motives but only
a few looked into heterogeneously motivated artificial agents
coexisting as a group. Likewise, all agents may be motivated
agents or only a subset of agents may be motivated, and others
may not possess such models. These variants are illustrated in
Figure 3.

DISCUSSION

In this section, we discuss the challenges associated with
computational modeling of intrinsic motivation in social context
and conclude the paper.

Research Challenges
There are quite a few challenges that emerge as we ponder
the notion of multiple or swarms of agents equipped with
computational motivation. We discuss these challenges from
the four aspects we had described in section Structuring
Existing Approaches to Computational Motivation- settings,
rewards, functions, and evaluation. Combining these aspects
with the possible extensions discussed in section Computational
Motivation in Swarm and Multi-Agent Settings, we present a
set of research challenges. These research challenges encapsulates
our discussion in the previous sections and provide an overview
of the future research involving computational motivation in a
social context.

Settings to Accommodate the Social Context
Most of the existing works on computational motivation have
used PSO or flocking as setting. Though they provide a structured
base to investigate motivation, they are too limited in many
ways. Human and animal motivation mechanisms involves
interaction patterns that are significantly more complex than
these restricted settings. We feel eventually there will be a need
to generate more flexible, complex, and accommodating multi-
agent settings. Settings such as Belief-Desire-Intention (BDI)
architecture (Rao and Georgeff, 1991), game theory (Parsons
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FIGURE 3 | Visualization of different possible multi-agent settings: (A) Multi-agent setting with homogeneous agents and decentralized motivation mechanisms (B)

Multi-agent settings with homogeneous agents using a centralized motivation mechanism (C) Heterogeneous society with a subset of motivated agents (D)

Heterogeneous society with agents using different motivation mechanisms.

and Wooldridge, 2002), multi-agent reinforcement learning
(Busoniu et al., 2008), and swarm intelligence (Brambilla et al.,
2013) can be useful in this context. Researchers from these
respective areas will have to identify the existing properties and
extend the architecture to accommodate computational models
of motivation.

As the notion of multiple motivated agents is introduced,
quite a few features for these settings can be proposed. These
were not applicable to single agents, but pertinent in multi-agent
scenarios. As discussed previously, we might have a homogenous
set of agents equipped with the same motivation mechanism.
Many of the current works are exploring this line of work where
each agent or particle in a swarm has the same motivation.
However, there can be a heterogeneous setting where the agents
can be motivated through varying mechanisms of motivation.
For example, one agent can act as an informed individual and
the other members of the group can be following that agent
for achieving a goal or skill. Though there are current works
that propose and measure the effectiveness of various motive
profiles, there is no study that focuses on a swarm of agents that
are equipped with different forms of computational motivation.
Another related open area of research will consist of scenarios
that will be able to accommodate a temporal change of the
motivation mechanism. Imagine a scenario where agents start
with having affiliation motive as the primary driving factor but
changes to power motives after gaining certain knowledge or
skillset.

Novel Mechanisms and Rewards
The current work on the computational models of motivation
is largely comprised of translating the psychological theories
of motivation into mathematical and computational models.
Motivation can have many facets and dimensions when it is
compounded by social factors such as presence of and interaction
with other individuals. There are some works on various motive
profiles, as we discussed in the earlier sections. However, the
social theories of motivation are yet to be generally implemented
as computational models.

Psychological studies in organizational behavior, student
motivation and performance reveal interesting facts about the
mechanism of intrinsic motivation in social contexts. It has
been observed that support for competence, relatedness and
autonomy helps increase children’s intrinsic motivation (Ryan
and Deci, 2000b). In an educational environment involving high-
school students, the authors showed that optimal challenge and
performance feedback facilitates competence while relatedness
is increased by meaningful parental involvement and peer
acceptance (Dörner and Güss, 2013). If we want to model
motivation in a social context, we would need to utilize the
psychological studies and introduce novel reward mechanisms
such as relatedness, feedback and autonomy support.

The next generation of computational models would need
to implement, and in many ways, extend and augment the
psychological theories. Motivated artificial agents can provide
both psychologists and computational intelligence researchers
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with an avenue of proposing and evaluating various psychological
theories. A swarm of motivated agents in a simulated
environment can be used to model and predict motivational
tendencies such as curiosity and novelty. This can be an
alternative to questionnaire-based analysis that typically takes
place in psychological studies.

Functions
The existing works have shown the inception of various emergent
functional behavior as a result of computational motivation
mechanism. With multiple agents, the emergent functions are
more versatile, complex and significant. This is due to the
fact that within a social context the agents are interacting
not only with the environment but also within themselves.
Factors such as shared goals and conflicting motivations can
lead to interesting emergent behaviors in swarms and multi-
agent systems. Seemingly simple and primitive rules can be
combined to produce complex behavior patterns. One challenge
of the future research would be to devise mechanism to generate
such behaviors from the primitive rules and through motivation
mechanisms. For example, one can think of a flock of agents
swarming through an environment by virtue of the intrinsic
motivation values. In this case, we will need to design, estimate,
and adapt the effects of motivational mechanisms on individual
agent as well as on the group behavior. While it would have been
relatively simpler to achieve this in an individual agent setting,
it would be much more complex in case of multiple interacting
agents. It will be interesting and useful to observe the effect
of different motivation mechanisms on this mapping between
primitive rules and emergent behavior.

Evaluating Behaviors
As we have pointed out already, evaluating the consequences
of implementing motivation (especially intrinsic motivation)
is not quite straightforward. The state-of-the-art single agent
architectures still suffer from a lack of widely accepted behavior
metrics capable of measuring the effects of computational
motivation. With multiple motivated agents, the challenge of
measuring emergent motivated behavior becomes increasingly
complex. It would be a challenge to determine behavior metrics
that can embody the motivated behavior of multiple interacting
agents.

We emphasize on the evaluation as it has significant
implications involving the motivation mechanism and expected

behavior. A causal relation between the motivation mechanism
and behavior can be used to generate artificial agents with
intended motive profiles and tune them as need be. The current
proposals do not establish a rigorous or mathematical relation
between the motivation parameters (e.g., reward measures) and
the corresponding behavior (e.g., skills acquired). As more
complex scenarios involving multiple agents are introduced, this
becomes even more challenging. If the next generation of these
proposals can determine the relation between the controlling
parameters and emergent behavior more rigorously, we will
be able to derive more applications of the motivated agents.
Determining appropriate behavior metrics will play a significant
part in this regard.

CONCLUSION

Motivated artificial agents are designed to acquire knowledge
and skills in an open-ended setting. These features can provide
new horizons in artificial intelligence, machine learning
and computational intelligence in general. In this survey,
we have summarized the implementations of motivation in
artificial agents. We provided definitions, background, and
state-of-the-art of the field of computational motivation. We
have provided a new typology through which the current
research can be categorized through four main aspects:
setting, mechanism, function, and evaluation method.
Through a systematic discussion, we demonstrated the fact
that there is limited work using computational motivation
in multi-agent and swarm settings. Following a detailed
discussion on this topic, we presented the major research
challenges for achieving societies of multiple motivated
agents. We believe our contribution in this paper will help
researchers to further identify and explore these open research
topics.
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