
Multi-push-down Languages and Grammars?Alessandra Cherubini1 Luca Breveglieri2Claudio Citrini1 Stefano Crespi Reghizzi21Dipartimento di Matematica (DM)2Dipartimento di Elettronica e Informazione (DEI)Politecnico di Milano (PdM)Piazza Leonardo Da Vinci n� 32I-20133 Milano, ItalyPh: +39 (0)2 2399 1 (switchboard) - Fax: +39 (0)2 2399 45681 34112E-mail: aleche,clacit@mate.polimi.it, brevegli,crespi@elet.polimi.itAbstract. A new class of languages, called multi-push-down (mpd), thatgeneralize the classical context-free (cf, or Chomsky type 2) ones is in-troduced. These languages preserve some important properties of cf lan-guages: a generalization of the Chomsky-Sch�utzenberger homomorphiccharacterization theorem, the Parikh theorem and a \pumping lemma"are proved. Multi-push-down languages are an AFL. Their recognizersare automata equipped with a multi-push-down tape. Multi-push-downlanguages form a hierarchy based on the number of push-down tapes.1 IntroductionThis research studies a new class of languages, called multi-push-down (mpd),that generalize the classical context-free (cf, or Chomsky type 2) ones [14], takinga new direction. We hasten to say that this generalization has nothing to dowith past proposals to increase the generative capacity of type 2 grammars byintroducing some sort of context-dependency, as for instance in matrix grammars[12, 20] or in other regulated rewriting systems [12]. Our approach is based ona di�erent and more powerful operator for combining the constituents occurringin the right-hand side of a production, which replaces the simple catenationoperation used by type 2 rules. Apart from this di�erence, the productions of thempd grammars behave as the usual ones, a fact having the desirable consequencethat the important properties of cf grammars are preserved or generalized bympd grammars: it is so for the Chomsky-Sch�utzenberger theorem [11], for theParikh theorem [19], for the \pumping lemma" [17] and for a few more properties.The derivations of mpd grammars can be represented by means of syntax trees,with a suitable order of visit. Considering the generative capacity, mpd languagesinclude some well-known non-context-free languages: homomorphic replications[13] provide an abstract example; the nested procedure declarations of the Ada? Work supported by a grant of the \Ministero dell'Universit�a e della Ricerca Scien-ti�ca e Tecnologica" (60%), Italy, and by ESPRIT BRA ASMICS 2, Special Contractn� 6317, European Union.

programming language are a practical case. Such languages exhibit the long-range dependencies that have always embarrassed formal linguists.Finally, a word on recognition and parsing, to complete the picture: mpdlanguages can be parsed in polynomial time, as proved in a related paper by A.Cherubini and P. Sanpietro [10], who have extended the Cocke-Kasami-Youngeralgorithm [14].After this quick survey of the niceties of mpd grammars the rest of theintroduction intuitively presents their generative mechanism. Perhaps the bestway is to start from a cf grammar in Greibach normal form [20], with productionsof the formA! bA1A2 . . .An. It is well known that this production can be giventhe following interpretation as an instruction for a push-down (pd) automaton:if A is the top symbol of the pd store (a LIFO data structure), pop it uponreading b from the input and push the string A1A2 . . .An onto the store. Themachine starts with the axiom in the store and recognizes by empty store. Noticealso that this machine is stateless and in general non-deterministic. We recallthat for cf grammars derivations can be assumed to be leftmost, without loss ofgenerality, and that the previous automaton operates in the leftmost manner.Multi-push-down grammars are organized as an in�nite hierarchy indexed bya parameter n � 1, with the case n = 1 coinciding with cf grammars. Take forsimplicity n = 2; a production of a grammar corresponding to a 2-pd automatontakes the form: A! b(A1A2 . . .Ah)(B1B2 . . .Bk), and can be interpreted as aninstruction for a store organized as the concatenation of two pd tapes (see Figure1), in essentially the same manner as the production in Greibach normal formfor one pd tape. The interpretation is then the following: if A is the top symbolof the store, pop it upon reading b from the input, push the string A1A2 . . .Ahonto the �rst pd tape of the store and push the string B1B2 . . .Bk onto thesecond pd tape of the store. Notice that the symbol A is popped from the �rstpd tape unless it is empty; in this last case A is popped from the second pd tape.Also this machine is stateless, starts with the axiom in the store and recognizesby empty store; in general, the machine is non-deterministic, too. In the n-pdcase, the store is made of n � 1 adjacent pd tapes, which are linearly ordered;the reading head of the automaton is allowed to pop one symbol of the storealphabet from a pd tape only if the preceding pd tapes are empty. Instead, all pdtapes can be written in parallel by one move, regardless whether they are emptyor not. The straightforward correspondence between the generative grammarand the automaton is thus extended from cf to mpd languages.Notice that the above automata are stateless, since all information is storedin the pd tapes of the automaton. The family of stateless, in general non-deterministic, mpd automata and the family of mpd grammars are equivalent,as mentioned above. Finite states are not required as long as the purpose isthe equivalence between mpd automata and grammars. However, �nite statesare allowed in mpd automata, but do not increase the recognition power ofsuch a family of automata, as long as non-determinism is allowed; in fact, ifnon-determinism is tolerated any mpd automaton, with �nite states, admits anequivalent stateless mpd automaton. 2

This fact extends a well-known property of pd automata [14]. Moreover,the analogy between the cf and mpd cases goes farther, since the family of n-pdautomata recognizing by �nal state is as powerful as the family of n-pd automatarecognizing by empty store, for any �xed n � 1.The addition of the determinism constraint reduces the recognition power ofmpd automata, for a �xed number n of pd tapes. For instance, this happensfor n = 1, because 1-pd automata are push-down automata and it is well-knownthat deterministic push-down automata are less powerful than non-deterministicones [14]. In the conclusion this point is resumed.An additional comparison may help in understanding the proposed model,before entering the technical presentation. A 2-pd automaton is very di�erentfrom a machine with two independent pd tapes. The latter can simulate a Turingmachine by storing its semitapes on the pd tapes [15]. In our case this is notpossible because only one tape at a time can be read, so that the informationwritten on, say, the right semitape would not be accessible until the left semitapeis emptied. As a consequence mpd languages are much less general than context-sensitive ones, in fact they are permutations of cf languages.Section 2 de�nes mpd grammars and automata, presents some illustrativeexamples, introduces a normal form and proves the equivalence of mpd grammarsand automata. Section 3 �rst proves the central properties of each n-pd familyfor any �xed n � 1, then it proves closure and inclusion properties of the wholehierarchy. The Conclusion discusses determinism, parsing and points to a relatedinvestigation on grammars which further generalize cf ones by having a storemade of FIFO as well as of LIFO tapes. The Appendices A and B present twolengthy proofs.2 De�nitions and examplesThis section de�nes the multi-push-down (mpd) automata with n � 1 pd tapes(also called n-pd or PDn automata) and the corresponding equivalent class ofgrammars, the multi-depth grammars (also called depth-n or Dn grammars). Anormal form for such grammars is introduced. Some examples of the recognitiveand generative power of the families of n-pd automata and depth-n grammarsare provided.The mpd automaton, shown in Figure 1 for the case n = 2, has one read-only left to right input tape and n � 1 read-write memory tapes with a LIFOrewriting policy. The machine performs the following actions with one move:{ reads one or zero symbols from the input tape and moves past the readsymbol;{ reads the symbol on the top of the �rst pd tape; if the �rst pd tape is emptyit reads the top symbol of the second non-empty pd tape; and so on.{ switches its internal state;{ possibly writes in parallel n �nite strings �i on the i-th pd tape, with respec-tively i = 1; 2; . . .; n. The i-th head moves to the left of the inserted string�i, i.e. writing is a push move. 3

Notice that the total ordering of the pd tapes allows one to view them as awhole store with a single reading head and n � 1 writing heads (see Figure 1 forthe case n = 2). The substore between the i-th and the (i + 1)-th writing headis called the i-th segment of tape and is formally equivalent to an ordinary pdtape. Control
Unit

(FSA)

push-down tape n. 1
multi-push-down store

reading head

writing heads

input head

push-down tape n. 2
........top top

........
input tape

mpd automaton, case n == 2

end end

Fig. 1. A 2-pd automaton M .The next de�nition is the same as the classical de�nition of pd automaton,apart from the fact that our machine can write in parallel into n pd tapes insteadof just one.De�nition1. A n-push-down (n-pd or PDn) automaton M , with n � 1, ac-cepting by �nal state, is a 7-tuple M = (Q;�; �; �; q0; F; Z0), where:{ Q is a �nite non-empty set of internal states{ � (input) and � (memory) are �nite alphabets{ � is a partial transition mapping� : Q� (� [f"g)� �) }F (Q� (� �)n)where }F (E) is the set of the �nite subsets of a set E4

{ q0 2 Q is the initial state{ F � Q is the set of �nal states{ Z0 2 � is the initial memory symbolA con�guration ofM is a (n+2)-tuple hq; x;
1; . . . ;
ni, where q 2 Q, x 2 �� and
1; . . . ;
n 2 � �. The con�guration hq0; x;Z0; "; . . . ; "i is initial. A con�gurationhq; x;
1; . . . ;
ni, where q 2 F , is called �nal.The transition relation �̀M is the transitive closure of the binary relation `M ,over con�gurations, de�ned in the following way:hq; ax; "; . . . ; "; A
i; . . . ;
ni `M hq0; x;�1; . . . ; �i�1; �i
i; . . . ; �n
niif (q0; �1; . . . ; �n) 2 �(q; a; A), where a 2 � [f"g, for some 1 � i � n.In words, the move (q0; �1; . . . ; �n) 2 �(q; a; A) reads \a" or \"" from theinput, reads \A" from the head of the store (in the �rst non-empty segment),then switches the state to \q0" and for all j, with 1 � j � n, writes �j by meansof the j-th writing head. Accordingly, the j-th writing head moves leftwards.A string x is accepted (by �nal state) by a n-pd automaton M if and only ifhq0; x;Z0; "; . . . ; "i �̀M hq; ";
1; . . . ;
niwhere q 2 F . 2Clearly a 1-pd machine coincides with a classical pd automaton.De�nition2. The family of languages recognized by n-pd automata is denotedLPDn , for any n � 1. 2Example 2.1 The non-cf language fanbncnj n � 0g 2 LPD2 . An accepting non-deterministic 2-pd automaton is M = (Q;�; �; �; q0; fq2g; Z0), where:� = fa; b; cg � = fZ0; B;C;Dg Q = fq0; q1; q2g�(q0; a; Z0) = f(q1; Z0B;CD)g�(q0; "; Z0) = f(q2; "; ")g�(q1; a; Z0) = f(q1; Z0B;C); (q1; B;C)g�(q1; b; B) = f(q1; "; ")g�(q1; c; C) = f(q1; "; ")g�(q1; ";D) = f(q2; "; ")gThe automaton M reads the a's in the initial state while Z0 is on the top ofthe �rst pd tape, switches to the state q1 and writes Z0B and CD onto the �rst5

and the second pd tape, respectively. Then in the state q1 it reads the a's fromthe input tape while Z0 is on the top of the �rst pd tape, storing the a's as B'sand C's onto the �rst and the second pd tape, respectively. When the a's are�nished and Z0 disappears from the top of the �rst pd tape, M reads from theinput tape a number of b's equal to the number of B's. When the �rst pd tape isempty, the automaton consumes the C's from the second pd tape while readingthe c's from the input tape. When D is the top symbol of the store, with an"-move M reaches the �nal state q2 and recognizes.We have de�ned acceptance by �nal state, but, analogously to the 1-pd, orcf, case, acceptance by empty store could be de�ned as well. In this case theset F of �nal states is not de�ned and the �nal con�gurations are of the typehq; x; "; . . . ; "i, for any q 2 Q. Furthermore, the following statement holds.Statement3. A mpd language L is recognized by a non-deterministic n-pdautomaton by empty store if and only if there exists a non-deterministic n-pdautomaton recognizing L by �nal state, for some n � 1. 2The proof, a simple generalization of the well-known proof for pd automata [14],is omitted.The previous statement permits to de�ne a generative system for mpd lan-guages, i.e. the grammars, called depth-n or Dn grammars2, generating the lan-guages in LPDn . A Dn grammar is a rewriting system that rewrites one non-terminal symbol A occurring in a string � by a string
. Unlike cf grammars,
need not be written contiguously as a replacement of A; instead,
 is a list ofn � 1 strings,
 = (
1)(
2) . . . (
n), and each string
i is inserted in a markedposition of �. First we need de�ne lists.De�nition4. Let � be a �nite alphabet and let \(", \)" be characters not in�. A list is a �nite sequence of (possibly empty) strings enclosed by the symbols\(", \)", i.e.
 = (
1)(
2) . . . (
n), with n � 1, where
i 2 ��, for any 1 � i � n.The string
i is called the i-th component of the list
. Lists are elements of(\("��\)")+. List names will be overscored, to distinguish them from stringnames. A list with n components is called a list of degree n, or a n-list. Anequivalent notation for a n-list is (
1)1(
2)2 . . . (
n)n, which allows to drop theempty components.A list can be transformed into a string in the natural way by the homomor-phism (unmarking) u : (� [f \(" g [f \)" g)� ! ��, de�ned by u(\(") = ",u(\)") = " and u(a) = a, for any a 2 �. Usually we denote
 = u(
), deletingthe overscore, and we call the string
 the unmarked copy of the list
. 2De�nition5. A Dn grammar G is a 4-tuple G = (VN ; VT ; P; S), where VN andVT are the non-terminal and terminal alphabet, respectively, S 2 VN is theaxiom and P is a �nite set of elements (productions) of the formA! w(�1)1(�2)2 . . . (�n)n2 The letter D stands for \depth-�rst", in contrast to the \breadth-�rst" grammars of[1, 8, 9]. 6

where w 2 V �T and �i 2 V �N , for any 1 � i � n. The string �i is called the i-thcomponent of the production. 2Notice that a production can be equivalently written as A ! w�, where � =(�1)(�2) . . . (�n) is a n-list. The right-hand side w� is a n-list over the alphabetVN with a pre�x in V �T . We continue to call such entities n-lists.For brevity the empty components of a list can be shortened as follows:A! w(")(") . . . (") becomes A! wA! (")(") . . . (") becomes A! "A! w(")1 . . . (")i�1(�i)i(")i+1 . . . (")n becomes A! w(�i)iObviously for n = 1 a Dn grammar is cf.A derivation is a relation between two n-lists, such that the latter one isobtained by rewriting the leftmost non-terminal of the former one using a pro-duction.De�nition6. Let � = (")1 . . . (")i�1(A�)i(�i+1)i+1 . . . (�n)n be a n-list, forsome 1 � i � n, where �j 2 V �N , for each i � j � n, and A 2 VN . Take astring x 2 V �T . We write the following derivationx�) xw(�1) . . . (�i�1)(�i)(�i+1) . . . (�n)if A ! w(�1)1(�2)2 . . . (�n)n is a production and �j = �j�j , for every j withi � j � n. 2Notice that only leftmost derivations are de�ned. In fact, by relaxing the leftmostconstraint on the order of derivation the generative power of Dn grammars in-creases, for any n � 2, in contrast with the behaviour of cf grammars (rememberhowever that cf grammars coincide with Dn grammars for n = 1). As usual �)denotes the re
exive and transitive closure of the relation).The generation of a string starts with the list (S)1(")2 . . . (")n. A terminalstring x is derivable from S if and only if (S)1(")2 . . . (")n �) x(") . . . (") or,dropping the "'s, (S)1 �) x, or also, for brevity, S �) x.The language generated by a Dn grammarG is L(G) = fx 2 V �T j S �)G xg.De�nition7. GDn is the family of Dn grammars; the corresponding family oflanguages is denoted by LDn and is named the family of depth-n languages. 2The following examples highlight the generative capacity ofDn grammars, givingalso detailed examples of derivations.Example 2.2 AD2 grammarG generating the non-cf language fanbncnj n � 0gof example 2.1 is G = (VN ; VT ; P; S):VN = fS;B;Cg VT = fa; b; cg and P = (S ! a(SB)1(C)2 j "B ! bC ! c7

The derivation of the string aabbcc is:S) a(SB)1(C)2) aa(SBB)1(CC)2) aa(BB)1(CC)2) aab(B)1(CC)2) aabb(CC)2) aabbc(C)2) aabbccS

Sa B C

Sa

e

B b C c

cb

b

1st segment 2nd segment

Fig. 2. Syntax tree of the string \aabbcc".Figure 2 shows the syntax tree of the above derivation of the string aabbcc. Thethick edges point out the rewritings between di�erent list components.Example 2.3 The non-cf language fwwj w 2 fa; bg�g (COPY language, see [3])is in LD2 . A D2 grammar generating this language is G = (VN ; VT ; P; S), with:VN = fS;A;B;A0; B0g VT = fa; bgP = 8>>><>>>:S ! a(SA0)1 j b(SB0)1 j "A0 ! (A)2B0 ! (B)2A! aB ! bAn example of derivation of the string abbabb is:8

S) a(SA0)1) ab(SB0A0)1) abb(SB0B0A0)1) abb(B0B0A0)1) abb(B0A0)1(B)2) abb(A0)1(BB)2) abb(ABB)2) abba(BB)2) abbab(B)2) abbabbThe grammar G works by �rst storing a reverse copy of w onto the �rst compo-nent of the list and then by reversing it again onto the second component.Example 2.4 As a practical example in LD2 , we consider the language of nestedprocedure declarations, with procedure identi�ers repeated after the procedure\end" (as in the programming language Ada). Procedure identi�ers need not beunique (for instance \proc abc proc abc end abc end abc" is accepted). A D2grammar for the language is G1 = (VN ; VT ; S0; P) 2 GD2:VN = fS0; S1; S2; T1; A; . . . ; Z;A0; . . . ; Z 0g VT = fhproci; hendi; a; . . . ; zgP =8>>>>>>>>>>>>><>>>>>>>>>>>>>:S0 ! hproci(S1S2)1(S0)2 j "S1 ! " j a(S1A)1 j b(S1B)1 j . . . j z(S1Z)1A! (A0)2.Z ! (Z 0)2A0 ! a.Z0 ! zS2 ! hproci(S1S2)1(T1)2 j (T1)2T1 ! hproci(S1S2)1 j hendiDe�nition8. We also need a notation for the multi-depth set or superfamily:GD+ = fGj 8n � 1 G 2 GDng and LD+ = fLj 8n � 1 L 2 LDng2Normal forms of Dn grammars In order to simplify several proofs, we introducein two steps a form similar to the Chomsky normal form of cf grammars [14].De�nition9. A Dn grammar G = (VN ; VT ; P; S) is in separate normal form ifthe productions are of the following types:A! (�)i where � 6= " and 1 � i � nA! w where w 2 V �TS ! " if and only if " 2 L(G)2In Statement 22 it is proved that the membership problem of the empty string" is decidable for depth-n languages. 9

Statement10. For each grammarG 2 GDn there exists an equivalent grammarG0 2 GDn in separate normal form. 2Proof First notice that it is possible to avoid the productions A ! " withA 6= S. In fact, analogously to the cf case, any production A! " can be deletedby adding to each production with A on the right hand side the production(s)obtained by deleting A (in all ways) from the string on the right hand side. Nowwe construct a new grammar G0 = (V 0N ; VT ; P 0; S) from G, as follows:V 0N = VN [V 00N [V 000NwhereV 00N = fhwij A! w(�1)1 . . . (�n)n is a production of GgV 000N = fh�i(i)ij �i 6= " is the i�th component of a production of GgFor each production A! w(�1)1 . . . (�n)n 2 P (1)with �j 2 V �N for any 1 � j � n, construct the productionA! (hwih�(n)n i . . . h�(1)1 i)1where h�(j)j i is empty if �j = ". In addition, construct the productions:hwi ! w and h�(j)j i ! (�j)jClearly the grammarG0 is in separate normal form.We show that L(G) � L(G0).Consider a list � = (")1 . . . (")i�1(A�i)i(�i+1)i+1 . . . (�n)n (2)for some 1 � i � n, and a derivation�)G w(�1)1 . . . (�i�1)i�1(�i)i(�i+1)i+1 . . . (�n)n =
 (3)where �j = �j�j , for any i � j � n, via the production (1). Then�)G0 (hwih�(n)n i . . . h�(1)1 i)1(�i)i(�i+1)i+1 . . . (�n)n)G0 w(h�(n)n i . . . h�(1)1 i)1(�i)i(�i+1)i+1 . . . (�n)n)G0 w(h�n�1(n�1)i . . . h�(1)1 i)1(�i)i(�i+1)i+1 . . . (�n)n)G0 . . .)G0
Thus L(G0) � L(G). We omit the proof that L(G) � L(G0), which is alike.Hence it follows L(G) = L(G0). 2The Dn grammars with n � 2 also admit more re�ned normal forms.10

De�nition11. A Dn grammar G = (VN ; VT ; P; S), for n � 2, is in binarynormal form if its productions are of the following types:A! (�)1 where 1 � j�j � 2A! (B)i where B 2 VN and 1 < i � nA! a where a 2 VTS ! " if and only if " 2 L(G)2Statement12. For each grammar G 2 GDn , with n � 2, there exists an equiv-alent grammar G0 2 GDn in binary normal form. 2Proof From Statement 10 we assume that G is in separate normal form, and weconstruct a grammar G0 in binary normal form. If G violates the binary normalform only because P includes productions of the typeA! w with w 2 V +T and jwj > 1we can proceed similarly to the classical Chomsky normal form and the proof isomitted. For the productions not in binary normal form we have to study twocases:1. A! (�)1 with j�j > 22. A! (�)i with j�j � 2 for some 1 < i � nFirst we construct the productions of G0 in each case, then we prove the equiv-alence. For simplicity we shall assume �1; �i = XY Z (the construction is easilygeneralized, and the proof is made by induction).Case (1). We create for G0 the new non-terminal hXY i(1) and we replace theproduction A! (�)1 byA! (hXY i(1)Z)1 and hXY i(1) ! (XY)1Case (2). It requires a little change in the order. We haveA! (�)i with j�j � 2 for some 1 < i � nThen we create for G0 the new non-terminals hZY i(i), hZi(i), hY i(i) and hXi(i),and we replace the production A! (�)i byA! (hZY i(i)hXi(i))1 and hZY i(i) ! (hZi(i)hY i(i))1hXi(i) ! (X)i; hY i(i) ! (Y)i and hZi(i) ! (Z)iNow we prove the equivalence of G and G0. To prove that L(G) � L(G0), wenotice that case (1) is similar to the classical proof of the Chomsky normal form11

and is not pursued. Similarly, for case (2) the right part XY Z is �rst encodedin the �rst segment, then moved one by one into the proper position.We omit the proof that L(G) � L(G0), which is straightforward. 2Note 13. We can assume that the non-terminal alphabets of each list compo-nent are disjoint, that is VN = Uni=1 V (i)N , the disjoint union of n alphabetsV (i)N = �A(i)	. Accordingly, in each production the i-th component is a string in�V (i)N ��, for every 1 � i � n.Note 14. If we suppose G = (VN ; VT ; P; S(1)), for n � 2, with VN = Uni=1 V (i)N(see the previous note), we can construct an equivalent normal form for G, calledstrong normal form, the productions of which are as follows:A(1) ! (�)1 where � 2 �V (1)N �� and j�j = 2A(1) ! (A(i))i where A(i) 2 V (i)N and 1 < i � nA(i) ! (A(1))1 where A(i) 2 VN (i) and 1 < i � nA(1) ! a where a 2 VTS(1) ! " if and only if " 2 L(G)Notice that a Dn grammar with n = 1, i.e. a cf grammar, in strong normal formreduces to one in Chomsky normal form (because the 2nd and 3rd productiontypes above do not apply); therefore the strong normal form is a generalizationto Dn grammars of the Chomsky normal form of cf grammars.Note 15. We could analogously construct a (strong) normal form for n-pd au-tomata, proving that for any n-pd automaton M , with n � 2, there exists anequivalent machine M 0 = (Q;�; �; �; q0; Z0), such that:� = Uni=1 � (i), where the � (i)'s are disjoint memory alphabets�(q; "; A(1)) � �1 [�2, where�1 = f(q0; B(1)C(1); "; "; . . . ; ")j q0 2 Qg�2 = f(q0; "; . . . ; "; A(i); "; . . . ; ")j q0 2 Q and B(i) 2 � (i); for 1 < i � ngfor any 1 < i � n if (q0; "; . . . ; ") 2 �(q0; "; Z0)�(q; "; A(i)) � f(q0; B(1); "; . . . ; ")j q0 2 Qg�(q; a; A(1)) � f(q0; "; . . . ; ")j q0 2 Qg12

which is equivalent to M and recognizes by empty store.Equivalence of PDn automata and Dn grammars As described in the introduc-tion, a pd automaton performs the depth-�rst left-to-right parse of the stringsgenerated by a cf (i.e. D) grammar in Greibach normal form. This correspon-dence can be extended to PDn machines and to Dn grammars, as stated by thenext result.Lemma16. A language L is recognized by a n-pd automaton M by empty tapeif and only if L 2 LDn , for some n � 1, i.e. LPDn = LDn . 2Proof Let L be a language recognized by empty store by a n-pd automaton, in(strong) normal form,M = (Q;�; �; �; q0; Z0). We shall construct aDn grammarG = (VN ; VT ; P; S) with the input alphabet of M as terminal alphabet, i.e.VT = �, and a non-terminal alphabet VN = f� �Q2ng] f� �Q2g, in order toencode the states of the automaton; the axiom S is the initial memory symbolof M , i.e. S = Z0. The productions in P have the form:1. 8q 2 Q and i� " 2 LZ0 ! (hZ0; q0; q; q; q; . . . ; q; qi)1 and Z0 ! "2. 8q02h 2 Q, with 2 � h � n, and i� (q01; B(1)C(1); "; . . . ; ") 2 �(q1; "; A(1))hA(1); q1; q2; q3; q4; . . . ; q2n�1; q2ni !(hB(1); q01; q02; q3; q04; . . . ; q2n�1; q02nihC(1); q02; q2; q04; q4; . . . ; q02n; q2ni)13. i� (q2; "; . . . ; B(j); . . . ; ") 2 �(q1; "; A(1))hA(1); q1; q2; q3; q3; . . . ; q2j�3; q2j�3; q2j�1; q2j; q2j+1; q2j+1; . . . ; q2n�1; q2n�1i! (hB(j); q2j; q2j�1i)j4. 8q q2h+1 2 Q, with 1 � h � j � 1, and i� (q01; C(1); "; . . . ; ") 2 �(q1; "; A(j))hA(j); q1; q2i ! (hC(1); q01; q; q3; q; . . . ; q2j�3; q; q2; q; q1; q; . . . ; q1; qi)15. i� (q2; "; . . . ; ") 2 �(q1; a; A(1))hA(1); q1; q2; q3; q3; . . . ; q2n�1; q2n�1i ! aThe grammarG simulates the behaviour of the automatonM by guessing (non-deterministically) the correct sequence of states, coded in the �rst and (2h+2)-thstate component of the �rst pd tape symbol (h > 1). This fact will be completelyproved by induction in Appendix A.Conversely, given G = (VN ; VT ; P; S) 2 GDn , from Statement 10 we canassume that G contains productions of the typesA! (�1)1(�2)2 . . . (�n)n; with �1 2 V �N ; and A! a; with a 2 VTWe construct the one-state n-pd automatonM = (q0; �; �; �; q0; Z0) as speci�ed(the state is omitted): 13

� = VT � = VN Z0 = S(�1; . . . ; �n) 2 �("; A) if and only if A! (�1)1 . . . (�n)n 2 P("; . . . ; ") 2 �(a;A) if and only if A! a 2 Pwhere A 2 VN , a 2 VT and �j 2 V �N , for any 1 � j � n. The automaton Mrecognizes by empty store. The proof that L(M) = L(G) is straightforward andis omitted. 2The previous results are summarized by the next statement.Theorem17. For any mpd language L the following are equivalent:{ L is recognized by a n-pd automaton, recognizing by empty tape;{ L is recognized by a n-pd automaton, recognizing by �nal state;{ L is generated by a Dn grammar.for some n � 1. 2This theorem establishes a close parallelism between cf and mpd languages.3 Properties3.1 Properties of n-pd languagesWe prove several properties holding for any member of the superfamily of mpdor multi-depth languages. Take a language L = L(G), with G = (VN ; VT ; P; S) 2GDn . The productions of the normal form grammar generating L�f"g are lengthincreasing, henceStatement18. Any language L 2 LDn is context-sensitive, for any n � 1. 2De�nition19. For any mpd grammar G 2 GDn , let GCF = (VN ; VT ; PCF ; S)be the cf grammar withPCF = fA! w�1�2 . . .�nj A! w(�1)1(�2)2 . . . (�n)n 2 PgThis grammar is called the underlying cf grammar of G. 2The existence of the underlying cf grammar is signi�cant. For every stringw 2 L(G) there exists a string w0 2 L(GCF) that is a permutation of w, and con-versely. Since the Parikh image of L(GCF) is semilinear [20], the Parikh imageof L = L(G) is semilinear, too, and we have proved the followingStatement20. The Parikh image of every depth-n language is semilinear, forany n � 1. 2 14

Any grammar G 2 GDn can be put in reduced form, i.e. all non-generating orlooping derivations can be excluded. In fact, consider that a Dn grammar Gproduces non-generating or looping derivations if and only if the underlying cfgrammar GCF does, too. Hence to reduce G it su�ces to process GCF reducing itinstead (this only requires stripping o� some productions), and then to go backto G. Moreover, the depth-n language L = L(G) is empty if and only if the cflanguage LCF = L(GCF) is empty. ThereforeStatement21. The emptiness problem of any depth-n language L 2 LDn isdecidable, for any n � 1.Finally, note that a depth-n language L contains the empty string " if and onlyif LCF does, too. HenceStatement22. The problem of deciding whether a depth-n language L 2 LDncontains the empty string " is decidable, for any n � 1.The following statements can be proved essentially by means of the same proofsused for cf grammars, and hold for any n � 1.Statement23. LDn is closed with respect to union. 2Statement24. LDn is closed with respect to (erasing) alphabetic homomor-phism. 2Statement25. LDn is closed with respect to inverse non-erasing alphabetichomomorphism. 2Since in the sequel we shall prove that every family LDn is an AFL, Statements24 and 25 hold even if the hom.'s are arbitrary and erasing.Statement26. LDn is closed with respect to catenation and Kleene star. 2Proof We distinguish the two operations, catenation and Kleene star.Catenation. Let L1 = L(G1) and L2 = L(G2), where V (1)N \V (2)N = ;. ConstructG = (VN ; VT ; P; S) as follows.VN = V (1)N [V (2)N [fSg where S is a new non� terminalP = P1 [P2 [�S ! (S1)1(S2)nS2 ! (S2)1Clearly it holds L(G) = L1L2.Kleene star. Let L1 = L(G1). Construct G = (VN ; VT ; P; S) as follows.VN = V (1)N [fS; S01g and P = P1 [8><>:S ! (S1)1(S01)n(S01)! (S1)1(S01)n(S01)! "S ! "Clearly it holds L(G) = L�1. 215

Statement27. LDn is closed with respect to the intersection with regular lan-guages. 2Proof Let L 2 LDn . Given a �nite automaton recognizing the regular languageR and the n-pd recognizer by �nal states of L, construct the Cartesian productmachine. 2Szilard language The de�nition of leftmost Szilard language for a cf grammar[11] can be extended to Dn grammars.De�nition28. Let G 2 GDn and let E be the set of the unique labels of itsproductions, then the leftmost Szilard language of G is ZL(G) = fy 2 E+j Dis a derivation S �)G x and y is the sequence of productions applied in Dg. Thestring y is called the control word of the derivation D of the string x. 2Statement29. ZL(G) 2 LDn , for every grammar G 2 GDn . 2Proof Let G = (VN ; VT ; P; S) be a Dn grammar. Consider the grammar G0 =(VN ; E; P; S), whereP 0 = fX ! e(�1)1(�2)2 . . . (�n)nj e : X ! w(�1)1(�2)2 . . . (an)n 2 Pgso clearly L(G) = ZL(G). 2Considering now the Szilard language ZL(GCF) of the underlying cf grammar,we have immediately:Statement30. For every G 2 GDn , it holds ZL(G) � ZL(GCF). 2These statements will be used in the proof of the next result.Generalized Dyck language As cf (i.e. LD) languages as their generator havethe Dyck language, which characterizes the family, for each LDn there exists acorresponding generator, a generalized Dyck language to be next de�ned.The alphabet of the Dyck language consists of �nitely many pairs a; a(1);b; b(1); . . . of symbols. The alphabet of the generalized Dyck language consists of�nitely many (n+ 1)-tuples of symbols aa(1) . . .a(n); b; b(1) . . .b(n);De�nition31. The generalized Dyck language over an alphabet �, correspond-ing to n � 1 pd tapes, shortly D(�;n), is de�ned as follows.Let �(i), with 1 � i � n, be marked copies of �, and let ~� = Uni=1�(i)]�.Then D(�;n) is de�ned by the following Dn grammar G = (VN ; ~�;P; S)VN = fSg [fA(i)j 8a 2 � 8i 1 � i � n A = upper case copy of agP = 8<:S ! "S ! a(SA(1))1(A(2))2 . . . (A(n))nA(i) ! a(i)(S)1for any a 2 � and for any 1 � i � n. 216

As an example we give the D2 grammar G = (VN ; ~�;P; S) generating the gen-eralized Dyck language D(fa; bg; 2):VN = fS;A(1); A(2); B(1); B(2)g ~� = fa; a(1); a(2); b; b(1); b(2)gP = 8>>>>>>><>>>>>>>:S ! "S ! a(SA(1))1(A(2))2S ! b(SB(1))1(B(2))2A(1) ! a(1)(S)1A(2) ! a(2)(S)1B(1) ! b(1)(S)1B(2) ! b(2)(S)1Here follows an example of a derivation in G.S) a(SA(1))1(A(2))2) ab(SB(1)A(1))1(B(2)A(2))2) ab(B(1)A(1))1(B(2)A(2))2) abb(1)(SA(1))1(B(2)A(2))2) abb(1)a(SA(1)A(1))1(A(2)B(2)A(2))2) abb(1)a(A(1)A(1))1(A(2)B(2)A(2))2) abb(1)aa(1)(SA(1))1(A(2)B(2)A(2))2) abb(1)aa(1)(A(1))1(A(2)B(2)A(2))2) abb(1)aa(1)a(1)(S)1(A(2)B(2)A(2))2) abb(1)aa(1)a(1)(A(2)B(2)A(2))2) abb(1)aa(1)a(1)a(2)(S)1(B(2)A(2))2) abb(1)aa(1)a(1)a(2)a(SA(1))1(A(2)B(2)A(2))2) abb(1)aa(1)a(1)a(2)a(A(1))1(A(2)B(2)A(2))2) . . .) abb(1)aa(1)a(1)a(2)aa(1)a(2)b(2)a(2) = xExamining the string x it is immediate to notice that its projections over �[�(1)and over � [�(2) are Dyck strings. Moreover, the projection over � [�(1) ofeach pre�x (e.g. abb(1)aa(1)a(1)) of x, immediately followed by a character in�(2), is in the Dyck language over �[�(1). Figure 3 shows these projections forthe generalized Dyck string of the above derivation. Next we present a de�nitionin terms of cancellation rules. Let �(1) and �(2) be two indexed copies of �, andconsider the homomorphism h : � ~��� ! ��(1) [�(2) [�(1) [�(2)�� de�nedby h(a) = a(2)a(1) for every a 2 �h(a(1)) = a(1) for every a(1) 2 �(1)h(a(2)) = a(2) for every a(2) 2 �(2)17

a b b(1) a a(1)a(1)a(2) a a(1)a(2)b(2)a(2)� [�(1)� [�(2)Fig. 3. Projections of the generalized Dyck language.and apply the following rewriting ruleux(1)vx(1)w = uvwto the homomorphic image of x through h, if and only if v 2 ��(2) and u;w 2��(1) [�(2) [�(1) [�(2)��. For instance, suppose x is the string of the abovederivation, then h(x) becomesa(2)a(1)b(2)b(1)b(1)a(2)a(1)a(1)a(1)a(2)a(2)a(1)a(1)a(2)b(2)a(2)and can be rewritten as followsa(2)a(1)b(2)b(1)b(1)a(2)a(1)a(2)a(2)a(1)a(1)a(2)b(2)a(2)a(2)a(1)b(2)a(2)a(1)a(2)a(2)a(1)a(1)a(2)b(2)a(2)a(2)b(2)a(2)a(2)a(2)a(1)a(1)a(2)b(2)a(2)a(2)b(2)a(2)a(2)a(2)a(2)b(2)a(2)which is a string of the Dyck language over �(2) [�(2) and can be reduced tothe empty word by means of the usual cancellation rules for the Dyck language.Notice that the introduction of the homomorphism h and of the new al-phabets �(1) and �(2) has two purposes: to mark the positions of the charactersbelonging to � in the original string after the application of the cancellation ruleand to control their correct matching with the characters in �(2). This exampleleads to the next rules.Note 32. It is possible to de�ne the generalized Dyck language by means of a gen-eralized cancellation rule, as follows. We introduce the new alphabets �(i), withi = 1; 2; . . . ; n, which are disjoint indexed copies of �, and the homomorphismh : (~�)� ! ��(1) [�(2) [. . .[�(n) [�(1) [�(2) [. . .[�(n)��18

de�ned by h(a) = a(n) . . .a(2)a(1) and h(a(i)) = a(i)for any a 2 �, a(i) 2 �(i) and i = 1; 2; . . .; n. ThenD(�;n) = fw 2 ~��j h(w) �= "gwhere �= is the re
exive and transitive closure of the transformationua(i)va(i)w = uvwwith v 2 ��(i+1) [. . .[��(n) and u;w 2 (h(~�))�. If n = 1 it is easily proved thatthe re
exive and transitive closure of the rewriting ruleuaa0w = uwwhere u;w 2 (� [�0)�, coincides with the congruence generated by aa0 = ",which is the usual cancellation rule for the Dyck language [2].The proof that the above de�nition of generalized Dyck language is equivalent toDe�nition 31 can be obtained by induction on the number of characters belongingto � occurring in a string.Chomsky-Sch�utzenberger property We extend the classical homomorphic char-acterization theorem by N. Chomsky and M. P. Sch�utzenberger from cf [11, 14,20] to mpd languages.Theorem33. A language L belongs to LDn if and only if there exist an alphabet�, a homomorphism � and a regular language R2 such that L = �(D(�;n)\R2),where D(�;n) is the generalized Dyck language relative to n pd tapes, for somen � 1. 2Proof Let G = (VN ; VT ; P; S) 2 GDn be in strong normal form (see Note 14)and let � be the set of the labels of its productions. The language D(�;n) is asin De�nition 31. Let p denote the projection of ~� over �, i.e. the homomorphismde�ned by p(e) = e, for every e 2 �, and by p(e(i)) = ", for every e(i) 2 �(i) with1 � i � n. Then clearly p(D(�;n)) = ��, since the generalized Dyck languageimposes matches between e 2 � and the corresponding e(i) 2 �(i), but allowsany sequence of e's.We construct a regular language R2 such that p(D(�;n)\R2) is ZL(G), theleftmost Szilard language of G. We also de�ne the homomorphism � : ~� ! V �Tby �(e) = w 2 VT if e : X ! w 2 P , otherwise �(e) = "�(e(i)) = " for any 1 � i � nin order to obtain from each Szilard word the corresponding word in L(G).We shall show that given a derivation u = ei1 . . .ein : S �)G x 2 L(G), aunique û 2 D(�; r) \R2 can be built such that �(û) = �(u) = x and p(û) = u.19

To construct such a û we introduce a new grammarG00 = (V 00N ; ~�;P 00; S) 2 GDn .The grammar G00 is built as follows. LetV 00N = VN [V1 [. . .[Vn where Vj = fE(j)i j e(j)i 2 �(j)g for 1 � j � nP 00 =8>><>>: E(j)i ! e(j)i if E(j)i 2 VjX ! ei �E(1)i �1 . . .�E(n)i �n if ei : X ! w 2 PX ! ei �E(1)i �1 . . .��jE(j)i �j . . .�E(n)i �n if ei : X ! (�j)j 2 Pfor every j = 1; 2; . . . ; n. Then we de�ne the regular (locally testable) languageR2 by specifying the initial characters and the adjacent pairs to be allowed.The character ei is the �rst character of a string û 2 R2 if and only if it is alabel of a production S(1) ! . . . 2 P . Any other character in ~� is a forbiddeninitial character. The adjacent pairs are all the pairs e(j)i e(h)k occurring as sub-strings of û 2 L(G00). De�ne the regular language Rei(j)ek(h) = ~��ei(j)ek(h) ~��.The pairs that do not occur as substrings of û are called forbidden pairs. A paire(j)i e(h)k is a forbidden pair if and only if the intersection between L(G00) andthe regular language Rei(j)ek(h) is empty. Since LDn is closed with respect to theintersection with regular languages, L(G00)\Rei(j)ek(h) and L(G00)\ ei ~�� are inLDn . But for a Dn grammar G the emptiness problem of L(G) is decidable, asproved in Statement 21. Consider the underlying cf grammar GCF , then L(G)is empty if and only if L(GCF) is empty, and the emptiness of a cf language isdecidable. Hence the membership problem for the set of forbidden initial char-acters and for the set of forbidden pairs is decidable. Let R2 be the complementof the union of the Rei(j)ek(h) 's, for all the forbidden pairs e(j)i e(h)k , and of theei ~��'s, where ei is any forbidden initial character. All the strings in R2 startwith an admissible initial character and contain only admissible pairs.Therefore L(G00) is contained in R2 by de�nition of R2. From De�nition 31it follows immediately that L(G00) is contained in D(�;n). Moreover, for everyû 2 L(G00) the string p(û) is the control word of a derivation S(1) �)G x, wherex 2 L(G), and, conversely, given a derivation u = ei1 . . .ein : S(1) �)G x 2 L(G),there exists a string û 2 L(G00) such that p(û) = u, by the de�nition of G00.Finally �(u) = �(p(û)) = x, hence L(G) = �(L(G00)) � �(D(�;n) \ R2). Theopposite inclusion D(�;n) \R2 � L(G00) is straightforward.The converse follows immediately from Statements 24 and 27. 2Pumping lemmaA periodicity property is proved which generalizes the so-called\pumping lemma" of cf languages (Bar-Hillel or Ogden lemma) [20]. This resultwill be used to prove that certain languages do not belong to the n-pd family,for any n � 1. First we need the following de�nitions.De�nition34. (merge) Let x = (x1)(x2) . . . (xr) and y = (y1)(y2) . . . (ys), forxi; yj 2 ��, \(", \)" 62 �� and r; s � 1, be two lists (see De�nition 4) over the20

alphabet �. The marked merge of x and y, shortly m(x; y), is a list de�ned inthe following way:m(x; y) = (x1y1) . . . (xryr)(yr+1) . . . (ys) if r � s (and similarly if r > s)Moreover, m(x; y) indicates the string x1y1x2y2 . . .xryryr+1 . . .ys of V �T . Theconcatenation operation is de�ned on lists byxy = (x1) . . . (xry1) . . . (ys)The concatenation of a list x with a string v isxv = (x1) . . . (xrv) and vx = (vx1) . . . (xr)2Remark. Since merge is associative, it is possible to de�nem(x; y; z) = m(x;m(y; z)) = m(m(x; y); z)Notation. For each string x 2 ��, the string xR is the mirrored image of x.Theorem35. (Pumping Lemma) Let G = (VN ; VT ; P; S) 2 GDn , for somen � 1, and L = L(G). Then there exist two integers p; q > 0 such that:8z 2 L; with jzj > p; it holds z = z1z2 . . . zh; for some h with 1 � h � n (4)where z1 = z11z2 = (z21)Rz3 = z32(z31)R.zi = zi;2i�2(zi;2i�2�1)Rzi;2i�2�2 . . . (zi1)R, for any 3 � i � hzij = m(xij ; yijvijwijuij)with xij = (xij1)(xij2) . . . (xij2n�h+1) and yij = (yij1)(yij2) . . . (yijr)where yijr = " and 2n�h�1 � r�1 � 2n�h�1, if n�h�1 � 0, otherwise r = 1,and with uij = (uijr)(uijr+1) . . . (uijt)where t = 2n�h, and also withyvu 6= " and jwj < q (5)21

where y; v; u and w are the catenations of the strings yij ; vij; uij and wij (yijand uij are the unmarked copies of yij and uij), respectively.The existence of the above decomposition of the string z implies that thefollowing string: z0 = z01z02 . . .z0h is in L (6)where z01 = z011z02 = (z021)Rz03 = z032(z031)R.z0i = z0i;2i�2(z0i;2i�2�1)Rz0i;2i�2�2 . . . (z0i1)R, for any 3 � i � hz0ij = m(xij; yijvijyijvijwijuijuij)Notice that in the strings z0ij both the marked and the unmarked forms of thelists yij and uij occur. 2Note 36. If G 2 GD this lemma reduces to the well-known \pumping lemma" forcf languages. In fact, in this case h = 1, hence the statement claims that thereexist positive non-null integers p and q such that if z 2 L(G) and jzj > p, thenz = z1 = z11 = m((x111)(x112); ("v11w11u111)) = x111v11w11u111x112for some x111; v11; w11; u111; x112 2 VT �, with v11u111 6= " and jw11j < q, andz0 = m((x111)(x112); (v11v11w11u111u111)) = x111v211w11u2111x112 2 LIn order to clarify the situation we state completely the \pumping lemma" alsofor n = 2 and we give an idea of the proof in Figures 4, 5, 6 and 7. LetG = (VN ; VT ; P; S) 2 GD2 and L = L(G). Then there exist integers p; q > 0 suchthat for every z 2 L, with jzj > p, it is eitherz = x111y111x112v11w11u112x113with y111v11u112 6= " and jw11j < q (case h = 1), orz = x111v11w11u111x112x212u212w21v21x211with v11v21u111u112 6= " and jw11w21j < q (case h = 2), andz0 = x111y111x112v11y111v11w11u2112x113or z0 = x111v211w11u2111x112x212u2212w21v221x211respectively, are in L. 22

Fig. 4. Proof of the \pumping lemma": h = 1, case (a).
Fig. 5. Proof of the \pumping lemma": h = 1, case (b).23

Fig. 6. Proof of the \pumping lemma": h = 2, case (a).
Fig. 7. Proof of the \pumping lemma": h = 2, case (b).24

Hint of the proof. Let L = L(G), where G = (VN ; VT ; P; S) 2 GDn is in strongnormal form (see Note 14). Let GCF be the underlying cf grammar. Then L0 =L(GCF) is a cf language the elements of which are permutations of words inL. For a string w 2 L and a derivation S �)G w, consider the correspondingderivation in GCF , S �)GCF ~w, so that w is a permutation of ~w. Let T be thesyntax tree of ~w in GCF . By a suitable order of visit of T it is possible to obtainw. This ordering is stored in T by assigning an apex to each internal node. ThusT can be considered the syntax tree of w, too.If jwj > h, there exists in T at least one path with 1 + dlog2 he nodes. Letnow m = jVN j. If we consider a string z in L with jzj > 2m+1, the syntax treeof z contains at least one path with m+ 2 nodes. Thus in this path there existsa non-terminal A which occurs twice; we can suppose - from the form of theproductions in G - that this non-terminal belongs to V (1)N . Denote by A(1)1 itsoccurrence closest to the root of the tree and by A(1)2 the following one. Wecan choose A(1)1 and A(1)2 so that in the path [A(1)1 ; A(1)2] at least one bifurcationoccurs. Otherwise we could delete all the paths of the kind [A(1)1 ; A(1)2], obtaininga syntax tree of a permutation z00 of z, with z00 2 L, containing no path of lengthexceeding m+2. Furthermore, we can choose the path [A(1)1 ; A(1)2] in such a waythat it is the most distant from the root, among the paths satisfying the previousconditions.From now on the proof is analogous to the cf case. When the non-terminalA(1)2 occurs as the �rst symbol of the sequence to be rewritten, it can be ex-panded with the same derivation used in the expansion of A(1)1 , obtaining a newstring z0 in which the substrings of z generated by non-terminals in [A(1)1 ; A(1)2]occur twice. The positions where such substrings occur depend on the namesof the apices of the non-terminals belonging to [A(1)1 ; A(1)2], i.e. depend on thelist components, or pd tapes, where the sons of A(1)1 have been rewritten. Sowe must distinguish several cases depending on the names of the apices of thenon-terminals occurring in the interval [A(1)1 ; A(1)2]. The lengthy complete prooffor the case n = 3 is given in Appendix B. 2In order to apply the \pumping lemma" we need the following de�nition.De�nition37. A language L over an alphabet � has the iterative h-tuple prop-erty, for some h � 1, if and only if there exists an integer p > 0 such that forevery string z 2 L, with jzj > p, the following holds.1. z = v1u1v2u2 . . .vhuhvh+1, where vj; ui 2 �� with 1 � i � h and 1 � j �h+ 1, for some h � 1.2. u1u2 . . .uh 6= ", i.e. not all the u's are empty.3. Posing x = v1u21v2u22 . . .u2hvh+1, there exists z0 2 L which is obtained fromx possibly permuting some substrings ui and vj , with 1 � i < j � h+ 1.2 25

This means that any su�ciently long string z 2 L can be factorized into 2h+ 1substrings so that up to h of them can be doubled - and suitably reordered withrespect to the others - to obtain a longer string z0 2 L. From the \pumpinglemma" the following is immediate.Lemma38. For each n � 1, any language L 2 LDn has the iterative 2n-tupleproperty. 2For instance, if n = 2 it is easy to verify that any language L 2 LD2 hasthe iterative 4-tuple property, by posing for each string z, with jzj > p, eitheru1 = x111; u2 = x112; u3 = w11; u4 = x113; u5 = "; v1 = y111; v2 = v11; v3 = u112and v4 = ", or u1 = x111; u2 = w11; u3 = x112x212; u4 = w21; u5 = x211; v1 =v11; v2 = u111; v3 = u211 and v4 = v21.As a consequence we prove that the superfamily LD+ forms an in�nite hier-archy with respect to the parameter n.Statement39. For each n � 1 it holds LDn � LDn+1 . 2Proof Obviously LDn � LDn+1 . Now we prove that LDn 6= LDn+1 . The lan-guage L = fam1 am2 . . .ams j ai 2 VT ;m � 0 and s = 2n + 1g is in LDn+1 ,analogously to Example 2.2 (see also Statement 43).We show that, from Lemma 38, it holds L 62 LDn ; in fact, choose v longenough and apply the iterative 2n-tuple property. If for some i the string uicontains two di�erent terminals, say ui = . . .ahj akj+1 . . ., with 0 < h; k � m, thenthe string x would contain the string ui twice, hence an instance of the terminalaj would occur after aj+1. This is a contradiction.Therefore, it must hold ui = akj . But i = 1; . . . ; 2n, whereas j = 1; . . . ; 2n+1,so that not every index j is taken into account, and we obtain a word in L wherethe number of ar 's is di�erent from the number of as's for some r 6= s, whichagain is a contradiction. 24 Properties of the superfamilyWe brie
y consider some closure properties of the superfamilyLD+ = fLj 8n � 1 L 2 LDngStatement40. LD+ is closed with respect to union. 2Proof Let L1 2 LDk and L2 2 LDh . Let t = max(k; h), then L1 2 LDt andL2 2 LDt , hence L1 [L2 2 LDt, from Statement 26. 2Similarly, from Statement 26 we haveStatement41. LD+ is closed with respect to catenation. 2Statement42. LD+ is closed with respect to Kleene star. 226

Next we consider two operations which preserve semilinearity, namely homomor-phic replication [13] and language substitution. It is well-known that the formerdoes not preserve context-freedom.Statement43. LD+ is closed with respect to homomorphic replication. 2Proof Let L 2 LDn and let L0 be obtained from L by means of a homomorphicreplication L0 = fwj w = xh1(x) . . .hr(x) and x 2 Lgwhere the hi's are alphabetic (and possibly erasing) homomorphisms. Then L0 2LDs, where s = 2r+ n.In fact, let M be a n-pd recognizer of L. The construction of an automatonM 0 of type PDs, equipped with s pd tapes, accepting L0 is straightforward. TheautomatonM 0 simulates the automatonM and uses the 2r additional pd tapesto create r homomorphic copies of the input word x 2 L. More precisely, the(jnj+2i�1)-th pd tape is used to store a homomorphic reversed copy of x, whichis then rewritten and reversed on the (jnj+ 2i)-th pd tape (without reading anyinput character), and so on, with 1 � i � r. Disjoint tape symbols are used foreach pd tape. The last pd tape is emptied by recognizing an input word as ahomomorphic copy of the contents of the tape. 2Since the superfamily is closed with respect to arbitrary hom., the homomorphicreplication can be arbitrary, too. In [13] hom. replications are combined withstring mirroring, e.g. as in xh1(x)h2(x)Rh3(x); the family LDn is closed alsowith respect to such a generalization of hom. replications, as it is evident fromthe above proof.A language substitution � transforms a language L � �� by replacing eachcharacter b of x 2 L with a string y = �(b) 2 L0 � ��. We consider the casewhen both L and L0 are mpd languages.Statement44. Take the alphabet � = fa1; . . . ; arg and let � be a languagesubstitution de�ned by the languages Lai 2 LDm . Let moreover L 2 LDn andL � ��. Then �(L) 2 LDm+n . 2Proof We can simulate the recognition of x 2 L by means of the last n tapesegments. Whenever a character of x, say ai, is to be read, the machine recognizesinstead a word yi = �(ai) 2 Lai , using the �rst m tapes. Since we can supposethat acceptance is by empty store (see Theorem 17), after reading yi the �rst mtapes are empty, and the simulation of the reading of x past ai can continue.2Note 45. From Statement 44 it follows that every family LDn is closed withrespect to arbitrary, erasing homomorphism.Theorem46. LD+ is an Abstract Family of Languages (AFL) [2]. 2The statement follows immediately from the previous results. Finally, we provethat not all semilinear languages are multi-depth.27

Statement47. The superfamily LD+ is strictly contained in the family ofcontext-sensitive semilinear languages (in the sense of Parikh [19]). 2Proof From Statement 20 multi-depth languages are semilinear. Consider thesemilinear language L = faf(m)bmcm�f(m)j f : N ! N is a non-linear, butcomputable, integer function, such that f(m) � m for any m � 0g3. There existsno integer n � 1 such that a grammarG 2 GDn generates L. In fact, Statements24, 25 and 27, Note 45 and Nivat theorem [16] imply that GDn is closed withrespect to rational transduction. Imagine now a rational transduction � thatdeletes the pre�x of the strings of L containing a's and b's; the rest of the stringis left unalterated. Then the transduced language � (L) = fcm�f(m)j m � 0g is(obviously) not semilinear, hence L is not in LDn , for any n � 1. 25 ConclusionsFor determinism [20], an aspect not covered here, the strict inclusion of deter-ministic by non-deterministic languages (as for cf languages) is proved in therelated paper [21]. More precisely, it is proved that the deterministic 2-pd lan-guages are strictly included by the 2-pd (non-deterministic) ones, and that thereare (non-deterministic) cf languages which are not 2-pd deterministic.Another important property of cf languages which is preserved by mpd lan-guages concerns the complexity of recognition, which remains polynomial-time[10]. Practical linear-time top-down parsing algorithms for the deterministic casehave been investigated [7, 18], in view of the de�nition of a subfamily enjoyingthe same advantages as the LL(k) cf languages [14]. This development would al-low a straightforward extension of the classical parser generating tools, openingthe door to the exploitation of Dn grammars for compiler writing.On the conceptual side we conclude by observing that mpd automata use fortheir store an array of LIFO tapes. More general data structures have been con-sidered for the store, such as an array of FIFO or LIFO tapes. A correspondingclass of grammars was de�ned in the same spirit of mpd grammars and investi-gated in [4, 6, 7]. It includes some types of queue [1, 9] and dequeue automata[8] (see also [3]). Not all the properties of mpd languages remain valid for thismore general class: e.g. that of being an AFL [4] is lost.Acknowledgment Thanks to Dino Mandrioli and to Pierluigi Sanpietro for theirhelp. An anonymous referee has given valuable suggestions for improving thepresentation.References1. E. Allevi, A. Cherubini, S. Crespi Reghizzi, \Breadth-�rst Phrase-Structure Gram-mars and Queue Automata", L. Notes in Comput. Sci. 324 (1988) pp. 162-170.3 For instance, the assignment m f7! jpmj might do.28

2. J. Berstel, Transductions and Context-free Languages, (Teubner Studienb�ucher,1979).3. F. J. Brandenburg, \On the Intersections of Stacks and Queues", Theoret. Comput.Sci. 58, (1988) pp. 69-80.4. L. Breveglieri, A. Cherubini, C. Citrini, S. Crespi Reghizzi, \Stacks, Queues andtheir Languages", Int. Rep. n. 90-053, Dip. Elettronica e Informazione, Politecnicodi Milano, (1990).5. L. Breveglieri, A. Cherubini, C. Citrini, S. Crespi Reghizzi, \Multistack Languagesand Grammars", Int. Rep. n. 93-018, Dip. di Elettronica e Informazione, Politecnicodi Milano, (1993).6. L. Breveglieri, A. Cherubini, S. Crespi Reghizzi, \A Chomsky-Sch�utzenbergerProperty for generalized Context-free Grammars", Int. Rep. n. 93-062, Dip. diElettronica e Informazione, Politecnico di Milano, (1993).7. L. Breveglieri, A. Cherubini, S. Crespi Reghizzi, \Deterministic Parsing for aug-mented Context-free Grammars", L. Notes in Comput. Sci. 969 (1995) pp. 326-336.8. A. Cherubini, C. Citrini, S. Crespi Reghizzi, D. Mandrioli, \Breadth and DepthGrammars and Deque Automata", Int. Jou. Found. Comput. Sci. n. 1 1990 pp.219-232.9. A. Cherubini, C. Citrini, S. Crespi Reghizzi, D. Mandrioli, \QRT FIFO Automata,Breadth-�rst Grammars and their Relations", Theoret. Comput. Sci. 85 1991 pp.171-203.10. A. Cherubini, P. Sanpietro, \A polynomial-Time parsing Algorithm for k-DepthLanguages", Jou. of Comput. Sys. Sci., to appear11. N. Chomsky, \Context-free Grammars and push-down Storages", Quart. Prog.Rep. n. 65, MIT Res. Lab. Elect., MA, (1962).12. J. Dassow, G. P�aun, \Regulated Rewriting in formal Language Theory", (EATCSMonograph Series n. 18, Springer Verlag, 1989).13. S. Ginsburg, E. H. Spanier, \AFL with the semilinear Property", Jou. Comput.Sys. Sci. 5 1971 pp. 365-39614. M. A. Harrison, Introduction to formal Language Theory, (Addison Wesley 1978).15. Z. Manna, The mathematical Theory of Computation, (McGraw Hill 1974).16. M. Nivat, \Transductions des Languages de Chomsky", Th�ese d'Etat, Universit�ede Paris, 1967, or Annales Institut Fourier n. 18, pp. 339-456, (1968).17. W. Ogden, \A helpful Result for proving inherent Ambiguity", in MathematicalSystems Theory, vol. 2, n� 3, pp. 191-194, (1968).18. R. Pelizzoli, \Analisi sintattica deterministica con Grammatiche lineari estese"(Syntactic deterministic Analysis of linear extended Grammars), Thesis, Dip. diScienze dell'Informazione, Universit�a di Milano, 1994.19. R. J. Parikh, \Language generating Devices", Quart. Prog. Rep. n. 60, MIT Res.Lab. Elect., pp. 191-194, (1961).20. A. Salomaa, Formal Languages, (ACM Monograph Series, Academic Press, 1973)21. P. San Pietro, \Two Stack Automata", Int. Rep. n. 92-073, Dip. di Elettronica eInformazione, Politecnico di Milano, Milano, Italy, 199229

A Proof of Lemma 16First we shall prove that if a language L is recognized by empty tape by a n-pd automaton M , then L = L(G), where G 2 GDn . Let L = L(M), where Mis a n-pd automaton in (strong) normal form (Note 15). We shall construct agrammar G = (VN ; VT ; P; S) 2 GDn in this way:VN = f� � Q2ng] f� �Q2g VT = � S = Z0and the productions in P have the form:1. 8q 2 Q, and Z0 ! " i� " 2 LZ0 ! (hZ0; q0; q; q; q; . . .; q; qi)12. 8q02h 2 Q i� (q01; B(1)C(1); "; . . . ; ") 2 �(q1; "; A(1)), for 2 � h � nhA(1); q1; q2; q3; q4; . . . ; q2n�1; q2ni !(hB(1); q01; q02; q3; q04; . . . ; q2n�1; q02nihC(1); q02; q2; q04; q4; . . . ; q02n; q2ni)13. i� (q2; "; . . . ; B(j); . . . ; ") 2 �(q1; "; A(1))hA(1); q1; q2; q3; q3; . . . ; q2j�3; q2j�3; q2j�1; q2j; q2j+1; q2j+1; . . . ; q2n�1; q2n�1i! (hB(j); q2j; q2j�1i)j4. 8q; q2h+1 2 Q, for 1 � h � j � 1) i� (q01; C(1); "; . . . ; ") 2 �(q1; "; A(j))hA(j); q1; q2i ! (hC(1); q01; q; q3; q; . . . ; q2j�3; q; q2; q; q1; q; . . . ; q1; qi)15. i� (q2; "; . . . ; ") 2 �(q(1)1 ; a; A(1))hA(1); q1; q2; q3; q3; . . . ; q2n�1; q2n�1i ! aWe shall prove that w 2 L(G) if and only ifw 2 L(M). The grammarG simulatesthe behaviour ofM by guessing (in a non-deterministic way) the correct sequenceof states, coded in the �rst and (2h+ 2)-th state component of the �rst pd tapesymbols (h > 1). We shall prove that when a pre�x v of w has been rewritten byG, the non-terminal string (sentential form) has one of the following structures,where the most meaningful equalities have been highlighted:(hA(1); q1;q2; p1;p2; . . . ; r1; r2ihB(1);q2;q3;p2;p3; . . . ; r2; r3ihC(1);q3;q4;p3;p4; . . . ; r3; r4i . (7). hH(1);qh; qh+1;ph; qh+1; . . . ; rh; qh+1i)1(hA(2); p1; p02i . . . hK(2); p0k; p0k+1i)2. .(hA(n); r1; r02i . . . hM (n); r0m; r0m+1i)n30

or (hA(j);q; p2i . . . hK(j); pk; pk+1i)j(hA(j+1);q; s2i . . . hL(j+1); sl; sl+1i)j+1 (8). .(hA(n);q; r2i . . . hM (n); rm; rm+1i)nwith j � 2. In both forms some segment may be empty. The correspondingcon�guration of the automaton ishq1; x;A(1)B(1) . . .H(1); A(2)B(2) . . .K(2); . . . ; A(n)B(n) . . .M (n)iorhq; x; "; . . . ; "; A(j)B(j) . . .K(j); A(j+1)B(j+1) . . .L(j+1); . . . ; A(n)B(n) . . .M (n)iwith w = vx. We show this fact by induction. The form of production 1. impliesthat the �rst state is the initial state q0 and the topmost state of the i-th pd tape(q0) is recorded into the (2i�1)-th state component of the top symbol. Moreover,the empty word is rewritten by G and the con�guration is hq0; x;Z0; "; "; . . . ; "i.So the base of the induction is stated.Let us now show that productions from 2. to 5. change the forms (7) and (8)of the store into themselves and satisfy our conditions. Applying production 2.,written as8q00; p00; . . . ; r00 2 Q, i� (q0; X(1)Y (1); "; . . . ; ") 2 �(q1; "; A(1))hA(1); q1; q2; p1; p2; . . . ; r1; r2i !(hX(1); q0; q00; p1; p00; . . . ; r1; r00ihY (1); q00; q2; p00; p2; . . . ; r00; r2i)1to the con�guration (7), we obtain(hX(1); q0; q00; p1; p00; . . . ; r1; r00ihY (1); q00; q2; p00; p2; . . . ; r00; r2ihB(1); q2; q3; p2; p3; . . . ; r2; r3ihC(1); q3; q4; p3; p4; . . . ; r3; r4)i. hH(1); qh; qh+1; ph; qh+1; . . . ; rh; qh+1i)1(hA(2); p1; p02i . . . hK(2); p0k; p0k+1i)2. .(hA(n); r(n)1 ; r02i . . . hM (n); r0m; r0m+1i)nwhich has the same form as (7). The new state is q0. Moreover, by the inductionhypothesis the con�guration of M washq1; x;A(1)B(1) . . .H(1); A(2)B(2) . . .K(2); . . . ; A(n)B(n) . . .M (n)iwith w = vx, and the transition ishq1; x;A(1)B(1) . . .H(1); A(2)B(2) . . .K(2); . . . ; A(n)B(n) . . .M (n)i `Ahq0; x;X(1)Y (1)B(1) . . .H(1); A(2)B(2) . . .K(2); . . . ; A(n)B(n) . . .M (n)i31

Applying production 3., written ashA(1); q1; q2; p1; p1; . . . ;m1;m1; s1; s2; t1; t1; . . . ; r1; r1i ! (hX(j); s2; s1i)ji� (q2; "; . . . ; X(j); . . . ; ") 2 �(q1; "; A(1)), to the con�guration (7), we obtain(hB(1); q2; q3; p1; p3; . . . ;m1;m3; s2; s3; t1; t3; . . . ; r1; r3ihC(1); q3; q4; p3; p4; . . . ; r3; r4i hH(1); qh; qh+1; ph; qh+1; . . . ; rh; qh+1i)1(hA(2); p1; p02i . . . hK(2); p0k; p0k+1i)2. .(hX(j); s2; s1ihA(j); s1; s02i . . . hL(j); s0l; s0l+1i)j. .(hA(n); r(n)1 ; r02i . . . hM (n); r0m; r0m+1)i)nwhich has the same form, for h > 1. The state becomes q2. The new con�gurationis nowhq2; x;B(1) . . .H(1); A(2)B(2) . . .K(2); . . . ; X(j)A(j) . . .L(j); . . . ; A(n)B(n) . . .M (n)iFor h = 1 the form (7) was(hA(1); q1; q2; p1; q2; . . . ; r1; q2i)1(hA(2); p1; p02i . . . hK(2); p0k; p0k+1i)2. .(hA(n); r1; r02i . . . hM (n); rm; r0m+1i)nwhere, in order to apply production 3., we have to suppose that for i 6= 2; 3; 2j; 2j+1, all the states coded in the i-th component of the �rst pd store symbols areequal to q2. Hence this form becomes(hA(2); q2; p02i . . . hK(2); p0k; p0k+1i)2. .(hX(j); q2; s1ihA(j); s1; s02i . . . hL(j); s0l; s0l+1i)j. .(hA(n); q2; r02i . . . hM (n); r0m; r0m+1i)nwhich has form (8). The new con�guration of the automaton is nowhq2; x;A(2)B(2) . . .K(2); . . . ; X(j)A(j)B(j) . . .L(j); . . . ; A(n)B(n) . . .M (n)iApplying production 4., written as8q; q2h�1 2 Q for (2 � h � j � 1); i� (q01; X(1); "; . . . ; ") 2 �(q1; "; A(j))hA(j); q1; q2i)! (hX(1); q01; q; q3; q; . . . ; q2j�3; q; q2; q; q1; q; . . . ; q1; qi)132

to the con�guration (8), which obviously has the form(hA(j); q1; q2ihB(j); q2; s03i . . . hL(j); s0l; s0l+1i)j. .(hA(n); q1; r02i . . . hM (n); r0m; r0m+1i)nwe obtain (hX(1); q01; q; q3; q; . . . ; q2j�3; q; q2; q; q1; q; . . . ; q1; qi)1. .(hB(j); q2; s(j)3 i . . . hL(j); sl; s(j)k+1i)j. .(hA(n); q1; r02ihB(n); r02; r03i . . . hM (n); r0m; r0m+1i)nwhich has form (7). The state becomes q01. The con�guration of M washq1; x; "; . . . ; A(j)B(j) . . .L(j); . . . ; A(n)B(n) . . .M (n)ithe new con�guration becomeshq01; x;X(1); "; . . . ; A(j)B(j) . . .L(j); . . . ; A(n)B(n) . . .M (n)iApplying production 5., written ashA(1); q1; q2; q3; q3; . . . ; q2n�1; q2n�1i ! a i� (q2; "; . . . ; ") 2 �(q1; a; A(1))to the con�guration (7), with h > 1, we obtain(hB(1); q2; q03; q3; p03; . . . ; q2n�1; r03ihC(1); q03; q04; p03; p04; . . . ; r03; r04i. hH(1); q0h; qh+1; p0h; qh+1; . . . ; r0h; qh+1i)1(hA(2); q3; p2ihB(2); p2; p3i . . . hK(2); pk; pk+1i)2. .(hA(n); q1; r2ihB(n); r2; r3i . . . hM (n); rm; rm+1i)nwhich has the same form as (7). The state becomes q2. The rewritten terminalstring is va. The con�guration of M washq1; ay;A(1)B(1) . . .H(1); A(2)B(2) . . .K(2); . . . ; A(n)B(n) . . .M (n)ithe new con�guration becomeshq2; y;B(1) . . .H(1); A(2)B(2) . . .K(2); . . . ; A(n)B(n) . . .M (n)iIf h = 1, the form (7) was(hA(1); q1; q2; q3; q2; . . . ; q2n�1; q2i)1(hA(2); q3; p2i . . . hK(2); pk; pk+1i)2. .(hA(n); q2n�1; r2i . . . hM (n); rm; rm+1i)n33

where we have q2 = q3 = . . . = q2n�1, hence it becomes the sentence(hA(2); q2; p2i . . . hK(2); pk; pk+1i)2 . . . (hA(n); q2; r2i . . . hM (n); r(n)m ; r(n)m+1i)nThe rewritten terminal string is va. The con�guration of M washq1; ay;A(1); . . . ; A(n)B(n) . . .M (n)ithe new con�guration becomeshq2; y; "; A(2) . . .K(2); . . . ; A(n)B(n) . . .M (n)iHence, when the non-terminal string has been completely rewritten, the tapeof M is empty and w is recognized by M . Analogously, we can prove that if acon�guration of M ishq1; x;A(1)B(1) . . .H(1); A(2)B(2) . . .K(2); . . . ; A(n)B(n) . . .M (n)iwhen a pre�x v, with w = vx, is scanned by M , the derivationZ0 �) w(hA(1); q(1)1 ; q(1)2 ; q(2)1 ; q(2)2 ; . . . ; q(n)1 ; q(n)2 ihB(1); q(1)2 ; q(1)3 ; q(2)2 ; q(2)3 ; . . . ; q(n)2 ; q(n)3 i. .hH(1); q(1)h ; qh+1; q(2)h ; qh+1; . . . ; q(n)h ; qh+1i)1(hA(2); q(2)1 ; p(2)2 ihB(2); p(2)2 ; p(2)3 i . . . hK(2); p(2)k ; p(2)k+1i)2. .(hA(n); q(n)1 ; r(n)2 ihB(n); r(n)2 ; r(n)3 i . . . hM (n); r(n)m ; q0(n)i)nis a derivation of G. So our claim is proved.Conversely, given G = (VN ; VT ; P; S) 2 GDn , from Statement 10 we canassume that G has productions of the type A! (�1)1(�2)2 . . . (�n)n, with �i 2V �N , and of the type A ! a, with a 2 VT . We construct the n-pd automatonM = (q0; �; �; �; q0; Z0), with only one state, as speci�ed in the following:� = VT � = VN Z0 = S(�1; . . . ; �n) 2 �("; A) i� A! (�1)1 . . . (�n)n 2 P("; . . . ; ") 2 �(a;A) i� A! a 2 Pwhere A 2 VN , a 2 VT and �j 2 V �N for any 1 � j � n. The proof thatL(M) = L(G) is straightforward and therefore is omitted.34

B Proof of the Pumping LemmaFor simplicity we consider the case n = 3. Let L 2 LD3 , i.e. let L = L(G) withG 2 GD3 , and suppose that G = (VN ; VT ; P; S) is in strong normal form (seeNote 14). This means that VN is the disjoint union of V (1)N]V (2)N]V (3)N and thatthe productions have the following forms:P = 8>>><>>>:A(i) ! (A(1))1 for i = 2; 3A(1) ! (B(1)C(1))1A(1) ! (B(2))2A(1) ! (B(3))3A(1) ! aIf a word z 2 L is long enough, then in its syntax tree there exists a path wherea non-terminal A occurs twice; we can suppose - from the form of P - that thisnon-terminal belongs to V (1)N . Denote by A(1)1 its occurrence closest to the rootof the tree and by A(1)2 the following one.Among such paths we can choose A(1)1 and A(1)2 so that in the path [A(1)1 ; A(1)2]there exists at least one bifurcation. Otherwise we could delete all the paths ofthe kind [A(1)1 ; A(1)2] obtaining a syntax tree of a permutation z00 of z, withz00 2 L, containing no path of length exceeding n+ 2.Furthermore, we can choose the path [A(1)1 ; A(1)2] in such a way that it is themost distant from the root, among the paths satisfying the previous conditions.Now we distinguish some cases.Case 1 In the path [A(1)1 ; A(1)2] there exists no node belonging to V (2)N [V (3)N ,which means that:S +)G x11(A(1)1 �11)1(�21)2(�31)3+)G x11v11(A(1)2
11�11)1(�21�21)2(�31�31)3where x11; v11 2 V �T , A(1)1 ; A(1)2 2 V (1)N ,
11; �11 2 (V (1)N)�, �21; �21 2 (V (2)N)� and�31; �31 2 (V (3)N)�. Hence:S +)G x11v11(A(1)2
11�11)1(�21�21)2(�31�31)3+)G x11v11w11(
11�11)1(�21�21�21)2(�31�31�31)3+)G x11v11w11u11(�11)1(
21�21�21�21)2(
31�31�31�31)3+)G x11v11w11u11t11(�21
21�21�21�21)2(�31
31�31�31�31)3+)G x11v11w11u11t11t21(
21�21�21�21)2(�32�31
31�31�31�31)3+)G x11v11w11u11t11t21u21(�21�21�21)2(
32�32�31
31�31�31�31)3+)G x11v11w11u11t11t21u21w21(�21�21)2(�32
32�32�31
31�31�31�31)3+)G x11v11w11u11t11t21u21w21v21(�21)2(�32�32
32�32�31
31�31�31�31)3+)G x11v11w11u11t11t21u21w21v21x21(�32�32�32
32�32�31
31�31�31�31)3+)G x11v11w11u11t11t21u21w21v21x21x32v32w32u32t32t31u31w31v31x3135

Then, posing the strings z11 = x11v11w11u11t11z21 = x21v21w21u21t21z31 = x31v31w31u31t31z32 = x32v32w32u32t32and z1 = z11, we have z = z1z2z3, with z2 = zR21 and z3 = z32zR31. In thisderivation we have used the following partial derivations:A(1)1 +)G v11(A(1)2
11)1(�21)2(�31)3+)G v11w11(
11)1(�21�21)2(�31�31)3 (9)+)G v11w11u11(
21�21�21)2(
31�31�31)3+)G . . .and A(1)2 +)G w11(�21)2(�31)3+)G w11w21(�32�31)3 (10)+)G w11w21w31Hence, if in the sentential form x11v11(A(1)2
11�11)1(�21�21)2(�31�31)3 we use thederivation (9) (recall that A(1)2 = A(1)1), we have:S +)G x11v211(A(1)2
211�11)1(�221�21)2(�231�31)+)G x11v211w11u211t11t21u21w21v221x21x32v232w32u232t32t31u231w31v231x31vijHence, posing the listsxij = (xij)(tij); yij = (") and uij = (uij)and the strings zij = m(xij; yijvijwijuij) = xijvijwijuijtijz0ij = m(xij; vijyijvijwijuijuij) = xijv2ijwiju2ijtijz01 = z011; z02 = z021R and z03 = z032z031Rit follows S +)G z0 = z01z02z03i.e. conditions (4) and (6) hold. Finally, condition (5) follows from the form ofP and from the consideration on the subtree of T 0 with root A(1)1 , posing q = 2sand s = jV (1)N j+ 1. 36

Case 2 In the path from A(1)1 to A(1)2 there exists at least one node labeled by asymbol which is in V (2)N , and no nodes labeled by a symbol in V (3)N . This meansthat: S +)G0 x11(A(1)1 �11)1(�21)2(�31)3+)G0 x11y11(�11)1(�21�21)2(�31�31)3+)G0 x11y11t11(�21�21�21)2(�31�31�31)3+)G0 x11y11t11t21(�21�21)2(�32�31�31�31)3+)G0 x11y11t11t21v21(B(2)�021�21)2(�32�32�31�31�31)3+)G0 x11y11t11t21v21(A(1)2)1(�021�21)2(�32�32�31�31�31)3+)G0 x11y11t11t21v21w11(�21�021�21)2(�31�32�32�31�31�31)3+)G0 x11y11t11t21v21w11w21(�021�21)2(�32�31�32�32�31�31�31)3+)G0 x11y11t11t21v21w11w21y021(�21)2(�032�32�31�32�32�31�31�31)3+)G0 x11y11t11t21v21w11w21y021x21(�32�032�32�31�32�32�31�31�31)3+)G0 x11y11t11t21v21w11w21y021x21x32(�032�32�31�32�32�31�31�31)3+)G0 x11y11t11t21v21w11w21y021x21x32y032w32w31v32t32t31y31x31where we have derived A(1)1 asA(1)1 +)G y11(�21)2(�31)3+)G y11v21(B(2)�021)2(�32�31)3+)G y11v21(A(1)2)1(�021)2(�32�31)3+)G y11v21w11(�21�021)2(�31�32�31)3 (11)+)G y11v21w11w21(�021)2(a32a31�32�31)3+)G y11v21w11w21y021(�032�32�31�32�31)3+)G y11v21w11w21y021y032w32w31v32y31and A(1)2 as A(1)2 +)G w11(�21)2(�31)3+)G w11w21(�32�31)3+)G w11w21w32w31Hence, if we use derivation (11) instead of the above one to derive A(1)2 , we get:S +)G x11y11t11t21v21(A(1)2)1(�021�21)2(�32�32�31�31�31)3+)G x11y11t11t21v21y11(�21�021�21)2(�31�32�32�31�31�31)337

+)G x11y11t11t21v21y11v21(B(2)�021�21)2(�32�31�32�32�31�31�31)3+)G x11y11t11t21v21y1v21(A(1)2)1(�021�21)2(�32�31�32�32�31�31�31)3+)G x11y11t11t21v21y1v21w11(�21�021�21)2(�31�32�31�32�32�31�31�31)3+)G x11y11t11t21v21y1v21w11w21(�021�21)2(�32�31�32�31�32�32�31�31�31)3+)G x11y11t11t21v21y1v21w11w21y021(x21)2(�032�32�31�32�31�32�32�31�31�31)3+)G x11y11t11t21v21y1v21w11w21y021x21(x32�032�32�31�32�31�32�32�31�31�31)3+)G x11y11t11t21v21y1v21w11w21y021x21x32y032w32w31v32y31v32t32t31y31x31Hence, we have that if z = z1z2 2 L, with z1 = z11 and z2 = zR21, wherez11 = m((x11)(t11t21)(x21); (y11)(v21w11w21y021))z21 = m((x31)(t31t32)(x32); (y31)(v32w31w32y032))then also z0 = z01z02 2 L, with z01 = z011 and z02 = z021R, wherez011 = m((x11)(t11t21)(x21); (y11)(v21y11v21w11w21y021y021))z021 = m((x31)(t31t32)(x32); (y31)(v32y31v32w31w32y032y032))from which it follows zij = m(xij; yijvijwijuij)and z0ij = m(xij; yijvijyijvijwijuijuij)with the listsx11 = (x11)(t11t21)(x21); y11 = (y11)(") and u11 = (y021)x21 = (x31)(t31t32)(x32); y21 = (y31)(") and u21 = (y032)Case 3 In the path [A(1)1 ; A(1)2] there exists a symbol belonging to V (3)N . That is:S +)G x11(A(1)1 �11)1(�21)2(�31)3+)G x11y11(�11)1(�21�21)2(�31�31)3+)G x11y11t11(�21�21�21)2(�31�31�31)3+)G x11y11t11t21(�21�21)2(b32�31�31�31)3+)G x11y11t11t21y21(x21)2(�32�32�31�31�31)3+)G x11y11t11t21y21x21(�32�32�32�31�31�31)3+)G x11y11t11t21y21x21x32(�32�32�31�31�31)3At this point there exist in the third list component, or pd tape, two stringsdescending from the same node A(1)1 , i.e. �32 and �31.38

Case 3.1 Suppose A(1)2 is a descendant of �32. Thus:S +)G x11y11t11t21y21x21x32(�32�32�31�31�31)3+)G x11y11t11t21y21x21x32v32(B(3)�032�32�31�31�31)3+)G x11y11t11t21y21x21x32v32(A(1)2)1(�032�32�31�31�31)3+)G x11y11t11t21y21x21x32v32w11(�21)2(�31�032�32�31�31�31)3+)G x11y11t11t21y21x21x32v32w11w21(�32�31�032�32�31�31�31)3+)G x11y11t11t21y21x21x32v32w11w21w32(�31�032�32�31�31�31)3+)G x11y11t11t21y21x21x32v32w11w21w32w31(�032�32�31�31�31)3+)G x11y11t11t21y21x21x32v32w11w21w32w31y032t32t31y31�31where we have derived A(1)1 asA(1)1 +)G y11(�21)2(�31)3+)G y11y21(�32�31)3+)G y11y21v32(B(3)�032�31)3+)G y11y21v32(A(1)2)1(�032�31)3 (12)+)G y11y21v32w11(�21)2(�31�032�31)3+)G y11y21v32w11w21(�32�31�032�31)3+)G y11y21v32w11w21w32w31y032y31and A(1)2 as A(1)2 +)G0 w11(�21)2(�31)3+)G0 w11w21(�32�31)3+)G0 w11w21w32w31Hence, if we expand A(1)2 via the derivation (12), we have:S +)G x11y11t11t21y21x21x32v32(A(1)2)1(�032�32�31�31�31)3+)G x11y11t11t21y21x21x32v32y11(�21)2(�31�032�32�31�31�31)3+)G x11y11t11t21y21x21x32v32y11y21(�32�31�032�32�31�31�31)3+)G x11y11t11t21y21x21x32v32y11y21v32(B(3)�032�31�032�32�31�31�31)3+)G x11y11t11t21y21x21x32v32y11y21v32(A(1)2)1(�032�31�032�32�31�31�31)3+)G x11y11t11t21y21x21x32v32y11y21v32w11(�21)2(�31�032�31�032�32�31�31�31)3+)G x11y11t11t21y21x21x32v32y11y21v32w11w21(�32�31�032�31�032�32�31�31�31)3+)G x11y11t11t21y21x21x32v32y11y21v32w11w21w32w31y032y31y032t32t31y31x3139

i.e. both z = z1 and z = z01 2 L, wherez1 = m� (x11)(t11t21)(x21x31)(t32t31)(x31)(y11)(y21)(v32w11w21w31y021)(y31)�and z01 = m� (x11)(t11t21)(x21x31)(t32t31)(x31)(y11)(y21)(v32y11y21v32w11w21w31y032y31y032)(y31)�where m� xy� means m(x; y), i.e. both z and z0 have the formz = m(x; yvuwu) and z0 = m(x; yvyvwuu)with the lists x = (x11)(t11t21)(x21x31)(t32t31)(x31)y = (y11)(y21)(")u = (y032)(y31)Case3.2 Suppose now A(1)1 is a descendant of �31. Then:S +)G x11y11t11t21y21x21x31y32t32t31v31(B(3)�031�31)3+)G x11y11t11t21y21x21x31y32t32t31v31(A(1)2)1(�031�31)3+)G x11y11t11t21y21x21x31y32t32t31v31w11(�21)2(�31�031�31)3+)G x11y11t11t21y21x21x31y32t32t31v31w11w21(�32�31�031�31)3+)G x11y11t11t21y21x21x31y32t32t31v31w11w21w32w31y031x31where we have derived A(1)1 asA(1)1 +)G y11(�21)2(�31)3+)G y11y21(�32�31)3+)G y11y21y32v31(B(3)�031)3+)G y11y21y32v31(A(1)2)1(�031)3 (13)+)G y11y21y32v31w11(�21)2(�31�031)3+)G y11y21y32v31w11w21w32w31y031and A(1)2 as A(1)2 +)G w11(�21)2(�31)3+)G w11w21(�31)3+)G w11w21w32w3140

Hence again, if we use the derivation (13) to expand A(1)2 , we get:S +)G x11y11t11t21y21x21x31y32t32t31v31y11(�21)2(�31�031�31)3+)G x11y11t11t21y21x21x31y32t32t31v31y11y21(�32�31�031�31)3+)G x11y11t11t21y21x21x31y32t32t31v31y11y21y32(�31�031�31)3+)G x11y11t11t21y21x21x31y32t32t31v31y11y21y32v31(B(3)�031�031�31)3+)G x11y11t11t21y21x21x31y32t32t31v31y11y21y32v31(A(1)2)1(�031�031�31)3+)G x11y11t11t21y21x21x31y32t32t31v31y11y21y32v31w11(�32)2(�31�031�031�31)3+)G x11y11t11t21y21x21x31y32t32t31v31y11y21y32v31w11w21w32w31y031y031x31so that both strings z = z1 and z = z01 belong to L, wherez1 = m� (x11)(t11t21)(x21x31)(t32t31)(x31)(y11)(y21)(y32)(v31w11w21w32w31y031)�and z01 = m� (x11)(t11t21)(x21x31)(t32t31)(x31)(y11)(y21)(y32)(v31y11y21y32v31w11w21w32w31y031y031)�where m�xy� means m(x; y), i.e. both z and z0 have the formz = m(x; yuwu) and z0 = m(x; yvyvwuu)with the lists x = (x11)(t11t21)(x21x31)(t32t31)(x31)y = (y11)(y21)(y32)(")u = (y031)The general case (n > 3) can be deduced in a similar way.
41

