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Abstract

A conjecture of Smyth [10] is discussed which says that if D and [D → D] are effectively algebraic directed-
complete partial orders with least element (cpo’s), then D is an effectively strongly algebraic cpo, where it was
left open what exactly is meant by an effectively algebraic and an effectively strongly algebraic cpo.

First, notions of an effectively strongly algebraic cpo and an effective SFP object are introduced. The effective
SFP objects are just the constructive (computable) objects in the effectively given category [9] of indexed ω-

algebraic cpo’s.

Theorem Every effective SFP object is an effectively strongly algebraic cpo, and vice versa. Moreover, this

equivalence holds effectively.

This shows that the given notion of an effective SFP object is stable. In effectivity considerations of ω-

algebraic cpo’s it is usual to require that the partial order be decidable on the compact elements. Here, we use
a stronger assumption.

Theorem If D is an indexed ω-algebraic cpo that has a computable completeness test and [D → D] is an

ω-algebraic cpo, then D is an effective SFP object.

An ω-algebraic cpo has a computable completeness test, if there is a procedure which decides for any two

finite sets X and Y of compact cpo elements whether X is a complete set of upper bounds of Y . It is an open
question whether this requirement can be weakened in the above result.

Corollary The category of effective SFP objects and continuous maps is the largest Cartesian closed full

subcategory of the category of ω-algebraic cpo’s that have a computable completeness test.

Next, it is studied whether this result also holds in a constructive framework (or, to be more precise, in
the framework of recursive mathematics), where one considers categories with constructive domains as objects,
that is, domains consisting only of the constructive (computable) elements of an indexed ω-algebraic cpo, and
computable maps as morphisms. The notions of a weakly indexed full subcategory and of being constructively
Cartesian closed are introduced. The effectivity requirements in these definitions are very weak.

Theorem The category of constructive SFP domains is the largest constructively Cartesian closed weakly

indexed full subcategory of the category of constructive domains that have a computable completeness test.

Constructive (effective) versions of domain-theoretic results are very important both for the foundations
of computer science as well as for applications, since programming languages specify computable maps and
computable (effectively given) data structures. Moreover, effective versions of classical results are good approx-
imations to what can be proved constructively and such results have turned out to be at the heart of computer
science, at least under the viewpoint of developing correct programs. In this respect the results of the paper are
relevant to the workshop.

Keywords: Effectively given domains, SFP domains, largest Cartesian closed category of domains

1 Introduction

In his seminal paper [10] Smyth showed that the category SFP introduced by Plotkin [8] is the
largest Cartesian closed category of domains, thus confirming a conjecture of Plotkin. In this
paper we treat Plotkin’s conjecture for the case of effectively given domains.

For various reasons one mostly uses the term domain to mean ω-algebraic directed-complete
partial order with least element in studies of programming language semantics. Unfortunately,
the class of domains is not closed under an important construction needed e.g. for the interpre-
tation of higher-type procedures: the space [D → E] of continuous maps between two domains
D and E must not be a domain again.

To circumvent this problem, people often restrict to the bounded-complete domains, the
class of which is closed under the function space construction. However, also this class is not
closed under all constructions needed in semantics: the Plotkin or convex powerdomain of a
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bounded-complete domain is not, in general, bounded-complete. Powerdomains are used for
the interpretation of nondeterministic programs. Plotkin therefore introduced the larger class
of SFP domains and showed that it is closed under the construction of his powerdomain as well
as the function space. Moreover, he conjectured that if D and [D → D] are domains, then D is
SFP. The conjecture, proved by Smyth, indicates that the category SFP of SFP domains and
continuous maps is the largest category of domains closed under the constructions of interest.

The question which category has to be considered instead of SFP, if the term domain is
allowed to mean some more general kind of directed-complete partial order, has extensively
been studied by Jung [3, 4, 5, 1]. If instead of the space of continuous maps one confines to
the space of stable maps, the corresponding problem has been dealt with by Amadio [2] and
Zhang [12].

In his paper Smyth conjectured that with respect to a natural notion of effectively algebraic
and of effectively strongly algebraic cpo the following statement be true: If D and [D → D]
are effectively algebraic cpo’s, then D is an effectively strongly algebraic cpo. The study of
effectiveness is important in a theory of the foundations of programming. “One reason”, said
Smyth [9], “has to do with the systematic study of the power of specification techniques. We
cannot require of a general purpose programming language that it be able to specify (define)
all number-theoretic functions, but only (at most) those which are partial recursive. A cor-
responding distinction must be made for all the ‘data types’ which one may wish to handle.
And the problem is not simply that of picking out the computable functions over a given data
type; we have the problem of specifying the data types themselves, and thus of determining
the ‘computable’, or effectively given, data types (i.e. the types which should in principle be
specifiable).”

We first introduce the notions of an effectively strongly algebraic domain and of an effective
SFP domain and show that their (effective) equivalence, which shows that we have obtained a
stable effectivity notion for SFP domains.

Plotkin introduced SFP domains as colimits of ω-chains of finite domains with embeddings as
connecting morphisms. Then he proved that they are exactly the strongly algebraic domains,
that is, those domains for which for any finite set X of compact elements, the least set containing
X and closed under the operation of taking all minimal upper bounds of subsets of X is finite.
Here, we encode the finite domains and the embeddings between them in a canonical way and
consider effective ω-chains. These are such that for a given natural number n one can compute
both the index of the nth domains and the index of the nth embedding in the chain. Effective
SFP domains are then defined to be colimits of such effective chains. An effectively strongly
algebraic domain is a strongly algebraic domain which has an indexing of its compact elements
such that for any finite set X of compact elements a canonical index of the set of its minimal
upper bounds can be computed from a canonical index of X.

Effective SFP domains have also been studied by Kanda in his dissertation [7]. But whereas
in the present paper the effective SFP domains are the constructive objects of the category
of indexed domains (that is, domains which come with a fixed numbering of their compact
elements), in the sense that each object can be constructed in an effective way from its finite
parts, this is not the case in Kanda’s treatment, as he does not code the finite domains by
canonical or explicit indices, from which the domains can easily be recovered. Instead he codes
finite domains in the same way as effectively given domains in general. This coding contains
only partial information about the domain. (See also the remark of Smyth in [11, Section 5].)

In effectivity considerations of domains it is usual to require that the domain order be decid-
able on the compact elements. Here, we use a stronger requirement. A domain is said to have
a computable completeness test if there is a procedure which decides for any two finite sets
X and Y of compact elements whether X is a complete set of upper bounds of Y . We show
that if D and [D → D] are domains such that D has a computable completeness test, then D

is an effective SFP domain. It is not known, whether the condition of having a computable
completeness test can be weakened in this result. As in Smyth [10] it follows that the category
of effective SFP domains and continuous maps is the largest Cartesian closed full subcategory
of the category of domains having a computable completeness test.

Next, it is studied whether this result also holds in a constructive framework, or, to be more
precise, in the framework of recursive mathematics. Here, one considers categories with con-
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structive domains as objects, that is, domains consisting only of the constructive (computable)
elements of an indexed ω-algebraic cpo, and computable maps as morphisms. It is shown
that the category of constructive SFP domains is the largest constructively Cartesian closed
weakly indexed full subcategory of the category of constructive domains having a computable
completeness test.

The effectivity requirements that have to be satisfied by the category are rather weak com-
pared with the conditions considered by Kanda [6] and Smyth [9] in their approaches to effec-
tiveness in categories. We only require that for any two objects the corresponding morphism
set is indexed in such a way that the universality statement in the definition of a categorical
product holds effectively.

The rest of this paper is organized as follows. In Section 2 basic definitions and results
from domain theory are given. Section 3 is its effective counterpart. Here, the definition of an
effectively given SFP domain is given and some properties are derived. Smyth’s conjecture is
treated in Section 4.

2 Domains

Let (D,⊑) be a partial order with smallest element ⊥. For a subset S of D, ↓S = {x ∈ D |
(∃y ∈ S)x ⊑ y } is the lower set generated by S. The subset S is called compatible if it has
an upper bound. S is directed, if it is nonempty and every pair of elements in S has an upper
bound in S. D is a directed-complete partial order (cpo) if every directed subset S of D has a
least upper bound

⊔

S in D, and D is bounded-complete if every compatible subset has a least
upper bound in D.

An element x of a cpo D is compact if for any directed subset S of D the relation x ⊑
⊔

S

always implies the existence of an element u ∈ S with x ⊑ u. We write D0 for the set of
compact elements of D. If D0 is countable and for every y ∈ D the set ↓{y} ∩ D0 is directed
and y =

⊔

↓{y} ∩ D0, the cpo D is ω-algebraic or, as we prefer to say, a domain. A standard
reference for domain theory is [1].

The product D × E of two cpo’s D and E is the Cartesian product of the underlying sets
ordered coordinatewise. Obviously, D × E is a domain again with (D × E)0 = D0 × E0, if D

and E are domains.

Definition 2.1

A map F : D → E between cpo’s D and E is continuous if it is monotone and for any directed
subset S of D,

F (
⊔

S) =
⊔

F (s).

Let [D → E] denote the set of all continuous maps from D to E. Endowed with the pointwise
order , that is F ⊑ G if F (x) ⊑ G(x), for all x ∈ D, it is a cpo again, but in general it need
not be a domain. This means that the category DOM of domains and continuous maps is
not Cartesian closed. Therefore one considers subclasses of domains which have this property,
when using domains in programming language semantics, e.g. SFP domains. To introduce this
kind of domains we need the following definitions.

Definition 2.2

An embedding/projection (F, G) from a cpo D to a cpo E is a pair of maps F ∈ [D → E] and
G ∈ [E → D] such that G ◦ F = IdD, the identity map on D, and F ◦ G ⊑ IdE . The map F is
called embedding and G projection.

Note that the map G is uniquely determined by F , and vice versa [11]. Therefore, we also
write FR instead of G. Embeddings are one-to-one and preserve compactness [8].

Lemma 2.3

Let D and E be domains and F : D → E. Then F is an embedding if and only if there is
a monotone and one-to-one map F0 : D0 → E0 such that for all y ∈ E and all u, u′ ∈ D0, if
F0(u), F0(u

′) ⊑ y then there exists some ū ∈ D0 so that u, u′ ⊑ ū and F0(ū) ⊑ y.
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Suppose (F, FR) is an embedding/projection from C to D and (G, GR) is an embedding/
projection from D to E. Then the composition of (F, FR) and (G, GR) is defined by

(G, GR) ◦ (F, FR) = (G ◦ F, FR ◦ GR).

Let DOM
e denote the category of domains and embeddings.

By an ω-chain in DOM
e we understand a diagram of the form D = D0

F0→ D1
F1→ . . . (that

is, a functor from ω to DOM
e). As is well known, the category DOM

e is ω-cocomplete: every
ω-chain in DOM

e has a colimit. Up to isomorphism this given by the set

D∞ = {x ∈ Πm∈ωDm | (∀m ∈ ω)xm = FR
m(xm+1) }

endowed with the componentwise partial order, that is

x ⊑ y ⇔ (∀m ∈ ω)xm ⊑Dm
ym.

Note that

D0
∞ = {u ∈ D∞ | (∃m ∈ ω)um ∈ D0

m ∧ (∀n ≥ m)un+1 = Fn(un) }.

Definition 2.4

An SFP domain is a colimit of an ω-chain in DOM
e, where all domains in the chain are finite.

In [8] Plotkin gave an alternative, purely order-theoretic characterization of SFP domains,
which is quite useful in many cases.

Definition 2.5

Let D be a partial order, X be a subset of D and UB(X) be the set of all upper bounds of X.

1. An element x of D is a minimal upper bound of X if it is an upper bound of X and it is nor
strictly greater than any other upper bound of X.

2. A subset Y of UB(X) is complete for X if whenever x ∈ UB(X), then x ⊒ y for some y ∈ Y .

Let U(X) be the set of minimal upper bounds of X. Then U(X) is contained in every subset
Y of UB(X) that is complete for X. Define U∗(X) to be the least set containing X and closed
under U . Then a domain D is called strongly algebraic if for each finite subset X of D0, U(X)
is complete and U∗(X) is finite.

Theorem 2.6

A domain is an SFP domain if and only if it is strongly algebraic.

As is well known, any partially ordered D set may be viewed as a category. The objects
of the category are the elements of D and the set of morphisms between two objects x and y

is a one-point set precisely when x ⊑ y and the empty set otherwise. Under this view-point
ω-chains correspond to infinite increasing sequences and the colimits of such chains to least
upper bounds of the sequences. Having this analogy in mind it is natural to ask what are the
compact or finitary objects of a category.

Definition 2.7

An object A of a category K is finitary in K provided that, for any ω-chain K = (Vn, Fn)n∈ω

in K with colimit
(

V, (Gn)n∈ω

)

, the following holds: for any morphism H ∈ K[A, V ], and for
sufficiently large n, there is a unique morphism K ∈ K[A, Vn] such that H = Gn ◦ K.

Obviously, the finitary objects in DOM
e are just the finite domains.
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3 Effectively given domains

In what follows, let 〈 , 〉 : ω2 → ω be a recursive pairing function with corresponding projections
π1 and π2 such that πi(〈a1, a2〉) = ai, and let ∆ be a standard coding of all finite subsets of
natural numbers. We extend the pairing function in the usual way to an n-tuple encoding.
Moreover, let P (n) (R(n)) denote the set of all n-ary partial (total) recursive functions, and let
Wi be the domain of the ith partial recursive function ϕi with respect to some Gödel numbering
ϕ. We let ϕi(a)↓ mean that the computation of ϕi(a) stops and ϕi(a)↓ ∈ C that it stops with
value in C.

Let S be a nonempty set. A (partial) numbering ν of S is a partial map ν : ω ⇀ S (onto)
with domain dom(ν). The value of ν at n ∈ dom(ν) is denoted, interchangeably, by νn and
ν(n). The pair (S, ν) is called numbered set. Note that instead of numbering and numbered
set, respectively, we also say indexing and indexed set.

Definition 3.1

Let ν and κ be numberings of the set S.

1. ν ≤ κ, read ν is reducible to κ, if there is some function g ∈ P (1) with dom(ν) ⊆ dom(g),
g(dom(ν)) ⊆ dom(κ), and νm = κg(m), for all m ∈ dom(ν).

2. ν ≡ κ, read ν is equivalent to κ, if ν ≤ κ and κ ≤ ν.

A map F : S → S′ from a numbered set (S, ν) to a numbered set (S′, ν′) is effective if there
is some function f ∈ P (1) such that f(i)↓ ∈ dom(ν′) and F (νi) = ν′

f(i), for all i ∈ dom(ν).

The following definition is essentially due to Smyth [9].

Definition 3.2

An effectively given category is a category K together with a total indexing ̺ of its finitary
objects and a total indexing ϑ of the morphisms between finitary objects such that the following
conditions hold:

1. The set { 〈m, n〉 | ̺m = ̺n } is recursive.

2. The set {m ∈ ω | ϑm is an identity morphism } is recursive.

3. There are functions d, c ∈ R(1) such that ̺d(m) and ̺c(m), respectively, are the domain and
codomain of ϑm.

4. There is a function comp ∈ P (2) such that for all m, n ∈ ω for which the codomain of ϑm is
the domain of ϑn, comp(m, n)↓ and ϑn ◦ ϑm = ϑcomp(m,n).

An ω-chain (Am, Fm)m∈ω of finitary objects in K is effective if there is a function t ∈ R(1)

such that Am = ̺π1(t(m)) and Fm = ϑπ2(t(m)), for all m ∈ ω. A constructive object A of K is
then a colimit of an effective ω-chain of finitary objects in K.

We have already seen that the finite domains are just the finitary objects of the category
DOM

e. The same holds if we confine to the subcategory IDOM
ce of indexed domains and

computable embeddings. Here, an indexed domain (D, δ) is a domain D with a fixed total
numbering δ of its compact elements.

Definition 3.3

Let (D, δ) and (E, ε) be indexed domains. A map F ∈ [D → E] is computable if the set
{ 〈i, j〉 | εj ⊑ F (δi) } is recursively enumerable (r.e.).

The numbering of the compact elements is used to impose certain effectivity requirements on
these elements. A condition that we shall always use is the decidability of the domain order.

Definition 3.4

A domain D with a total numbering δ of its compact elements is effectively given if the set
{ 〈i, j〉 | δi ⊑ δj } is recursive.

Note that an embedding from an effectively given domain into another effectively given
domain is computable exactly if its restriction to the compact elements is effective. Moreover,
a Gödel number of the function witnessing effectivity can be computed from an index of the
r.e. set witnessing the computability of the embedding, and vice versa.
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If (D, δ) and (E, ε) are indexed domains, define the numbering δ × ε by (δ × ε)〈i,j〉 = (δi, εj).
Then (D × E, δ × ε) is an indexed domain again. If (D, δ) and (E, ε) are effectively given, the
same is true for (D × E, δ × ε).

Domain elements of particular interest are those which can be approximated effectively.

Definition 3.5

Let (D, δ) be an indexed domain. An element x of D is called constructive if the set { i ∈ ω |
δi ⊑ x } is r.e.

Observe that computable maps map constructive elements to constructive elements. We
denote the set of constructive elements of D by Dc. With respect to the restriction of the
domain order it is a partial order, which we call constructive domain.

Let us now introduce canonical indexings of the finite domains and the embeddings between
finite domains. In order not to have to deal with isomorphic copies we consider only finite
domains that have natural numbers as elements. For m ∈ ω set

Em = { 〈m, a〉 | a ∈ π1(∆m) ∪ π2(∆m) }

and order it by

〈m, a〉 ⊑m 〈m, b〉 ⇔ 〈a, b〉 ∈ ∆m.

In case that Em is a partial order with smallest element, all elements are compact. We enumerate
them in the following way:

ηm
a =

{

〈m, a〉 if 〈m, a〉 ∈ Em,

n⊥ otherwise,
(a ∈ ω).

Here n⊥ is the smallest element of Em. Then (Em, ηm) is an effectively given domain. Now, let
ζm = (Em, ηm), if Em is a partial order with smallest element, and let ζm = ({0}, {〈0, 0〉}, λa.0),
otherwise. Moreover, for natural numbers 〈m, i, n〉 such that there is some embedding F ∈
[Em → En] with ∆i = { 〈a, b〉 | ηn

b = F (ηm
a ) }, define θ〈m,i,n〉 = F . In any other case set

θ〈m,i,n〉 = Id{0}. Then ζ and θ, respectively, are numberings of the finite domains and the

embeddings between these such that the category IDOM
ce is effectively given.

Definition 3.6

An effective SFP domain is a colimit of an effective ω-chain in IDOM
ce.

Let D =
(

(Dm, δm), Fm

)

m∈ω
be an effective ω-chain in IDOM

ce. Set Fmn = Fn−1 ◦ · · · ◦Fm,

for m < n, and Fmm = IdDm
. Moreover, let inm : Dm → D∞, defined by

inm(x)(n) =

{

Fmn(x) if m ≤ n,

FR
nm(x) otherwise,

for x ∈ Dm, be the canonical embedding of Dm into D∞. For 〈m, a〉 ∈ ω set δ∞〈m,a〉 = inm(δm
a ).

Then δ∞ is an indexing of D0
∞ such that D∞ is effectively given.

If D is a colimit of D there is a computable isomorphism H ∈ [D → D∞]. Isomorphisms are
embeddings and as we have seen in Lemma 2.3, these are determined by their values on the
compact elements. Moreover, they are computable just if their restriction to the computable
elements is effective. Let ϕi and ϕj witness that the restrictions of H and H−1, respectively,
to D0 and D0

∞ are effective. Moreover, let ϕc witness that the ω-chain D is effective. Then
〈i, j, c〉 is an index of D. This defines a partial indexing σ of the effective SFP domains.

As we shall see next, Plotkin’s order-theoretic characterization of the SFP domains also holds
in the effective setting.

Definition 3.7

A domain D with total numbering δ of its compact elements is effectively strongly algebraic if

it is strongly algebraic and the operation U is effective, that is, there is some function g ∈ R(1)

such that U(δ(∆i)) = δ(∆g(i)), for all i ∈ ω.
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Since δm ⊑ δn if and only if δn ∈ U({δm, δn}), it follows that every effectively strongly
algebraic domain (D, δ) is effectively given. If i is a Gödel number of the function g witnessing
the effectivity of U , then i is called an index of D. Let τ denote the indexing of the effectively
strongly algebraic domains thus obtained.

Theorem 3.8

Every effective SFP domain is an effectively strongly algebraic domain, and vice versa. More-
over, this equivalence holds effectively, that is, σ ≡ τ .

In the introduction it has already been mentioned that in his dissertation [7] Kanda studied
SFP domains in an effective setting. But he does not work with canonical indexings of the
finite domains and embeddings. As a consequence of this, the numbering of his effective SFP
domains is weaker than the one used here. He has no equivalence between the numberings of
the effective SFP domains and the effectively strongly algebraic domains, respectively, as above.

As is well known, the category SFP of SFP domains and continuous maps is Cartesian closed:
the one-point domain {⊥} is the terminal object, the domain product is the categorical product
and the space of continuous maps between two SFP domains is the categorical exponent. Note
that for two SFP domain D and E, [D → E] is an SFP domain again.

Definition 3.9

Let D and E be SFP domains. A finite subset T of D0 × E0 is called joinable if

(∀T ′ ⊆ T )[(∀u ∈ UD(pr1(T
′)))(∃v ∈ UE(pr2(T

′)))(u, v) ∈ T ].

Here pri is the projection onto the ith component.

For elements u ∈ D0 and v ∈ E0 define the step function (u ց v) : D → E by

(u ց v)(x) =

{

v if u ⊑ x,

⊥ otherwise,
(x ∈ D).

Then the compact elements of [D → E] are exactly the maps of the form
⊔

{ (ui ց vi) | i ∈ I },
where ui ∈ D0 and vi ∈ E0, for i ∈ I, so that { (ui, vi) | i ∈ I } is joinable.

If (D, δ) and (E, ε) are effective SFP domains, then it follows with Theorem 3.8 that the set
{ i ∈ ω | { (δm, εn) | 〈m, n〉 ∈ ∆i } is joinable } is recursive. Thus we can define a numbering γ

of [D → E]0 by setting

γi =

{

⊔

{ (δm ց εn) | 〈m, n〉 ∈ ∆i } if { (δm, εn) | 〈m, n〉 ∈ ∆i } is joinable,

(⊥D ց ⊥E) otherwise,

for i ∈ ω. Then it is easily verified that ([D → E], γ) is effectively given. It is even an effective
SFP domain. In addition, we have the important property that an element F of [D → E] is
constructive exactly if it is a computable map. Note that F is uniquely determined by its values
on the computable elements.

Define a constructive SFP domain to be the constructive domain obtained from an effective
SFP domain, then we achieve the following result.

Theorem 3.10

The categories ESFP of effective SFP domains and continuous maps and CSFP of constructive
SFP domains and computable maps are both Cartesian closed.

4 The conjecture

In his paper [10] Smyth conjectured that the proof of his Theorem 1 may be used to show that
with respect to appropriate effectivity notions the following statement be true:

If D and [D → D] are effectively algebraic domains, then D is an effectively strongly
algebraic domain.
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In effectivity considerations of domains these usually have to be effectively given. The effec-
tivity requirement in the definition of effectively given domains is quite weak. It is not clear
to us how the set of minimal least of upper bounds of a finite set of compact elements can be
computed in the case of such domains. We therefore strengthen this condition.

Definition 4.1

A domain D with a total numbering δ of its compact elements has a computable completeness
test if the set

{ 〈i, j〉 | δ(∆j) ⊆ UB(δ(∆i)) ∧ δ(∆j) is complete for δ(∆i) }

is recursive.

Since δi ⊑ δj if and only if {δj} is complete for {δi, δj}, every domain that has a computable
completeness test is effectively given.

Let EDOMCC be the category of domains with a computable completeness test and con-
tinuous maps and CDOMCC the category of constructive domains obtained from domains
with a computable completeness test and computable maps. Obviously, the object sets of both
categories are closed under the construction of product domains, which is also the categorical
product in these domains. Hence, both domains are Cartesian.

Proposition 4.2

1. ESFP is a proper full subcategory of EDOMCC.

2. CSFP is a proper full subcategory of CDOMCC.

Proof. Let (D, δ) be an effective SFP domain and note that

δ(∆j) ⊆ UB(δ(∆i)) ∧ δ(∆j) is complete for δ(∆i)

⇔ U(δ(∆i)) ⊆ δ(∆j) ∧ δ(∆j) ⊆ UB(δ(∆i)).

Since D is effectively strongly algebraic and hence also effectively given, the right hand side of
this equivalence is recursive in i and j. Thus, D has a computable completeness test.

Now, we can state and prove our version of Smyth’s conjecture.

Theorem 4.3

If D and [D → D] are domains such that D has a computable completeness test, then D is
effectively strongly algebraic.

The second important result in Smyth’s paper says that SFP is the largest Cartesian closed
full subcategory of DOM. For the proof he needed the next result.

Lemma 4.4

Let K be a full subcategory of the category CPO of cpo’s and continuous maps. Then the
following three statements hold:

1. If K has a terminal object T , then T is the one-point cpo.

2. If K has a terminal object and the product A×K B of objects A and B exists, then A×K B

is isomorphic in CPO to the usual product A × B.

3. If K has a terminal object and all products of pairs, and the exponent ED of objects D and
E exists, then ED is isomorphic in CPO to the usual function space [D → E].

Now note that if D is a domain with a computable completeness test and D is isomorphic to
a cpo E, then also E is a domain with a computable completeness test. With Theorem 4.3 we
therefore obtain the following analogue of Smyth’s result.

Theorem 4.5

ESFP is the largest Cartesian closed full subcategory of EDOMCC.
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In the rest of this section we deal with the question whether a similar statement is true
with respect to CSFP and CDOMCC. As we shall see such a statement holds, but only in
an effective categorical setting. Whereas in the definition of effective SFP domains we used
rather strong, though very natural, effectivity requirements, we shall now employ only very
weak conditions.

Definition 4.6

Let K be a category and for any two objects A and B, αA,B be a partial indexing of the

morphism set K[A, B]. Then (K, (αA,B)A,B∈Ob
K

) is called weakly indexed.

Definition 4.7

Let (K, (αA,B)A,B∈Ob
K

), (K′, (βA,B)A,B∈Ob
K′

) be weakly indexed categories and A, B be ob-
jects of K.

1. The categorical product (A×B,prA,prB) of A and B is constructive if for any object C of
K there is a function prodC ∈ P (2) such that for all a ∈ dom(αC,A) and all b ∈ dom(αC,B),

α
C,A×B

prod
C

(a,b) is the unique morphism in K[C, A × B] with

αC,A
a = prA ◦αC,A×B

prod
C

(a,b) and α
C,B
b = prB ◦αC,A×B

prod
C

(a,b).

2. (K, (αA,B)A,B∈Ob
K

) is a full subcategory of (K′, (βA,B)A,B∈Ob
K′

) if K is a full subcategory

of K
′ and for all objects A, B of K, αA,B ≡ βA,B .

Definition 4.8

A weakly indexed category K is constructively Cartesian closed if K contains a terminal object
and for every pair of objects there is a constructive categorical product and a categorical
exponent.

We now have to verify that CDOMCC and CSFP are weakly effective categories. Let
(D, δ) and (E, ε), respectively, be both effective SFP domains or both domains that have a
computable completeness. If F : D → E is computable and Wi = { 〈m, n〉 | εn ⊑ F (δm) }, then
we call i an index of the restriction of F to Dc. This defines partial indexings of CSFP[D, E]
and CDOMCC[D, E], respectively.

Proposition 4.9

1. The category CDOMCC is weakly indexed.

2. The category CSFP is a constructively Cartesian closed weakly indexed full subcategory of
CDOMCC.

In the framework of weakly effective categories Lemma 4.4 can be strengthened.

Lemma 4.10

Let K be a weakly indexed full subcategory of CDOMCC. Then the following three statements
hold:

1. If K has a terminal object T , then T is the one-point cpo.

2. Let K have a terminal object. If the product A×KB of objects A and B exists, then A×KB

is isomorphic in CDOMCC to the usual product A × B.

3. Let K have a terminal object and all products of pairs. If the exponent ED of objects D

and E exists, and ED, D̄ and Ē, respectively, are objects in EDOMCC with ED = (ED)c,

D = D̄c and E = Ēc, then ED is isomorphic in CPO to the usual function space [D̄ → Ē].

As above we now obtain our constructive analogue of Smyth’s second result.

Theorem 4.11

CSFP is the largest constructively Cartesian closed weakly indexed full subcategory of
CDOMCC.
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