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Abstract. A new class of languages, called multi-push-down (mpd), that
generalize the classical context-free (cf, or Chomsky type 2) ones is in-
troduced. These languages preserve some important properties of cf lan-
guages: a generalization of the Chomsky-Schitzenberger homomorphic
characterization theorem, the Parikh theorem and a “pumping lemma”
are proved. Multi-push-down languages are an AFL. Their recognizers
are automata equipped with a multi-push-down tape. Multi-push-down
languages form a hierarchy based on the number of push-down tapes.

1 Introduction

This research studies a new class of languages, called multi-push-down (mpd),
that generalize the classical context-free (cf, or Chomsky type 2) ones [14], taking
a new direction. We hasten to say that this generalization has nothing to do
with past proposals to increase the generative capacity of type 2 grammars by
introducing some sort of context-dependency, as for instance in matrix grammars
[12, 20] or in other regulated rewriting systems [12]. Our approach is based on
a different and more powerful operator for combining the constituents occurring
in the right-hand side of a production, which replaces the simple catenation
operation used by type 2 rules. Apart from this difference, the productions of the
mpd grammars behave as the usual ones, a fact having the desirable consequence
that the important properties of cf grammars are preserved or generalized by
mpd grammars: it is so for the Chomsky-Schiitzenberger theorem [11], for the
Parikh theorem [19], for the “pumping lemma” [17] and for a few more properties.
The derivations of mpd grammars can be represented by means of syntax trees,
with a suitable order of visit. Considering the generative capacity, mpd languages
include some well-known non-context-free languages: homomorphic replications
[13] provide an abstract example; the nested procedure declarations of the Ada
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programming language are a practical case. Such languages exhibit the long-
range dependencies that have always embarrassed formal linguists.

Finally, a word on recognition and parsing, to complete the picture: mpd
languages can be parsed in polynomial time, as proved in a related paper by A.
Cherubini and P. Sanpietro [10], who have extended the Cocke-Kasami-Younger
algorithm [14].

After this quick survey of the niceties of mpd grammars the rest of the
introduction intuitively presents their generative mechanism. Perhaps the best
way is to start from a cf grammar in Greibach normal form [20], with productions
of the form A — bA; Ay ... A, It is well known that this production can be given
the following interpretation as an instruction for a push-down (pd) automaton:
if A is the top symbol of the pd store (a LIFO data structure), pop it upon
reading b from the input and push the string A; As ... A, onto the store. The
machine starts with the axiom in the store and recognizes by empty store. Notice
also that this machine is stateless and in general non-deterministic. We recall
that for cf grammars derivations can be assumed to be leftmost, without loss of
generality, and that the previous automaton operates in the leftmost manner.

Multi-push-down grammars are organized as an infinite hierarchy indexed by
a parameter n > 1, with the case n = 1 coinciding with cf grammars. Take for
simplicity n = 2; a production of a grammar corresponding to a 2-pd automaton
takes the form: A — b(A1Aa ... Ap)(B1B2...B), and can be interpreted as an
instruction for a store organized as the concatenation of two pd tapes (see Figure
1), in essentially the same manner as the production in Greibach normal form
for one pd tape. The interpretation is then the following: if A is the top symbol
of the store, pop it upon reading b from the input, push the string 41 A4-... Ap
onto the first pd tape of the store and push the string By By ... By onto the
second pd tape of the store. Notice that the symbol A is popped from the first
pd tape unless it is empty; in this last case A is popped from the second pd tape.
Also this machine is stateless, starts with the axiom in the store and recognizes
by empty store; in general, the machine is non-deterministic, too. In the n-pd
case, the store 1s made of n > 1 adjacent pd tapes, which are linearly ordered;
the reading head of the automaton is allowed to pop one symbol of the store
alphabet from a pd tape only if the preceding pd tapes are empty. Instead, all pd
tapes can be written in parallel by one move, regardless whether they are empty
or not. The straightforward correspondence between the generative grammar
and the automaton is thus extended from cf to mpd languages.

Notice that the above automata are stateless, since all information is stored
in the pd tapes of the automaton. The family of stateless, in general non-
deterministic, mpd automata and the family of mpd grammars are equivalent,
as mentioned above. Finite states are not required as long as the purpose is
the equivalence between mpd automata and grammars. However, finite states
are allowed in mpd automata, but do not increase the recognition power of
such a family of automata, as long as non-determinism is allowed; in fact, if
non-determinism is tolerated any mpd automaton, with finite states, admits an
equivalent stateless mpd automaton.



This fact extends a well-known property of pd automata [14]. Moreover,
the analogy between the cf and mpd cases goes farther, since the family of n-pd
automata recognizing by final state is as powerful as the family of n-pd automata
recognizing by empty store, for any fixed n > 1.

The addition of the determinism constraint reduces the recognition power of
mpd automata, for a fixed number n of pd tapes. For instance, this happens
for n = 1, because 1-pd automata are push-down automata and it is well-known
that deterministic push-down automata are less powerful than non-deterministic
ones [14]. In the conclusion this point is resumed.

An additional comparison may help in understanding the proposed model,
before entering the technical presentation. A 2-pd automaton is very different
from a machine with two independent pd tapes. The latter can simulate a Turing
machine by storing its semitapes on the pd tapes [15]. In our case this is not
possible because only one tape at a time can be read, so that the information
written on, say, the right semitape would not be accessible until the left semitape
is emptied. As a consequence mpd languages are much less general than context-
sensitive ones, in fact they are permutations of cf languages.

Section 2 defines mpd grammars and automata, presents some illustrative
examples, introduces a normal form and proves the equivalence of mpd grammars
and automata. Section 3 first proves the central properties of each n-pd family
for any fixed n > 1, then it proves closure and inclusion properties of the whole
hierarchy. The Conclusion discusses determinism, parsing and points to a related
investigation on grammars which further generalize cf ones by having a store
made of FIFO as well as of LIFO tapes. The Appendices A and B present two
lengthy proofs.

2 Definitions and examples

This section defines the multi-push-down (mpd) automata with n > 1 pd tapes
(also called n-pd or PD" automata) and the corresponding equivalent class of
grammars, the multi-depth grammars (also called depth-n or D" grammars). A
normal form for such grammars is introduced. Some examples of the recognitive
and generative power of the families of n-pd automata and depth-n grammars
are provided.

The mpd automaton, shown in Figure 1 for the case n = 2, has one read-
only left to right input tape and n > 1 read-write memory tapes with a LIFO
rewriting policy. The machine performs the following actions with one move:

— reads one or zero symbols from the input tape and moves past the read
symbol;

— reads the symbol on the top of the first pd tape; if the first pd tape is empty
it reads the top symbol of the second non-empty pd tape; and so on.

— switches its internal state;

— possibly writes in parallel n finite strings «; on the i-th pd tape, with respec-
tively ¢ = 1,2, ..., n. The i-th head moves to the left of the inserted string
oy, 1.e. writing is a push move.



Fig.1. A 2-pd automaton M.

The next definition is the same as the classical definition of pd automaton,
apart from the fact that our machine can write in parallel into n pd tapes instead
of just one.

Definition1. A n-push-down (n-pd or PD") automaton M, with n > 1, ac-
cepting by final state, is a 7-tuple M = (Q, X, %, 6, q0, F, Zy), where:

— () is a finite non-empty set of internal states
— X (input) and * (memory) are finite alphabets
— & is a partial transition mapping
§:Q x (ZU{eh) xx = pr (@ x (x*)")

where pp(F) is the set of the finite subsets of a set



— ¢op € @ 1s the initial state
— F C @ 1s the set of final states

— Zg € % 1s the initial memory symbol

A configuration of M is a (n+2)-tuple {q,z;v1,...,9n), Where ¢ € @, z € Z* and
Y1,y Yn € x*. The configuration {qq, z; Zo,¢,...,£) is initial. A configuration
(¢, 2;91,...,7n), Where ¢ € F, is called final.

*

The transition relation 3y 1s the transitive closure of the binary relation -y,
over configurations, defined in the following way:

<Qaa$;€a"'aEaAPyia"'aPyn> l_M <q/a$;a1a"'aai—laaipyia"'aan7n>

if (¢/,a1,...,an) €8(q,a, A), where a € XU {}, for some 1 < i < n.
In words, the move (¢',a1,...,a,) € 8(¢,a, A) reads “a” or “c” from the
input, reads “A4” from the head of the store (in the first non-empty segment),

then switches the state to “¢’” and for all j, with 1 < j < n, writes «; by means

of the j-th writing head. Accordingly, the j-th writing head moves leftwards.
A string z is accepted (by final state) by a n-pd automaton M if and only if
<q0a$;Z0a€a"'a€> l_M <Qa€;71a~~~a7n>
where ¢ € F'. O

Clearly a 1-pd machine coincides with a classical pd automaton.

Definition 2. The family of languages recognized by n-pd automata is denoted
Lppn, forany n>1. O

Frample 2.1 The non-cf language {a"b"c”| n >0} € Lpp2. An accepting non-
deterministic 2-pd automaton is M = (Q, X, x, 8, qo, {¢2}, Zo), where:

E:{a,b,c} * :{ZOaBaCaD} Q:{QOaQIaQZ}
(g0, @, Zo) = {(q1, ZoB,CD)}

8(g0,¢, Z0) = {(g2,¢,¢)}
8(q1, a, Zo) = {(q1, Z0B,C), (1, B, C)}
8(q1,6,B) ={(q1,¢,¢)}
8(q1,¢,C) ={(q1,¢,¢)}

6(Q1a g, D) = {(an g, E)}
The automaton M reads the a’s in the initial state while Zy is on the top of
the first pd tape, switches to the state ¢; and writes ZyB and C'D onto the first



and the second pd tape, respectively. Then in the state ¢; it reads the a’s from
the input tape while Z; is on the top of the first pd tape, storing the a’s as B’s
and C’s onto the first and the second pd tape, respectively. When the a’s are
finished and Z; disappears from the top of the first pd tape, M reads from the
input tape a number of b’s equal to the number of B’s. When the first pd tape is
empty, the automaton consumes the C’s from the second pd tape while reading
the ¢’s from the input tape. When D is the top symbol of the store, with an
e-move M reaches the final state ¢» and recognizes.

We have defined acceptance by final state, but, analogously to the 1-pd, or
cf, case, acceptance by empty store could be defined as well. In this case the
set F' of final states is not defined and the final configurations are of the type
(q,2;¢,...,¢), for any ¢ € Q. Furthermore, the following statement holds.

Statement 3. A mpd language L is recognized by a non-deterministic n-pd
automaton by empty store if and only if there exists a non-deterministic n-pd
automaton recognizing L by final state, for some n > 1. O

The proof, a simple generalization of the well-known proof for pd automata [14],
1s omitted.

The previous statement permits to define a generative system for mpd lan-
guages, i.e. the grammars, called depth-n or D" grammars?, generating the lan-
guages in Lpp~. A D™ grammar is a rewriting system that rewrites one non-
terminal symbol A occurring in a string # by a string v. Unlike cf grammars, v
need not be written contiguously as a replacement of A; instead, v is a list of
n > 1 strings, ¥ = (71)(72) .- . (7n), and each string ; is inserted in a marked
position of §. First we need define lists.

Definition4. Let X be a finite alphabet and let “(”, “)” be characters not in
Y. A listis a finite sequence of (possibly empty) strings enclosed by the symbols
“7, Y ie. T = (11)(y2) - (vn), with n > 1, where 4, € X% for any 1 < i < n.
The string ~; is called the ¢-th component of the list 7. Lists are elements of
(“(?XZ*“)?)*. List names will be overscored, to distinguish them from string
names. A list with n components is called a list of degree n, or a n-list. An
equivalent notation for a n-list is (y1)1(y2)2 - .. (9n)n, which allows to drop the
empty components.

A list can be transformed into a string in the natural way by the homomor-
phism (unmarking) v : (XU { “(” JU{ ) })* — X, defined by u(“(”) = «,
u(“)”) = ¢ and u(a) = a, for any a € X. Usually we denote v = u(%), deleting
the overscore, and we call the string v the unmarked copy of the list 7. O

Definition5. A D" grammar G is a 4-tuple G = (Vn, Vp, P, S), where Vy and
Vr are the non-terminal and terminal alphabet, respectively, S € Vy is the
axiom and P is a finite set of elements (productions) of the form

A — w(ar)i(a2)s ... (@)

2 The letter D stands for “depth-first”, in contrast to the “breadth-first” grammars of
1, 8, 9.



where w € Vi and a; € Vi, for any 1 < ¢ < n. The string «; is called the ¢-th
component of the production. O

Notice that a production can be equivalently written as A — wa, where @ =
(a1)(@z) ... () is a n-list. The right-hand side w@ is a n-list over the alphabet
VN with a prefix in V7. We continue to call such entities n-lists.

For brevity the empty components of a list can be shortened as follows:

A—=w(e)(e)...(g) becomes A — w
A—(e)(e)...(¢) becomes A — ¢

A—w(e) ... (e)i—1()i(€)ig1 ... (e)n  becomes A — w(a;);

Obviously for n =1 a D”? grammar is cf.

A derivation is a relation between two n-lists, such that the latter one is
obtained by rewriting the leftmost non-terminal of the former one using a pro-
duction.

Definition6. Let f = ()1 (€)ic1(AL)i(Big1)i41 - - - (Bn)n be a n-list, for
some 1 < ¢ < n, where 3; € Vy, for each ¢ < j < n, and 4 € V. Take a
string x € V7. We write the following derivation

20 = vw(or) .. (i) (0)(Miv1) - - ()

it A — w(ai)i(a2)2...(an)n is a production and ; = «;F;, for every j with
1<j<n 0O

Notice that only leftmost derivations are defined. In fact, by relaxing the leftmost
constraint on the order of derivation the generative power of D" grammars in-
creases, for any n > 2, in contrast with the behaviour of ¢f grammars (remember
however that cf grammars coincide with D" grammars for n = 1). As usual =
denotes the reflexive and transitive closure of the relation =.

The generation of a string starts with the list (S);1(g)2...(¢)n. A terminal
string « is derivable from S if and only if (S)1(€)2...(¢)n = z(e)...(¢) or,
dropping the ¢’s, (S); = z, or also, for brevity, S = .

The language generated by a D" grammar G is L(G) = {x € V5| S =¢ z}.

Definition7. Gp« is the family of D" grammars; the corresponding family of
languages is denoted by Lp~» and is named the family of depth-n languages. O

The following examples highlight the generative capacity of D" grammars, giving
also detailed examples of derivations.

Erample 2.2 A D? grammar G generating the non-cf language {a™b"c?| n > 0}
of example 2.1 is G = (Vy, Vp, P, S):
S — Cl(SB)l(C)z | [
Vv ={S,B,C} Vp={a,be} and P=¢ B—1b
C—ec



Fig. 2. Syntax tree of the string “aabbcc”.

Figure 2 shows the syntax tree of the above derivation of the string aabbcc. The
thick edges point out the rewritings between different list components.

Frample 2.3 The non-cf language {vw| w € {a,b}*} (COPY language, see [3])
is in Lp2. A D? grammar generating this language is G = (Vi Vi, P, S), with:

VN:{SaAaBaA/aB/} VT:{a’b}

S—a(SA), | bSB), | ¢
Al — (A)s
P=1B (),
A—a
B —b

An example of derivation of the string abbabb is:



S = a(SA"); = ab(SB'A"); = abb(SB'B'A"),
= abb(B'B' A'); = abb(B'A')1(B); = abb(A’),(BB)s

= abb(ABB)s = abba(BB)2 = abbab(B)2 = abbabb

The grammar G works by first storing a reverse copy of w onto the first compo-
nent of the list and then by reversing it again onto the second component.

FEzample 2.4 As a practical example in L2, we consider the language of nested
procedure declarations, with procedure identifiers repeated after the procedure
“end” (as in the programming language Ada). Procedure identifiers need not be
unique (for instance “proc abc proc abc end abc end abe” is accepted). A D?
grammar for the language is Gy = (Vy, Vp, So, P) € Gpo:

Vn = {S0, 51,52, T, A, ..., Z, A" ..., Z"y Vi ={(proc), (end),a, ..., z}

SO — <p7°OC>(5152)1(SQ)2 | 9
Sl — £ | Cl(SlA)l | b(SlB)l | | 2(51Z)1
A— (A
po] i
70—
Sy — (proc)(S152)1(T1)2 | (Th)e
Ty — (proc)(S1S2)1 | {end)

Definition 8. We also need a notation for the multi-depth set or superfamily:
Gp+r ={G| ¥Yn>1G€Gpn} and Lp+r={L| ¥n>1LeLpnr}
O

Normal forms of D" grammars In order to simplify several proofs, we introduce
in two steps a form similar to the Chomsky normal form of ¢f grammars [14].

Definition9. A D" grammar G = (Vn, Vi, P, S) is in separate normal form if
the productions are of the following types:

A — (a); where a Zcand 1 <i<n
A—w where w € V7
S—e if and only if ¢ € L(G)

O

In Statement 22 1t 1s proved that the membership problem of the empty string
¢ is decidable for depth-n languages.



Statement 10. For each grammar G € Gp~ there exists an equivalent grammar
G' € Gpr in separate normal form. O

Proof First notice that it is possible to avoid the productions A — ¢ with
A # S. In fact, analogously to the cf case, any production A — ¢ can be deleted
by adding to each production with 4 on the right hand side the production(s)
obtained by deleting 4 (in all ways) from the string on the right hand side. Now
we construct a new grammar G’ = (Vi Vp, P/, S) from G, as follows:

Vi =V UVyuvy
where

Vi = {{w)] A — w(a)1 ... (an)n is a production of G}

Vi = {{iD)|  «; # ¢ is the i—th component of a production of G}

For each production

A—wlar)r...(ap)n €P (1)
with o; € V% for any 1 < j < n, construct the production
A= (fw)o) ot
where (oz;j)) is empty if o; = ¢. In addition, construct the productions:
(w) —w and (o) — (ay);

Clearly the grammar G’ is in separate normal form. We show that L(G) C L(G').
Consider a list

B = (&)1 (e)im1(AB)i(Bit1)it1 - - (Ba)n (2)
for some 1 <7 < n, and a derivation
B =6 wlan)r . (ai-1)imt(0)i(mit1)it1 - (In)n =7 (3)

where n; = «;3;, for any i < j < n, via the production (1). Then
B =a (whai) (o )iB)i i )ier - (B

= w({a) (@M1 Bix)itr - (B
= w({an 1) () 1(8)i (Big1)iat - (o)

T

Thus L(G') D L(G). We omit the proof that L(G) D L(G’), which is alike.
Hence it follows L(G) = L(G").
O

The D" grammars with n > 2 also admit more refined normal forms.

10



Definition11. A D" grammar G = (Vy,Vp, P,5), for n > 2, is in binary
normal form if its productions are of the following types:

A— (a) where 1 < |a| <2

A — (B); where Be Vy and 1 <i<n
A—a where a € Vp

S—c¢ if and only if ¢ € L(G)

O

Statement 12. For each grammar G € Gp=, with n > 2, there exists an equiv-
alent grammar G’ € Gp» in binary normal form. O

Proof From Statement 10 we assume that G is in separate normal form, and we
construct a grammar G’ in binary normal form. If G violates the binary normal
form only because P includes productions of the type

A—w withwe Vi and |w| > 1

we can proceed similarly to the classical Chomsky normal form and the proof is
omitted. For the productions not in binary normal form we have to study two
cases:

1. A—(a) with |e| > 2

2. A— (o) with |a| > 2 for some 1 < i< n

First we construct the productions of GG/ in each case, then we prove the equiv-
alence. For simplicity we shall assume a1, a; = XY Z (the construction is easily
generalized, and the proof is made by induction).

Case (1). We create for G’ the new non-terminal (XV)(1) and we replace the
production A — («); by

A—(XYYP2Z); and (XYY - (XY),
Case (2). Tt requires a little change in the order. We have
A — (a); with |a] > 2 for some 1 <i<n

Then we create for G’ the new non-terminals (ZY ) (7)) (V) and (X))
and we replace the production A — («); by

A= ((2V) (X)) and (2Y)O — ((2)D(v) D),
(X)D = (X);, MO =), and (2)D = (2);

Now we prove the equivalence of G and G'. To prove that L(G) C L(G'), we
notice that case (1) is similar to the classical proof of the Chomsky normal form

11



and is not pursued. Similarly, for case (2) the right part XY 7 is first encoded
in the first segment, then moved one by one into the proper position.
We omit the proof that L(G) D L(G'), which is straightforward.
O

Note 13. We can assume that the non-terminal alphabets of each list compo-

nent are disjoint, that is Vy = Lﬂ?:l VJS,Z), the disjoint union of n alphabets

VJE,Z) = {A(i)}. Accordingly, in each production the i-th component is a string in
L\

(VJE,Z)) , for every 1 < i < n.

Note 14. Tf we suppose G = (Vi, Vp, P, S, for n > 2, with Vy = W, VJE,i)
(see the previous note), we can construct an equivalent normal form for GG, called
strong normal form, the productions of which are as follows:

AWM — (a), where o € (Vjsfl))* and |a| =2
AN — (AW, where A € VJE,i) and 1<t <n
AW (A(l))l where A® € Vi and 1 < i <n
A g where a € Vp

S — ¢ if and only if € € L(G)

Notice that a D™ grammar with n = 1, i.e. a cf grammar, in strong normal form
reduces to one in Chomsky normal form (because the 27¢ and 37¢ production
types above do not apply); therefore the strong normal form is a generalization
to D" grammars of the Chomsky normal form of cf grammars.

Note 15. We could analogously construct a (strong) normal form for n-pd au-
tomata, proving that for any n-pd automaton M, with n > 2, there exists an
equivalent machine M’ = (Q, X, %, 6, qo, Zo), such that:

* =W * () where the * (")’s are disjoint memory alphabets
8(g,6, A1) C Ay U Ay, where

A ={(¢, BOCW ¢ e ... 9) ¢ €Q}
Ay ={(q"ye,....6,AD e,.. . e)] ¢ €Qand BY ex® forl<i<n}

for any 1 < i < nif (qo,¢,...,¢) € 8(qo,¢, Zo)
8(q,e, Ay C{(¢', BN e,....0)| ¢ €Q}

6(% aaA(l)) - {(q/,g, - "€)| q € Q}

12



which is equivalent to M and recognizes by empty store.

Equivalence of PD” automata and D" grammars As described in the introduc-
tion, a pd automaton performs the depth-first left-to-right parse of the strings
generated by a cf (i.e. D) grammar in Greibach normal form. This correspon-
dence can be extended to PD" machines and to D" grammars, as stated by the
next result.

Lemma16. A language L is recognized by a n-pd automaton M by empty tape
of and only if L € Lp~, for somen > 1, 1.e. Lppn = Lpn. O

Proof Let L be a language recognized by empty store by a n-pd automaton, in
(strong) normal form, M = (@, X, x, 8, qo, Zp). We shall construct a D" grammar
G = (Vn,Vp, P,S) with the input alphabet of M as terminal alphabet, i.e.
Vr = X, and a non-terminal alphabet Vy = {x x Q?"} W {x x @Q?}, in order to
encode the states of the automaton; the axiom S is the initial memory symbol
of M,i.e. S = Zy. The productions in P have the form:

1. Vge@Q and iffc € L

Zo — ((Zosq0, ¢4, ¢3¢, 9))1 and  Zy — ¢
2. Yqh, € Q, with 2 < h < n, and iff (¢, BHMCW e ... ) € 6(q1,¢, AD)

(AW g1, 995 43,445 - - @201, G2n) —
(B4, 455 03, @45 - 5 Gon—1, @ (O b, 493 €, 445+ 5 s G20) 1

3. iff (qa,e,...,BU) ... e) € 8(q1, e, A

(A(l); 91592593, 935 - - - 5925 -3, 425 -3 925 -1, 4255 92j+15 425 +1; - - -5 2n—1, q2n—-1)
— ((BY); a5, 42j-1));

4. Yq ganp1 € Q, with 1 <h < j—1,and iff (¢},CW e, ... ) € §(q1,e, AV))

(A9 g1, q0) — ((CV5 40, 4303, €5 -+ 3 Q2 -3, 642, G 41, @5 -+ -5 41, 4D )
5. iff (qa,¢,...,¢) € 6(q1,a, A

<A(1)’ q1,492;93,43; ..., q2n—-1, QZn—1> —a

The grammar GG simulates the behaviour of the automaton M by guessing (non-
deterministically) the correct sequence of states, coded in the first and (2h+2)-th
state component of the first pd tape symbol (h > 1). This fact will be completely
proved by induction in Appendix A.

Conversely, given G = (Vn,Vp, P,S) € Gp=, from Statement 10 we can
assume that (G contains productions of the types

A — (a)1(a2)z ... (ap)y, withay €Vy, and A—a, withae Vp

We construct the one-state n-pd automaton M = (qo, X, *, 6, qu, Zo) as specified
(the state is omitted):

13



E:VT * :VN ZQIS
(a1,...,an) €68(g, A) if and only if A — (a1)1...(an)n € P

(g,...,¢) € 8(a, A) if andonlyifA—acP

where A € Vy, a € V7 and a; € VY, for any 1 < j < n. The automaton M
recognizes by empty store. The proof that L(M) = L(G) is straightforward and
1s omitted.

O
The previous results are summarized by the next statement.

Theorem 17. For any mpd language L the following are equivalent:

— L 1is recognized by a n-pd automaton, recognizing by empty tape;
— L is recognized by a n-pd automaton, recognizing by final state;
— L is generated by a D" grammar.

for somen >1. O

This theorem establishes a close parallelism between cf and mpd languages.

3 Properties

3.1 Properties of n-pd languages

We prove several properties holding for any member of the superfamily of mpd
or multi-depth languages. Take a language L = L(G), with G = (Vn, Vp, P, S) €
Gpn. The productions of the normal form grammar generating L —{e} are length
increasing, hence

Statement 18. Any language L € Lp=~ is context-sensitive, for any n > 1. O

Definition19. For any mpd grammar G € Gpr, let Gerp = (Vy, Vr, Por, S)
be the ¢f grammar with

Per ={A —wojas...an| A — wlay)i(az)z...(ap)y € P}
This grammar is called the underlying cf grammar of G. O

The existence of the underlying cf grammar is significant. For every string
w € L(G) there exists a string w’ € L(G¢r) that is a permutation of w, and con-
versely. Since the Parikh image of L(G¢p) is semilinear [20], the Parikh image
of L = L(G) is semilinear, too, and we have proved the following

Statement 20. The Parikh image of every depth-n language is semilinear, for
any n > 1. 0O
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Any grammar G € Gpr can be put in reduced form, i.e. all non-generating or
looping derivations can be excluded. In fact, consider that a D" grammar G
produces non-generating or looping derivations if and only if the underlying cf
grammar G p does, too. Hence to reduce (G it suffices to process Gop reducing it
instead (this only requires stripping off some productions), and then to go back
to . Moreover, the depth-n language L = L(G) is empty if and only if the cf
language Lerp = L(Ger) is empty. Therefore

Statement 21. The emptiness problem of any depth-n language L € Lp= is
decidable, for any n > 1.

Finally, note that a depth-n language L contains the empty string ¢ if and only
if Lep does, too. Hence

Statement 22. The problem of deciding whether a depth-n language L € Lpn
contains the empty string ¢ is decidable, for any n > 1.

The following statements can be proved essentially by means of the same proofs
used for cf grammars, and hold for any n > 1.

Statement 23. Lp=- is closed with respect to union. O

Statement 24. Lp« is closed with respect to (erasing) alphabetic homomor-
phism. O

Statement 25. Lp~ is closed with respect to inverse non-erasing alphabetic
homomorphism. O

Since in the sequel we shall prove that every family Lp= is an AFL, Statements
24 and 25 hold even if the hom.’s are arbitrary and erasing.

Statement 26. Lp- is closed with respect to catenation and Kleene star. O

Proof We distinguish the two operations, catenation and Kleene star.
Catenation. Let L1 = L(G1) and L = L(G2), where Vjsfl) N Vjsfz) = (. Construct
G = (Vw, Vi, P, S) as follows.

Vv = Vjsfl) U Vjsfz) U{S} where S is a new non — terminal

S — (51)1(52)n
Sy — (S2)1

Clearly it holds L(G) = L1 Ls.
Kleene star. Let Ly = L(Gy). Construct G = (Vi, Vi, P, S) as follows.
S — (51)1(5)n
i i
vy = VD U881} and P =pud (31 = (SD)1(S)a

1) —e

S —¢

PIP1UP2U{

Clearly it holds L(G) = L3.
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Statement 27. Lp=~ is closed with respect to the intersection with regular lan-
guages. O

Proof Let L € Lp». Given a finite automaton recognizing the regular language
R and the n-pd recognizer by final states of L, construct the Cartesian product
machine.

O
Szilard language The definition of leftmost Szilard language for a cf grammar
[11] can be extended to D™ grammars.

Definition28. Let G € Gp» and let E be the set of the unique labels of its
productions, then the leftmost Szilard language of G is Z.(G) = {y € EY| D
is a derivation S =¢ x and y is the sequence of productions applied in D}. The
string y is called the control word of the derivation D of the string z. O

Statement 29. 71 (G) € Lpn, for every grammar G € Gpr. O

Proof Let G = (Vy, Vi, P, S) be a D™ grammar. Consider the grammar G/ =
(Vn, E, P,S), where

P ={X —e(ar)i(az)z ... (an)n] €: X — wla)i(az)s.. . (an)n € P}

so clearly L(G) = Zr(G).

O
Considering now the Szilard language Zr (Gcr) of the underlying cf grammar,
we have immediately:

Statement 30. For every GG € Gpr, it holds 71 (G) C Zr(Ger). O

These statements will be used in the proof of the next result.
Generalized Dyck language As cf (i.e. Lp) languages as their generator have
the Dyck language, which characterizes the family, for each Lp~ there exists a
corresponding generator, a generalized Dyck language to be next defined.

The alphabet of the Dyck language consists of finitely many pairs a,a(!);
b,b(1); . of symbols. The alphabet of the generalized Dyck language consists of
finitely many (n + 1)-tuples of symbols aa™) .. .a®); b, 6 p(0).

Definition31. The generalized Dyck language over an alphabet X', correspond-
ing to n > 1 pd tapes, shortly D(X, n), is defined as follows.

Let ¥() with 1 < i < n, be marked copies of ¥, and let Y= Wi, YOy,
Then D(X,n) is defined by the following D™ grammar G = (Vi P, S)

Vv ={S}U{A¥| VaeX Vil<i<n A= upper case copy of a}
S—c¢

P={S—a(SAM) (A®), . (AM),
Al) a(i)(S)l

for any a € 2 and for any 1 <i<n. O
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As an example we give the D? grammar G' = (Vy, P, S) generating the gen-
eralized Dyck language D({a, b}, 2):

Vi = £, A, A® B BOY 5= (q oV o2 p b0 52}

S —e
S — a(SAMY (AP,
S — b(SB(l))l(B(z))z
P =2 AN = q)(9)

A2) a(2)(5)1
B b(l)(S)
B(2) _, 5(2)(5)

Here follows an example of a derivation in G.

S = a(SAM)Y), (AP),
= ab(SBY AW (B AR),
= ab(B(1>A(1>)1(B(2>A(2>)2
= abbM(SAM) (B AP,
= abb(l)a(SA(l)A(l))l(A(Z)B(Z)A(Z))z
= abb(l)a(A(l)A(l))l(A(Z)B(Z)A(Z))z
= abb(l)aa(l)(SA(l))1(A(2)B(2)A(2))2
= abb(l)aa(l)(A(l))l(A(Z)B(Z)A(Z))z
= abb(l)aa(l)a(l)(S)l(A(Z)B(Z)A(Z))z
= abbMaaMaM (AP B2 A2,
= abbMaaMaMa? (), (B AD),
= abbMaaMaMaPa(SAM); (AP BP) AR,
- abb(l)aa(l)a(l)a(z)a(A(l))1(A(Z)B(Z)A(Z))z
= ... = abbMaaMaMaPaaVaPpPa?) = g

Examining the string z it is immediate to notice that its projections over Z1UX(!)
and over ¥ U X2 are Dyck strings. Moreover, the projection over ¥ U (1) of
each prefix (e.g. abb(l)aa(l)a(l)) of x, immediately followed by a character in
22 ig in the Dyck language over X' U X (). Figure 3 shows these projections for
the generalized Dyck string of the above derivation. Next we present a definition
in terms of cancellation rules. Let E(l)*and Y2y be two indexed copies of X, and

consider the homomorphism A : (ZN’) — (Z(l) UXiu rWy E(Z))* defined
by

h(a) = a(2)a) for every a € ¥
h(aV) = alV) for every aV) € X1
h(a®) = a® for every a(? € X2

17



yuxw m m m

a b bV g aWa(Me g ¢(Dg(2)p(2)4(2)

I I

Y uUx®

Fig. 3. Projections of the generalized Dyck language.

and apply the following rewriting rule
ux(l)vx(l)w = uvw

to the homomorphic image of z through A, if and only if v € EE"Q) and u,w €

(Z(l) Ul U My E(Z))*. For instance, suppose z is the string of the above

derivation, then h(xz) becomes
a(z)a(1)b(z)b(1)b(1)a(2)a(l)a(1)a(1)a(z)a(z)a(l)a(l)a(z)b(z)a(z)

and can be rewritten as follows

a2 MamaVaag)an)d el b
a)abe)amaaag)anaal?bDa®

a2 a@a®aeanda® b
abizaea?aea? b

which is a string of the Dyck language over X5 U X and can be reduced to
the empty word by means of the usual cancellation rules for the Dyck language.

Notice that the introduction of the homomorphism A and of the new al-
phabets X1y and 1) has two purposes: to mark the positions of the characters
belonging to X' in the original string after the application of the cancellation rule
and to control their correct matching with the characters in X(2). This example
leads to the next rules.

Note 32. 1t is possible to define the generalized Dyck language by means of a gen-
eralized cancellation rule, as follows. We introduce the new alphabets X;, with
t=1,2,...,n, which are disjoint indexed copies of X, and the homomorphism

hi(Z) — (E<1> USnU...UuZ,ur®us®u.. v E(”>)*
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defined by ' '
h(a) = agn) ... a@yany and h(a(l)) = a®

forany a € &, ol € ¥ and i = 1,2,...,n. Then

D(Z,n) = {we L*| h(w)=c}

~

where = is the reflexive and transitive closure of the transformation
ua(i)va(i)w = uvw

with v € EE’}H) U...u Ez‘n) and u,w € (h(f))* If n = 1 it is easily proved that
the reflexive and transitive closure of the rewriting rule

uaa’w = uw

where u,w € (X U XZ")*, coincides with the congruence generated by aa’ = ¢,
which is the usual cancellation rule for the Dyck language [2].

The proof that the above definition of generalized Dyck language is equivalent to
Definition 31 can be obtained by induction on the number of characters belonging
to X occurring in a string.

Chomsky-Schutzenberger property We extend the classical homomorphic char-
acterization theorem by N. Chomsky and M. P. Schiitzenberger from cf [11, 14,
20] to mpd languages.

Theorem 33. A language L belongs to Lpr if and only if there exist an alphabet
X, a homomorphism ® and a regular language Ry such that L = &(D(X, n)NRy),
where D(X,n) is the generalized Dyck language relative to n pd tapes, for some
n>1. 0O

Proof Let G = (Viv,Vp, P,S) € Gp~ be in strong normal form (see Note 14)
and let X' be the set of the labels of its productions. The language D(X, n) is as
in Definition 31. Let p denote the projection of Y over X, 1.e. the homomorphism
defined by p(e) = e, for every e € ¥, and by p(e(?)) = ¢, for every e(V) € X0 with
1 < i < n. Then clearly p(D(X,n)) = Z*, since the generalized Dyck language
imposes matches between e € ¥ and the corresponding e(¥) € X but allows
any sequence of e’s.

We construct a regular language Rs such that p(D(X, n)N Rz) is Z1((), the

leftmost Szilard language of G. We also define the homomorphism @ : X' — Vj
by

Ple) =welp ife: X — wée P, otherwise ¢(e) = ¢
D)) =¢ forany 1 <i<mn

in order to obtain from each Szilard word the corresponding word in L(G).
We shall show that given a derivation u = e;, ...¢; S = L(G), a
unique @ € D(X,r) N Ra can be built such that $(4) = ¢(u) =z and p(a) = u.
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To construct such a % we introduce a new grammar G" = (V{{/, X, P S) € Gpn.
The grammar G"' is built as follows. Let

Vi=VnUWiu...uV, Wherer:{EZ(j)| egj)EE(j)} for1<j<n

EW) ) it E9) e
P’ = Xﬁei(Egl))l...(Egn)) ife: X —welPlP
X — e (El(l))l...(ajEZ(ij...(EZ("))n if e X — (aj); € P

for every j = 1,2,...,n. Then we define the regular (locally testable) language
Ro by specifying the initial characters and the adjacent pairs to be allowed.

The character e; is the first character of a string u € R if and only if it is a
label of a production S — ... € P. Any other character in ¥ is a forbidden
initial character. The adjacent pairs are all the pairs egj)egch) occurring as sub-
strings of « € L(G"). Define the regular language R, )., ) = e, @ey (M) 3
The pairs that do not occur as substrings of u are called forbidden pairs. A pair
egj)egch) is a forbidden pair if and only if the intersection between L(G") and
the regular language R, )., ) is empty. Since Lpr is closed with respect to the
intersection with regular languages, L(G") N R, ()., @ and L(G")N e; 2% are in
Lp~. But for a D™ grammar G the emptiness problem of L(G) is decidable, as
proved in Statement 21. Consider the underlying cf grammar Gep, then L(G)
is empty if and only if L(G¢r) is empty, and the emptiness of a cf language is
decidable. Hence the membership problem for the set of forbidden initial char-
acters and for the set of forbidden pairs is decidable. Let R be the complement
of the union of the R, ()., s, for all the forbidden pairs egj)egch), and of the
eiZN’* ’s, where e; is any forbidden initial character. All the strings in R, start
with an admissible initial character and contain only admissible pairs.

Therefore L(G") is contained in R by definition of Ry. From Definition 31
it follows immediately that L(G") is contained in D(X, n). Moreover, for every
u € L(G") the string p(a) is the control word of a derivation S() S x, where
x € L(G), and, conversely, given a derivation u = ¢;, ...e;, : SU) ¢z € L(G),
there exists a string ¢ € L(G") such that p(@#) = wu, by the definition of G".
Finally @(u) = &(p(@)) = x, hence L(G) = ¢(L(G")) C ¢(D(X,n) N Ra). The
opposite inclusion D(X;n) N Ry C L(G") is straightforward.

The converse follows immediately from Statements 24 and 27.

O

Pumping lemma A periodicity property is proved which generalizes the so-called
“pumping lemma” of cf languages (Bar-Hillel or Ogden lemma) [20]. This result
will be used to prove that certain languages do not belong to the n-pd family,
for any n > 1. First we need the following definitions.

Definition34. (merge) Let T = (x1)(x2)...(z,) and ¥ = (y1)(y2) ... (ys), for
ziy; € X%, 47, €)Y € 2% and r,s > 1, be two lists (see Definition 4) over the
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alphabet X. The marked merge of 7 and ¥, shortly m(Z,y), is a list defined in
the following way:

m(Z,7) = (x131) - (@ryr) Wrg1) - - - (ys)  if » < s (and similarly if r > s)

Moreover, m(7Z,7y) indicates the string z1y122y2 ... &rYryry1 ... ys of Vii. The
concatenation operation is defined on lists by

Ty = (1) ... (2ry1) ... (ys)
The concatenation of a list T with a string v is
Zv=1(2z1)...(z,v) and oT = (vay)...(z,)

O

Remark. Since merge 1s associative, it is possible to define

Notation. For each string € X*, the string xf is the mirrored image of x.

Theorem 35. (Pumping Lemma) Let G = (Vy,Vp, P,S) € Gp=x, for some
n>1, and L = L(G). Then there exist two integers p,q > 0 such that:

Vz €L, with |z| > p, it holds z = z129.. .21, for some h with 1 <h <n (4)
where

21 = %11

Zy = (Zzl)R

z = Zi721—2(Zi721—2_1)RZZ'721—2_2 oo (2i)B, forany 3 <i<h
zij = m(Tij, Ui vij Wi Wij )
with
Ty = (xiji)(@ijo) -« (Tijon-ng1)  and Yy = (Yij1)(Wij2) - - (Yijr)

where y;;, = ¢ and bl <1< h 1 ifn—h—1>0, otherwiser =1,
and with

U5 = (Uijr)(uijT-I-l) 3 ~(Uijt)

where t = 27~ and also with

you £ and |w| < ¢ (5)
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where y,v,u and w are the catenations of the strings y;,vij, u;; and wi; (yi;
and w;j are the unmarked copies of y;; and U;j ), respectively.

The existence of the above decomposition of the string z implies that the
following string:

d=h 2 isan L (6)
where
! _ !
1 =11
/ I \R
zy = (#h)

Lo (s T s U s 0 W0 s U T
Zij = m(Tij, Yy Vij Yij Vij Wij i i )

Notice that in the strings zl’»]» both the marked and the unmarked forms of the

lists y;; and W;; occur. O

Note 36. If G € Gp this lemma reduces to the well-known “pumping lemma” for
cf languages. In fact, in this case h = 1, hence the statement claims that there
exist positive non-null integers p and ¢ such that if z € L(G) and |z| > p, then

=21 =Z11 = m((l‘111)(l‘112), (60111011“111)) = T111V11 W11 U111L112
for some @111, v11, w11, U111, 112 € V", with vi1u111 # € and w1 < ¢, and
7 = m((l‘111)(l‘112), (011011101111111“111)) = 901110%11011“%1190112 el

In order to clarify the situation we state completely the “pumping lemma” also
for n = 2 and we give an idea of the proof in Figures 4, 5, 6 and 7. Let
G =(Vn,Vp,P,S) € Gp2 and L = L(G). Then there exist integers p, ¢ > 0 such
that for every z € L, with |z| > p, it is either

2= T111Y111L112V11W11U112L113
with y1110111112 # € and |wi1] < ¢ (case h = 1), or
2= T111V11 W11 U11171128212U212W21V21L211
with vi1ve1u111t112 # € and |wiiwaey| < ¢ (case h = 2), and
2= 96‘1113/111901120113/111Unwnuflzl‘n?)

or
r_ 2 2 2 2
Z = X111V W11U11L1127212U919W21V51 X211

respectively, are in L.
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Fig.5. Proof of the “pumping lemma”: h =1, case (b).
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Fig.7. Proof of the “pumping lemma”: h = 2, case (b).
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Hint of the proof. Let L = L(G), where G = (Vn, Vi, P,S) € Gpn is in strong
normal form (see Note 14). Let G¢p be the underlying cf grammar. Then L' =
L(Ger) is a cf language the elements of which are permutations of words in
L. For a string w € L and a derivation S =g w, consider the corresponding
derivation in Gep, S :*>ch w, so that w is a permutation of w. Let T" be the
syntax tree of @ in G¢op. By a suitable order of visit of 7" 1t is possible to obtain
w. This ordering is stored in 7" by assigning an apex to each internal node. Thus
T can be considered the syntax tree of w, too.

If |w| > h, there exists in T at least one path with 1+ [log, h] nodes. Let
now m = |Vy|. If we consider a string z in L with |z] > 2m%1 the syntax tree
of z contains at least one path with m + 2 nodes. Thus in this path there exists
a non-terminal A which occurs twice; we can suppose - from the form of the
productions in ' - that this non-terminal belongs to VJS,I). Denote by A(ll) its
occurrence closest to the root of the tree and by A(Zl) the following one. We
can choose A(ll) and A(Zl) so that in the path [A(ll), A(Zl)] at least one bifurcation
occurs. Otherwise we could delete all the paths of the kind [A(ll), A(Zl)], obtaining
a syntax tree of a permutation z” of z, with z” € L, containing no path of length
exceeding m—+ 2. Furthermore, we can choose the path [A(ll), A(Zl)] in such a way
that it 1s the most distant from the root, among the paths satisfying the previous
conditions.

From now on the proof is analogous to the cf case. When the non-terminal
A(Zl) occurs as the first symbol of the sequence to be rewritten, it can be ex-
panded with the same derivation used in the expansion of A(ll), obtaining a new
string 2’ in which the substrings of z generated by non-terminals in [A(ll), A(Zl)]
occur twice. The positions where such substrings occur depend on the names
of the apices of the non-terminals belonging to [A(ll),A(Zl)], i.e. depend on the
list components, or pd tapes, where the sons of A(ll) have been rewritten. So
we must distinguish several cases depending on the names of the apices of the
non-terminals occurring in the interval [A(ll), A(Zl)]. The lengthy complete proof
for the case n = 3 is given in Appendix B. O
In order to apply the “pumping lemma” we need the following definition.

Definition 37. A language L over an alphabet % has the ¢terative h-tuple prop-
erty, for some h > 1, if and only if there exists an integer p > 0 such that for
every string z € L, with |z| > p, the following holds.

1. 2 = viugvaua . . . VUV, Where vy, u; € X" with 1 <7< hand 1 <j <
h + 1, for some h > 1.

2. ugusg...up # £, i.e. not all the u’s are empty.

3. Posing z = vlu%vzug .. .u%vh_H, there exists z’ € L which is obtained from
x possibly permuting some substrings u; and v;, with 1 <+ <j <h+ 1.
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This means that any sufficiently long string z € L can be factorized into 2h 4 1
substrings so that up to & of them can be doubled - and suitably reordered with
respect to the others - to obtain a longer string z/ € L. From the “pumping
lemma” the following is immediate.

Lemma 38. For each n > 1, any language L € Lpr has the iterative 27 -tuple
property. O

For instance, if n = 2 it i1s easy to verify that any language L. € Lp2 has
the iterative 4-tuple property, by posing for each string z, with |z| > p, either
Uy = 111, U2 = T112,U3 = W11, U4 = L113, U5 = &, V1 = Y111, V2 = V11, V3 = U112
and vq = €, or w1 = T111,Us = W11, U3 = T112Ta12, Us = Wal, Us = T211,V1 =
V11, V2 = U111, V3 = U211 and v = vay.

As a consequence we prove that the superfamily £p+ forms an infinite hier-
archy with respect to the parameter n.

Statement 39. For each n > 1 1t holds Lp» C Lpr+:1. O

Proof Obviously £Lp» C Lpr+1. Now we prove that Lpr # Lpnt1. The lan-
guage L = {aTa}’...a?| a; € Vp,m > 0 and s = 2" + 1} is in Lpnt1,
analogously to Example 2.2 (see also Statement 43).

We show that, from Lemma 38, it holds L € Lp=; in fact, choose v long
enough and apply the iterative 2”-tuple property. If for some ¢ the string wu;
contains two different terminals, say u; = .. .a]ha}“_l_1 .. with 0 < h, &k < m, then
the string  would contain the string u; twice, hence an instance of the terminal
a; would occur after a;4;. This is a contradiction.

Therefore, it must hold u; = a}“. Buti=1,...,2" whereas j = 1,...,2" +1,
so that not every index j is taken into account, and we obtain a word in L where
the number of a,’s is different from the number of a,’s for some r # s, which
again 1s a contradiction.

O

4 Properties of the superfamily

We briefly consider some closure properties of the superfamily
Lp+r={L] Yn>1L € Lpn}
Statement 40. Lp+ is closed with respect to union. O

Proof Let Ly € Lpr and La € Lpn. Let t = max(k, k), then L; € Lp: and
Ls € Lpt, hence Ly U Ly € Lpt, from Statement 26.
Od

Similarly, from Statement 26 we have

Statement41. Lp+ is closed with respect to catenation. O

Statement 42. Lp+ is closed with respect to Kleene star. O
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Next we consider two operations which preserve semilinearity, namely homomor-
phic replication [13] and language substitution. It is well-known that the former
does not preserve context-freedom.

Statement43. Lp+ is closed with respect to homomorphic replication. O

Proof Let L € Lp» and let L’ be obtained from L by means of a homomorphic
replication

L'={w| w=zhi(z)...h.(r)and z € L}

where the h;’s are alphabetic (and possibly erasing) homomorphisms. Then L' €
Lps, where s = 2r + n.

In fact, let M be a n-pd recognizer of L. The construction of an automaton
M’ of type PD?*, equipped with s pd tapes, accepting L’ is straightforward. The
automaton M’ simulates the automaton M and uses the 2r additional pd tapes
to create r homomorphic copies of the input word # € L. More precisely, the
(|n]+2i—1)-th pd tape is used to store a homomorphic reversed copy of #, which
is then rewritten and reversed on the (|n|4 2i)-th pd tape (without reading any
input character), and so on, with 1 < { < r. Disjoint tape symbols are used for
each pd tape. The last pd tape is emptied by recognizing an input word as a
homomorphic copy of the contents of the tape.

O
Since the superfamily is closed with respect to arbitrary hom., the homomorphic
replication can be arbitrary, too. In [13] hom. replications are combined with
string mirroring, e.g. as in zhy(z)ha(z)hs(z); the family Lp- is closed also
with respect to such a generalization of hom. replications, as it is evident from
the above proof.

A language substitution o transforms a language L C X* by replacing each
character b of # € L with a string y = o(b) € L' C X*. We consider the case
when both I and L’ are mpd languages.

Statement44. Take the alphabet ¥ = {a1,...,a,} and let o be a language
substitution defined by the languages L,, € Lpm. Let moreover L € Lp~ and
L C X* Then o(L) € Lpmtn. O

Proof We can simulate the recognition of @ € L by means of the last n tape
segments. Whenever a character of ¢, say a;, 1s to be read, the machine recognizes
instead a word y; = o(a;) € Lg,, using the first m tapes. Since we can suppose
that acceptance is by empty store (see Theorem 17), after reading y; the first m
tapes are empty, and the simulation of the reading of = past a; can continue.

O

Note 45. From Statement 44 it follows that every family Lp= is closed with
respect to arbitrary, erasing homomorphism.

Theorem46. Lp+ is an Abstract Family of Languages (AFL) [2]. O

The statement follows immediately from the previous results. Finally, we prove
that not all semilinear languages are multi-depth.
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Statement 47. The superfamily Lp+ is strictly contained in the family of
context-sensitive semilinear languages (in the sense of Parikh [19]). D

Proof From Statement 20 multi-depth languages are semilinear. Consider the
semilinear language L = {af/(")pmem=f(m)| . N — N is a non-linear, but
computable, integer function, such that f(m) < m for any m > 0}3. There exists
no integer n > 1 such that a grammar G € Gp~ generates L. In fact, Statements
24, 25 and 27, Note 45 and Nivat theorem [16] imply that Gp~ is closed with
respect to rational transduction. Imagine now a rational transduction 7 that
deletes the prefix of the strings of L containing a’s and b’s; the rest of the string
is left unalterated. Then the transduced language (L) = {¢™~7(™)| m >0} is
(obviously) not semilinear, hence L is not in Lp=, for any n > 1.
O

5 Conclusions

For determinism [20], an aspect not covered here, the strict inclusion of deter-
ministic by non-deterministic languages (as for cf languages) is proved in the
related paper [21]. More precisely, it is proved that the deterministic 2-pd lan-
guages are strictly included by the 2-pd (non-deterministic) ones, and that there
are (non-deterministic) cf languages which are not 2-pd deterministic.

Another important property of cf languages which is preserved by mpd lan-
guages concerns the complexity of recognition, which remains polynomial-time
[10]. Practical linear-time top-down parsing algorithms for the deterministic case
have been investigated [7, 18], in view of the definition of a subfamily enjoying
the same advantages as the LL(k) cf languages [14]. This development would al-
low a straightforward extension of the classical parser generating tools, opening
the door to the exploitation of D" grammars for compiler writing.

On the conceptual side we conclude by observing that mpd automata use for
their store an array of LIFO tapes. More general data structures have been con-
sidered for the store, such as an array of FIFO or LIFO tapes. A corresponding
class of grammars was defined in the same spirit of mpd grammars and investi-
gated in [4, 6, 7]. Tt includes some types of queue [1, 9] and dequeue automata
[8] (see also [3]). Not all the properties of mpd languages remain valid for this
more general class: e.g. that of being an AFL [4] is lost.

Acknowledgment Thanks to Dino Mandrioli and to Pierluigi Sanpietro for their
help. An anonymous referee has given valuable suggestions for improving the
presentation.
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A Proof of Lemma 16

First we shall prove that if a language L is recognized by empty tape by a n-
pd automaton M, then L = L(G), where G € Gpn. Let L = L(M), where M
is a n-pd automaton in (strong) normal form (Note 15). We shall construct a
grammar G = (Viy, Vp, P, S) € Gp~ in this way:

Vv =1x x Q"I W{x xQ*} Vr=XY S=12
and the productions in P have the form:

1. Vge@,and Zy —ciff e € L
Zo = ({(Z0;90, G4 G- 56 Oh
2. Vb, € Qiff (¢}, BNCW e ... e) €8(q1,e, A1), for2< h<n
(AN g1, 42543, 43 - -5 Gan—1, G2n) —
(B 1, 455 03, @43 - 5 qon—1, @ ) (C1)5 b, 495 0, 445 -5 s G20) 1
3. iff (qa,e,...,BY) ... e) € 8(q1,e, A

(A(l); 91,925,493, 935 - - -5 925 -3, 925 —-3; 925 -1, 9255 925 +1, 925 +15 - - -5 92n—1, q2n—1)
— ((BY)3 435, 42j-1));

4. VQa q2h4+1 S Qa fOI' 1 S h S .7 - 1) lﬂ (qlla C(l)a[‘:a .. 'aE) S 6(q1a€aA(]))
(A9 g1, 02) — ((CV5 41, 4303, €5+ -3 02 —3, 602, G 41, @6 -+ -5 41, 4D )
5. iff (q2,¢,...,¢) € 6(¢}"), a, AD)

(A g1, 42503, 43 - - -3 G2n—1, Q2n—1) — @

We shall prove that w € L(G) if and only if w € L(M). The grammar G simulates
the behaviour of M by guessing (in a non-deterministic way) the correct sequence
of states, coded in the first and (2h + 2)-th state component of the first pd tape
symbols (h > 1). We shall prove that when a prefix v of w has been rewritten by
(i, the non-terminal string (sentential form) has one of the following structures,
where the most meaningful equalities have been highlighted:

(AN q1,a9:p1,po;- - i 71, r9) (B 4o, a3; P2, P3; - - - 12,13)
(C(l);q3,q4;p3,p4;...;r3,1‘4) ........................... (7)

........................ (H(l); ALy, Th41; Py Qht15 - - -3 Ty Gh 1)1
(AP pr,ph) . (K ph, phya))2



or

(A9 q,pa) . (K9 prpraa));
(AT g ) o (LT s s40)) 0 (®)

(AP q o) o (MO 1) )

with j > 2. In both forms some segment may be empty. The corresponding
configuration of the automaton is

(g1, 2, ADBL) gL AR pE) g2 Al g )y
or
(g, x56,...,6,ADBU) KW AGFDBUHD pGHD g g ()

with w = ve. We show this fact by induction. The form of production 1. implies
that the first state is the initial state ¢ and the topmost state of the ¢-th pd tape
(¢') is recorded into the (2i—1)-th state component of the top symbol. Moreover,
the empty word is rewritten by GG and the configuration is {(go, #; Zo,¢,¢,..., ).
So the base of the induction is stated.

Let us now show that productions from 2. to 5. change the forms (7) and (8)
of the store into themselves and satisfy our conditions. Applying production 2.,
written as

Ve g, e QLiff (¢, XWY W) e e) € 8(qr, e, AD)

(AW g1, qoipropa; 571, m2) —
(XU g o5 WY g g p” s o)
to the configuration (7), we obtain

1"

(XD sq g 0,0 e, Y Y Y g0 pas s )
(BY: g2, 43;p9,p3; - 72, 73)(C Y g3, 445 s, pa; - 73, 7))
..................... (H(l); Qs Qht 15 Phs Qht 15 - -3 Thy ht1))1

(AP p1,ph) - (KPPl phgn))a

(AP Py ),

which has the same form as (7). The new state is ¢’. Moreover, by the induction
hypothesis the configuration of M was

(g1, 2; AWBD g AR k@A) )y
with w = vz, and the transition is

(g1, 2; AWBL g AR BER) () A B0 A0y E
(¢ 2; XWYyWpBW  HgM ARRER) K2 AR B )
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Applying production 3., written as
(AN g1, qoipr prs - - yma, mag sty sasta b)) — (X959, 51));
iff (qa,e,...,XU) ... ) €8(q,e, AD), to the configuration (7), we obtain

((B"); s, q3; 1, p3; - .; M1, ma; 59, 5301, 835571, 73)
(O g3, qa; ps, pa; 378, 74) oo
............... (HN: g, qhg1s Phy a5 - -5 7hy Ghs1)i

((A(Z);Pl,P/2> e <[((2);p;ﬁp;€+l>)2

which has the same form, for &4 > 1. The state becomes ¢;. The new configuration
s now

(go,2; B HW ADBE k@ xWAG) p@) ARl ()
For h =1 the form (7) was

(AN g1, 493 p1, 453 - 371, 42)n
(AP py ph) ... (K(Z);P%,P;H-ﬂ)?

((A(n)’ ri, 7°/2> e <M(n), T'm, r;n-|—1>)n

where, in order to apply production 3., we have to suppose that for ¢ £ 2,3, 25, 2j+
1, all the states coded in the i-th component of the first pd store symbols are
equal to ¢5. Hence this form becomes

(AP o, ph) ... (K(z);p%,P%H))Z

which has form (8). The new configuration of the automaton is now

(go, 2; ADBD K& xXWADRG | p@) AR Bl )y
Applying production 4., written as

VQaQZh—l € Q for (2 S h S .7 - 1)a iff (qllaX(l)aEa .. 'aE) € 6(q1a€aA(]))

(A9 01, 02)) — (XD qh, a5 a3, @5 - -3 02 =3, €5 00, G 415 @5 - 5 41, )1
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to the configuration (8), which obviously has the form

(AD; g1, @2 (B g2, ) . (L9); s, s00));

we obtaln

(XY g a5 a3, @ 2= 3, €542, G40, 4 - - -5 41, @)1

which has form (7). The state becomes ¢j. The configuration of M was
(oase . ADBU L) gm0y
the new configuration becomes
(¢, 0; XD g . AWRBW @) Ao ey
Applying production 5., written as
(AY g1, 92143, 433 - 5 qon—1, qon—1) — @ iff (q2,¢,...,€) € 8(q1,a, AV))

to the configuration (7), with A > 1, we obtain

(B 42, a5 03, Pl5; 5 n—1, P (C Y5, 0l P, Pl 57, 7)

..................... (H(l); Qi Q415 Phs Qht1; - - -5 Thy Q)1
((A®; g3, po) (B po, p3) .. (KD pr, prsa))a

(A5 qu, o) (B™ sz, rs) o (MO 1 1)

which has the same form as (7). The state becomes ¢3. The rewritten terminal
string is va. The configuration of M was

(q1,ay; AVBL) g AR k@A) ey
the new configuration becomes
(go,y; BY .. HMD ARBE) g2 A gy )
If h =1, the form (7) was

(AN g1, q2303, 4235 qan—1, g2) )1
(A®5q3,p2) - (K3 pi, pigr))o

(AT g1, ma) o (MY 7, g1

33



where we have ¢o = g3 = ... = ¢2,_1, hence it becomes the sentence
(A2, p2) AR e piea)) - (A gz} (M) ),
The rewritten terminal string is va. The configuration of M was
{q1, ay; AW A B0 .M("))
the new configuration becomes
(go,y;6, A® K@ AR ()

Hence, when the non-terminal string has been completely rewritten, the tape
of M is empty and w is recognized by M. Analogously, we can prove that if a
configuration of M is

(qr,2; ADBL) gL AR pE) g2 Al g )y

when a prefix v, with w = vz, 1s scanned by M, the derivation
Zo = w((AM); qgi), q§11>; qu), qu); a6

(B g5, g8V a5 5l a8

(HD 03, g0 anens - d) o)

(4@, P B b)) (KO )

is a derivation of (G. So our claim is proved.
Conversely, given G = (Vy,Vp, P,S) € Gp~, from Statement 10 we can

assume that G has productions of the type A — (a1)1(a2)2. .. (apn)n, with a; €
Vy, and of the type A — a, with a € Vp. We construct the n-pd automaton
M = (qo0, X, %, 8, q0, Z0), with only one state, as specified in the following:

Y= VT * = VN Zo =5

(a1,...,an) €68(g, A) iff A— (a1)1...(an)n €P

(g,....,€) € 8(a, A) iff A—acP

where A € Vy, a € Vp and a; € Vi for any 1 < j < n. The proof that
L(M) = L(G) is straightforward and therefore is omitted.
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B Proof of the Pumping Lemma

For simplicity we consider the case n = 3. Let L € Lps, i.e. let L = L(G) with
(i € Gps, and suppose that G = (Vy,Vp, P,S) is in strong normal form (see
Note 14). This means that Vy is the disjoint union of Vjs,l) W Vjs,z) W VJS,S) and that
the productions have the following forms:

Al) (A(l))l fori=2,3

AL — (B,

P =4 A0 — (B®),

AN — (BB,

AN ¢
If a word z € L is long enough, then in its syntax tree there exists a path where
a non-terminal A occurs twice; we can suppose - from the form of P - that this
non-terminal belongs to VJS,I). Denote by A(ll) its occurrence closest to the root
of the tree and by A(Zl) the following one.

Among such paths we can choose A(ll) and A(Zl) so that in the path [A(ll), A(Zl)]
there exists at least one bifurcation. Otherwise we could delete all the paths of

the kind [A(ll),A(Zl)] obtaining a syntax tree of a permutation z” of z, with
2" € L, containing no path of length exceeding n + 2.

Furthermore, we can choose the path [A(ll), A(Zl)] in such a way that 1t 1s the
most distant from the root, among the paths satisfying the previous conditions.
Now we distinguish some cases.

Case 1 In the path [A(ll),A(Zl)] there exists no node belonging to Vjsfz) U VJ£,3),
which means that:
S ;>G 9011(14(11)511)1(521)2(531)3
;>G 96‘11011(A(zl)’hlﬁn)1(1/21521)2(1/31531)3
where z11,v11 € V}, A(ll),A(Zl) € VJS,I), 111, 11 € (Vjsfl))*, va1,€01 € (Vjsfz))* and
v31,831 € (VJS,S))*. Hence:
S §>G 1‘11011(14(21)711511)1(1/21521)2(1/31531)3

§>G 1‘110111011(711511)1(Oé21V21521)2(0é31V31531)3

§>G 1‘110111011“11(511)1(72104211/21521)2(73104311/31531)3

;>G 90110111011“111511(52172104211/21521)2(5317310é311/31€31)3

§>G 90110111011111115111521(721(1211/21521)2(532531731(1311/31531)3

§>G 90110111011“11151115211121(04211/21521)2(73253253173104311/31531)3

;>G $11U11w11u11t11t21U21w21(V21521)2(Oé327325325317310é31V31€31)3

§>G 1‘11U11w11U11t11t21U21w21021(521)2(1/32043273253253173104311/31531)3

§>G 1‘11U11w11U11t11t21U21w210211‘21(5321/32043273253253173104311/31531)3

£

G L11011W11U11E11E21 U1 Wa1 V21 X 21 £32U32 W32 U32T 32131 U31 W31 V31231
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Then, posing the strings

Z11 = 11viwiitiiing
221 = Z21v21Waita1la
231 = 231v31Ww31U3131

232 = 232V32W32U32132

and zy = z11, we have z = zyz9z3, with 2z = zﬁ and z3 = zgzz?ﬁ. In this
derivation we have used the following partial derivations:

A(ll) £ Ull(A(zl)'Yll)l(V21)2(V31)3
§>G viiwir (711)1(@a1v91)2 (31031 )3 )
£ viiwiiun (21021021 )2 (Y3131 731)3
_I_
=G .-

and

A(zl) ;>G w11(0é21)2(0431)3
Lq wiyway(z20031)3 (10)
+
=G Wi11W21Ws1

Hence, if in the sentential form xllvll(A(Zl)'ynﬁn)l(1/21621)2(1/31531)3 we use the
derivation (9) (recall that A(Zl) = A(ll)), we have:

+ 2 1.2 2 2
S =a 9511“11(14(2 )711511)1(’/21521)2(’/31531)
+ 2 2 2 2 2 2 2 2
=G 1107 Ww11uTT11E21 U W1 05 X21 X32V39 W3 U39t 32131 Uz W31 V51 31055
Hence, posing the lists
Tij = (wi)(ti;), Uiy =(e) and Ty = (ui;)
and the strings
zij = m(Tij, Uiy vij wigWij ) = @4j0ijwijtijlij
— = — 2 2
zij = m(Tij, vij Ui vig Wig wigij) = Tijvi;wijustis
=2y, =y oand 2= 2™
1t follows
SEq = 2y 2h 2k
i.e. conditions (4) and (6) hold. Finally, condition (5) follows from the form of
P and from the consideration on the subtree of 7" with root A(ll), posing ¢ = 2*
and s = |VJS,1)| + 1.

36



Case 2 In the path from A(ll) to A(Zl) there exists at least one node labeled by a

(2) (3

symbol which is in V", and no nodes labeled by a symbol in Vi ) This means

that:

S5

L

9011(14(11)511)1(521)2(531)3

Ti11Y11 (511)1(7721521) (7731531)3
)2(P31m31€31)3

z11y11t11t21(121821)2( P32 831131831 )3

2
z11y11t11(B21m21821 )2
96‘113/1115111521021(3(2)77/21521)2(1/32532531 731€31)3
$11y11t11t21021(14(21))1 (n51€21)2(v3203203113131)3
z11y11ti1tavarwi1 (o1mh1€01)2 (3132852831 131831)3
2111101121 V21 w11 w21 (05 €01) 2 (vs20r31 V32332 F31 1131631 )3
T11y11t11tavarwi warYa, (§21)2(Nsa320031v32332 831131631 )3
$11y11t11t21021w11w21y/21 96‘21(5327752043204311/325325317731531)3
$11y11t11t21021w11w21y/21 $21$32(Uéza32a31V32532531 7731531)3

! !
211Y11811121V21 W11 W21 Y51 £21232Y39 W32W31 V32832831 Y31 231

where we have derived A(ll) as

and A(Zl) as

A(ll) ;>G y11(7721)2(7731)3
2 y11021(3(2)77’21)2(1/327731)3
;>G ynvzl(A(zl))l(77/21)2(1/327731)3
£ y11va1w11 (@217 )2 (3132731 )3 (11)
;>G y11021w11w21(77/21)2(0320311/327731)3
+ / /
=G ynvzlwnwzlyzl(773204320@11/327731)3

+ ’o
=G Y11V21W11W21Y21 Y32W32W31V32Y31

A(zl) ;>G w11(0421)2(0431)3
é—>G w11w21(0é320é31)3

+
=G W11W21W32W31

Hence, if we use derivation (11) instead of the above one to derive A(Zl), we get:

S §>G z11y11t11t21 021(14(21))1(77/21521)2(1/32532531 731€31)3

+
= zr1y1tiitorvaryi (n21nh1€21)2(n31v32 032 0311m31631)3
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G T11Y11t11t21021 y11021(3(2)77/21521)2 V327731V325325317731531)3

= (

;>G 96‘113/1115111521021y1021(A(21))1(77/21521)2(V327731V325325317731531)3

;>G 96‘113/1115111521021y1021w11(042177/21521)2(Oé311/3277311/325325317731531)3

;>G l‘nyntntzlvzlylUz1w11w21(77/21521)2(043204311/3277311/325325317731531)3
§>G 90113/1115111521021y1021w11w21y/21(l’21)2(U§2a320431V327731V325325317731531)3
;>G 96‘113/1115111521021y1021w11w21y/21l‘21(96327752043204311/327731V325325317731531)3

§>G T11Y11t11821V21 Y1 V21 W11 W1 Yhy To1 T32Y50 W32W31V32Y31 V32832831 Y31 T31
Hence, we have that if z = 2129 € L, with z; = 217 and z5 = zﬁ, where
z11 = m((z11)(t11t21)(@21), (y11) (V21 wi1wa1ys,))
zo1 = m((@31)(t31t32)(232), (y31)(v32 w31 ws2yss))

then also 2/ = 2|2} € L, with 2} = 2}, and 2, = 24, %, where

217 = m(z11)(Eraton)(221), (Y1) (V21 Y1021 W11 W21 Yo Yo ))

25 = m((231)(ta1tsz)(232), (Y31)(va2y31v32Ww31 W32Y55Y50))
from which 1t follows
zij = m(Tij, Ui vij wig i)
and
zij = m(Tij, Yy vig Yig vi Wi i i )

with the lists

Ti1 = (z11)(titar)(w21), Ui = (y11)(e)  and w1 = (yo)

To1 = (231)(I31t32)(€32), Yoy = (y31)(¢) and oy = (y30)

Case 3 In the path [A(ll), A(Zl)] there exists a symbol belonging to VJS,S). That is:

S $G 9011(14(11)511)1(521)2(531)3
$G 96‘113/11(511)1(7721521)2(7731531)3
$G 96‘113/111511(5217721521)2(5317731531)3
;>G z11y11t11t21 (721821 )2(b32F31131631)3
$G z11y11t11t21y21 (221)2 (032532831 131€31 )3
;>G r11yiitintaryz1 221 (E32m32 332 031131831 )3
;>G z11y11t11t21Y21 21 232(N32 532331131631 )3

At this point there exist in the third list component, or pd tape, two strings
descending from the same node A(ll), i.e. n32 and 731.
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Case 3.1 Suppose A(Zl) is a descendant of 53. Thus:

+
S =a zriyiitiita Yo £21232(032532 831031631 )3
G 96‘113/11151115213/2196‘211‘32032(3(3)77525325317731531)3

1
G 96‘113/11151115213/211‘219032032(14(2 ))1(77525325317731531)3

+ /
=q T11Y11t11721Y21 221 T32V32W1 1 W21 W32W31Yaat32t31Y31€31

where we have derived A(ll) as

1 4
A(l [ y11(121)2(31)3
+
=@ y11y21(77327731)3
+
=G y11y21032(3(3)77§27731)3
£ 1
e y11yz1v32(A(2 ))1(Uéz7731)3
+
=@ y11y21032w11(Oézl)z(oé3177§27731)3
+
=@ y11y21U32w11w21(0é32043177§27731)3
+ /
=G Y11Y21V32W11 W21 W32W31Y32Y31

and A(Zl) as

A(zl) ;>G’ w11(0é21)2(0431)3
é—>G' w11w21(0é320é31)3
+
=G W11W21W32Ws1

Hence, if we expand A(Zl) via the derivation (12), we have:

+ 1
S =a 90113/11151115213/211‘219032032(14(2 ))1(77525325317731531)3
G 90113/11151115213/21902190320323/11(7721)2(773177525325317731531)3
G 96‘113/11151115213/21902190320323/113/21(7732773177525325317731531)3

G T11y11t11t21Y21 221 232V32Y11Y21 032(3(3)7752773177325325317731531)3

/
G 96‘113/11151115213/2196‘211‘320321011(Oé21)2(043177325325317731531)3
/
G 96‘113/11151115213/219021903203210111021(0432043177325325317731531)3
/
G 96‘113/11151115213/21902190320321011w21w32(043177325325317731531

/
G 11y11ti1ta1ya x21x32v32w11w21w32w31(77326326317731631

/ /
G T11y11t11t21Y21 221 232V32Y11Y21 v32w11(a21)2(a317732773177326326317731531)3

/ /
G T11y11t11t21Y21 221 232V32Y11Y21 Uszwnwzl(0432(1317732773177325325317731531)3

x
%
x
§>G z11Y11811821Y21 ¥21 2320321121 032(14(21))1 (U§2U3177§2532531 7731531)3
x
x
%

! !
G 11Y11111121Y21 021 232032Y11Y21 V32 W11 W21 W32W31Y32Y31Y32t32831Y31231
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i.e. both z = z; and z = 2| € L, where

= m ((1‘11)(tlltzl)($21$31)(t32t31)(x31))

(yn)(yzl)(032w11w21w31y’21)(y31)

and

L —m (z11)(t11t21)(®21231)(T32t31)(231)
! (y11)(y21)(v32y11y21 032w11w21w31y§2y31 yéz)(ym)

where m (;) means m(Z,7), i.e. both z and 2z’ have the form

z = m(Z, youwt) and 2’ = m(T, gryvwun)
with the lists

(z11)(t11t21)(w21231)(t32t31)(231)
7= (y11)(y21)(e)
T = (Y352)(y31)

&)
[l

Case3.2 Suppose now A(ll) is a descendant of 73;. Then:

S ;>G 96‘113/1115111521y21$21$31y32t32t31v31(B(B)Ué1531)3
;>G 96‘113/1115111521y21$21$31y32t32t31031(A(zl))l(Ué1531)3
;>G T11y11t11t01Y21 221231 Y32t30t31v31Ww11 (021 )2 (as1751€31)3
;>G T11y11t11t91Y21021 231 Ysataata1v31 w11 wer (asac31n€31)3

= t1t taat !
=G T11Y11811121Y21221T31Y32132131V31 W11 W21 W32W31Y31T31

where we have derived A(ll) as

A(ll) 2 Y11(n21)2(n31)3
;>G y11y21(77327731)3
;>G y11y21y32031(3(3)77§1)3
é—>G y11y21y32031(14(21))1(Ué1)3 (13)
;>G yuyz1y32v31w11(Ozz1)z(0z3177§1)3

+ /
=G Y11Y21Y32V31 W11 W21 W32W31 Y37

and A(Zl) as

A(zl) ;>G w11(0é21)2(0431)3
§>G w11w21(0é31)3

+
=G Wi11W21W32Ws]
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Hence again, if we use the derivation (13) to expand A(Zl), we get:

+
S ¢ vr1yiitiitay21 o131 Y32ts0t31v31 Y11 (921)2 (731751631 )3
+
=6 T11Y11t11t21Y21 021731 Y32t30t 31031 Y11 Y21 (D32M31 051 E51)3
+
S6 r1yiitintayo1 21231 Y32t 3283131 Y11 Y21 Y32( 031751 €31 )3
+
=>a 90113/11151115213/21902190313/3215321531031y11y21y32031(3(3)77§177§1€31)3
+ 1
=a 96‘113/11151115213/21$21$31y32t32t31031y11y21y32031(14(2 ))1(77517751531)3
+
=6 T11Y11ti1ta1Y21 221231 Ys2t32831 31 Y11Y21 Y3201 w11 (as2)2 (3175, m51€31)3
+ ’ot
=G 211Y11111121Y21 021 231Y32132131V31 Y11Y21 Y32031 W11 W21 W32W31 Y31 Y31 £31

so that both strings z = z; and z = z{ belong to L, where

= m (( (w11)(11t21)(w21031 ) (Es2t31 ) (w31) )

3/11)(y21)(ysz)(U3lw11w21w32w31y§1)

and

(z11)(t11t21) (21231 ) (t32t31)(231) )

2=
! ((yn)(yzl)(y32)(031y11y21y3zv31w11w21w32w31y§1y§1)
where m (;) means m(Z,y), i.e. both z and 2z’ have the form

z=m(Z,yuwu) and 2 = m(T, guyrwun)

with the lists

T = (z11)(t11t21 ) (221731 (E32851)(231)
¥ = (y11)(y21)(y32)(¢)
= ()

The general case (n > 3) can be deduced in a similar way.
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