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Abstract: Considering the radio-based indoor positioning system pertaining to signal degradation
due to the environmental factors, and rising popularity of IP (Internet Protocol) cameras in cities,
a novel fusion of inertial measurement units (IMUs) with external IP cameras to determine the
positions of moving users in indoor environments is presented. This approach uses a fine-tuned
Faster R-CNN (Region Convolutional Neural Network) to detect users in images captured by cameras,
and acquires visual measurements including ranges and angles of users with respect to the cameras
based on the proposed monocular vision relatively measuring (MVRM) method. The results are
determined by integrating the positions predicted by each user’s inertial measurement unit (IMU) and
visual measurements using an EKF (Extended Kalman Filter). The results experimentally show that
the ranging accuracy is affected by both the detected bounding box’s by Faster R-CNN height errors
and diverse measuring distances, however, the heading accuracy is solely interfered with bounding
box’s horizontal biases. The indoor obstacles including stationary obstacles and a pedestrian in our
tests more significantly decrease the accuracy of ranging than that of heading, and the effect of a
pedestrian on the heading errors is greater than stationary obstacles on that. We implemented a
positioning test for a single user and an external camera in five indoor scenarios to evaluate the
performance. The robust fused IMU/MVRM solution significantly decreases the positioning errors
and shows better performance in dense multipath scenarios compared with the pure MVRM solution
and ultra-wideband (UWB) solution.

Keywords: IMU; object detection; vision measuring; EKF; Faster R-CNN

1. Introduction

Indoor positioning technologies [1-3] are necessary and technical prerequisites for various industrial
and consumer applications in location-based services. This location solution typically provides a user
with a reliable and accurate pose estimation of a device or a person in public and private areas [4-7],
like an airport, hotel, mall, home, etc. However, as GNSS (Global Navigation Satellite System) signal is
not continually available in indoor environments and the presence of unavoidable issues in complex
indoor areas, such as multipath and non-line of sight, the high precision and reliable indoor positioning
is not easy to be achieved in realistic conditions. Based on these constraints, developing a low cost,
reliable, and infrastructure-free or infrastructure-less positioning solution for consumers remains an
open challenge at present.

To address this problem, much of the recent research focuses on sensor-based indoor positioning
technologies. The representative solutions determining locations in indoor environments comprise Wi-Fi [8],
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Bluetooth [9], iBeacon [10], RFID [11,12], infrared [13], inertial sensors [14], magnetometer [15],
ultra-wideband (UWB) [16,17], etc. Wi-Fi technology draws increasing attention among above solutions
due to its popularization in cities. However, the susceptible wireless makes the positioning of the
received signal strength indicator (RSSI)-based [18,19] method getting worse when multipath effect
occurs in dense urban areas. To further improve the accuracy, building a specialized fingerprint [20,21]
for Wi-Fi signal in advance is implemented, but it requires periodic renewal to rebuild the database.
Recently, UWB has been widely used due to its characteristics, such as good penetrability, high
precision, and anti-multipath ability. Nevertheless, the UWB systems unavoidably suffer from
interference caused by narrow wide signal from coexisting systems and non-line of sight (NLOS)
conditions [22] restrict the performance substantially. Dead Reckoning (DR) [23,24] utilizes a gyroscope
and accelerometer to infer movements of a pedestrian based on measurements and previous locations.
However, inertial sensors suffer from biases and drift errors that will accumulate over time. Therefore,
with the limits of cost, size, performance, production, etc., the hybrid positioning technologies with
inertial sensors are introduced to efficiently reduce the drift errors and further improve positioning
accuracy, such as PDR/Bluetooth [25], INS/Wi-Fi [26], etc. The optimization-based INS/UWB
approach in reference [27] achieved RMSE of position and orientation approximately as 3-cm and
less than 1” using an IMU and a UWB transmitter placed on a body and 10 UWB receivers deployed
in a test room. However, this fusion system requires a more accurate distribution model to remove
large amounts of the time of arrival (TOA) measurements outliers caused by multipath and NLOS
conditions and combines the corrected UWB measurements with inertial measurements to determine
six degrees-of-freedom (DOF) pose of the moving body.

Compared with the conventional radio-based positioning methods, vision-based positioning [28,29]
is proved to become a greatly promising navigation and positioning technique in various applications.
Visual simultaneous localization and mapping (SLAM) [30,31] has been extensively applied in various
fields, such as virtual reality /augmented reality, robotic mapping and navigation, autonomous vehicle,
etc. Feature detection and description, graph optimization and loop closure are key techniques to
implement SLAM algorithms significantly. In contrast with binocular or stereo vision, monocular vision
methods remain a challenge to provide robust and accurate pose estimations with good performances
due to lacking scale factor and depth information. The integrated method with inertial sensors is
able to overcome these limitations of monocular vision-only and IMU-only positioning by using their
complementary properties. Fast movement information in short period can be predicted by IMU,
and drift errors from IMU can be corrected by vision measuring effectively. A popular representative,
visual inertial odometry (VIO) [32,33], which has great potential of resolving the estimation problems
in these above applications. Popular VIO algorithms include the filter-based MSCKF [34] and
optimization-based Okvis [35]. Recently, a robust and versatile monocular visual-inertial state
estimator, i.e., VINS-Mono, comprises optimization-based VIO, online loop detection, tightly-coupled
re-localization and four DOF pose graph optimization in reference [36]. The experiments show superior
performance by comparing against Okvis by running on mobile devices. In [37] with the use of urban
3D model, the position and orientation of camera relative to the known street object is estimated by
using efficient PnP algorithm. The final average position for the fusion of IMU with the camera data
is 0.22 m in experiment conditions. This method largely relies on the rich and reliable 3D model to
determine absolutely position especially in a low visibility area.

In practical application, indoor tracking and locating of a moving human target at a low cost with
good performance remains an open issue. The popular vision-based methods to deal with identifying a
pedestrian in images in various environments can be categorized into either traditional feature detector
or deep learning-based methods. In [38], pedestrians are recognized through the use of algorithms
based on edge density and symmetry maps. However, the position error depends on images sequences
categories with mean location error at 0.98 m in backwards running. In [39], a Bayesian-based vision
tracking system providing user’s position estimation made the RMSE for position improve to 20-cm
by integrating with inertial sensors through an EKFE. In the recent years, deep learning [40] has made
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significant breakthroughs in visual recognition, speech recognition, and natural language processing.
In addition, positioning approach with assistant of deep learning is becoming an active research
area. In paper [41], a novel indoor positioning and tracking system fusing magnetic signal and visual
images with a deep convolutional neural network (CNN) to extract deep features for measurements
was presented. The main contribution of this paper [42] is to leverage CNN to build a proper radio
propagation model which is applied in crowed scenarios. Reference [43] discussed a state-of-art
survey on pedestrian detection and tracking methods by utilizing computer vision and deep learning
techniques. In [44], the authors used CNN to classify pedestrian in images and showed higher levels
of accuracy compared with traditional SVM approach with Haar features. The presented work above
provides a new perspective for developing and resolving the indoor positioning and tracking issues.

The rise and rapid progress of 5G and internet of things technologies [45-47] allow diverse wireless
devices to be connected by larger-scale wireless sensor networks [48] for exchanging and sharing
information, and they have been widely used in medical treatment, smart home, higher education,
intelligent transportation [49-51], etc. This technology commonly relies on measurements information
among every pair of nodes, like ranges and angles, to realize relative or absolute localization based
on wireless sensors. Reference [52] proposed an approach combining IMU and UWB ranging
measurements for a relative positioning among multi users with a particle filter. These range-based
and angle-based localization methods obtaining peer to peer measurements can be implemented by
using cameras instead of wireless sensors.

In consequence, we propose a novel indoor positioning approach combining IMU and Faster
R-CNN-aided relative measurements from IP cameras to determine pose estimations of users, which is
inspired by the rising popularity of IP cameras in cities and the complementary properties of IMU
with cameras. This solution leverages an extended Kalman filter to tightly fuse IMU data and relative
ranges and angles with respect to cameras obtaining by our presented monocular vision relatively
measuring (MVRM) method. We conducted this approach in indoor environments and evaluated
the performances of the proposed approach in stationary objects and pedestrian blockage scenarios.
The experiment results show that the proposed approach can significantly reduce positioning errors
and enhance reliability during blockage period.

The rest of this paper is structured as follows. In Section 2, a concept of the proposed integrated
system is presented. In Section 3, Faster R-CNN based object detection is analyzed briefly, and the
proposed MVRM method is modelled. This section also formulates the integrated IMU/MVRM for
a group of users and cameras. In Section 4, the experiment setup and the results of the proposed
approach are introduced in real indoor environments. In Section 5, the conclusion and further work
are summarized.

2. System Overview

The concept of the proposed IMU/MVRM integrated system for indoor positioning comprising
two phases: offline training and online location, is shown in Figure 1. In the offline phase, IP cameras
capture images of users, and send them to a server. These uploaded images are used to create a training
dataset for training a model of detecting multi-users based on a deep neural network. In the online
phase, cameras start to take an image of a user in real time when a positioning request is sent by this
user and send it to the server to detect the user in this image with the trained model. Meanwhile,
the user end sends the pose estimations predicted by its own IMU to the server. The fusion filter fuses
IMU'’s predictions with the ranges and angles of this user with respect to these cameras obtained by
the proposed MVRM method. Finally, the corrected estimations and sensor biases will be resent to the
user end.
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Figure 1. The concept of the proposed inertial measurement unit (IMU)/monocular vision relatively
measuring (MVRM) integrated system.

3. Methods

3.1. Faster R-CNN Based Object Detection

In the last few years, object detection by using deep learning has attracted a great deal of attention,
in particular, using the typical region with CNN (R-CNN) [53]. This technology utilizes CNNs
to extract features from all candidates which makes it become a time-consuming work due to its
high computational cost during training and test periods. To speed-up, Fast R-CNN [54] and Faster
R-CNN [55] are introduced consecutively. Faster R-CNN with a region proposal network (RPN)
specialized in proposals generation merges region proposals, features extraction, classification and
bounding box regression into just one deep neural network which significantly increases the running
speed by 250 times, as opposed as R-CNN. In this part, Zeiler and Fergus net (ZF) [56] based Faster
R-CNN is used to detect users in images.

The performance of a deep learning partially depends on the size of a dataset. However, it is
indeed hard to build a large-scale dataset for a particular detection task, like our multi-users detection.
Therefore, we adopt the pre-trained Faster R-CNN, a 20 general class objects detection model on
PACSAL VOC 2007 detection benchmarks [57] in source task, to be fine-tuned on our training dataset
in target task, which efficiently improves the training performance and enhances generalization
by reducing overfitting. Flowchart of fine-tuning Fast R-CNN is depicted on Figure 2. As shown,
the model parameters can be optimized by fine-turning on the training data, and the output of the
target task is the optimized model of multi-users detection which can accurately identify and locate
users (trained pedestrians in offline) in images.

Generally, the performance of object detection can be evaluated in two aspects: mean average
precision (mAP) and intersection over union (loU). In this paper, mAP defined in PASCALVOC
2012 [58] is used to evaluate the fine-tuned Faster R-CNN.

AP represents as an area under the Precision-Recall curve:

AP — /Pd(R), (1)
where P, R indicate the precision and recall rate of detection, written as

Tp

P=—"—, 2
Tp+Fp @
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where Tp, Fp mean the number of true and false positive samples, F1 means the number of false
negative samples.
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Figure 2. Schematic view of fine-tuning Faster R-CNN (Region Convolutional Neural Network).

IoU is used to evaluate the performance of location which measures the overlapping ratio of the
bounding boxes between predication and truth.

FNG

— 4

FUC @)
where F denotes the area of bounding box predicated by the fine-tuned Faster R-CNN, G denotes the
actual area of bounding box.

IoU =

3.2. Monocular Vision-Based Relatively Measuring Method

As mentioned previously, the proposed monocular vision-based relatively measuring method
utilizes the locations in pixels of detected users in images with the use of the fine-tuned Faster
R-CNN and the real height in meters of the users in word coordinate system to estimate ranges and
angles of users with respect to cameras based on the ranging and angulation model presented in this
section. Unlike radio-based TOA, angle of arrival (AOA), received signal strength indicator (RSSI), etc.,
the measuring accuracy of this vision-based method will not decrease due to multipath interference.

3.2.1. Ranging Model

In general, users being detected are not located on the optical axis of a camera. The relative range
of a user respect to a camera is the distance between the user and optical center of the lens. As shown
in Figure 3, r is the relative range, o is optical center of the lens, u, v are object distance and image
distance respectively, ! is the distance from a user to the optical axis, /. is the distance from image of the
user to the center of the film measured on COMS sensor, /i, denotes real height of the user, . denotes
image height of the user measured on CMOS sensor, the relationship of &, and k. is shown as:

h, u
where I, is expressed as:
Ny
he = —
c re 7 (6)
h2 + 02 - f35mm
re=Y ' T , @)

diﬂg 35mm * f
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where 15, is user height in pixels, re is the number of count of pixels per unit, f35,,, and f are 35 mm
equivalent focal length and focal length in word units respectively, i, and v, are image dimensions,
diagssum is length of the diagonal of 35 mm film.

¢ Mos

h

lens O

optica 2

Figure 3. The monocular vision-based ranging model.

Similarly, the relationship of I and I, is expressed as:

_ h, -re
l_lC' 1y 7 (8)
B d, 2 d, 2
=1/l +(5, ©)

where dj;, and d, are distances from image of a user to the center of the film measured in pixels in
horizontal and vertical directions, respectively.
The estimated relative range r is given by:

hy-\124+02 hyere o
i - 12+ o2, (10)

ny

In which to acquire v, we need to start an initialization process in advance and keep the focus fix
on anywhere in the images during the whole test. The initialization parameter v is defined as

Tiy * Moy 2
= E W; - 0Ty 2 11
= \/ hr, re ) Cip” ( )

where N is number of detected users in an image, W; is the weight of user i, r;, denotes known initial
relative range between user i and the camera, 7y, lCiO are initial measurements of value n, and I,
of user i respectively.h;, is user i’s height. In this initial process for determining image distance of a
camera, commonly we can get an image of multi-users captured by the camera. With knowledge of
the initial range from each user to the camera, we can get a group of image distance values. With us of
W;, a mean value of this group is regarded as the final image distance for this camera.

In addition, a proper camera calibration is needed to use the above pin-hole camera model for
resolving ranging and angulation issue. Removal of lens’ distortion from the images and principal point
correction are the main tasks in camera calibration. Here, we use a typical camera calibration method
by Zhengyou Zhang [59] to obtain intrinsic, lens distortion parameters of the test camera beforehand.
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3.2.2. Angulation Model

The proposed angulation model is illustrated in Figure 4. The projections of a point A onto the
horizontal plane that passing through the optical axis and onto its perpendicular plane are points C
and P, respectively, and projections of them onto the image plane are points C’ and P’.

C/I”OS

Figure 4. The monocular vision-based angulation model.

The azimuth and elevation of A in the observer’s local system are defined as

d

Kip = arctan?h, (12)
dy

Oin = arctan?, (13)

where azimuth angle is assumed to be positive by turning clockwise, and elevation angle is assumed
to be positive when target lies over the horizontal plane.

3.3. IMU/MVRM Integrated System

Considering a IMU/MVRM integrated system which comprises a group of users U = [u;|i € K]
and a group of cameras C = {Cy,(t)|i € K}, K = {1,---,k} denotes a set of users” ID, Cy,(t) is
considered to be a set of cameras which can observe user u; at current time ¢. Each camera is considered
to be an anchor, and every single user is equipped with a 6DOF IMU combining a 3-axis gyroscope
and a 3-axis accelerometer. The focus in this section is to create dynamical and observation models of
the integrated system in accordance with the framework of the extended Kalman filter.

3.3.1. Dynamical Model

The commonly used IMU sensor error models are written as

0p = —wWen X 0p + 00, (14)
50 = —(2wje + wWen) X 60 — 5 x f + 5f°, (15)
‘SIIJ = _(wie + wen) X oY + &Ull?b/ (16)

where dp, dv, d¢ refer to position, velocity and attitude error vectors expressed in east-north-up
coordinates system (ENU) respectively.wep, indicates angular rate of navigation frame related to earth;
wje is the earth’s angular rate, and f is specific force.&wf?h, 5f? are gyro drifts and accelerometer
biases, respectively.
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For any single user u;, a 15-dimension state vector is defined as:

T
Xu; = [6pu;, 00}, goui,éwﬁi,éff]i] (17)

The dynamical model is expressed as:
xui = Fui : xui + Gui : wui/ (18)

where F,, is state transition model, G,, is control model, w,, is the process noise vector which is
assumed to be drawn from a zero mean Gaussian normal distribution.

3.3.2. Observation Model

The measurements of the integrated system comprise ranges and angles of users with respect to
their visible anchors. First, a simple model involved in a single user with an anchor is created.
The ranging function dy,¢; and angulation function By of user u; related to anchor ¢; are:

d“icj = \/Aeijz + Anijz + Auijz + Vuic;s (19)
tan<dl 4
P, arctan g + Mg
Y = | g - arcsin(L) +m ’ 20)
Hic Ael-zj+An,2j+AuIZ]. Hicj

where Vuier My and Myc; are observation noises which are assumed to be drawn from a zero mean

Gaussian normal distribution. Ap = [Aeij, Anj, Auij] T is difference of positions of user u; with respect
to anchor ¢; in ENU coordinates.
The observation model of u; with ¢; is made by:

AMVRM _ 4IMU

— l["C]' l["C]'
Zuicj [ gMVRM _ jIMU P (21)
uicj lliC]'
where dMVRM = ;MVRM 416 ranges and angles measured by using MVRM method, d!MU  IMU 4re
i u;c g & y g ujej uicj

ranges and angles predicted by user’s IMU.

Extend the measuring function of a user and an anchor to its function with multiple anchors.
Assuming the set of N cameras which can observe user u; simultaneously is C, = {c; i{1,--- ,N}},
and the observation model extended to

Zujcy
Zuicui = [ ] = H“icui : xui + vui’ (22)

Zuicy

with

aduicl
axui

aﬂuicl

axu,.
Hucy = | | (23)
adlll'CN
axu,.
Iujcy
axui

Extend the dynamical and observation models applied to an IMU/MVRM integrated system
comprises a group of users U = [u;|i € K| and a group of cameras C = {Cy,(t)|i € K} to



Sensors 2018, 18, 3134 9 of 22

X = [xuy, - xu] (24)
T
F=[Fy, - Fy], (25)
T
Z= |:Zu]Cu1 /A /Zukcuk:| ’ (26)
T
H=[Huc,, Huc, | 27)

4. Tests and Results

4.1. Experiments Preparations

To test the performance of the proposed approach, several tests were conducted at Northwestern
Polytechnical University. Before tests work, we performed several tasks for test preparations. The test
area of the rectangle path with 23 markers in an office is 4.2 m x 2.4 m.

First, as discussed in Section 2, an offline training to build a Faster R-CNN by using a Caffe
library was conducted. We randomly took and labeled 200 images of a test person in the test
field to create a dataset according with PASCAL VOC 2007. This new dataset consisted of a test
dataset with 80 images, training dataset with 72 images and validation dataset with 80 images. Next,
perform the camera calibration to extract intrinsic, lens distortion parameters of the camera with a
90 cm x 115 cm checkerboard pattern by using Camera Calibration Toolbox for MATLAB. Finally,
perform the initialization for each camera to determine an initial image distance.

4.2. Performance Evaluation

4.2.1. The Fine-Tuned Faster R-CNN

As discussed in Section 3.1, the precision, recall rate and IoU are used to evaluate the accuracy of
detection and location. To test the performance of the fine-tuned Faster R-CNN, we chose 80 images
to create a dataset which included 45 positive samples and 35 negative samples. The precision-recall
curve is shown in Figure 5a. The precision is reaching approximately 90% with a recall rate of 80%.
The mAP for the fine-tuned Faster R-CNN is increased to 93.5%, compared to 58.7% for the source
Faster-RCNN on the PASCAL 2007. Figure 5b shows the cumulative distribution functions plotted for
IoU. The averages of IoU for the fine-tuned and source Faster R-CNN are approximately 0.823 and
0.819, respectively. In summary, the fine-tuned Faster R-CNN is more applicable to the detections on
our target task which has an improved detection accuracy.

Precision-Recall 1 -
1 | T —Source Faster-RCNN
——Fine tuned Faster-RCNN
0.8
0.8
5 o5l
e w0
808 =) 0%
p Q 094
o 04 ‘e
0.7 085 09 095 1
0.2
0.6 :
0 0.2 0.4 0.6 0.8 1 o'
Recall 0 0.5 |oU 1
(a) (b)

Figure 5. The performance of the fine-tuned Faster R-CNN. (a) The Precision-Recall Curve; (b) The
cumulative probability distribution (CDF) of IoU.
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4.2.2. Analysis of Ranging and Angulation Model in Obstacle-Free Environments

Highly precise measurements including ranges and angles are vital to correct IMU’s drifts and
determine positions and headings of moving users. In this section, we test the performance of the
proposed ranging and angulation model, and investigate how the location deviation of the detected
bounding box obtained by Faster R-CNN affects the measuring accuracy. We took respectively
40 images of a test person locating at 23 markers with a stationary camera, and categorized markers
into four phases by diverse angles and distances with respect to the camera. The four phases are
detailed in Figure 6.

User, :0.998

|
| B

8
—

[’

(c) (d

Figure 6. A person captured in four phases. (a) phase 1, marker 1-8th; (b) phase 2, marker 9-12th;
(c) phase 3, marker 13-19th; (d) phase 4, marker 20-23th.

As we can see from Figure 7a, the ranging accuracy based on the proposed ranging model is
affected by detected bounding box’s height errors and diverse measuring distances, and bounding
box’s height errors decrease the ranging accuracy dramatically when measure the target at a long
distance. For example, for the bounding box’s height errors at 25 pixels, the ranging error is 0.3 m
when measuring the target less than 4 m, but when greater than 7 m, the ranging error is rapidly
increased to 1.2 m. Figure 7b shows that the heading errors primarily depend on the bounding box’s
horizontal biases. Unlike the analysis of the ranging accuracy, the heading accuracy has no bearing on
the measuring distances. For a maximum of image center horizontal biases at 14 pixels, the heading
error reaches approximately 1.1°.

Figure 8 shows the cumulative distribution functions of errors for four phases. Table 1 summarizes
the errors in four phases. P2 shows the preferable ranging performance in phase 2 due to the shortest
measure distances compared to the results of other phases, however, it appears no obvious distinctions
of heading errors among four phases which is indeed proved to be consistent with the analysis of
results in Figure 7. Due to the symmetric properties of markers’ locations between P1 and P3, the CDF
in Figure 8 and estimated position error data of P1 and P3 in Table 1 both show more similar results.
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Figure 7. The contour map of measurements errors. (a) Ranging errors; (b) angulation errors.
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Figure 8. The cumulative distribution functions of errors for four phases. (a) CDF of ranging errors;

(b) CDF of angulation errors.

Table 1. The estimated position error caused by ranging and heading error in four phases.

Phases P1 P2 P3 P4

RMSE 0.33 0.14 0.29 0.42

By Ranging/m  STD 0.26 0.1 028 039
Max. 1.01 0.33 1.07 1.35

RMSE 0.03 0.02 0.03 0.04

By Heading/m STD 0.01 0.01 0.02 0.04
Max. 0.07 0.07 0.09 0.14

Table 1 shows the estimated position error respectively caused by ranging error and by heading
error in four phases. It is shown that the RMSEs in estimated position values respectively caused by
ranging and heading differ by one order of magnitude, and the effect on position errors caused by

heading is less than by ranging.

From the above tests, we conclude that the ranging accuracy is affected by both bounding box’s
height errors and diverse measuring distances, however, the heading accuracy is solely interfered
with bounding box’s horizontal biases. In addition, the inaccuracy in the vision part may come from
human walking posture. For example, pedestrian’s spine is curved too far forwards or backwards and
greater stride variation when walking that will make pedestrian’s height errors in images. This fact
that the difference between detected pedestrian’s height and the true height caused by walking posture
somehow influences the distance values. In this paper, we neglect this inaccuracy.
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4.2.3. Analysis of Ranging and Angulation Model in Obstacle Environments

In general, indoor objects, such as furniture and pedestrians, occasionally block cameras from
viewing the moving users. In this section, we investigate the measuring performance of the proposed
MVRM method when stationary obstacles or pedestrians block the camera from observing the moving
users in indoor environment. As discussed above, two cases that analyze effect of obstructions by
various stationary obstacles and a pedestrian on bounding box’s height and bounding box’s horizontal
biases at a same measuring distance are considered below. In Figure 9a, common obstacles to be used
in the test field which primary cause bounding box’s height errors by blocking the lower half of the
user’s body. Figure 9b shows a scenario in which the pedestrian blocks a little view of camera from
viewing the user. This scenario causes both bounding box’s height errors and horizontal biases. In this
test, the camera is perpendicularly placed at the location with a height of 1.2 m and a distance from the
target of 5.1 m. Each obstacle all located at the same location in front of the target.

Garbage Can Stool

(a) (b)

Figure 9. Indoor obstacles environments. (a) Stationary obstacles; (b) pedestrian blockage.
Case 1: Stationary Obstacles

According to dimensions of common obstacles in indoor environments, an armchair, cabinet,
stool, and garbage can are used to test the ranging and heading accuracy.

Figure 10a shows that greater errors in bounding box’s height most likely induce greater ranging
errors at a same measuring distance, which is consistent with the analysis of results in Figure 7a.
Generally, the overlap area of the target with obstacles depends on the position and attitude of camera
respective to the target and its obstacles. In our test condition, obstruction by the armchair yielding the
least overlap area of the lower half of the body, which leads to a minimal RMSE of ranging as 0.1 m.
Garbage can blockage scenario is second, followed by stool blockage scenario, and the obstruction by
the cabinet leads to the greatest RMSE as 1.5 m.

Figure 10b shows the similar results that greater bounding box’s horizontal biases most likely
induce greater heading errors in Figure 7b. The minimum RMSE of heading is caused by the occlusion
by the narrowest garbage at 0.1°, however, the maximum'’s is caused by the occlusion by the widest
armchair at 0.47°.

In the view of the above tests, stationary obstacles used in these tests have greater influences
on ranging accuracy than heading accuracy. The detection failure rates caused by the cabinet and
armchair in blockage scenarios are 90% and 72% respectively, which is shown in Table 2.



Sensors 2018, 18, 3134 13 of 22
Table 2. The ranging and heading error and detection failure rates in obstacle environments.
. . . Pedestrian Pedestrian Pedestrian Pedestrian Pedestrian
Blockage Categories Armchair Cabinet Stool Garbage 5%) (30%) (50%) (70%) (90%)
RMSE 0.08 1.45 0.53 0.64 0.1 0.61 0.59 1.36 1.53
Range/m STD 0.08 0.23 0.52 0.15 0.09 0.34 0.5 0.11 0.24
Max. 0.17 1.7 1.12 0.82 0.15 0.88 1.57 1.73 1.62
RMSE 0.46 0.11 0.24 0.1 0.59 0.54 0.65 0.91 1
Heading/° STD 0.05 0.02 0.24 0.09 0.05 0.4 0.41 0.48 0.42
Max. 0.5 0.13 0.73 0.12 0.7 1 1.09 1.25 1.6
Detection Failure rates 72% 90% 0 0 0 0 0 8%
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Figure 10. The effect of obstruction by various stationary obstacles. (a) Ranging error; (b) angulation error.

Case 2: Pedestrian Blockage

In this section, we investigate the potential effect of obstructions by an unidentified pedestrian by
our vision system on ranging and heading accuracy. The test results under 5 various overlap ratios of
the target and the pedestrian are presented in Figure 11.
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—_—

Heading errors/°C

60
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Figure 11. The effect of obstruction under five overlap ratios of target and the pedestrian. (a) Ranging
error; (b) angulation error.

As shown in Figure 11a,b, greater overlap ratios generally create greater bounding box’s height
errors and imaging horizontal biases which both decrease the accuracy of the ranging and heading.
In general, when the overlap ratio approaching 50%, the ranging errors are greater than 1 m, while the
heading errors are slightly greater than 1°. In terms of the detection failure rates, unlike the results in
case 1, the detection ability is insensitive to the blocking by a pedestrian.

From the results in Table 2 and the above tests, the blockage cases more significantly decrease
the accuracy of ranging than that of heading in our tests. Specifically, the effect of a pedestrian on the
heading errors is greater than that of stationary obstacles. However, the possibility of detection failure
caused by stationary obstacles is much higher than the pedestrian case.

4.2.4. Positioning Results and Analysis

To further evaluate the positioning ability of the proposed integrated IMU/MVRM approach,
a test for a single user and an external camera is implemented in obstacles environment. The setup
for this experiment is shown in Figure 12. The used tag includes one IMU (MPU9250) and one UWB
module (DWM1000) and build a UWB positing system with three anchors for contrast deployed in the
test field. The methods run on a laptop with an Intel Core i5-3230M CPU, operating at 2.4 GHz, and
4 GB of RAM. In order to time-synchronize the IMU readings with the camera frame, we processed
each image frame from video file individually and tag the precise time stamp in millisecond-lever
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with OpenCV. The IMU data is being logged with millisecond-lever precision and interpolate the IMU
readings by time to match camera frame time.

Figure 12. The setup for the experiment in test field. (a) The carried tag; (b) the setup for the test indoor
positioning system.

The test person carried the tag walking along the rectangle path with a normal speed.
The two-dimensional local coordinate system is built in the test field. The initial position of the
test person is (6.6, 1.2), and the external camera is (—0.6, 2.4), each obstacle all locates at (2.2, 2.4) which
is near the marker 10th. Figures 13-17 are horizontal positioning trajectories by using the MVRM,
IMU/MVRM, and UWB in 5 scenarios. Table 3 summarizes the positioning errors.

Scenarior1

orth/m
NI\

———MVRM

=~ IMU/MVRM
Armchair
uws

= = Reference

O camera

1 1

(a) 0 2 4 6 8 1AO
East/m

Figure 13. The horizontal trajectory in armchair scenario. (a) The armchair blocked the view of the
camera from seeing the test person at the marker 10th, and failed to detect the person; (b) the armchair
blocked the view of the camera from seeing the test person near the marker 22nd, and failed to detect
the person.

N
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Figure 14. The horizontal trajectory in cabinet scenario. (a) The cabinet blocked the view of the camera
from seeing the test person at the marker 10th, and failed to detect the person; (b) the cabinet blocked
the little view of the camera from seeing the test person near the marker 21st, and succeed to detect but

caused image height er

TOrS.
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Figure 15. The horizontal trajectory in stool scenario. (a) the stool blocked the little view of the camera
from seeing the test person at the marker 10th, succeed to detect but caused image height errors; (b) the
stool is not able to block any view of the camera from seeing the test person near the marker 21st,
succeed to precisely detect.

As observed from Figure 13, the position estimations by using the MVRM method appears
as a number of strong outliers continually occurring in blockage phase (a) due to lacking visual
measurements including ranges and headings. Unfortunately, in blockage phase (b), the high armchair
still blocks the camera from acquiring visual measurements which causes a large number of strong

outliers in positioning traj

ectory again. For the fused IMU/MVRM solution, the position estimations

predicted by IMU during blockage phase (a) and (b) which effectively reduces and removes the

errors in positioning traje
the positioning results are

ctory. For the UWB, in the dense multipath environments, such as corner,
not satisfying.
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Figure 16. The horizontal trajectory in garbage can scenario. (a) The garbage can blocked the little view
of the camera from seeing the test person at the marker 10th, and succeed to detect but caused little
image height errors; (b) the stool is not able to block any view of the camera from seeing the test person
near the marker 21st, and succeed to precisely detect.
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Figure 17. The horizontal trajectory in pedestrian scenario. (a) The pedestrian blocked the view of the
camera from seeing the test person at the marker 10th and failed to detect the person; (b) the pedestrian
blocked little view of the camera from seeing the test person near the marker 21st, and succeed to
detect but caused larger image height errors.

Table 3. The horizontal positioning errors.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5
Horizontal Errors/m
East North East North East North East North East North
RMSE 0.16 0.12 0.2 0.1 0.35 0.14 0.13 0.33 0.15 0.4
UWB STD 0.09 0.05 0.1 0.04 0.32 0.11 0.1 0.22 0.1 0.2

Max.  0.58 0.92 0.22 0.89 0.22 0.88 0.72 1.38 0.62 1.52

RMSE 0.76 0.2 0.51 0.11 0.2 0.06 0.19 0.08 0.35 0.18
MVRM STD 0.1 0.02 0.11 0.01 0.08 0.02 0.1 0.02 0.13 0.02
Max. 3.56 0.92 1.49 0.77 0.6 0.11 0.59 0.13 3.7 0.17

RMSE 0.24 0.07 0.12 0.07 0.2 0.06 0.18 0.08 0.17 0.12
IMU/MVRM STD  0.08 0.01 0.07 0.01 0.04 0.01 0.05 0.02 0.08 0.03
Max. 099 0.23 0.59 0.08 0.54 0.14 0.46 0.13 0.81 0.25
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The positioning results by using MVRM method in Figure 14a are similar to that in scenario 1(a),
while the slightly narrow cabinet only causing lacking a small amount of visual measurement in shorter
period, which suffers from smaller values of outliers in positioning trajectory compared with that in
scenario 1(a). For the Figure 14b, the shorter cabinet rarely interferences with the person detection in
images, however, it brings out bounding box’s height errors. These visual errors are reduced by using
the fused IMU/MVRM and the improved positioning results are achieved. The results of UWB are
similar to that in scenario 1.

As shown in Figure 15, for blockage phase (a), the outliers, in this context, are results of the
visual measurements acquired by using the MVRM method. These measurements departing from the
normal range due to the detected shorter bounding boxes which are affected by the stool. Nevertheless,
the fused IMU/MVRM solution can reduce and remove the positioning estimations errors substantially.
For (b), the test person is fully visible during this period, therefore, similar results of the two solutions
are shown at the east side of the trajectories. In terms of UWB, except for the similarities in scenario 1
and 2, there are greater positioning errors in the north trajectory because of multipath effect from a
row of metal cabinets at the north of the test field.

Figure 16 shows the similar results with scenario 3. The garbage can has the smallest dimension,
therefore, the MVRM solution which causes the smallest positioning estimations errors among
all blockage scenarios shows slightly unsmooth trajectories in phase (a) compared with the fused
IMU/MVRM solution. The UWB solution are similar to that in scenario 3.

In Figure 17, for (a) and (b), the positioning results by using the MVRM solution shows greater
errors due to lacking visual measurements affected by the pedestrian during these two blockage
periods. Similarly, the fused IMU/MVRM solution significantly decreases the positioning errors by
integrating with the position estimations predicted by IMU during blockage periods. The results
of using UWB are similar to that in scenario 3 as well. Specifically, the UWB solution shows poor
performance because of the effect of the pedestrian in phase (a).

In summary, the pure MVRM solution is more sensitive to the effect of both stationary obstacles
and pedestrians, however, the robust fused IMU/MVRM solution integrating with the IMU’s
predications and visual measurements which can effectively and significantly decrease the positioning
errors in short period. Indoor objects commonly easily lead to the multipath effect. In dense multipath
environments, such as corner, the UWB solution shows poor performance compared with the proposed
IMU/MVRM. Therefore, this fused IMU/MVRM solution is more applicable to the dense multipath
scenarios where the obstacles may partially block the view of the cameras.

5. Conclusions and Future Work

A novel fusion of IMU with visual measurements acquired by cameras to determine robust
and accurate poses of the test person for indoor positioning is presented. The visual measurements
including ranges and angles are obtained by the proposed MVRM method with the assistant of a
fine-tuned Faster R-CNN which is used to detect and locate the target in images captured by the
cameras. We developed an extended Kalman filter for integrating IMU data with ranges and angles to
obtain a more robust and accurate estimations. We designed several tests to evaluate the performance.
The results experimentally show that the ranging accuracy is affected by both bounding box’s height
errors and diverse measuring distances, however, the heading accuracy is solely interfered with
bounding box’s horizontal biases. The blockage cases more significantly decrease the accuracy of
ranging than that of heading in our tests. The positioning experiments for a single user with a camera
in five scenarios were implemented in indoor environments. The robust fused IMU/MVRM solution
can effectively and significantly decrease the positioning errors and shows better performance in the
dense multipath scenarios compared with the pure MVRM and UWB solution.

We think that the proposed approach for indoor positioning can be applied in current
location-based applications in buildings where equipped IP cameras in near future. To perfectly
implement it in real applications, developing a more fast and accurate detection in more complicated
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indoor environments is a critical task, and acquiring the more accurate poses of installed cameras
is able to further enhance the performance of the proposed approach. In our proposed framework,
the position of each camera is independent. We will consider a multi-camera model with known
relative pose to improve the results in the future work.
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