
ELSEVIER Theoretical Computer ‘Science 196 (1998) 289-3 17

Theoretical
Computer Science

DAQV: Distributed Array Query and Visualization
Framework

Steven T. Hackstadt*, Allen D. Malony’

Department of Computer and Information Science, University of Oregon, Eugene, OR 97403, USA

Abstract

This paper describes the design and implementation of the distributed array query and visu-
alization (DAQV) framework, a project sponsored by the Parallel Tools Consortium. DAQV’s
reference implementation targets High Performance Fortran (HPF) and leverages the HPF lan-
guage, compiler, and runtime system to address the general problem of providing high-level
access to distributed data structures. DAQV supports a framework in which visualization and
analysis clients connect to a distributed array server (i.e., the HPF application with DAQV con-
trol) for program-level access to array values. Implementing key components of DAQV in the
parallel language (e.g., HPF) itself has led to a robust solution in which clients do not need to
know how data is distributed. The framework is highly portable to different computing environ-
ments as well as other languages where distributed data is involved. @ 1998-Elsevier Science
B.V. All rights reserved

Keywords: Distributed data; Fortran; Visualization; Parallel tool; Client/server tool framework

1. Introduction

In recent years, parallel processing has evolved from a rather esoteric technology
for achieving high-performance computing on high-end, expensive machines to a more

mainstream and wider-spread technology for delivering parallel computing capability

(not necessarily for high performance) across a range of machine platforms. In part, this

evolution has been the result of more powerful microprocessors offering performance

levels where speedups from modest parallelism provide acceptable computational ca-

pability, e.g., 200 Mflops performance on current generation four processor servers is

not unrealistic. This evolution has also been a result of improved systems infrastructure

for composing parallel computing environments, e.g., PVM and MPI allow networks

of workstations to act as virtual parallel machines. The impact of such hardware and

systems infrastructure (in general, the filtering down of parallel systems technology to

workstations environments) is to make parallel computing more available.

* Corresponding authors. E-mail: hacks@cs.uoregon.edu., malony@cs.uoregon.edu.

0304-3975/98/$19.00 @ 1998 - Elsevier Science B.V. All rights reserved
PII SO304-3975(97)00205-3

290 S. T. Hacksfadt, A.D. Malony / Theoretical Computer Science 196 (1998) 289-317

Unfortunately, availability does not imply ease of use. Hence, there has been an

increased emphasis on parallel programming environments, including parallel language

systems and tools for performance analysis, debugging, and visualization. Research

work in these areas has had its share of successes and failures. We argue that there

are two reasons for the failures. First, parallel programming tools are often designed

without the needs of users in mind [7]. Tools can be complex and hard to understand

because of the intricacies of the parallel system or, sometimes, in spite of it. That

is, although a tool may be solving a difficult parallel analysis problem, its utility will

ultimately depend on how well it can be applied by the user to a specific problem. The

second reason comes from a perspective of parallel computing’s role in the scientist’s

problem-solving environment. In the past, computation’s dominance in time and cost

requirements has, we suggest, allowed tool designers to adopt a parallel system-centered

view. However, the scientist’s environment has always been more heterogeneous, com-

bining data gathering (static and dynamic), data analysis (manual and computational),

data management (large and complex, real time and archival), and data visualization

(still and animated, composed and real time). Many parallel tools, though, focus only

on the analysis of the parallel computation (e.g., for performance and debugging). The

point is that as parallel computing technology evolves (e.g., faster processors), so might

the nature of the problem-solving bottlenecks (e.g., from computationally intensive to

data management or visualization intensive). Tool technology must be able to follow

the changing focus and target the prevailing needs.

It is our contention, then, that parallel systems are evolving to operate as compo-

nents of a larger heterogeneous environment supporting scientific problem solving, and

that tools should then be designed with the broader requirements of the environment

in mind. This implies that issues such as tool integration, distributed operation, and

portability must be dealt with up-front, promoting designs based on open interfaces,

client/servers models, standard data formats, and commonly accepted APIs. This can

be easier said than done. In particular, tools that must function as part of the parallel

computation (e.g., parallel debugging tools) are non-trivial to implement; the additional

requirements of distributed operation and environment-wide integration do not facilitate

matters. However, one advantage of taking a heterogeneous (rather than centrist) view

towards tool design is that technologies accommodating that view can be utilized in

tool implementation (e.g., MPI for data communication). This affords the possibility of

high-level problem-solving tools built upon common environment infrastructure used

to abstract system-specific details.

In this paper, we describe a framework for distributed array query and visualiza-

tion (DAQV) in HPF programs. One of the unique features of DAQV (pronounced

like “dave”) is that it was designed with the philosophy discussed above. The system

was originally a tool project effort under the auspices of the Parallel Tools (Ptools)

Consortium [24], and as such, its proposed functionality was subject to critical re-

views by general consortium members, especially users. For example, the decision to

target HPF was a by-product of the evaluation process. The motivating concerns for

DAQV forced a unique design and implementation strategy to provide the high-level

S. T. Hackstadt, A. D. Malony I Theoretical Computer Science 196 (1998) 289-317 291

heterogeneous operations that we envision. The result is a portable framework that

can interoperate with other tools via open interfaces, and that can be extended by

users as their array query and visualization needs require. The next section discusses

the motivation behind the DAQV project. We then present related work and contrast it

with DAQV’s functionality and implementation. Then, after discussing DAQV’s design,

functionality, and implementation, we give examples of its application and portability.

We end with a discussion of future work.

2. Motivation

During the execution of a parallel program it is often necessary, for various reasons,

for the user to inspect the values of parallel data structures that are decomposed across

the processing nodes of a parallel machine. For correctness debugging in a sequential

environment, the ability to observe program variables to determine coding errors is a

common user requirement; debugging with parallel data objects is no different. Simi-

larly, for interacting with parallel applications (e.g., for computational steering), it may

be necessary to access and analyze distributed data at runtime. Also, performance data

is typically collected in a distributed manner on each processing node, requiring some

mechanism to retrieve the information if it is important for the user to do so during

execution.

Any tool that addresses a particular user need (whether it be debugging, performance

analysis, or application interaction) where distributed data access capabilities are re-

quired has either to implement these capabilities itself or rely on some other (open)

infrastructure to provide them. In the former case, there are two problems. First, tool

implementations tend to become specific to low-level system details. The user-level

functionality of the tool may be provided, but platform dependencies may severely

hinder its portability. Second, the tool implements only what is necessary for its pur-

poses and abstractions of distributed data access tend not to be developed. This has

the effects of limiting tool extension, restricting the ability of other tools to apply the

distributed data access support, and leading to inconsistent functionality across tools.

The common anecdote from users that “print” is the only good tool is indicative of

these two problems: tools for parallel systems are often complex, not integrated, and

vary widely across machines. “Print” is the only thing that they can rely on.

The case of relying on some other infrastructure for distributed data access suf-

fers because no such infrastructure currently exists. One might think that “print” pro-

vides suitable functionality. But the problem is really the level of the tool’s interface

to the infrastructure; “print” would require significant scaffolding to give it a high-

level interface to an external tool. Similarly, many parallel debuggers are not always

aware of how the parallel data structures are distributed. Whereas they provide low-

level mechanisms to get the data, the higher-level semantics about what the data is

(i.e., the type and characteristics of the distributed data object) are generally not uti-

lized in the infrastructure and are not apparent in its external interface. However, it is

292 S. T Hackstadt, A.D. Malony I Theoretical Computer Science 196 (1998) 289-317

exactly these semantics that are helpful in developing open frameworks and portable

tools.

The DAQV project highlights the dilemma between the two alternatives above that

often face tool designers. Begun as a project sponsored by the Parallel Tools Con-

sortium, DAQV set out to address the user requirement of being able to access and

visualize distributed array data coming from a parallel program. Initially, it placed more

emphasis on the environment for array interaction (query specifications, array opera-

tions, visualization types, etc.) than on the underlying infrastructure for interfacing with

the running program. However, based on feedback from the Ptools community [24],

it quickly became clear that DAQV’s mission was too broad. The most interesting

feedback was from users who helped refine the focus of the project towards creating a

robust and well-defined infrastructure rather than a multitude of user-interface features

(as tool designers tend to do). Users made it clear that the most important contribution

that the project could make was to provide a technology that lets them “get the data”

(a high-level “print” capability, if you will) and use other tools to “work with the

data”. The goal, then, was to develop interfaces for both (1) low-level extraction of

data from the program, and (2) the higher-level request/delivery of data to an external

client (e.g., for visualization). Users also acknowledged the importance of HPF as a

potential execution target for the DAQV project.

The result is the DAQV tool as described in this paper. We present this background

because we feel that the Ptools project evaluation process was instrumental in forc-

ing the design to seriously consider user’s needs. This gave DAQV its focus, but

how DAQV is built is what makes it unique. DAQV is characteristic not of a tool

necessarily, but of a framework that facilitates the development of software for a par-

ticular problem area. A framework may generally consist of a set of components with

well-defined functions and relationships for constructing the software; templates that

can be used to customize functionality or create new components, and user and system

interface definitions and modules that allow the developed software to interoperate with

other system tools. A framework may also raise the level of developer (user) inter-

action to hide implementational or operational details, while providing robust backend

infrastructure support for targeting multiple platforms. The DAQV framework has all

of these features, embodying the requirements of the distributed array access problem

in its design and function while keeping flexible and open how the resultant tool is

created for a target system. In this way, the DAQV framework truly supports higher-

level semantics of data access, and allows extensions both in tool functionality and

enhanced data analysis capabilities.

3. Related work

We view the DAQV work as a confluence of research ideas that have come from

the fields of parallel programming languages, parallel tools, scientific visualization,

and distributed computing over the last five years. Indeed, in some sense, DAQV is an

S. T Hackstadt, A. D. Malony I Theoretical Computer Science 196 (1998) 289-317 293

amalgamation of these ideas in a form that is tempered by strong user requirements and

is targeted to the HPF language domain. Below, we review the related research from

four perspectives of DAQV: language-level parallel tools, distributed data visualization,

client-server tool models, and program interaction.

There has been a strong advocation in the last few years for parallel tools to be

more integrated in parallel language systems and to support the language semantics in

their operation. Because a language system abstracts the parallel execution model to

hide low-level system operation, it is important for users of program analysis, debug-

ging, and performance tools to be able to work with program objects at the language

level as they seek to understand program structure, behavior, and performance. For

instance, the research work integrating Pablo with the Fortran D compiler [l] and Tau

with the PC++ compiler [4] demonstrates the importance of providing a high-level

semantic context. This is also clearly seen in the Prism [28] environment for the Con-

nection Machine systems which is, perhaps, the best example of the ease of use that

can come from an integrated tool system. DAQV clearly follows in this spirit as it

bases its entire functionality and operation on the data distribution semantics of the

HPF language model. But DAQV goes one step further and actually uses the lan-

guage system itself for part of its implementation. This was also a feature of Breezy,

a forerunner of DAQV that provided high-level program interaction for the PC++

system [5].

One of the key programming abstractions found in parallel language systems is

data parallelism - the parallel operation on data that has been distributed across the

processing nodes of a machine. Because distribution of parallel data is an impor-

tant factor in the performance behavior of a program, viewing the data and perfor-

mance information in relation to the distribution aids the user in tuning endeavors.

The GDDT tool [21] provides a static depiction of how parallel array data gets allo-

cated on processors under different distribution methods and also supports an external

interface by which runtime information can be collected. In the DAVis tool [181, dis-

tribution visualization is combined with dynamic data visualization to understand the

effects of decomposition on algorithm operation. Kimelman et al. show how a vari-

ety of runtime information can be correlated to data distribution to better visualize

the execution of HPF programs [19]. Similarly, DAQV could provide distribution in-

formation to clients for augmenting views of data structure and operation. But there

is another use of distribution information, and that is to reconstruct the partitioned

data into its logical shape. The IVD tool [171 uses a data distribution specification

provided by the user to reconstruct a distributed data array that has been saved in

partitioned form. In DAQV’s case, this reconstruction is done, in essence, by the com-

piled HPF code using the implicit distribution information passed to the array access

function.

The increasing importance of portability and extensibility in parallel tools has evoked

designs following client/server models. The Panorama debugger [22] demonstrates how

the concept of interoperating modules can lead to increased functionality and gener-

ality in debugging systems. The p2d2 debugger [6] extends this concept considerably

294 S. T. Hackstadt, A. D. Malomy I Theoretical Computer Science 196 (1998) 289-317

in proposing a full client/server debugging framework with comprehensive abstrac-

tions of operating system, language, library interfaces, and protocols for distributed

object interaction. DAQV is clearly adopting the client/server approach for similar

reasons, but in contrast to these two particular tools, the functionality is at a higher

level, affording the possibility of layering DAQV on top of systems like Panorama and

p2d2.

The final perspective is one of dynamic program interaction. There has been a grow-

ing interest in runtime visualization of parallel program and computational steering.

Implementing such support raises interesting systems implementation issues as well as

user issues. On the one hand, runtime visualization for a particular application do-

main might be able to utilize domain knowledge to implement a system meeting cer-

tain performance constraints. The pV3 system [12] is a good example. However, such

specialized implementations may be limited when considering the general runtime visu-

alization problem. DAQV, in many respects, is a direct descendant of the Vista research

[29] since it embodies many of the same design goals: client/server operation, auto-

mated data access support, runtime operation, structured interaction. The improvement

DAQV offers is in language-level implementation to increase portability. We believe

that this will also improve DAQV’s ability for computational steering. Although Vista

was extended for interactive steering in the VASE tool [9], the steering operations

were still very much dependent on the target implementation. Supporting steering at

the application language level is a more robust, general solution and is something we

have begun to investigate in DAQV.

4. Design

DAQV attempts to address the general problem of providing high-level access to

parallel, distributed arrays for the purpose of visualization and analysis. It does this

by “exposing” the distributed data structures of a parallel program to external tools

via interfaces that obviate the need to know about data decompositions, symbol tables,

or the number of processors involved. The goal is to provide access at a meaningful

and portable level - a level at which the user is able to interpret program data and at

which external tools need only know logical structures. To this end, DAQV has three

primary design objectives:

l A logical, global view of parallel, distributed data.

l A simple, many-to-one client/server model of communication.

l A portable parallel program interaction model.

Given these design objectives, how should they be addressed in the development of

a DAQV tool? In one scenario, DAQV could just be a reference design specification

that new tools built from scratch for different target platforms would try to incorpo-

rate. Although certain user requirements might be captured in formal operational and

interface semantics, unanticipated functionality may be difficult to retrofit to the differ-

ent tool versions and still maintain a consistent design model. Alternatively, a DAQV

S. T Hackstadt, A. D. Malony / Theoretical Computer Science 196 (1998) 289-317 295

framework could be defined that provides techniques to accommodate flexibility in

functionality, but provide a common infrastructure for platform retargetability. In our

tools research, we have found that techniques that support:

l programmability: the ability to program a tool’s operation to capture domain

abstractions and capabilities;

l extensibility: the ability to add new functionality to a tool’s (or toolset’s) repertoire

consistent with its operational model; and

l interoperability: the ability for tools to work together through well-defined program-

ming and communications interfaces;

are important for building effective tool frameworks. Below, we describe how the design

objectives are met in DAQV, as a result of the framework approach.

4.1. Global view of data

In a language such as high-performance fortran (HPF), the programmer views dis-

tributed arrays at a global level, which means the programmer may perform opera-

tions on whole arrays and refer to array elements with respect to the entire array, as

opposed to some local piece on a particular processor. In other words, HPF supports

a global name space [15,201. Clearly, a programmer cannot completely disregard the

issue of data distribution, though, and expect the best performance. Distribution direc-

tives allow the programmer to use their knowledge about the application and advise

the compiler on the best way to distribute data. However, concern for data distribution

does not affect how the programmer references the data. HPF syntax insulates the user

from ever dealing with an array in a distributed manner, thereby supporting a logical,

global view of data. For similar reasons it is important that DAQV supports a logical,

global perspective when interacting with the user (through external tools).

4.2. Client/server model

DAQV is a software infrastrncture that enables runtime visualization and analysis of

distributed arrays. It is not a stand-alone application or tool that performs these tasks

itself; rather, it interoperates with either external tools built specifically for use with

DAQV, or existing tools that have been retargeted or extended to interact with DAQV.

The goal is to incorporate the existing visualization and analysis tools. The feedback

we received from the Ptools user group during design discussions was clear: they did

not need another fancy, self-contained visualization tool. They just wanted improved

facilities for querying and extracting distributed arrays such that their existing tools

could be easily used with this system. To this end, we logically view the entire HPF

program (not individual processes or processors) as a distributed array server to which

these external client tools connect and then interact with the program and its data. At

issue, though, is how to make HPF’s single-program, multiple-data (SPMD) program

execution [20] appear as a single, coherent distributed array server, and how to simplify

as much as possible the requirements placed on DAQV clients.

296 S. T Hackstadt, AD. Malony I Theoretical Computer Science 196 (1998) 289-317

4.3. Portability

Another goal in the design of DAQV was to minimize the degree to which DAQV

is dependent on a particular HPF compiler. By targeting the HPF language in the

first place, machine portability is inherent to the extent that the HPF compiler is.

However, portability across HPF compilers is also important. DAQV primarily accom-

plishes this in three ways: key components of DAQV are implemented in HPF, com-

piler and runtime systems are utilized, and compiler-dependent code is minimized and

isolated.

The first two items in the above list will be discussed in more detail in Section 6.3.

Compiler-dependent code is limited to two areas: the yield point procedural interface

(see Section 6.1) and the array access argument-passing interface (see Section 6.3).

The amount of code that is compiler-specific is small, so isolating it is very easy.

In addition, we claim that the DAQV model and architecture of parallel program

interaction is also portable. This model will be described in more detail in the next

section, and the topic of portability will be revisited in Section 7.2.

5. Functionality

This section will attempt to describe, in general terms, the functionality of DAQV.

As a framework, DAQV addresses concerns from both tool users and tool developers.

Two different operational models, called push and pull, are supported. These two models

differ in the degree of interactivity available with the HPF program at runtime. This

section will describe these models, how they differ from one another, and how they

address the concerns of users and developers.

5.1. The push model

The push model forms the basis of DAQV and constitutes the simplest and least

intrusive way to access distributed arrays from an external tool, or data client. The

push model is implemented by inserting simple DAQV subroutine calls into the HPF

source code. These calls allow the programmer to

l select the DAQV model (i.e., push or pull) to be used in the program,

l register distributed arrays with DAQV,

l set parameters for communicating with data clients,

l make DAQV connect with data clients, and

l send the data values of a distributed array to the data client.

The functionality of the push model is the practical solution to the feedback from

the Ptools user group. That is, with minimal additions to the HPF source code, users

can extract the data values of distributed arrays and visualize them with other tools,

never having to worry about array reconstruction. The push model can be used

to spot-check the state of an array or to create animations of data values over the

S. T. Hackstadt, A. D. Malony I Theoretical Computer Science 196 (1998) 289-317 297

iterations of a loop. Multiple arrays can be pushed out of the program to multiple

data clients. More details about how the push model is used will be presented in

Section 7.1.

5.2. The pull model

The push model is adequate if the programmer knows exactly which arrays they wish

to visualize and when they want to view them. However, to support a more interactive

and flexible approach to array visualization, DAQV implements the pull model which

allows program execution to be controlled and arrays to be selected for visualization

through an external interface. An example of such an interface that uses a debugger

metaphor will be presented in Section 7.1.

The pull model allows the programmer to repeatedly run an HPF code for a pe-

riod of time and then extract data values from the distributed arrays of interest.

Two types of clients are used in the pull model. Data clients process data values

from arrays just as they did in the push model. In fact, any data client that works

in the push model also works in the pull model because the pull model is layered

on top of the push model. In addition, though, the pull model requires a control

client to direct program execution and to configure and initiate array transfers to data

clients.

Both models support open interfaces for data transfer, allowing new data clients to be

developed. The pull model also supports an open control interface through which new

DAQV control clients can interact with the program. But perhaps more interestingly,

DAQV functionality can be incorporated into other tools (e.g., a debugger) through

this simple interface.

The primary conceptual difference between the push and pull models is where the

decision to extract an array originates. The names “push” and “pull” are meant to reflect

this difference in perspective. In the push model, the HPF program itself “pushes”

data out, while in the pull model, an external client reaches in and “pulls” data out.

However, the implementation of these very different conceptual models is built upon a

common infrastructure supported by DAQV. This will be a large part of the discussion

of DAQV’s implementation.

6. Implementation

Our goal with DAQV is to facilitate simple and useful conceptual models for dis-

tributed array collection and extraction, and to implement those models in a high-level,

portable manner. The first of these goals (the design and functionality of the push and

pull models) has already been discussed in the previous sections. This section explains

how we have met the implementation goals. It also discusses the software mechanisms

and requirements we have developed for DAQV in four areas: procedural interface,

client/server interface, underlying mechanisms, and system requirements.

298 S. T. Hackstadt, A. D. Malony I Theoretical Computer Science 196 (1998) 289-317

Table 1

The procedural interface between HPF and DAQV is a small set of subroutines that the user, a preprocessor,

or a compiler inserts into the HPF source code

Type Subroutine Arguments Model Description

Setup

daqvmode

daqv-register

daqv_conf ig_push

mode Push Sets the DAQV operational model

Pull (push, pull, or off) to be used by this

program

array-id, name, Push Gives DAQV a handle on a distrib-

symbol, type, rank, Pull uted array for later access

diml, dim2, .

array-id, port, size Push Establishes communication parameters

between DAQV and a data client

for a registered array

Access daqv_push array-id Push Causes DAQV to send the values of

a registered array to the appropriate

data client

daqv_yield Pull Causes HPF program to yield execution

control to DAQV

Control daqv-pull-enable PO* Pull Activates yield points; control client

will be notified at next yield point

daqv_pull_disable Pull Deactivates yield points; the control

client will not be notified at future

yield points

6.1. Procedural interface

DAQV’s core requirement is to support interaction with HPF programs. In part,

this interaction is similar to what might be provided by a HPF debugger. One would

want the ability to set breakpoints in the program where distributed array data can be

accessed in some manner. However, a HPF debugger may not provide an interface for

distributed array query based on HPF semantics, relying instead on low-level support

for gathering array data on different processing nodes. This system dependency defeats

DAQV’s goal of portability, making it too reliant on the target compiler or machine.

Instead, we chose to implement key components of DAQV as HPF subroutines, allow-

ing array access and other functions to employ the HPF compiler and runtime system

automatically. In this respect, we view DAQV as a language-level tool design and

implementation.

The high-level operation of DAQV demands a different method for interacting with

the HPF program than what a HPF debugger can provide. Our solution is to imple-

ment DAQV as a library that is linked with the HPF object file, creating a proce-

dural interface between the HPF program and the distributed array server component.

A small set of seven subroutines, described in Table 1, handles initialization, registra-

tion of arrays, configuration of data clients, and data extraction.

Currently, the DAQV interface subroutines are inserted manually by the program-

mer. If the compiler supports it, DAQV routines could be inserted automatically. For

S. T Hackstadt, A. D. Malony I Theoretical Computer Science 196 (1998) 289-317 299

Table 2

The DAQV event protocol extends functionality for program control, communication configuration, and array

extraction to clients

Event Type

YIELD

CONTINUE

Server-to-client

Client-to-server

CONFIGPULL Client-to-server

PULL Client-to-server

GETREG_ARRAYS

STATUS

Client-to-server

Client-to-server

Server-to-client

Description

Informs control client that program has yielded

Instruct DAQV to let the HPF program continue

execution

Set data client communication parameters for a

specified array

Instruct DAQV to send data values from a specified

array to the appropriate data client

Request a list of registered arrays from DAQV

Send current status and request status from other

example, PGI’s HPF compiler, pghpf, automatically inserts line- and/or function-level

tracing routines into the HPF source code [26]. By linking in the DAQV library in

place of the default tracing routines, DAQV uses the calls to these routines as yield

points, places in the program where distributed data can be accessed.

6.2. Client/server interface

DAQV assumes that the HPF implementation exhibits a SPMD execution model with

several separate but identical processes each operating on small pieces of larger arrays.

Because DAQV is a library, it should respect the execution semantics of the HPF

program. However, since DAQV supports a client/server interface it is not possible

for all HPF processes to behave exactly the same when the distributed array server

is executing; in particular, one process must be identified as the DAQV “manager

process” and play the role of the communication server. In general, any operation

dealing with communication or data buffering is executed only by the DAQV manager.

DAQV provides a compiler-specific process identification macro to determine who is

the manager.

Conceptually, the client/server interface supported by DAQV exists between the

entire HPF program (i.e., all SPMD processes representing the HPF program) and

external data and control clients. From an implementation viewpoint, however, only

the DAQV manager process operates as the communications server; the other HPF

“worker” processes cooperate with the manager to effect DAQV operations. DAQV

uses a bidirectional event protocol (described in Table 2) between the HPF server and

the data clients, in both the push and pull models. In the push model, data clients

respond to array data transmissions with a confirmation that signals DAQV to let the

HPF code continue executing (i.e., the data client’s reception of the data is synchronous

with program execution). The pull model uses a more sophisticated event protocol to

interact with the control client. Events that come into DAQV are received only by the

manager HPF process; some mechanism for informing the other HPF processes about

300 S. T Hackstadt, A. D. Malony I Theoretical Computer Science 196 (1998) 289-317

events is needed. Section 6.3 will discuss in detail how event sharing is accomplished

between the manager and worker processes. We continue here by describing the DAQV

protocols and client requirements.

6.2.1. Event protocol

DAQV’s event protocol, as described in Table 2, consists of a small set of textual,

list-based events that are primarily used to interact with control clients. The YIELD

event is sent from the server to the control client whenever the HPF program encoun-

ters a daqv_yield() procedure call. The event contains information about where the

program is stopped (e.g., line number, function name) as well as a list of registered

arrays and their descriptions. After sending this event, the distributed array server waits

for a reply. When the server receives a CONTINUE event, execution control is trans-

ferred back to the HPF program. But before sending the CONTINUE event, the control

client can issue several other events: CONFIG-PULL instructs DAQV how to set the

data client communication parameters for a particular array; PULL instructs DAQV to

send data from a specified array to the appropriate data client; and GET_REGGARRAYS

requests a list of registered arrays from the server.

62.2. Data protocol

The data protocol used by DAQV is made up of two components: raw data val-

ues from distributed arrays are prefaced by “metadata” which describes the values.

In particular, the metadata contains the ID of the array being sent, the textual name

of the array, its rank and dimensions, and the data format that the raw values are

in. Eventually, the metadata will be extended to provide semantic information about

how the data values being sent relate to the original distributed array. Metadata could

indicate, for example, if an array was sampled down before being sent, or if the data

sent to a client actually represents the difference of two program arrays.

6.2.3. Client requirements

DAQV is an open framework that is intended to work with a variety of different data

clients. Efforts have been made to allow existing visualization and analysis tools to be

easily ported for use with DAQV. A data client has very few requirements. First, the

current implementation uses only sockets for communication. A client must be able to

respond over a socket with a simple text-based confirmation event after receiving data.

Second, a client must be able to parse the data being sent to it by DAQV. Currently,

we have developed three data clients. The first of these clients, Dandy, displays 2D

arrays as a color-mapped grid and was easily ported from the PC++ Tau tools [4].

Next, the Viz visualization environment [14] has been extended to support interaction

with DAQV. Dandy and Viz will be described in more detail in Section 7.1. The

third client functions as a module within the IRIS Explorer visualization environment.

The module reads DAQV data from a socket and returns an Explorer “lattice” data

structure which can be further manipulated and/or visualized in the environment. The

S. T. Hackstadt, A. D. Malony I Theoretical Computer Science 196 (1998) 289-317 301

SUBROUTINE DAQV_PUSH_2D_INT(A,Ml,M2)
INTEGER Ml, M2, I, J
INT.EGER A(l:Ml,l:MZ)

CHPF$ INHERIT A
INTEGER ITMP(NUMBER_OF_PROCESSORSO)

CHPF$ DISTRIBUTE ITMP(CYCLIC)
DO I = 1,Ml

DO J = l,M2
ITMP(1) = A(I,J)
CALL DAQV_BUFFER_INT(ITMP)

ENDDO
END DO

END SUBROUTINE DAQV_PUSH_%D_INT

Fig. 1. An array access function written in HPF for two-dimensional arrays of integers.

use of scientific visualization packages is further discussed in Section 7.3 and examples

can be seen in Figs. 7 and 8. Work on other new clients is ongoing.

Control clients must be more sophisticated than data clients in terms of the events

that they must handle. They must accept and/or read the events listed in Table 2. A C-

library has been developed for supporting event processing; support for other languages

(e.g., Tcl/Tk) is under consideration. Furthermore, a control client usually interacts with

the user. As part of our work, we have created command-line and graphical control

client interfaces (see Section 7.1). More importantly, though, we see the DAQV pull

model and the specification of control events as establishing a framework for other

tool developers. In particular, it provides a simple interface that can be incorporated

into other parallel tools to gain high-level access to distributed data in a flexible and

well-defined manner.

6.3. Underlying mechanisms

We have reached a point where a detailed discussion of two critical yet subtle com-

ponents of DAQV is possible. The majority of the high-level concepts, functionality,

and even implementation of DAQV that have been presented thus far, rely on two

“mechanisms” implemented in DAQV. These two mechanisms, array access and event
sharing, play a critical role in DAQV’s operation. Furthermore, they are the compo-

nents of the framework that are implemented in HPF itself, allowing DAQV to build on

HPF’s high-level language system and semantics for array access. Our implementation

is innovative and deserves explanation.

63.1. Array access functions
Because an HPF compiler can generate code automatically to access distributed data,

DAQV can implement its access capabilties in the HPF language itself. Thus, DAQV

provides a library of array access functions written in HPF that accept arrays of dif-

ferent type and rank. The current library is extendible to allow for new array structures

and operations. Fig. 1 shows an example of an access function for a two-dimensional

array of integers.

302 S. i? Hackstadt, A. D. Malony I Theoretical Computer Science 196 (1998) 289-317

SUBROUTINE DAQV_BVENT_SHARE(CMD_SUM)
INTEGER CMD_SUM
INTEGER CMD(NUMBER_OF_PROCESSORS())

CHPF$ DISTRIBUTE CMD(CYCLIC)
DO I=l,NUMBER_OF_PROCESSORS()

CMD(I) = cMD_sUM
END DO
cMD_sUM = SUM(CMD)
END SUBROUTINE DAQV_EVENT_SHARE

Fig. 2. A simple routine written in HPF for event sharing among HPF processes.

The decision to extract an array can come from two places: the HPF program in push

mode (via daqv_pushO) or the control client (via a PULL event). Both of these actions

ultimately result in the same internal DAQV code being invoked. Currently, DAQV

determines the appropriate access function to use based on array rank and element type,

though we plan to extend the control client event protocol to allow runtime selection

of array access functions. It then creates the calling context for the access routine

and invokes it. An array’s dimensions are passed in as arguments, and the subroutine

inherits the distribution for the incoming array. Compiler-specific optimizations can be

built into the access function. In Fig. 1, e.g., the array ITMP is used to reduce a data

broadcast to a point-to-point communication on each iteration.

63.2. Event sharing
While DAQV presents the

clients, the manager process

appearance of a unified distributed array server to external

is really the one performing the communication. From a

SPMD control point of view, this raises an interesting question: what are the other

worker processes doing during this time? An example should clarify this.

Consider the pull model, and suppose each HPF process has encountered a

daqv_yield() call. Each process separately transfers control to the DAQV portion

of its executable. The manager process immediately notifies the control client that the

HPF program has yielded to DAQV and then waits for a reply. Meanwhile, the other

processes determine that they are indeed workers and enter into an event sharing loop

(to be explained). Eventually, the manager receives a request from the control client,

say, to pull an array. However, since all HPF processes must participate in the call to

the array access function (since it is implemented in HPF), the other processes must

be notified of this request and make the “same call” as the manager to the access func-

tion (as required by HPF’s SPMD execution semantics). This is done with a control

mechanism called event sharing.
To accomplish this, each worker process calls the daqv_event_ share 0 routine

shown in Fig. 2 to get the event information from the manager. This allows them to

update their DAQV event state to be consistent with the manager’s and to function

the same as the manager does based on the events received from the control client.

As seen, DAQV implements this routine using the HPF language.

Each worker process enters this routine with the value of CMI_SUM set to zero (note

that CMD-SUM is passed by reference); the manager process, however, calls the routine

S. T. Hackstadt, A. D. Malony I Theoretical Computer Science 196 (1998) 289-317 303

with an integer value (representing an event code, parameter, or other information)

that is to be shared with the other processes. The routine distributes one element of

the CMD array to each process (workers and manager) on each processor. Each process

initializes its element of the array to the value with which it entered the procedure. The

global sum reduction is performed, and the result is assigned back to CMD-SUM (as a

procedure side-effect). Because only the manager’s initial CMLSUM value is non-zero,

the new value of CMD-SUM (in every process) at the end of the reduction is this value,

as we want. Now each process can return to the DAQV code to perform together

whatever operation is required based on the value of CMDLSUM.

This is how event sharing is implemented in DAQV to remain consistent with HPF

execution semantics. It is probably not the obvious solution when first faced with the

problem of sharing information among several processes, but in the context of DAQV,

it is both an elegant and very portable one.

6.4. System requirements

With a primary goal being portability, DAQV does not require any modifications to

a HPF compiler, however certain assumptions have been made in the DAQV reference

implementation. Currently, DAQV assumes that HPF data parallelism is achieved with

a SPMD execution model. (In many respects this is a more difficult problem when

compared to, say, a multithreaded implementation.) An HPF program must be able

to invoke C routines, and C routines so invoked must be able to call back to HPF.

The process of array registration requires knowledge about the transformations applied

to function and subroutine arguments by the parallel language compiler. However,

the information required is minimal and so far has not required vendors to divulge

proprietary information. DAQV can optionally take advantage of compiler-specific

tracing/profiling support, though this is not required by the reference implementation.

Finally, in two instances (array access functions and event sharing), DAQV requires

HPF distribution directives to be carried out by the compiler, i.e., DAQV will not

work if the directives are ignored. With these minimal requirements and assumptions,

DAQV is able to achieve a high degree of portability across machines and compilers,

as well as other languages.

7. Results and evaluation

Ultimately, the efficacy of tools for parallel scientific computing must be evalu-

ated with respect to how well they aid the problem solving process. Clearly, our

intent with DAQV is to produce a tool that addresses a user requirement for parallel

program interaction with distributed data structures and, thus, benefits the problem solv-

ing application where this requirement is present. However, as a framework, DAQV

also seeks to improve how a DAQV tool instance is created, including how it can

be ported to different problem-solving platforms, how it can be extended to add new

304 S. T Hackstadt, A. D. Malony I Theoretical Computer Science 196 (1998) 289-317

capabilities, and how it can interoperate with other tool components. Evaluation of these

goals should also be based on experiences. In this section, we demonstrate through real

examples how the DAQV framework has been instrumental in producing effective tools

for scientific applications, how it has allowed the DAQV model to be ported to dif-

ferent computational platforms, and how it has enabled the inclusion of client tools in

the problem solving environment.

7. I. Applications

One means of validating the DAQV framework, as proposed above, is to evaluate its

use in specific application instances. In this section, we first explain a simple application

to illustrate how DAQV concepts are used. Then, we describe how DAQV has been

applied to a larger, scientific application.

7.1.1. Laplace heat equation
To illustrate how to use the current implementation of DAQV, we will consider a

HPF program that implements a finite-difference method for solving the Laplace heat

equation iteratively [131. Once begun, the code executes a five-point stencil operation

on the sample surface until a steady state is reached to within some tolerance. DAQV

is used in push mode to visualize the heat flow through the two-dimensional surface

at each iteration of the main loop.

The sequence of images in Fig. 3 was generated by the Dandy data client

(Section 6.2). The displays show the progression toward a steady state in the two-

dimensional array representing the surface to which a uniform heat source has been

applied. These displays were created using DAQV’s push model. Under this scheme,

when the program is executed and reaches the call to DAQV’s daqv_conf ig_push(>

routine, the Dandy client connects to the HPF/DAQV program. At this point, execution

resumes and the animation of the data values begins. At each loop iteration, the new

array values are sent to Dandy each time daqv_pushO is called. The Dandy interface

(not shown in Fig. 3) allows the user to pause/resume the animation and redraw the

display. Dandy automatically determines the range of the data values and maps them

onto a fixed colormap. However, if the viewer wishes to fix the color range across

several iterations, the automatic scaling feature can be disabled, allowing minimum

and maximum values to be set manually. This feature can also be used to identify

outliers or to identify values beyond a certain threshold. For example, Fig. 3(b) shows

values above the specified range as white. As the algorithm nears convergence, these

values move into the fixed data range, as seen in Fig. 3(c).

The same application can also be used with DAQV’s pull model. Fig. 4 shows several

windows from a DAQV session. A prototype control client interface (lower, in back)

supports several DAQV features. A source code browser allows the viewer to control

program execution by simply double-clicking on the line to which the code should

run next. Alternately, the user may use the controls in the upper left portion of the

control client to specify a number of yield points (steps) to skip before reporting back.

S. T. Hackstadt, A. D. Malony I Theoretical Computer Science 196 (1998) 289-317 305

Fig. 3. Convergence of the finite method for solving the Laplace Heat Equation can be seen by visualizing

the two-dimensional array representing the heated surface.

In the upper right portion of the control client (partially obscured) is a list of arrays in

the program that have been registered with DAQV. In this case, Surface, a 32 x 32

real-valued array, has been registered twice so that it may be viewed with two different

data clients. The button immediately to the left of each registered array entry allows

the user to select a data client for visualizing that array. The pull configuration dialog

(lower right) presents a list of preconfigured tools (specifiable in a resource file) in a

list box, but the user may also provide their own parameters explicitly. Once an array

is configured, the “Pull” button next to its entry in the registered arrays list is enabled.

This button causes a PULL event to be sent to the server and makes DAQV send the

requested array to the appropriate data client. The first registered array, Surf acel,

has been mapped to the Dandy client in the upper left part of the screen. Similarly,

Surface2 is being sent to a more complex, three-dimensional display built in the Viz

visualization environment builder [141.

306 S. T Hackstadt, A. D. Malony I Theoretical Computer Science 196 (1998) 289-317

Fig. 4. A DAQV session with a control client. A simple two-dimensional data client and a three-dimensional

data client both represent the 2D array from the Laplace Heat Equation code.

7.1.2. Seismic tomography

As part of a recent effort to build a domain-specific environment for seismic to-

mography [8], the DAQV framework was used to both extract and modify simulation

data and control the program at runtime. As an integral part of the interactive steering

and visualization environment, DAQV provided access to the data needed by marine

seismologists studying the formation and structure of volcanic mid-ocean ridges.

Seismic tomography is used to construct 3D images from seismic wave information

recorded by sea-floor seismometers. The technique, similar to that used in medical

CAT scans, uses recorded arrival times of acoustic energy from explosive sources

or earthquakes. Energy from the sources propagates downward into the Earth and is

then refracted back to the surface by the positive velocity gradient of the crust and

mantle. The travel time of a seismic wave from its source to a receiver depends on the

velocities sampled by the wave along its path. The computation of velocity structure

S. T. Hackstadt, A.D. Malony I Theoretical Computer Science 196 (1998) 289-317 307

from travel times is achieved by a search of the parameter space, with each evaluation

requiring first a forward propagation of ray paths and then an inverse calculation.

The basic computation as described, however, is only part of a much larger analysis

process that can take several months. The full analysis requires extensive, domain-

specific input from a geoscientist. In a sense, the scientist “steers” the generation of

the final model, examining intermediate results to check the validity of the inputs,

establishing parameter values, optimizing the calculation, testing hypotheses, and de-

termining the robustness of the final model. The goal of our environment was to support

this total process.

To create appropriate support tools, we broke the overall problem-solving process

for seismic tomography into a series of seven steps and generated a list of domain-

specific requirements for each of those steps. The primary requirement was a major

improvement in performance. This was initially achieved by a trivial parallelization of

the algorithm and execution on an 8-processor SGI Power Challenge. Our analysis also

yielded two requirements which DAQV addressed or helped to address: (1) interactive,

on-line visualization; and (2) computational steering. (For more details on each step

and its associated requirements, see [8].)

Interestingly enough, the need for these capabilities was as much a result of the

performance improvements gained by the parallelization of the seismology application

as it was the scientists desire for a more robust and flexible analysis environment.

In the original environment, a “run” of the application consisted of a set of iterations

that generated a single model refinement. At the end of the run, model data was dumped

to a file, reformatted, and imported into a basic 2D visualization tool for analysis. The

seismologists adjusted the constraint parameters of the model for the next run. When

new parameters were determined, the application was re-executed. This process was

acceptable to the scientists because of the long computation time (about 2 hours); on-

line analysis would result in significant waiting time for the scientists. However, in the

parallelized version, only 6minutes were required to generate a new model. Suddenly,

a tighter coupling between model generation and model evaluation was possible (and

desired) - a coupling that did not require all the separate steps of saving, reformat-

ting, importing, and analyzing the data, and then restarting the application. This shift

in the computational analysis bottleneck from model generation to model evaluation

demanded that the evaluation phase be better supported by the environment. That is,

a solution to “close the loop” of the evaluation phase was needed.

The keys to achieving this goal were (1) avoiding writing model data to files and

then reformatting it before visualization and analysis, (2) allowing the application to

remain in an executing state while model evaluation occurs, and (3) allowing new

model parameters to be communicated back to the (still) executing program for the

next set of iterations. The DAQV framework was well-suited to these needs. Note,

however, that the third item listed above is not something directly supported by the

DAQV framework previously described.

DAQV’s simple procedural interface made it easy for the seismologists to access

model data at runtime and pass it to cooperating tools for analysis. Much of the

308 S. T. Hackstadt. A.D. Malonyl Theoretical Computer Science 196 (1998) 289-317

(a)

(b)

Fig. 5. Example visualizations from the seismic tomography application environment made possible by

DAQV; (a) allows carved regions of the velocity model to be compared to the individual ray paths; (b) an

isosurface reveals undersampled regions of the forward space model; (c) reveals a previously undiscovered

magma chamber beneath the rise; and (d) shows the computation of the travel time wavefront from a seismic

receiver.

model analysis was supported by sophisticated 3D visualizations created in the Viz

environment [14] mentioned earlier. Viz supports rapid visualization prototyping in a

system that can be extended with application-specific visualization abstractions. Viz

was used to build a visualization environment for the seismic tomography application

that acted as both the control client and several data clients. Any data that Viz used

to create visualizations was obtained or simply delivered through the DAQV request

and delivery protocols. Some examples of the visualizations made possible by DAQV

are shown in Fig. 5, while elements of the control and data client user interfaces are

shown in Fig. 6.

Getting data out of the seismic tomography application only closed the model eval-

uation loop halfway; there was still a need to communicate the new parameter values

S. T. Hackstadt, A. D. Malony I Theoretical Computer Science 196 (1998) 289-317 309

(4

Fig. 5. (Continued)

back to the running program for the next set of iterations. These values are derived by

the seismologist and the interactive visualizations provided by Viz. What was needed

was a way to send values back to the application, preferably by the same mechanisms

that were used to get data in the first place (i.e., the DAQV event interface). The

extensible nature of DAQV’s framework made it very simple to incorporate the abil-

ity to alter HPF program variables based on events received from the external control

client. So, at the end of the evaluation phase and when new constraint parameters were

310 S. T. Hackstadt, A. D. Malony I Theoretical Computer Science 196 (1998) 289-317

(b)

Fig. 6. User interfaces of DAQV control, data, and steering clients for the seismic tomography application.

The main control panel (a) is used to start, stop, and continue execution of the program. The steering

window (b) allows the scientist to adjust the model constraint parameters. The data client window (c) is

used to control the visualization of program data.

established, the Viz control client simply sent a new DAQV “steer” event to the server

to effect the steering operation on the program variables.

Similarly, while the DAQV model proposes the use of just one instrumentation

model (push or pull) in a single execution, the seismographers desired access to both

instrumentation models during a single program execution. That is, there were cer-

tain HPF arrays that the programmers wanted to send out on a regular basis (push

model), and there were some that they only wanted under certain circumstances (pull

model). The DAQV framework was easily adapted to accommodate this requirement

as well.

Using DAQV in this manner, the graphical user interfaces of the control client

(Fig. 6) allow the seismologist to specify input data, constraint parameters, and the run-

time options needed to launch, start, stop, and continue the execution of the program.

The Viz-based data clients let the seismologist turn on and off specific visualization

features to observe the model space, ray path calculations, and travel-time fields. In

this way, the DAQV framework facilitates a tight coupling between the executing

application and those analytical processes of the seismologists that rely on parallel

program interaction and data visualization.

S. T Hackstadt, A. D. Malony I Theoretical Computer Science 196 (1998) 289-317 311

7.2. Framework portability

As the primary derivative of a Ptools project, the DAQV reference implementation

is required to function on two platforms. However, the definition of “platform” as it

pertains to DAQV is somewhat ambiguous. For most projects, a platform refers to

a specific brand of machine. For DAQV, though, that level of portability is trivially

achieved since we code to the HPF language, not the specific HPF compiler. Thus,

e.g., in the case of DAQV using pghpf, we met the Ptools portability requirement

simply by demonstrating DAQV running on an SGI Power Challenge (or workstation)

and a Sun workstation. Instead, for DAQV we identified three degrees of portabil-

ity: machine, compiler, and language. Machine portability assumes use of a given

compiler for a given language and refers to DAQV’s ability to be used on different

computer hardware; compiler portability assumes only a given language and refers to

DAQV’s ability to be used with different compilation systems; and language porta-

bility refers to DAQV’s applicability to other language or programming model tar-

gets. As discussed earlier, we view portability as a means of validating our notion

of a framework. We have successfully demonstrated DAQV’s portability in all three

degrees.

7.2.1. Machine portability

DAQV was developed using The Portland Group’s pghpf compiler [25] on SGI

workstations and Power Challenges. With no changes, DAQV will also work on Solaris

workstations. With only minor modifications, DAQV was recently ported by the Cornell

Theory Center to run with pghpf on an IBM SP2. Initial tests on porting DAQV to

pghpf on a Cray T3D also look very promising.

7.2.2. Compiler portability

DAQV has been ported with varying degrees of success to two other HPF compil-

ers. First, Cornell Theory Center attempted a port of DAQV to IBM’s xlhpf com-

piler that was only partially successful because of limitations in the compiler. In

particular, xlhpf did not support HPF’s INHERIT directive, which, as alluded to in

Sections 6.3 and 6.4, is necessary in the array access functions. The implication of

this was that the implementation of the array access functions was unable to leverage

HPF semantics and the xlhpf runtime support to carry out data collection. Second, at

a recent conference we also discovered that DAQV worked without any modifications

to the public domain ADAPTOR/HPFIT compilation system [2,3]. Future compiler

targets may include Applied Parallel Research (APR), DEC, and the D System/dHPF

compiler [I].

7.2.3. Language portability

So far, two attempts at moving DAQV beyond HPF have been made and both have

been largely successful. First, DAQV was successfully ported to a Fortran90/message

passing code at Los Alamos National Laboratory (LANL) [Ill. A primary distinction

312 S.T. Hackstadt, A.D. Malonyl Theoretical Computer Science 196 (1998) 289-317

Fig. 7. DAQV functionality can be extended to scientific visualization packages like IRIS Explorer by

creating a module within the environment that acts as a DAQV data client. Connecting to a DAQV server is

accomplished by specifying a hostname and TCP/IP port number. Basic controls for updating the visualization

are also provided. The module outputs data in the primitive format of the application environment allowing

the data to be manipulated and displayed by other modules in the environment.

between HPF and this programming model is the lack of a global address space. That

is, each node only knows about its local elements, and access to remote values is

achieved through explicit message passing. This complicates our ability to provide

general array access functions. The approach that was taken in this case was to create

application-specific array access functions that understand the data decomposition and

substitute them for the default ones in the DAQV library. A general port of DAQV to

this model, currently in progress, will support commonly used distributions and simul-

taneously support user-defined access functions. The second language target was the

POOMA/C++ application framework under development at LANL [27]. In this case,

robust language semantics allowed us to create generic access functions for POOMA

Field objects analogous to those used with HPF. While a full port to POOMA has

not been completed, the concept has been proven and demonstrated [lo].

We believe that the DAQV model (and even parts of its implementation) can be

applied in many situations where distributed data is involved. For instance, in the PC++

project, we implemented early versions of the DAQV design [S]. We now intend to

retarget the DAQV reference code to the HPC++ system [16]. More generally, we

S. T Hackstadt, A. D. Malony I Theoretical Computer Science I96 (1998) 289-317 313

(b)

Fig. 8. Displays created within IRIS Explorer can take advantage of existing, advanced scientific visualization

capabilities. For example, the visualization program in Fig. 7 superimposes contour lines over a 3D displaced

grid surface to create the displays in (a), (b), and (c). The data source is the Laplace Heat Equation program

discussed in Section 7.1 and shown in Figs. 3 and 4.

314 ST. Hackstadt. A.D. Malonyl Theoretical Computer Science 196 (1998) 289-317

Cc)

Fig. 8. (Continued)

see no intellectual difficulties with porting DAQV to SPMD environments where some

runtime means (language or library) for accessing distributed data exists that can be

merged with the model (e.g., SPMD parallel array libraries, such as P++, built using

PVM or MPI).

7.3. Data client portability

DAQV also exhibits another, orthogonal notion of portability with respect to its

data clients. A DAQV data client is portable in that it need not be tied to a specific

DAQV implementation. The DAQV data protocol defines a standard interface through

which array data is formatted and delivered to external clients regardless of the system

(e.g., HPF, Fortran90, or C++) from which the data originates. In its most general

form, a DAQV data client need only understand this data format. ’ Currently, this

format is a simple row-major ordering of the data prefaced by a small amount of

metadata (as described in Section 6.2). In the future, DAQV will include support for

standard data formats like HDF to extend even further the interoperability of the DAQV

framework.

’ Data clients need not be completely generic; they may be as application-specific and/or integrated into
a programming/analysis environment as desired. The seismic tomography environment is a good example of
this approach. A data client can take either approach depending on its intended use.

S. T Hackstadt, A. D. Malony I Theoretical Computer Science 196 (1998) 289-317 315

A good example of data client portability is the IRIS Explorer module described

in Section 6.2, and shown in Figs. 7 and 8. Instances of this module could be used

to collect data from any DAQV implementation. An environment like IRIS Explorer

would easily support collecting and visualizing data from multiple DAQV applications,

even if those applications were implemented in different languages and running on

different machines.

8. Conclusions and future work

In its current form, DAQV should be regarded as a reference implementation that

demonstrates functionality, specifies components and their system requirements, and

defines APIs and transport protocols. In fact, being the primary derivative of a Ptools

project, the reference implementation serves as a prototype for vendors to evaluate and

potentially adopt.

If the Ptools reference platform were to be adopted by a HPF compiler vendor,

there are some possible opportunities for improvement. In particular, DAQV lends

itself nicely to compiler/preprocessor support for instrumentation. DAQV already uti-

lizes to some extent automatic instrumentation in the PGI compiler, but one can easily

imagine more sophisticated front-end support for selecting arrays for access (automat-

ically generating registration, push, and yield code), enabling and disabling DAQV

operation (generating mode, enable, and disable code), and providing information con-

cerning when arrays are in and out of scope. Another improvement that an HPF com-

piler vendor could provide is in the (possibly automatic) generation of access functions

for distributed arrays. Coding these by hand is not always easy nor does it always lead

to efficient execution. With their sophisticated program analysis infrastructure, HPF

compilers could perhaps provide more support to the programmer in this regard. Fi-

nally, we have not discussed DAQV’s ability to provide information about the dis-

tribution of arrays, concentrating more on the support for array data access instead.

The HPF standard does provide the ability to get this information through intrinsic

procedures, and DAQV could trivially incorporate the request, collection, and delivery

of this information into its event and/or data protocols.

As demonstrated in the seismic tomography application, the DAQV framework does

allow distributed data and program variables to be altered as well as accessed. The

ability to extend the event protocol and include appropriate access functions makes

this capability possible; we intend to do so. As a result, DAQV could be applied to

application scenarios where changing runtime array data or program control variables is

beneficial. We believe that the benefit of the high-level, semantic-based query provided

by DAQV will allow sophisticated client tools to be developed for interaction with

the runtime data. In particular, we are currently working on extending the client-side

infrastructure so as to facilitate the binding of distributed array and program variables,

as provided by DAQV, with interactive 3D visualizations of the array data and program

control.

316 S. T. Hackstadt, A. D. Malony I Theoretical Computer Science 196 (1998) 289-317

Availability

The DAQV reference implementation, ported implementations, documentation, and

more detailed information can be found on our web pages at http://www.cs.uoregon.

edu/-hacks/research/daclv/ or on the Parallel Tools Consortium web pages at http://

www.ptools.org/.

Acknowledgements

The authors would like to thank the Parallel Tools Consortium, Cornell Theory

Center, Los Alamos National Laboratory, The Portland Group, Inc., the Computational

Science Institute at the Univ. of Oregon, and the members of the ParaDucks research

group at the University of Oregon.

References

[l] V. Adve et al., An integrated compilation and performance analysis environment for data-parallel

programs, in: Proc. Supercomputing ‘95, ACM, New York, 1995.

[2] T. Brandes, ADAPTOR programmer’s guide, version 4.0, Report ADAPTOR 3, German National

Research Center for Information Technology (GMD), 1996.

[3] T. Brandes, S. Chaumette, M.-C. Counilh, A. Darte, J.C. Mignot, F. Desprez, J. Roman, HPFIT: a set of

integrated tools for the parallelization of applications using high performance fortran: Part I: HPFIT and

the TransTOOL environment, in: Proc. 3rd Workshop on Environments and Tools for Parallel Scientific

Computing, SIAM, Philadelphia, 1996.

[4] D. Brown, S. Hackstadt, A. Malony, B. Mohr, Program analysis environments for parallel language

systems: the TAU environment, in: Proc. Workshop on Environments and Tools For Parallel Scientific

Computing, SIAM, Philadelphia, 1994, pp. 162-171.

[5] D. Brown, A. Malony, B. Mohr, Language based parallel program interaction: the breezy approach,

in: Proc. Intemat High Performance Computing Conference (HiPC’95), Tata McGraw-Hill, New Delhi,

1995.

[6] D. Cheng, R. Hood, A portable debugger for parallel and distributed programs, in: Proc. Supercomputing

‘94, IEEE, New York, 1994, pp. 723-732.

[7] C. Cook, C. Pancake, What users need in parallel tool support: survey results and analysis, in: Proc.

Scalable High Performance Computing Conference, IEEE, New York, 1994, pp. 40-47.

[8] J. Cuny, R. Dunn, S. Hackstadt, C. Harrop, H. Hersey, A. Malony, D. Toomey, Building domain-specific

environments for computational science: a case study in seismic tomography, Intemat. J. Supercomp.

Applications and High Performance Computing 11 (3) (1997), Fall 97.

[9] R. Haber et al., A distributed environment for nmtime visualization and application steering in

computational mechanics, CSRD Tech. Report 1235, University of Illinois at Urbana-Champaigne, 1992.

[lo] S. Hackstadt, DAQV/Pooma Porting Notes, Department of Computer and Information Science,
University of Oregon, 1996. Available at http:// www.cs.uoregon.edu/Nhacks/research/daqv/updates/.

[l l] S. Hackstadt, LANL Visit Work Summary, Department of Computer and Information Science, University

of Oregon, 1996. Available at http://www.cs.uoregon.edu/Nhacks/researces/.

[12] R. Haimes, pV3: A distributed system for large-scale unsteady CFD visualization, in: Proc. American

Institute of Aeronautics and Astronautics, 1994.

[131 P.B. Hansen, Studies in Computational Science: Parallel Programming Paradigms, Prentice-Hall,

Englewood Cliffs, NJ, 1995.

[14] H. Hersey, S. Hackstadt, L. Hansen, A. Malony, Viz: a visualization programming system, Tech. Report

CIS-TR-96-05, Department of Computer and Information Science, University of Oregon, 1996.

S. T. Hackstadt, A. D. Malony I Theoretical Computer Science 196 (1998) 289-317 317

[I 51 High Performance Fortran Forum, High Performance Fortran Language Specification, Version 1 .O,
Technical Report CRPC-TR92225, Center for Research on Parallel Computation, Rice University, 1993.

[16] High Performance C++ Working Group, HPC++ Whitepapers and Draft Working Documents,

Supercomputing ‘95 Workshop, 1996. Available at http://www.extreme.indiana.edu/hpc++/.

[17] A. Karp, M. Hao, Ad hoc visualization of distributed arrays, Tech. Report HPL-93-72, Hewlett-Packard,

1993.

[181 A. Kempkes, Visualization of multidimensional distributed arrays, excerpts from Master’s Thesis,

Research Center Juelich, Germany, 1996.

[19] D. Kimelman, P. Mittal, E. Schonberg, P. Sweeney, K. Wang, D. Zemik, Visualizing the execution

of high performance fortran (HPF) programs, in: Proc. 9th Intemat Parallel Processing Symp. (IPPS),

IEEE, New York, 1995, pp. 750-757.

[20] C. Koelbel, D. Loveman, R. Schreiber, G. Steele Jr., M. Zosel, The High Performance Fortran Handbook,

MIT Press, Cambridge, MA, 1994.

[21] R. Koppler, S. Grabner, J. Volkert, Visualization of distributed data structures for HPF-like languages,

Scientific Programming (special issue High Performance Fortran Comes of Age) 6 (1) (1997) 115-126.

[22] J. May, F. Berman, Panorama: a portable, extensible parallel debugger, in: Proc. ACM/ONR Workshop

on Parallel and Distributed Debugging, ACM, New York, 1993, pp. 96106.

[23] Parallel Tools Consortium @‘tools) DAQV Working Group, Ptools Meeting Summary: Distributed Array

Query and Visualization (DAQV) Project, Department of Computer and Information Science, University

of Oregon, 1995. Available at http://www.cs.uoregon.edu/Nhacks/research/daqv/.

[24] Parallel Tools (Ptools) Consortium, 1996. Available at http://www.ptools.org/.

[25] The Portland Group, Inc., PGHPF User’s Guide, Portland Group, Wilsonville, OR, 1995.

[26] The Portland Group, Inc., PGHPF Profiler User’s Guide, Portland Group, Wilsonville, OR, 1995.

[27] J. Reynders et al., POOMA, in: G. Wilson, P. Lu (Eds.), Parallel Programming Using C++, MIT Press,

Cambridge, MA, 1996.

[28] Thinking Machines Corp., CM-5 Technical Summary, Thinking Machines Corp., Cambridge, MA, 1992.

[29] A. Tuchman, D. Jablonowski, G. Cybenko, Runtime visualization of program data, in: Proc.

Visualization ‘91, IEEE, New York, 1991, pp. 255-261.

