
Nordic Journal of ComputingANALYSIS OF LINEAR HASHING REVISITEDRICARDO A. BAEZA-YATESDepto. de Ciencias de la Computaci�onUniversidad de ChileBlanco Encalada 2120Santiago, Chilerbaeza@dcc.uchile.clH�ECTOR SOZA-POLLMANDepto. de Ciencias de la Computaci�onUniversidad Cat�olica del NorteAv. Angamos 0610, Casilla 1280Antofagasta, Chilehsoza@socompa.cecun.ucn.clAbstract. In this paper we characterize several expansion techniques used forlinear hashing and we present how to analyze any linear hashing technique thatexpands based on local events or that mixes local events and global conditions.As an example we give a very simple randomized expansion technique, which iseasy to analyze and implement. Furthermore, we obtain the analysis of the originalhashing technique devised by Litwin, which was unsolved until now, comparing itto the later and more widely used version of Larson's. We also analyze one hybridtechnique. Among other results, it is shown that the control function used by Litwindoes not produce a good storage utilization, matching known experimental data.CR Classi�cation: F.2.2, E.5, E.2.Key words: external hashing, linear hashing, analysis of algorithms, optimal buck-eting. 1. IntroductionExternal hashing is a very e�cient technique used to obtain a fast organi-zation and retrieval of information in big size �les whose contents changedynamically [5]. Among the di�erent schemes developed in the last decadethere is Linear Hashing, due to Litwin [8], with two variants: globally con-trolled or locally controlled bucket division, depending on whether the stor-age utilization of the �le is �xed or not. A generalization of controlleddivision, called Linear Hashing with partial expansions, corresponds to Lar-son [6]. Based on the latter, other methods of hashing have been developed,called dynamic hashing [9, 4], which allow supporting modern database sys-tems, since they provide exibility for handling dynamic �les and preservethe very fast expected time of hashing access.Received January 9, 1998.

2 R. BAEZA-YATES, H. SOZA-POLLMANWe �rst classify in three classes all the control functions that have beenproposed for Linear Hashing and we analyze several of them. Until today,only the scheme proposed by Larson [7] was analytically studied expressingthe results as in�nite sums that can be numerically computed. In this pa-per we give a simple di�erential equation that allows to analyze a class oflinear hashing techniques. We apply this equation to a simple randomizedtechnique and to Litwin's original scheme. For this purpose, the mathemat-ical model developed by Larson [7] is used for the analysis, also obtainingin�nite sums (seems di�cult to obtain real closed forms for the results).Furthermore, the optimal size of the overow bucket is computed for Lar-son's control function in typical cases. For the analysis, one (or several)di�erential equations had to be solved, with boundary conditions over anunknown parameter, which led to the use of several numerical techniques,such as the Runge-Kutta method to solve di�erential equations, the Newtonmethod to determine roots, numerical integration and the Maple V symbolicalgebra system [2]. A simulation of the methods studied was developed andthe results agreed with the ones obtained analytically. Some of these resultsare part of Soza-Pollman [10].2. Linear HashingLinear Hashing refers to the dynamic hashing algorithmwhich allows storingrecords in a �le without changing signi�cantly its access time, independentlyof the number of record insertions or deletions that occur in it. The accesstime of a hashing algorithm is understood as the number of accesses tosecondary memory needed in order to �nd a record in the �le.The records have an identi�er called primary key and they are inserted,according to a given hashing function, into a hash table where each entry isa called a primary bucket (which has a capacity for b records). We de�ne abucket as a unit of storage in secondary memory (consisting of one or morephysical disk pages). When a primary bucket is full, it is said that there is anoverow, and an overow resolution method is used, consisting of chaining anew bucket to the primary one, called overow bucket (which has a capacityfor c records), and the new record (called overow record) is added to thisone. More overow buckets are created if needed, chaining them. All therecords in a primary bucket and its overow buckets are called a group (thatis, all the records whose keys fall in the same hash table entry).If all the overows are resolved just creating overow records, the accesstime deteriorates quickly. In order to avoid this, a �le expansion is madeto decrease the number of overow records, allowing to keep the methodperformance at the desired level. This is achieved by adding a bit to thehashing function which a�ects only the group that we decide to be expanded(not necessarily the group with the primary bucket in overow) and leavesthe others intact [7]. During the growth of the �le, the groups are dividedin a sequence ranging between 0 and N � 1, N being a power of 2. When

ANALYSIS OF LINEAR HASHING REVISITED 3the group j is divided, the hash table entry j +N is added to the �le andthe records are distributed between both entries, thus transferring abouthalf of records of group j into the entry j + N . This process ends whenthe group N � 1 is divided, and the �le reaches size 2N , which correspondsto a complete expansion, and the process may start again. We use thevariable x to denote the fraction of groups that has been expanded. Anextension, devised by Larson [7], is linear hashing with partial expansions,where a complete �le expansion is reached through an arranged successionof n0 partial expansions before duplicating the �le size, n0 � 1.To control the �le size, we de�ne the load factor and the storage utilizationas follows (see Table Table I):z = nb N ; U = nb Nbp + c NovThe �le expansion is directed by a control function, which is a set of rulesused to determine when an expansion takes place, from which a relationshipcan be established between the load factor z and the fraction x of expandedgroups of the �le. That is, x = g(z), a function to be determined. Some ofthese control functions are:(1) If an overow occurs after inserting a record [8]. It has been studiedonly through experimental analysis.(2) If the storage utilization exceeds a given limit when an overow takesplace [8], which has been analyzed experimentally.(3) If the storage utilization exceeds a given limit, which was analyticallyand experimentally analyzed by Larson [7]. It is called constant orlimited storage utilization control function.(4) If the expected successful search cost exceeds a given limit [1]. It hasbeen empirically analyzed.(5) If the number of inserted records reaches a multiple of a �xed constantK.Figure Fig. 1 shows the expansion of a �le using linear hashing and controlfunction 1. We can divide control functions in three classes:I. Based on local events (originally called uncontrolled case). This is thecase of functions 1 and 5. We give the di�erential equation that allowsanalyzing any hashing technique on this class.II. Based on a condition for a global performance measure (also calledthe controlled case). This is the case of control functions 3 and 4.The analysis for this class follows Larson [7], that basically solves theequation given by the global condition. We give an example at theend of the next section.III. Hybrid control function. Both a local and a global condition are used,as in control function 2. We also outline the generic solution for thiscase through an example.

4 R. BAEZA-YATES, H. SOZA-POLLMANIn this paper we present the analysis for control functions 1 and 2, a ran-domized version of function 5 and we extend the analysis of function 3. Thedetailed analysis of control functions 1, 2 and 4 is part of Soza-Pollman [10].
.. 2N-1NN-1100 1 N-1 N. N-110

overow buckets
(a) Initially N(b) Expansion after(c) Completeexpansion.an overow.primary buckets.

Fig. 1: Linear Hashing using control function 1.Symbols MeaningN initial number of primary buckets (and groups)Nbp number of primary bucketsNov number of overow bucketsn number of inserted recordsb primary bucket size in recordsc size of the overow bucket in recordsz �le load factorx fraction of expanded groupsU storage utilizationS expected number of accesses in a successful searchE[S] average value of S over a complete expansionI expected number of accesses in an unsuccessful searchV expected overow space used per recordTable I: Symbols used in the model and analysis.

ANALYSIS OF LINEAR HASHING REVISITED 53. Analysis of Linear HashingWe use the same notation and formulas as Larson [7], formalizing some ofthem. Let y be the expected number of records per group. Then the loadfactor over the �le is characterized by z = y=b. Note that z is the expectedvalue of a random variable. An exact analysis might be possible, but thissimpli�cation gives solutions that agree very well with experimental data asshown later.The probability that i records locate themselves in a group, given z, ismodeled by a Poisson distribution, which implies a uniform probability ofreaching each bucket (this is a good approximation to the exact distribution,which is Binomial). That is:P (i; z) = e�bz(bz)ii! ; i = 0; 1; :::The probability of having an overow in an insertion will be given by:p0(z) =Xi�b P (i; z) = 1� b�1Xi=0 e�bz(bz)ii!Since a bucket with (k � 1)c + j overow records (1 � j � c) needs koverow buckets (k � 1), then the expected number of record slots storedby each group (primary and overow) is calculated by using:t(z) = b+ c 1Xk=1 k cXj=1P (b+ (k � 1)c+ j; z) = b+ c 1Xj=b+1 � j � bc �P (j; z)On the other hand, a successful search requires at least one access, andthe expected number of accesses in a successful search, in a group with(k � 1)c+ j overow records (1 � j � c , k � 1), is:s(z) = 1 + 1bz 1Xk=1 k cXj=1�(k � 1)c2 + j�P (b+ (k � 1)c+ j; z)For unsuccessful searches the probability of accessing a given group doesnot depend on the number of records in the group. Then, an unsuccessfulsearch in a group with (k � 1)c+ j (1 � j � c, k � 1) overow records, hasan expected number of accesses of:i(z) = 1 + 1Xk=1 k cXj=1P (b+ (k � 1)c+ j; z) = 1 + 1Xj=b+1 �j � bc �P (j; z)The storage utilization, that is the amount of space used with respectto the total space allocated is computed as follows. The expected numberof records per group is bz, for the expanded groups as well as for the non

6 R. BAEZA-YATES, H. SOZA-POLLMANexpanded ones. Recall that x is the fraction of groups that have been ex-panded. Then, the expected number of record slots allocated per expandedgroup is 2x t(z=2) and (1 � x) t(z) for the other groups. Then, the storageutilization is given by:U(z; x) = bz2x t(z=2) + (1� x) t(z)Note that this de�nition is an approximation of the storage utilization be-cause the expected value of the quotient of two random variables is not thequotient of the expected values. However, using the Kantorovich inequal-ity [3] we know that U(z; x) is a lower bound for the exact value and ourexperimental results show that in practice is very close to it.Likewise, a search in a group already expanded requires s(z=2) accesses onaverage, whereas if it is from the non expanded group, it needs s(z) accesseson average. Then, the expected number of accesses for a successful searchis: S(z; x) = S(z; g(z)) = x s(z=2) + (1� x) s(z)In order to analyze the existence of the optimal overow bucket size, theformula of average successful search length during a complete expansion isneeded. The corresponding formula is:E[S] = 1z0 Z 2z0z0 S(z; g(z)) dzSimilarly, the expected number of accesses for an unsuccessful search is:I(z; x) = x i(z=2)+ (1� x) i(z)Finally, the expected amount of overow space required (used) per recordis: V (z; x) = 2x (t(z=2)� b) + (1� x) (t(z)� b)bzThe formulas above depend on x and z (see Table Table I), but thesevariables, as already mentioned, are not independent. Each control functionde�nes a relationship between x and z. For example, in the case of constantutilization [7] the storage utilization is always maintained as close as possibleto a given value �, 0 < � < 1. In the asymptotic case this leads to constantstorage utilization, that is, U(z; x) = � is veri�ed. By solving this equationfor x, the following relationship between x and z is obtained (in the originalpaper of Larson [7] there is a typo for this equation):x = g(z; �) = zb=�� t(z)2t(z=2)� t(z)

ANALYSIS OF LINEAR HASHING REVISITED 7Considering b = 10, c = 5 and � = 0:8 an initial load factor of z0 = 0:9644is obtained. This is an example of analysis for a control function of class II.In �gure Fig. 2 (left) a graph is presented showing the relationship betweenz and x, considering z0 � z � 2z0 and 0 � x � 1.Another control function that belongs to this class is when we limit theexpected number of accesses in a successful search. That is, we want to haveS(z; x) � 1 + � where � > 0 is a parameter de�ned by the user. Again, inthis case there is a trade-o� between storage utilization and search time asin control function 3, but here the �le expansion is controlled by the searchcost. However, now the relation between x and z that is reached in the limitwhen S(z; x) = 1 + � is not simple as S is an in�nite sum. The analysis ofthis case using a numerical technique can be found in Soza-Pollman [10].4. Control Functions Based on Local EventsLet PE(z; x) be the probability that an insertion triggers an expansion whenthe �le has load factor z and a fraction x of it has been expanded. The nexttheorem shows how the rate of expansion and the load factor are related tothis probability.Theorem 1. The relationship between the load factor and the expansionratio of the �le in the case of a class I control function is given by theequation: dxdz = b PE(z; x)with boundary conditions x(z0) = 0 and x(2z0) = 1. For the boundaryconditions, z0 is the initial load factor in a period, due to which x(z0) andx(2z0) represent the fraction of expanded buckets at the beginning and at theend of the expansion, respectively.Proof. Suppose that we have a �le with N groups, having n records, andwith a fraction x of expanded groups. Let z be the load factor before theinsertion, given by z = nb N . Let z0 be the load factor after the insertion,that is z0 = (n+1)N b . Then the growing rate of z is:4z = z0 � z = 1N bNote that the load factor is de�ned with respect to the initial number ofgroups at the beginning of the expansion process. The �le expansion ratio,before the insertion is x, and afterwards it is:x0 = x+ PE(z; x)NThus, the rate of expansion 4x is:4x = x0 � x = PE(z; x)N

8 R. BAEZA-YATES, H. SOZA-POLLMANDividing 4x by 4z we obtain:4x4z = b PE(z; x)In the limit the stated di�erential equation is obtained. 2As an example of a �rst use of the equation above, we analyze a variantof the control function 5. This function (expand after every K insertions)can be approximated using the following simple randomized scheme: expandafter each insertion with probability 1=K. That is, PE(z; x) = 1=K. Thisgives a very simple expansion rate which is linear:x(z) = bK z � 1with z0 = K=b. So the load factor grows from K=b to 2K=b. If K = 1 wehave the lowest possible utilization. On the other hand if K is large withrespect to b, the utilization is very good but the insertion time increases.So, with just choosing K we can obtain a desired performance. For a givenK and b it is possible to obtain the optimal value of c to maximize U asgiven in section 8 for control function 3.5. Litwin's Control FunctionIn this section the original control function of Litwin is analyzed [8], whichexpands a �le when there is an overow. This is based on the generalequation for control functions based on local events shown previously. Inthe case of Litwin's scheme, we havePE(z; x) = Pov(z; x) = x p0(z=2) + (1� x) p0(z)where p0(z) is the probability of having overow in an insertion. Applyingthe main theorem, we obtaindxdz = bx(p0(z=2)� p0(z)) + b p0(z)The resulting di�erential equation has the problem of depending on bound-ary conditions de�ned over an a priori unknown value z0. Starting with agiven z0 (a guess), the equation is solved using the Runge-Kutta numericalmethod. Next, x(z0) is evaluated using the Newton method. If this valuewas not close enough to 0, we interpolate a new value for z0 and we repeatthe process until the desired precision is obtained. This process is doneautomatically via a Maple V program.Figures Fig. 2 and Fig. 3 show the performance measures for b = 10 andc = 5, where the value of the initial load factor was z0 = 0:611. It is observedthat the relationship between z and x is increasing, whereas the utilizationvaries during the expansion, reaching a minimum of 56% almost at the endof the expansion, approximately. Table Table II shows the extreme valuesreached by the performance measures.

ANALYSIS OF LINEAR HASHING REVISITED 9
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0 0.2 0.4 0.6 0.8 1

z

x

simulation
theory

0.57

0.58

0.59

0.6

0 0.2 0.4 0.6 0.8 1

U

x

simulation
theoryFig. 2: Analysis and simulation of z(x) (left) and U(x) (right).

1

1.04

1.08

1.12

1.16

0 0.2 0.4 0.6 0.8 1

ac
ce

ss
es

x

S
I

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 0.2 0.4 0.6 0.8 1

ov
er

flo
w

 s
pa

ce

xFig. 3: Left: Number of accesses for the successful and unsuccessful search. Right:Expected overow space used per record.6. Hybrid Control FunctionsThe case of controlled expansion plus a local event is outlined here, as anexample for the analysis of a technique of class III. That is, the �le is ex-panded if the storage utilization is larger than a limit given by a parameter� (0 < � < 1) and an overow also occurs. For this purpose the di�erentialequation which relates x and z, changes to:dxdz = b Pov(z; x) �(U(z; x) � �)where �(U(z; x) � �) = � 1 if U(z; x) � �0 if notFrom the relation U(z; x) = �, x = g(z; �), is obtained, so that the equa-tion to be solved is the following:

10 R. BAEZA-YATES, H. SOZA-POLLMANc Smax E[S] Imax Vmax Umin Umax1 1.10485 1.07331 1.39737 0.04368 0.62159 0.573652 1.06695 1.04772 1.24383 0.05412 0.61853 0.570753 1.05457 1.03938 1.19466 0.06550 0.61513 0.567764 1.04918 1.03578 1.17258 0.07812 0.61144 0.564515 1.04654 1.03402 1.16136 0.09197 0.60755 0.561016 1.04521 1.03312 1.15549 0.10692 0.55724 0.603587 1.04455 1.03266 1.15248 0.12276 0.55323 0.599638 1.04423 1.03243 1.15101 0.13924 0.54901 0.595769 1.04409 1.03231 1.15032 0.15610 0.54464 0.5911010 1.04402 1.03226 1.15001 0.17319 0.54020 0.58837Table II: Extreme values with b = 10 and di�erent values of c.dxdz = � b Pov(z; x) if x � g(z; �)0 if notwhere g(z; �) is de�ned in Equation 1. The condition is expressed in functionof x, because it is not possible to solve it in function of z. This equation issolved using Runge-Kutta and Newton as in the previous section, and thenumerical solution is checked against the boundary condition x � g(z; �),between z0 and 2z0 for the given �. Figure Fig. 4 (left) shows the relationshipbetween z and x for the values b = 40, c = 5 and � = 0:85, in which case z0 =0:898 was obtained. Figure Fig. 4 (right) shows the storage utilization. Thedeviations in the space utilization are due to the fact that early expansionsproduce a higher variation of the storage utilization than later expansions(the bucket size is �xed while the �le size grows). Nevertheless, notice thatthe variations around � = 0:85 are less than 0:01. Table Table III shows theextreme values for di�erent � with b = 10 and c = 5.� Smax E[S] Imax Vmax Umin Umax0.70 1.13635 1.10008 1.44738 0.19678 0.69956 0.700230.75 1.19876 1.14965 1.63267 0.25331 0.74927 0.750190.80 1.29641 1.23072 1.90699 0.32488 0.79887 0.800140.85 1.47391 1.38978 2.37565 0.42204 0.84836 0.850080.90 1.89553 1.77849 3.50880 0.57185 0.89879 0.90005Table III: Extreme values for di�erent values of � for b = 10 and c = 5.It can be observed that apparently the condition of having overow doesnot allow to increase the utilization over � in this case, when � is close to1. So, it is almost the same as control function 3. Figure Fig. 5 shows the

ANALYSIS OF LINEAR HASHING REVISITED 11
0.8

1

1.2

1.4

1.6

1.8

0 0.2 0.4 0.6 0.8 1

z

x

"simulation"
"theory"

0.841

0.843

0.845

0.847

0.849

0.851

0 0.2 0.4 0.6 0.8 1

U

x

"simulation"
"theory"Fig. 4: Analysis and simulation of z(x) (left) and U(x) (right) for the hybrid case with� = 0:85. � n b 10 20 30 400.70 0.364396 0.284503 0.246017 0.2251030.75 0.473233 0.387024 0.338540 0.3106910.80 0.606308 0.513805 0.450785 0.4088610.85 0.771931 0.676137 0.590809 0.5227170.90 0.950534 0.850748 0.778011 0.658139Table IV: Values of E[Pov] for di�erent values of � and b.average overow probability during an expansion for a given � (see valuesin table Table IV) obtained using:E[Pov] = 1z0 Z 2z0z0 Pov(z; g(z)) dzIt may be observed here that this conditional probability rapidly tends to 1when � increases. The e�ect of the overow condition is only noticeable forsmall values of �, as is shown in �gure Fig. 6.7. Experimental ResultsAn experimental study was carried out with the following characteristics:� The case of expansion when there is overow in an insertion, when thestorage utilization is controlled, and the hybrid case were considered(control functions 1, 2 and 3).� The parameters used were b, c, N and � (when needed) and the initialnumber of records.� The group where the record is inserted is chosen at random and thedecision in which table entry the incoming key is inserted when thegroup is already expanded is also uniformly chosen.

12 R. BAEZA-YATES, H. SOZA-POLLMAN
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.7 0.75 0.8 0.85 0.9

P_ov

alpha

b=10
b=20
b=30
b=40Fig. 5: �Pov versus � for di�erent b.

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0 0.2 0.4 0.6 0.8 1

z

x

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0 0.2 0.4 0.6 0.8 1

U

x

"globally controlled"
"locally controlled"

Fig. 6: Left: Load factor z versus expansion ratio x with � = 0:6. Right: Utilization(globally controlled with � = 0:6 and locally controlled) versus x.� All the performance measures were obtained, among which we canmention the fraction of expanded groups, the load factor, the stor-age utilization, and the expected number of accesses in successful andunsuccessful searches.� When x reaches 1, it means that the �le size has been duplicatedand a new expansion begins. The simulation is �nished when a givenamount of hash table entries is reached (2 millions which implies sev-eral millions of records). The number of groups N is constant in eachexpansion, setting N = 2N for the next expansion.� The results are the average of ten runs, taking the last doubling period.Starting from a given number of keys, the stable behavior is reachedusually in less than ten full expansions unless we start from a verysmall initial �le (that is, the number of keys is doubled ten times).Also, the variance is very small, which justi�es our approximation for

ANALYSIS OF LINEAR HASHING REVISITED 13U(z; x).With the data generated by the simulation the relationships between z andx and the storage utilization were plotted (see �gure Fig. 2) for the locallycontrolled case and the globally controlled utilization, considering b = 40,c = 10, and � = 0:85. For all the performance measures the simulationsagreed completely with the analytical results, and there is no appreciabledi�erence in the curves shown. These results also agree with those of Litwin's[8] and Larson's [6].8. Optimal Size of the Overow BucketAn important parameter is the optimum size of the overow bucket in orderto minimize the search time or the storage utilization. When we use controlfunction 3, the storage utilization is �xed, but we can minimize the expectedsuccessful search performance. The existence of this optimum had beenindicated in Larson [7], but only partial results were given. The idea is to �nda value of c which minimizes the value of E[S]. In the locally controlled case,E[S] always decreases when c increases. In practice this is not completelyrealistic because the model only considers the number of accesses and notthe transfer time of the buckets, which is relevant for large c.On the other hand, in the globally controlled case, as the utilization is�xed, c cannot be too large, because the expansion activity would decreaseand then E[S] would increase until it would be necessary to expand the �leto keep the utilization �xed. Figure Fig. 7 shows the curves obtained whenplotting the average amount of accesses in a successful search E[S] versussize c of the overow bucket for the limited case, for di�erent values of b.It can be observed that a minimum is reached in each one, as shown intable Table V. Table Table VI and �gure Fig. 7 show di�erent dependenciesof E[S] concerning b, c and �. Notice the sudden growth on E[S] in functionof the overow bucket size c due to the decrease of the expansion activity,as the storage utilization drops faster when we add bigger overow buckets.A similar analysis can be done for the other control functions.� n b 10 20 30 400.70 5 8 11 130.75 4 8 11 130.80 4 7 10 120.85 3 6 9 120.90 3 5 7 9Table V: Values of copt for di�erent values of � and b.

14 R. BAEZA-YATES, H. SOZA-POLLMAN� n c 10 11 12 13 140.70 1.045823 1.044945 1.044376 1.044060 1.0893200.75 1.077755 1.076077 1.074979 1.074374 1.3394920.80 1.127178 1.146798 1.123769 1.144555 1.4575190.85 1.211537 1.208729 1.208392 1.409010 1.464783Table VI: Values of E[S] for di�erent values of � and c.
1.2

1.4

1.6

1.8

2

2.2

2.4

2 4 6 8 10 12 14

S

c

b=10
b=20
b=30
b=40

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0.7 0.75 0.8 0.85 0.9

S

alpha

b=10
b=20
b=30
b=40

Fig. 7: Left: E[S] versus c for � = 0:85 and di�erent values of b (globally controlledcase). Right: E[S] versus � for c = 5 and di�erent values of b (globally controlled case).9. Concluding Remarks and Future WorkThe analyses developed in this paper are asymptotic, that is they supposean in�nite size �le. However, it is known that the expected performanceof a �nite �le is not far from the asymptotic values in more than a smallpercentage (our results and others done through simulation and real exper-iments demonstrate this fact [7]), due to which the results obtained can beconsidered valid for practical purposes.When a large amount of records is intended to be inserted in a �le, theoverow controlled linear hashing variant (Litwin's) is recommended sincethe access time is lower. By using a bucket size 10, we get an initial loadfactor of approximately 61%, a storage utilization of 57% and determiningwhether a record is in the �le or not takes little more than one access.If the e�cient use of the secondary memory is critical and the utilization ofthe storage space is established a priori, linear hashing with limited storageutilization must be used, considering the fraction � of occupation of theproposed �le. Under this control function, and considering � = 0:8, b =10 and c = 5 limit, an initial load factor of 96% is obtained, with theretrieval of one record in little more than one access and a low overowspace required. Access deteriorates in an unsuccessful search which reaches

ANALYSIS OF LINEAR HASHING REVISITED 15almost two accesses in the worst case.The analysis developed in this paper can also be extended to partial ex-pansions. For the case of n0 partial expansions, n0 � 1, the relationshipbetween x and z leads to a system of di�erential equations, with the expan-sion factor and event probability varying in each equation. For the n0 = 2case, the following system must be solved:dx1dz = b PE1(z; x) ; dx2dz = 32b PE2(z; x)where PE1(z; x) and PE2(z; x) are the probabilities of the event triggeringthe expansion in each case. The boundary conditions are:x1(z0) = 0 ; x1(3z0=2) = 1 ; x2(3z0=2) = 1 ; x2(2z0) = 2Finally, it would be of interest to add the bucket transfer time to the modelto obtain the optimum overow bucket size in Litwin's case and to improvethe results of the globally controlled case.AcknowledgementsWe would like to thank the helpful comments of P-�A. Larson, who suggestedthe analysis of Litwin's original hashing scheme, and the unknown referees.This work was partially supported by FONDECYT Project No. 1950622.Part of this paper was done while the �rst author was visiting the CRM,Barcelona, the �rst quarter of 1996.References[1] Bell, J., Gupta, G. K. Implementing Linear Hashing in Main Memory. Aus-tralian Computer Science Communications, Vol. 14(1), 1992, pp. 71-91.[2] Char B., Geddes K., Gonnet G., et al. MAPLE V Language Reference Manual.Springer Verlag, 1991.[3] Clausing, A. Kantorovich-type Inequalities, Amer. Math. Monthly, Vol. 89(5),1982, pp. 314-330.[4] Enbody, R., Du, H. C. Dynamic Hashing Schemes.ACM Computing Surveys,Vol. 20(2), June 1988, pp. 85-113.[5] Gonnet, G.H., Baeza-Yates, R. Handbook of Algorithms and Data Structures,2nd edition, Addison Wesley, 1991.[6] Larson, P-�A. Linear Hashing with Partial Expansions. In Proceedings of 6th.Conf. V. L. Data Bases, Montreal, Canada, ACM, October 1980, pp. 224-232.[7] Larson, P-�A. Performance Analysis of Linear Hashing with Partial Ex-pansions. ACM Transactions on Database Systems, Vol. 7(4), Dec. 1982, pp.566-587.[8] Litwin, W. Linear Hashing : A new tool for �le and table addressing. In Pro-ceedings 6th. Conf. Very Large Data Bases, Montreal, Canada, ACM, 1980, pp.212-223.[9] Ramamohanarao K., Lloyd, J.W. Dynamic Hashing Schemes. The ComputerJournal, Vol. 25(4), 1982, pp. 478-485.[10] Soza, H. Analysis of Linear Hashing. M.Sc. Thesis in Computer Science, Uni-versity of Chile, 1993.

