Scheduling Strategies and Estimations for Concept-Oriented Rapid Prototyping

A. Burst, M. Wolff, M. Kiuihl, K. Miller-Glaser
Institute for Information Processing Technology, ITIV
University of Karlsruhe
76128 Karlsruhe, GERMANY
http://www-itiv.etec.uni-karlsruhe.de
email: {burst,wolff,kuehl,kmg}@itiv.etec.uni-karlsruhe.de

Abstract simulation and code generation for all used domains. In our
work we focus on concept-oriented rapid prototyping which is

In this paper scheduling strategies for a rapid prototyping a fast conversion of an executable specification into a func-
system are discussed. Our rapid prototyping system is able ttional software prototype. Our approach is based on CASE-
use several CASE-tools and generate code for models of heteteols like STATEMATE and MATRIXx?2, automatic code
ogenous domains. By using the emerging CASE data intergeneration and powerful extensible hardware to obtain func-
change format CDIF the model data of CASE-tools is repre-tional prototypes [3]. Using the standardized CASE data inter-
sented tool-independent. This tool-independent layer serves ashange format CDH{5] a tool independent rapid prototyping
a basis for simulation and code generation. The generatedystem can be built [4]. The generated code for a rapid proto-
code is partitioned in tasks which must be scheduled as fast agping system [2] consists of three components which are re-
possible with a real-time operating system to support high persponsible for the logical behavior of the model, the integration
formance applications. We classify scheduling requirementsof the input/output hardware and the scheduling. These com-
for the constraints of rapid prototyping and present a newponents form several tasks which are executed on a specialized
scheduling strategy called pseudo-rate scheduling which sighardware platform equipped with I/O hardware. To obtain a
nificantly improve the execution speed of rapid prototyping ap-high performance, these tasks have to be scheduled as fast as
plications. Additionally, we provide a set of equations to esti-possible considering timing and resource constraints. There-
mate schedulability. Experimental results demonstrate thefore scheduling strategies suitable for concept-oriented rapid

main advantages of our scheduling strategy. prototyping have to be examined.
In the following we will introduce some terms used in
1 Introduction scheduling theory. First, we have to distingustdticanddy-

namic scheduling. While static scheduling determines the
gscheduling strategy at compilation time, the dynamic schedul-

Increasing complexity of electronic real-time systems an i b X
g prexty y ng determines the scheduling strategy at run tfneemptive

time-to-market pressure require a methodical development ag . . S
proach. Beginning with the specification several developmentcheduling allows atask to be interrupted at execution time and
phases have to be performed in a top-down process to get tf§® 0N working later. Every preemption is time-consuming be-
final release. If errors are detected in lower developmentause Of the context switch of a tatkency. A taskiis called
phases or in the final release all development phases have to §&t@ independerit it shares no data with other tasks and if
performed once again. Therefore, it is important to start fromt1€"€ iS n0 need for intertask communication. If a task uses re-
a correct system specification that exactly reproduces the ex20urces like functional resources (e.g. a processor), commu-
pected system behavior. To ensure a correct specification, rapfCation resources (€.g. a bus) or memory resources (e.g. RAM
prototyping is used to clarify system goals and the behavior in ROM) itis calledimited on resourcesf a task is repeated re-
the real environment. Rapid prototyping is a technique to dePetitively with a constant interval the scheduling is cabled-

velop prototypes early in the development process to permiPdic: Atast, we have to distinguish betwegmiprocessoand
early feedback and analysis. multiprocessoscheduling [14].

Typical electronic systems for example an electric window 1 h€ generated code for a rapid prototyping system is parti-
regulator of a car consists of time-discrete components (drivdioned into several tasks which have to be executed sharing a
up, stop, etc.) and time-continuous components (speed regul L_mcthnal resource (the.processor). This Ilmltatlon mea_ns.that
tion, pinch protection). For the development of these system&0re important tasks (like a task responsible for the timing)
several specification languagesu(tilanguage specificatign must be executed with a higher priority than less important

and several CASE-tools are used. Today, no environment ex&SKS priority schem A scheduling strategy which uses a
ists which completely fulfills the requirements of a methodical PriCrity scheme has to decide whether a task must be started,

development approach using several CASE-tools. These re-
guirements include tool-independence of simulation and rapid 1. STATEMATE is a registered trademark of I-Logix. Inc.

prototyping, support of several design domains (i.e. time-dis- 2.MATRIXx is a registered trademark of Integrated Systems, Inc.
crete and time-continuous techniques), support of an overall 3.CDIF is a registered trademark of the Electronic Industry Assoc.

suspended, interrupted or resumed. Scheduling theory typieific hardware platform. Scheduling strategies for several
cally usesmetricslike minimizing the sum of completion domains and optimization techniques for these are hardly ex-
times, minimizing the weighted sum of completion times, amined.

minimizing scheduling length or minimizing the maximum

lateness. We _have to de_cide metric_s that meet the requirements Scheduling Classification for Concept-Ori-

of concept-oriented rapid prototyping. Furtheron, we have to - .

determine a suitable scheduling strategy and a criterion for the ented Rapid Prototyping

schedulability estimation of an application. In the following we will classify scheduling strategies con-

The paper first summarizes the related work on schedulingidering constraints and requirements of concept-oriented
in rapid prototyping systems. In section 3 we will classifiy the rapid prototyping. According to the terms introduced in section
scheduling of a concept-oriented rapid prototyping system. we have to distinguish scheduling for uniprocessor or multi-
Section 4 contains scheduling estimations for rate-monotonigrocessors. Multiprocessor scheduling causes a lot of commu-
scheduling and pseudo-rate scheduling. The second scheduliication overhead and the scheduling problem is np-complete
strategy takes advantage of rapid prototyping constraints and {g 4]. Therefore we will concentrate on uniprocessor schedul-
presented for the first time. The results of both scheduling algoing. Dynamic scheduling will be used if new tasks have to be
rithms are presented in section 5. Finally, section 6 offers a congenerated at runtime. It is not deterministic and the computa-

clusion. tion of scheduling at run time is time-consuming. Especially in
high performance environments, time used for the computation
2 Related Work of scheduling can be missed to keep the deadlines of real-time

tasks. In the field of rapid prototyping a deterministic behavior

Most of the code generators of CASE-tools provide the usefs necessary which requires a precise prediction of the execu-
only with components which reproduce the logical behavior oftion scenario. Static scheduling guarantees determinism if
the model. Support for executing this code on a real-time targedeadlines, constraints and execution times are known at com-
platform or a scheduling concept for the execution is rare. If goilation time and is therefore preferred.
scheduling strategy is offered, it is often written for simulation The interruption of a task during its executipreemptiof
purpose only. Ingeneral, these scheduling strategies do nottalggn pe permitted in general. Particulary in case of unbalanced
deadlines of a real-time execution into account or even jumRasks (a mixture of tasks with short deadlines and tasks with
back in time like the Time-Warp algorithm [8]. long deadlines) this property is necessary to obtain a working

STATEMATE, a CASE-tool for time-discrete modeling scheduling. The scheduling strategy has to assign higher priori-
(statecharts), is an example for that. It only supports code gerties for tasks with faster sample rates and lower priorities to the
eration and scheduling for simulation purpose [6]. If a userslower ones in order to guarantee schedulability. For periodic
wants to build a prototype he has to implement scheduling antasks this is the optimum static priority scheme [11]. However,
I/O connection on his own. MATRIX[7] and Matla [13] if execution times are small compared to the period or the dead-
which are mainly used for modeling time-continuous systems|ine it would not be useful to interrupt them because every pre-
provide better real-time support. MATRXor example offers emption requires some additional time for changing the context
three different kinds of tasks: (latency. Because the user can model tasks for a rapid proto-
typing system with any sample rates we have to consider pre-
emption for the scheduling of concept-oriented rapid prototyp-

ing.

» free-running periodic taskare executed repetitively at a
fixed frequency

» enabled periodic taskare executed repetitively but only |
when enabled. 1

* triggered tasksre executed when a trigger is detected.

| Sync. || Input Model Output - :Tsi
The priority for execution is based on the kind of task. The T

free-running periodic task has the highest priority and the trig- th th+1

gered task the lowest. Triggered tasks are of low priority be-)

cause a static scheduling strategy cannot react to the time spent Figure 1: Structure of a task

for an additional task and the real-time constraints of the peri-

odic scheduled tasks must be met under all circumstances. The 10 guarantee a deterministic behavior in a real-time envi-
real-time code is mainly generated for a specialized hardwar&®nment the tasks are scheduled as encapsulated objects which

platform (RealSim series). Other real-time platforms are basi-&Ccceptinputs and return outputs strictly under the control of the

cally supported by MATRIX but this costs additional user ef- scheduler. Such an _encapsulated object has a Iimited_comple-
fort and the performance is not optimal. tion timeG and consists of four components (Fig. 1) which are

:) executed repetitively. The synchronization component is re-
~ Sowe can state that for rapid prototyping purpose schedulsponsiple for the communication with the scheduler. Then, in-
ing strategies for simulation cannot be used. If a CASE-tool Of‘put variables are updated and the model component is exe-
fers support for real-time scheduling it is optimized for a spe-cyted. At last, output variables are written. Changes of output
variables within a periodi lead to a non-deterministic behav-

»
gl
'

4. Matlab is a registered trademark of The MathWorks Inc.

ior during the execution of a model, because other tasks would computation time C; < deadline < period T,
rely on output variables which can be updated at any time i . N .
Therefore output variables of every task have to be updated g¥hereas rate-monotonic scheduling is characterized by
the end of a periodouble-bufferings a method to give every computation time C; < deadline L period T,
task its own local variables. Using double-buffering, the input

variables are updated before the execution of a task. These ir&ailé g;';ﬂggﬁ%lpg SC agtebrﬁ lé:ﬁtkléés ?rl:: Ejaen;gﬁr?eth'?rgéhrﬁopsﬁ%-b-
put variables are valid for the entire period. The output vari- y P .

; . . vious condition for a successful scheduling which is a neces-
ables are written in local memory at any time but the global out- ary and sufficient condition [12] is

put variables are only updated at the end of the task’s periods.
This leads to a data independence of all executed tasks. Almost = C, c

all rapid prototyping applications have resource limitations. zf - Z U =1l

Mainly functional resources are affected while memory and . et =l .)
communication resources are not critical. The usage of amulti- Ui i called utilization. This condition can be enhanced with
processor capable real-time operation system (e.g. VxWorks jche mtrpducuon Qf an upper bpund for rate-monotonic schedul-
can improve the situation for functional resources but this willing- This bound is characterized by the relation

lead to a large communication overhead.

= 1
. ;<= n(27n — 1),
To solve algorithms of time-discrete and time-continuous Z’ U n()
models an accurate timing is needed. For time-discrete models . o - .
the time to process one trgnsition must be known Time-continy.vheren is the number of'mdependent' periodic tf"‘SkS .[12]' This
uous models which are processed in a time-diécrete manndst theoremstates that if the inequality above is fulfilled, all
need a time base to solve differential equations or generate si asks can be executed in their period. The value of the upper

nals. A periodic scheduling of tasks offers the best solution, be- ound converges for risingto In2 ~ 0,693. However, the

cause it uses a time base which can also be used for the exe ndition is only sufficient, not necessary. Therefore the condi-
Ion can indicate by mistake that a system is not schedulable.

tion of these algorithms. A scheduling strategy with a fixed rate__". -, . e ;
is called rate-monotonic scheduling. SThis leads to a necessary and sufficient set of inequalities [10]:

For rapid prototyping it is important to maximize the num- . . . L C TIT
) . . : Vi:l<i< — | = =1
ber of tasks that will be completed in a given period. Accord- Lel=st=n [kf})“enw_ E IT T =
ingly we can use the minimization of the maximum lateness R VT !

Lmaxas a metric. Lateness of a task is defined as the interval be- T
tween deadline and completion time. So, exceeding these dead- and W, = [(k,l) |1<sk=<i,l=1,.., |_TJ }
lines should be minimized (strictly spoken this should never k
happen because we are dealing with hard real-time tasks, but This second theoreroonstructs ineqalities for all schedul-
the given metric is able to schedule as fast as possible). Accorability points. The schedulability points are determined by
ing to Lawler’s notation [9] in which the problem definition is computing all successive periods for all tasks up to the end of
given witha | B | y, wherea indicates the machine environ- the first period of the lowest frequency task. For one schedul-
ment (i.e.a = 1 indicates a uniprocessor maching)indi- ability point, the inequality consists of a sum of possible execu-
cates the Constraintprecstands for precedenqmrntnfor pre- tlop_tlmes of aII _tasks that can be act_lvated before th_e schedul-
emption’ resrc for limited resources andhdpt for data abl'lty p0|n.t,_ dIVId.ed by the value of time correspondlng to the
independence), ang indicates the metric, concept-oriented Schedulability point.
rapid prototyping can be characterized as: Unfortunately the computation of both of these theorems
has a different complexity. While the first theorem is increasing
with o(n) the second is increasing considerably stronger be-
cause of it's data dependence [1]. The number of calculations
equired is dependent on the values of task periods. For the
orst case the calculation can consist of a schedule for each
task up to the period of the lowest frequency task.

1 |static, prec, pmtn, resrc, indpt| L,

In the following section we will discuss the schedulability
of periodic tasks. Additionally, a new scheduling strategy con-
sidering the constraints of real-time execution is discusse
leading to shortest possible execution times.

4 Scheduling Estimation for Concept-Ori- 45 pseudo-Rate Scheduling
ented Rapid Prototyping N _ ,
An additional constraint for real-time systems must be met
if an onboard hardware timer is used to generate a periodic in-
4.1 Rate-Monotonic Scheduling terrupt as a time base for tasks. Real-time operating systems

. .) _usually support one onboard hardware timer which is called
The rate-monotonic scheduling is a special case of OIe‘"J‘d“”ﬁuxiliary timer. The execution of real-time systems which are
monotonic scheduling. Deadline monotonic scheduling can bg,qy using this auxiliary timer as a time base are slower because
identified by the inequality they have to use a time-consuming watchdog timer (software-
implemented). The advantage of watchdog timers is that they
5.VxWorks is a registered trademark of WindRiver Systems. can produce any period they want. Tasks which are using inter-

rupts of an auxiliary timer are limited because they have to use In this way we only get values for the period which are mul-
the greatest common divisor (gcd) of all task periods as a contiples of Tyyx. The second theorem can be extended to:
mon time base. The required resoluddor a set of tasks with

different periods is given with the following equation: ; C / |_TT_kJ Toue

vi: L V 0 =gdll,~T o > i =1

Pt = - L ew; | &= j
L 0 &N, jok=ln, j=k ged | J k‘ i=tl |_TauxJ T |_Tai,xJ aux
In the equation above the time differences between all task ;

periods are calculated. The required resolulicnequivalent |_T—’J T
to the greatest common divisor of all differences. Sometimesit W, = < (k,)) |1 <k <i, [=1,..., ;"x—
is not possible to generate resolutions which are small enough. |_Ta’;xJ T o
For example if a task needs a sample rate of 1 kHz and another
needs 800 Hz we will need a resolutfbaf 0,25 ms although Like the second theorem for rate-monotonic scheduling in-

both sample rates are equal or larger than 1 ms (Fig. 2). If thegalities for all schedulability points are constructed but this
resolution gets smaller additional interrupts must be executedime for the revised schedulability points. As an example for
by the real-time operating system. This shortens the time thahis complex theorem we will vary the example which is given
remains for the execution of the model tasks. Therefore it ign [15] (Tab. 1). We assume an auxiliary timer interrupt every
necessary to find the smallest possible resolution that keeps tH29 time ticks. Tab. 1 shows three tasks, their executionGime
real-time constraints and does not produce interrupts so frethe rate-monotonic peridi, the pseudo-rate peridd as well
guent that the processor spends too much time servicing the i@s ratio, utilization and the upper bound of the first theorem. In
terrupts. If the processor is overloaded with interrupts and canfl15] it was shown that a rate-monotonic scheduling is possible.
not execute the model tasks this is cattaeghing If the sample In the following we will show that a pseudo-rate scheduling is
rate of a task must be adapted to get the same or a better preopt possible.

sion like rate-monotonic scheduling the adapted sample rate

must be higher than the previous one. In our example, a sample Execu- | rate- pseudo Utiliza-
rate of 1 kHz for both tasks will result in a lower resolution Task i tion mono- rate Ratio tion upper
(6 = 1ms). The effects on the task with a higher resolution time | tonic T G | 4y | bound
will be discussed in section 4.3. Scheduling strategies for sys- G Ti
tems using a single fixed rate as their time base are called pseu- 1 45 135 120 | 0,375 | 0,375 | 1,000
do-rate scheduling. 2 50 150 | 140 | 0,357 | 0,732 | 0,828
Ty =1ms L 3 80 360 360 0,222 | 0,954 | 0,779
‘ — -t
T,=1,25ms L Table 1: Example of pseudo-rate scheduling
‘ ‘ L >t
) o To examine the schedulability of the three tasks given in
necessary resolution 0=0,25ms Table 1 we only have to consider the case 3 of the second
e ! theorem because the first two tasks are schedulable according
to the first theoremuilization < upper bound). The index
Figure 2: Necessary resolution ¢ andk must vary between 1 and 3. For= 1 | must vary be-

tween 1 and 3, fok = 2 between 1 and 2, and fér= 3

The schedulability of those systems cannot be determined = 1. We will not show all of these terms because the calcula-
by the two theorems obtained in section 4.1. Strictly spoken the&ion is simple. However, none of the inequalities is fulfilled in-
deadline of the tasks which have to be adjusted will remain thelicating that the system cannot be pseudo-rate scheduled with
same. Therefore we will obtain the case that the deadline is lorthe given values.
ger or equal compared to the period. Literature shows thattheg(e 1 =1
is no general solution to this problem [15]. In this special cas ' :
however we can set the deadline equal to the period. Instead of C; [ﬂ'l + & [ﬂ'l + G [ﬂ"

Ti we obtain a shortened perigdwhich can be expressed as: 17, | T 1-T T, 1.7, | T
o T 45 + 50 + 80 _ !

Taux is the period of the auxiliary timer. With this, both of k =1,/ = 2:
the theorems above can be adapted. The first theorem can be . [%-l G, [ﬂ-l G [&-'

extended to: 3T, T T 7 3T T
S C (1) . .
—t < pl2in—-1), andT,, < T, . 2:45 + 250 + 80 !
z Y 2120 =1,125>1

%
i=1 Taue Taux

also not be guaranteed for every case if the period is not reduced

k=31=1 (frequence shift). The dependence of simultaneous events of a
C LT c LT C LT model must be avoided because this will lead to a non—deter-
—L |- 3-| + =2 |-—3-| + =3 |-—3-| = ministic behavior. Modeling of absolute times can also cause
75 | T I 1 T LTs | T; problems because if a timeout event or a scheduled action can-
3-45 + 3-50 + 80 | not be executed in time the behavior of the system can be in-
360 = 1,014 > 1 fluenced.

To enable scheduling, the periods of the tasks have to be in- These are undesired effects which can only be avoided if the
creased, the execution times have to be shorter or a smaller regser already choose in the model a sample rate which is a multi-
olution has to be chosen. If we assume a reduction of the execple of the desired auxiliary timer resolution. If an adaptation of
tion time of task 3 from 80 to 75 time uni&(=75), according a period have to be done in order to match the time base of an
to theorem 1 the utilization is still above the upper bound (0,94Guxiliary timer the user of a rapid prototyping system must be
> 0,779). But this time according to the second theorem thénformed about the consequences.
tasks are schedulable. The critical case is given with

k=31=1: S Results
Cl, |-1T3-| + & |-1T3-| T & |-1T3-| = Our results show the execution speed superiority of the
I'Ts | T, I'T5 | T, I'T5 | Ts pseudo-rate scheduling compared to the rate-monotonic sched-
345 + 350 + 75 uling. This speed superiority results mainly from the use of a

hardware implemented auxiliary timer which produces an in-
terrupt every period and does not cause the overhead of a soft-
ware implemented timer. Rate-monotonic scheduling requires
& timer implementation for every task with a watchdog timer
but can be adapted to any period. Figure 4 shows the scheduling
results of pseudo-rate scheduling compared to rate-monotonic

360
From this case we can obtain the scheduling for this exam
ple with pseudo-rate scheduling. For the critical case we hav
to execute three timegg;, three time<, and one timeCs’
within 360 time units. The result is shown in Figure 3.

T 4 A 4 scheduling for different tasks. For the tests we used a Motorola
T, A 4 A VMEbus based system with a 200 MHz PowerPC Processor
T, A A 604, the real-time operating system VxWorks and self-devel-
0 50 100 150 200 250 300 350 oped general purpose I/O hardware. The advantage of the pseu-
Taskl R N I BN do-rate scheduling is at least about 20 percent and is strongly
ST T rising with the number of task.
Task2(20) | || (5807 | | EET s 100

Task3| || AT

L e e e e S
B S T R "
[800

Rate-Monotonic

Figure 3: Pseudo-rate scheduling of Tab. 1 600! Scheduling

400 Pseudo-Rate

4.3 Influence of Pseudo-Rate Scheduling Scheduling
The reduction of periods of a task leads to consequences for 200
the execution of the time-discrete and time-continuous models.
Tasks with time-continuous models will improve their preci- ‘ ‘ ' ‘
with ti inuou will improv ir preci 0 10 20 30 20 50

sion because they use an integration algorithm with fixed step
size like Euler or Runge—Kutta and the precision of these algo- number of tasks

rithms rises with shorter periods. The generation of signals like Figure 4: Comparison of scheduling strategies
pulse width modulation (PWM) however might lead to prob-

lems. If a signal has to keep a sequence which cannot be met by To show the effects of the different scheduling strategies for
the time base of the auxiliary timer the generated signal willan industrial application we have selected an electrical window
differ. According to the sampling theorem the maximum differ- regulator for demonstration purpose. The window regulator
encer IS was built according to industrial specifications including posi-
tion counting, pinch protection and theft protection. The ap-
plication consists of a MATRIX and a STATEMATE model

A similar problem exists for tasks with time-discrete mod- @nd uses our code generation modules based on the application
els. If two input changes occur within the time of a period it is independent CASE data interchange format CDIF. The STA-
not guaranteed that both events are processed in the same g&=MATE model, responsible for the operational control, con-
riod. However, the simultaneous processing of both events cafiSts of 22 basic states, 3 hierarchical and 3 orthogonal states

IS

T =

while the MATRIXx model, responsible for filtering signals, tion. Furtheron a test of our rapid prototyping system with
consists of 5 nested FIR filters. Pseudo-rate scheduling was eXighest performance systems have to be realized. The opti-
ecuted in 9Qus, whereas rate-monotoic scheduling was exe-mization of the generated code will complete our work.

cuted in 12Qus.

e (e =) v]-[2] 2] o]] -]] -] o] <] o] [

(1]

(2]

‘ (3]

Figure 5: Screenshot of pseudo-rate scheduling [41

Figure 5 shows a screenshot done with the real-time visual-
ization tool WindView of the real-time behavior with pseudo- [5]
rate scheduling. The auxiliary timer which generates an inter-
rupt each period is called 'Intl6’, the task named 'Exec’ [6]
corresponds with the scheduler and the time-discrete and time-
continuous tasks are called 'Discrete_Task’ and 'Continu- -
ous_Task’. A filled flag indicates that the scheduler gives a[]
semaphore for every model task. The two model tasks takés]
them, execute their models and allow the scheduler to proceed.
If a model task was not finished before the next auxiliary timer
interrupt, an error occured and the execution will enter a failjg
safe mode.

(o2}

Conclusion

In this paper we have classified different scheduling strate-
gies for concept-oriented rapid prototyping systems. Rapid
prototyping systems with their constraints of fast execution
times and deterministic behavior require a periodic scheduling:
To optimize the execution times we can use pseudo-rate sched-
uling which uses a hardware implemented auxiliary timer to

Acknowledgements

We thank WindRiver Systems, Inc. and DaimlerChrysler
AG for their generous support of our work.

References

Audsley, N.:Deadline Monotonic Schedulingnternal paper,
Department of Computer Science, University of York,
YCS-90-146, 1990.

Burst, A.; Spitzer, B.; Wolff, M.; Miiller-Glaser, KOn Code
Generation for Rapid Prototyping Using CDIBOPSLA, Van-
couver, Canada, 1998.

Burst, A.; Wolff, M.; Kuhl, M.; Miller-Glaser, K.A Rapid Pro-
totyping Environment for the Concurrent Development of Me-
chatronic System&CEC, Erlangen, Germany, 1998.

Burst, A.; Wolff, M.; Kiihl, M.; Mller-Glaser, K.Using CDIF
for Concept-Oriented Rapid Prototyping of Electronic Systems.
RSP, Leuven, Belgium, 1998.

EIA / CDIF Technical CommitteeCDIF / CASE Data Inter-
change FormatEIA Interim Std. EIA / IS- 106-112, 1994.

i-Logix, Inc.: Software Code Generator Reference Manual.
1998.

Integrated Systems, Inc. (ISAutocode User's Guide.997.

Jefferson, D.; Sowizral, HFast Concurrent Simulation Using
the Time Warp Mechanismistributed Simulation, SCS, La-
Jolla, 1985.

Lawler, E.:Recent Results in the Theory of Machine Scheduling.
In: Mathematical Programming: The State of the Art, A. Bachen,
Springer-Verlag, New York, 1983.

[10] Lehoczky, J; Sha, L.; Ding, YTthe Rate-Monotonic Scheduling

Algorithm: Exact Classification and Average Case Behavior.
Proc. Real-Time Systems Symp., IEEE CS Press, Los Alamitos,
Calif., 1989.

[11] Leung, J.; Whitehead, Jon the Complexity of Fixed-Priority

Scheduling of Periodic Real-Time TasRerformance Evalua-
tion, 2, 1982.

generate periodic interrupts as a time base for tasks. For the firf¥2] Liu, C.; Layland, J.Scheduling Algorithms for Multiprogram-

time schedulability of those systems were analyzed methodi-

ming in a Hard Real-Time EnvironmedACM, No. 1, 1973.

cally. The advantages of pseudo-rate scheduling compared {a3] The Mathworks Inc.Real-Time Workshop User's Guide98.

rate-monotonic scheduling are shown in experimental result
An industrial application shows the potential of concept-ori-
ented rapid prototyping which now can be used in areas with
highest performance requirements like engine management
systems.

Future work will include a worst-case estimation of the exe-
cution timeG; of tasks to obtain an optimal processor utiliza-

S[14] Stankovic, J.; Spuri, M.; Di Natale, M.; Buttazzo, Gaplica-

tions of Classical Scheduling Results for Real-Time Systems.
IEEE Computer, 6, 1995.

[15] zalewski, J.What every Engineer Needs to Know about Rate-

Monotonic Scheduling: A TutoriaAdvanced Multiprocessor
Bus Architectures, IEEE Computer Society Press, Los Alami-
tos, 1995.

