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Abstract

In this paper scheduling strategies  for a rapid prototyping
system are discussed. Our rapid prototyping system is able to
use several CASE-tools and generate code for models of heter-
ogenous domains. By using the emerging CASE data inter-
change format CDIF the model data of CASE-tools is repre-
sented tool-independent. This tool-independent layer serves as
a basis for simulation and code generation. The generated
code is partitioned in tasks which must be scheduled as fast as
possible with a real-time operating system  to support high per-
formance applications. We classify scheduling requirements
for the constraints of rapid prototyping  and present a new
scheduling strategy called pseudo-rate scheduling which sig-
nificantly improve the execution speed of rapid prototyping ap-
plications. Additionally, we provide a set of equations to esti-
mate schedulability. Experimental results demonstrate the
main advantages of our scheduling strategy.

1 Introduction

 Increasing complexity of electronic real-time systems and
time-to-market pressure require a methodical development ap-
proach. Beginning with the specification several development
phases have to be performed in a top-down process to get the
final release. If errors are detected in lower development
phases or in the final release all development phases have to be
performed once again. Therefore, it is important to start from
a correct system specification that exactly reproduces the ex-
pected system behavior. To ensure a correct specification, rapid
prototyping is used to clarify system goals and the behavior in
the real environment. Rapid prototyping is a technique to de-
velop prototypes early in the development process to permit
early feedback and analysis.

Typical electronic systems for example an electric window
regulator of a car consists of time-discrete components (drive
up, stop, etc.) and time-continuous components (speed regula-
tion, pinch protection). For the development of these systems
several specification languages (multilanguage specification)
and several CASE-tools are used. Today, no environment ex-
ists which completely fulfills the requirements of a methodical
development approach using several CASE-tools. These re-
quirements include tool-independence of simulation and rapid
prototyping, support of several design domains (i.e. time-dis-
crete and time-continuous techniques), support of an overall

simulation and code generation for all used domains. In our
work we focus on concept-oriented rapid prototyping which is
a fast conversion of an executable specification into a func-
tional software prototype. Our approach is based on CASE-
tools like STATEMATE1 and MATRIXX

2, automatic code
generation and powerful extensible hardware to obtain func-
tional prototypes [3]. Using the standardized CASE data inter-
change format CDIF3 [5] a tool independent rapid prototyping
system can be built [4]. The generated code for a rapid proto-
typing system [2] consists of three components which are re-
sponsible for the logical behavior of the model, the integration
of the input/output hardware and the scheduling. These com-
ponents form several tasks which are executed on a specialized
hardware platform equipped with I/O hardware. To obtain a
high performance, these tasks have to be scheduled as fast as
possible considering timing and resource constraints. There-
fore scheduling strategies suitable for concept-oriented rapid
prototyping have to be examined.

In the following we will introduce some terms used in
scheduling theory. First, we have to distinguish static and dy-
namic scheduling. While static scheduling determines the
scheduling strategy at compilation time, the dynamic schedul-
ing determines the scheduling strategy at run time. Preemptive
scheduling allows a task to be interrupted at execution time and
go on working later. Every preemption is time-consuming be-
cause of the context switch of a task (latency). A task is called
data independent if it shares no data with other tasks and if
there is no need for intertask communication. If a task uses re-
sources like functional resources (e.g. a processor), commu-
nication resources (e.g. a bus) or memory resources (e.g. RAM
/ ROM) it is called limited on resources. If a task is repeated re-
petitively with a constant interval the scheduling is called peri-
odic. At last, we have to distinguish between uniprocessor and
multiprocessor scheduling [14].

The generated code for a rapid prototyping system is parti-
tioned into several tasks which have to be executed sharing a
functional resource (the processor). This limitation means that
more important tasks (like a task responsible for the timing)
must be executed with a higher priority than less important
tasks (priority scheme). A scheduling strategy which uses a
priority scheme has to decide whether a task must be started,

1. STATEMATE is a registered trademark of I-Logix. Inc.

2. MATRIXX is a registered trademark of Integrated Systems, Inc.

3. CDIF is a registered trademark of the Electronic Industry Assoc.



suspended, interrupted or resumed. Scheduling theory typi-
cally uses metrics like minimizing the sum of completion
times, minimizing the weighted sum of completion times,
minimizing scheduling length or minimizing the maximum
lateness. We have to decide metrics that meet the requirements
of concept-oriented rapid prototyping. Furtheron, we have to
determine a suitable scheduling strategy and a criterion for the
schedulability estimation of an application.

The paper first summarizes the related work on scheduling
in rapid prototyping systems. In section 3 we will classifiy the
scheduling of a concept-oriented rapid prototyping system.
Section 4 contains scheduling estimations for rate-monotonic
scheduling and pseudo-rate scheduling. The second scheduling
strategy takes advantage of rapid prototyping constraints and is
presented for the first time. The results of both scheduling algo-
rithms are presented in section 5. Finally, section 6 offers a con-
clusion.

2 Related Work

Most of the code generators of CASE-tools provide the user
only with components which reproduce the logical behavior of
the model. Support for executing this code on a real-time target
platform or a scheduling concept for the execution is rare. If a
scheduling strategy is offered, it is often written for simulation
purpose only. In general, these scheduling strategies do not take
deadlines of a real-time execution into account or even jump
back in time like the Time-Warp algorithm [8].

STATEMATE, a CASE-tool for time-discrete modeling
(statecharts), is an example for that. It only supports code gen-
eration and scheduling for simulation purpose [6]. If a user
wants to build a prototype he has to implement scheduling and
I/O connection on his own. MATRIXX [7] and Matlab4 [13]
which are mainly used for modeling time-continuous systems,
provide better real-time support. MATRIXX for example offers
three different kinds of tasks:

• free-running periodic tasks are executed repetitively at a
fixed frequency

• enabled periodic tasks are executed repetitively but only
when enabled.

• triggered tasks are executed when a trigger is detected.

The priority for execution is based on the kind of task. The
free-running periodic task has the highest priority and the trig-
gered task the lowest. Triggered tasks are of low priority be-
cause a static scheduling strategy cannot react to the time spent
for an additional task and the real-time constraints of the peri-
odic scheduled tasks must be met under all circumstances. The
real-time code is mainly generated for a specialized hardware
platform (RealSim series). Other real-time platforms are basi-
cally supported by MATRIXX but this costs additional user ef-
fort and the performance is not optimal.

So we can state that for rapid prototyping purpose schedul-
ing strategies for simulation cannot be used. If a CASE-tool of-
fers support for real-time scheduling it is optimized for a spe-

4. Matlab is a registered trademark of The MathWorks Inc.

cific hardware platform. Scheduling strategies for several
domains and optimization techniques for these are hardly ex-
amined.

3 Scheduling Classification for Concept-Ori-
ented Rapid Prototyping

In the following we will classify scheduling strategies con-
sidering constraints and requirements of concept-oriented
rapid prototyping. According to the terms introduced in section
1 we have to distinguish scheduling for uniprocessor or multi-
processors. Multiprocessor scheduling causes a lot of commu-
nication overhead and the scheduling problem is np-complete
[14]. Therefore we will concentrate on uniprocessor schedul-
ing. Dynamic scheduling will be used if new tasks have to be
generated at runtime. It is not deterministic and the computa-
tion of scheduling at run time is time-consuming. Especially in
high performance environments, time used for the computation
of scheduling can be missed to keep the deadlines of real-time
tasks. In the field of rapid prototyping a deterministic behavior
is necessary which requires a precise prediction of the execu-
tion scenario. Static scheduling guarantees determinism if
deadlines, constraints and execution times are known at com-
pilation time and is therefore preferred.

The interruption of a task during its execution (preemption)
can be permitted in general. Particulary in case of unbalanced
tasks (a mixture of tasks with short deadlines and tasks with
long deadlines) this property is necessary to obtain a working
scheduling. The scheduling strategy has to assign higher priori-
ties for tasks with faster sample rates and lower priorities to the
slower ones in order to guarantee schedulability. For periodic
tasks this is the optimum static priority scheme [11]. However,
if execution times are small compared to the period or the dead-
line it would not be useful to interrupt them because every pre-
emption requires some additional time for changing the context
(latency). Because the user can model tasks for a rapid proto-
typing system with any sample rates we have to consider pre-
emption for the scheduling of concept-oriented rapid prototyp-
ing.

Sync. Input Model ... Sy

Titn

Output

Figure 1: Structure of a task

tn+1

To guarantee a deterministic behavior in a real-time envi-
ronment the tasks are scheduled as encapsulated objects which
accept inputs and return outputs strictly under the control of the
scheduler. Such an encapsulated object has a limited comple-
tion time Ci  and consists of four components (Fig. 1) which are
executed repetitively. The synchronization component is re-
sponsible for the communication with the scheduler. Then, in-
put variables are updated and the model component  is exe-
cuted. At last, output variables are written. Changes of output
variables within a period Ti  lead to a non-deterministic behav-



ior during the execution of a model, because other tasks would
rely on output variables which can be updated at any time.
Therefore output variables of every task have to be updated at
the end of a period. Double-buffering is a method to give every
task its own local variables. Using double-buffering, the input
variables are updated before the execution of a task. These in-
put variables are valid for the entire period. The output vari-
ables are written in local memory at any time but the global out-
put variables are only updated at the end of the task’s period.
This leads to a data independence of all executed tasks. Almost
all rapid prototyping applications have resource limitations.
Mainly functional resources are affected while memory and
communication resources are not critical. The usage of a multi-
processor capable real-time operation system (e.g. VxWorks5)
can improve the situation for functional resources but this will
lead to a large communication overhead.

To solve algorithms of time-discrete and time-continuous
models an accurate timing is needed. For time-discrete models
the time to process one transition must be known. Time-contin-
uous models which are processed in a time-discrete manner
need a time base to solve differential equations or generate sig-
nals. A periodic scheduling of tasks offers the best solution, be-
cause it uses a time base which can also be used for the execu-
tion of these algorithms. A scheduling strategy with a fixed rate
is called rate-monotonic scheduling.

For rapid prototyping it is important to maximize the num-
ber of tasks that will be completed in a given period. Accord-
ingly we can use the minimization of the maximum lateness
Lmax as a metric. Lateness of a task is defined as the interval be-
tween deadline and completion time. So, exceeding these dead-
lines should be minimized (strictly spoken this should never
happen because we are dealing with hard real-time tasks, but
the given metric is able to schedule as fast as possible). Accord-
ing to Lawler’s notation [9] in which the problem definition is
given with ���������, where � indicates the machine environ-
ment (i.e. � � � indicates a uniprocessor machine), � indi-
cates the constraints (prec stands for precedence, pmtn for pre-
emption, resrc for limited resources and indpt for data
independence), and � indicates the metric, concept-oriented
rapid prototyping can be characterized as:

��������
��� ��	��� ������ �	����� 
�����������

In the following section we will discuss the schedulability
of periodic tasks. Additionally, a new scheduling strategy con-
sidering the constraints of real-time execution is discussed
leading to shortest possible execution times.

4 Scheduling Estimation for Concept-Ori-
ented Rapid Prototyping

4.1 Rate-Monotonic Scheduling

The rate-monotonic scheduling is a special case of deadline
monotonic scheduling. Deadline monotonic scheduling can be
identified by the inequality

5. VxWorks is a registered trademark of WindRiver Systems.
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whereas rate-monotonic scheduling is characterized by
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If this inequality can be kept it is guaranteed that the peri-
odic execution of a system can keep the deadline. The most ob-
vious condition for a successful scheduling which is a neces-
sary and sufficient condition [12] is

�
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�


�


��

��

�
 � �.

Ui  is called utilization. This condition can be enhanced with
the introduction of an upper bound for rate-monotonic schedul-
ing. This bound is characterized by the relation

�

��

�
 � ����
� � ��,

where n is the number of independent periodic tasks [12]. This
first theorem states that if the inequality above is fulfilled, all
tasks can be executed in their period. The value of the upper
bound converges for rising n to � � � �� 	
�. However, the
condition is only sufficient, not necessary. Therefore the condi-
tion can indicate by mistake that a system is not schedulable.
This leads to a necessary and sufficient set of inequalities [10]:
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This second theorem constructs ineqalities for all schedul-
ability points. The schedulability points are determined by
computing all successive periods for all tasks up to the end of
the first period of the lowest frequency task. For one schedul-
ability point, the inequality consists of a sum of possible execu-
tion times of all tasks that can be activated before the schedul-
ability point, divided by the value of time corresponding to the
schedulability point.

Unfortunately the computation of both of these theorems
has a different complexity. While the first theorem is increasing
with ���� the second is increasing considerably stronger be-
cause of it’s data dependence [1]. The number of calculations
required is dependent on the values of task periods. For the
worst case the calculation can consist of a schedule for each
task up to the period of the lowest frequency task.

4.2 Pseudo-Rate Scheduling

An additional constraint for real-time systems must be met
if an onboard hardware timer is used to generate a periodic in-
terrupt as a time base for tasks. Real-time operating systems
usually support one onboard hardware timer which is called
auxiliary timer. The execution of real-time systems which are
not using this auxiliary timer as a time base are slower because
they have to use a time-consuming watchdog timer (software-
implemented). The advantage of watchdog timers is that they
can produce any period they want. Tasks which are using inter-



rupts of an auxiliary timer are limited because they have to use
the greatest common divisor (gcd) of all task periods as a com-
mon time base. The required resolution � for a set of tasks with
different periods is given with the following equation:
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 In the equation above the time differences between all task
periods are calculated. The required resolution � is equivalent
to the greatest common divisor of all differences. Sometimes it
is not possible to generate resolutions which are small enough.
For example if a task needs a sample rate of 1 kHz and another
needs 800 Hz we will need a resolution � of 0,25 ms although
both sample rates are equal or larger than 1 ms (Fig. 2). If the
resolution gets smaller additional interrupts must be executed
by the real-time operating system. This shortens the time that
remains for the execution of the model tasks. Therefore it is
necessary to find the smallest possible resolution that keeps the
real-time constraints and does not produce interrupts so fre-
quent that the processor spends too much time servicing the in-
terrupts. If the processor is overloaded with interrupts and can-
not execute the model tasks this is called trashing. If the sample
rate of a task must be adapted to get the same or a better preci-
sion like rate-monotonic scheduling the adapted sample rate
must be higher than the previous one. In our example, a sample
rate of 1 kHz for both tasks will result in a lower resolution
(� � ����). The effects on the task with a higher resolution
will be discussed in section 4.3. Scheduling strategies for sys-
tems using a single fixed rate as their time base are called pseu-
do-rate scheduling.

T1 = 1 ms

T2 = 1,25 ms

t

t

t

� = 0,25 msnecessary resolution

Figure 2: Necessary resolution �

The schedulability of those systems cannot be determined
by the two theorems obtained in section 4.1. Strictly spoken the
deadline of the tasks which have to be adjusted will remain the
same. Therefore we will obtain the case that the deadline is lon-
ger or equal compared to the period. Literature shows that there
is no general solution to this problem [15]. In this special case
however we can set the deadline equal to the period. Instead of
Ti  we obtain a shortened period Ti ’ which can be expressed as:
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 Taux is the period of the auxiliary timer. With this, both of
the theorems above can be adapted. The first theorem can be
extended to:
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In this way we only get values for the period which are mul-
tiples of Taux. The second theorem can be extended to:
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Like the second theorem for rate-monotonic scheduling in-
eqalities for all schedulability points are constructed but this
time for the revised schedulability points. As an example for
this complex theorem we will vary the example which is given
in [15] (Tab. 1). We assume an auxiliary timer interrupt every
20 time ticks. Tab. 1 shows three tasks, their execution time Ci ,
the rate-monotonic period Ti , the pseudo-rate period Ti ’  as well
as ratio, utilization and the upper bound of the first theorem. In
[15] it was shown that a rate-monotonic scheduling is possible.
In the following we will show that a pseudo-rate scheduling is
not possible.

Task i

Execu-
tion
time
Ci

rate-
mono-
tonic

Ti

pseudo
rate
Ti ’

Ratio
Ci /Ti ’

Utiliza-
tion
1 .. N

upper
bound

1 45 135 120 0,375 0,375 1,000

2 50 150 140 0,357 0,732 0,828

3 80 360 360 0,222 0,954 0,779

Table 1: Example of pseudo-rate scheduling

To examine the schedulability of the three tasks given in
Table 1 we only have to consider the case 
 � � of the second
theorem because the first two tasks are schedulable according
to the first theorem (��

���
�� � �����������). The index j
and k must vary between 1 and 3. For � � � l must vary be-
tween 1 and 3, for � � � between 1 and 2, and for � � �
 � �. We will not show all of these terms because the calcula-
tion is simple. However, none of the inequalities is fulfilled in-
dicating that the system cannot be pseudo-rate scheduled with
the given values.
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To enable scheduling, the periods of the tasks have to be in-
creased, the execution times have to be shorter or a smaller res-
olution has to be chosen. If we assume a reduction of the execu-
tion time of task 3 from 80 to 75 time units (C3’=75), according
to theorem 1 the utilization is still above the upper bound (0,940
> 0,779). But this time according to the second theorem the
tasks are schedulable. The critical case is given with
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From this case we can obtain the scheduling for this exam-
ple with pseudo-rate scheduling. For the critical case we have
to execute three times C1, three times C2 and one time C3’
within 360 time units. The result is shown in Figure 3.
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Task3
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Figure 3: Pseudo-rate scheduling of Tab. 1

4.3 Influence of Pseudo-Rate Scheduling

The reduction of periods of a task leads to consequences for
the execution of the time-discrete and time-continuous models.
Tasks with time-continuous models will improve their preci-
sion because they use an integration algorithm with fixed step
size like Euler or Runge–Kutta and the precision of these algo-
rithms rises with shorter periods. The generation of signals like
pulse width modulation (PWM) however might lead to prob-
lems. If a signal has to keep a sequence which cannot be met by
the time base of the auxiliary timer the generated signal will
differ. According to the sampling theorem the maximum differ-
ence � is

� � �
�

A similar problem exists for tasks with time-discrete mod-
els. If two input changes occur within the time of a period it is
not guaranteed that both events are processed in the same pe-
riod. However, the simultaneous processing of both events can

also not be guaranteed for every case if the period is not reduced
(frequence shift). The dependence of simultaneous events of a
model must be avoided because this will lead to a non–deter-
ministic behavior. Modeling of absolute times can also cause
problems because if a timeout event or a scheduled action can-
not be executed in time the behavior of the system can be in-
fluenced.

These are undesired effects which can only be avoided if the
user already choose in the model a sample rate which is a multi-
ple of the desired auxiliary timer resolution. If an adaptation of
a period have to be done in order to match the time base of an
auxiliary timer the user of a rapid prototyping system must be
informed about the consequences.

5 Results

Our results show the execution speed superiority of the
pseudo-rate scheduling compared to the rate-monotonic sched-
uling. This speed superiority results mainly from the use of a
hardware implemented auxiliary timer which produces an in-
terrupt every period and does not cause the overhead of a soft-
ware implemented timer. Rate-monotonic scheduling requires
a timer implementation for every task with a watchdog timer
but can be adapted to any period. Figure 4 shows the scheduling
results of pseudo-rate scheduling compared to rate-monotonic
scheduling for different tasks. For the tests we used a Motorola
VMEbus based system with a 200 MHz PowerPC Processor
604, the real-time operating system VxWorks and self-devel-
oped general purpose I/O hardware. The advantage of the pseu-
do-rate scheduling is at least about 20 percent and is strongly
rising with the number of tasks.
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Figure 4: Comparison of scheduling strategies

number of tasks

To show the effects of the different scheduling strategies for
an industrial application we have selected an electrical window
regulator for demonstration purpose. The window regulator
was built according to industrial specifications including posi-
tion counting, pinch protection and theft protection. The ap-
plication consists of a MATRIXX and a STATEMATE model
and uses our code generation modules based on the application
independent CASE data interchange format CDIF. The STA-
TEMATE model, responsible for the operational control, con-
sists of 22 basic states, 3 hierarchical and 3 orthogonal states



while the MATRIXX model, responsible for filtering signals,
consists of 5 nested FIR filters. Pseudo-rate scheduling was ex-
ecuted in 90 �s, whereas rate-monotoic scheduling was exe-
cuted in 120 �s.

Figure 5: Screenshot of pseudo-rate scheduling

Figure 5 shows a screenshot done with the real-time visual-
ization tool WindView of the real-time behavior with pseudo-
rate scheduling. The auxiliary timer which generates an inter-
rupt each period is called ’Int16’, the task named ’Exec’
corresponds with the scheduler and the time-discrete and time-
continuous tasks are called ’Discrete_Task’ and ’Continu-
ous_Task’. A filled flag indicates that the scheduler gives a
semaphore for every model task. The two model tasks take
them, execute their models and allow the scheduler to proceed.
If a model task was not finished before the next auxiliary timer
interrupt, an error occured and the execution will enter a fail
safe mode.

6 Conclusion

In this paper we have classified different scheduling strate-
gies for concept-oriented rapid prototyping systems. Rapid
prototyping systems with their constraints of fast execution
times and deterministic behavior require a periodic scheduling.
To optimize the execution times we can use pseudo-rate sched-
uling which uses a hardware implemented auxiliary timer to
generate periodic interrupts as a time base for tasks. For the first
time schedulability of those systems were analyzed methodi-
cally. The advantages of pseudo-rate scheduling compared to
rate-monotonic scheduling are shown in experimental results.
An industrial application shows the potential of concept-ori-
ented rapid prototyping which now can be used in areas with
highest performance requirements like engine management
systems.

Future work will include a worst-case estimation of the exe-
cution time Ci  of tasks to obtain an optimal processor utiliza-

tion. Furtheron a test of our rapid prototyping system with
highest performance systems have to be realized. The opti-
mization of the generated code will complete our work.
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