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Abstract

Particle swarm optimization (PSO) is a population-based swarm intelligence algorithm driven by the simulation of a
social psychological metaphor instead of the survival of the fittest individual. Based on the chaotic systems theory, this
paper proposed a novel chaotic PSO combined with an implicit filtering (IF) local search method to solve economic
dispatch problems. Since chaotic mapping enjoys certainty, ergodicity and the stochastic property, the proposed
PSO introduces chaos mapping using Hénon map sequences which increases its convergence rate and resulting preci-
sion. The chaotic PSO approach is used to produce good potential solutions, and the IF is used to fine-tune of final
solution of PSO. The hybrid methodology is validated for a test system consisting of 13 thermal units whose incremen-
tal fuel cost function takes into account the valve-point loading effects. Simulation results are promising and show the
effectiveness of the proposed approach.
� 2009 Published by Elsevier Ltd.
1. Introduction

The objective of the Economic Dispatch Problem (EDP) of electric power generation, whose characteristics are com-
plex and highly nonlinear, is to schedule the committed generating unit outputs so as to meet the required load demand
at minimum operating cost while satisfying all unit and system equality and inequality constraints [1].

Recently, as an alternative to the conventional mathematical approaches, modern heuristic optimization techniques
such as simulated annealing, evolutionary algorithms, artificial neural network, ant colony, and taboo search have been
given much attention by many researchers due to their ability to find an almost global optimal solution in EDPs [2–7].
One of these modern heuristic optimization paradigms is the Particle Swarm Optimization (PSO) [8–10].
0960-0779/$ - see front matter � 2009 Published by Elsevier Ltd.
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PSO is a kind of evolutionary algorithm based on a population of potential solutions and motivated by the sim-
ulation of social behavior instead of the survival of the fittest individual. It is a population-based evolutionary algo-
rithm. Similar to the other population-based evolutionary algorithms, PSO is initialized with a population of random
solutions. Unlike the most of the evolutionary algorithms, each potential solution (individual) in PSO is also associ-
ated with a randomized velocity, and the potential solutions, called particles, are then ‘‘flown’’ through the problem
space.

The approach of composite configuration by deterministic techniques combined with PSO algorithms is a promising
alternative in optimization and must be evaluated. In this paper, an alternative hybrid method is proposed. The pro-
posed hybrid method combines the PSO using chaotic sequences generate by Hénon map in evolution phase and the
implicit filtering (IF) algorithm in the learning phase (after the stopping criterion of chaotic PSO be satisfied) to solve
the EDP associated with the valve-point effect. The IF algorithm is a projected quasi-Newton method that uses finite
difference gradients. The difference increment is reduced as the optimization progresses, thereby avoiding some local
minima, discontinuities, or nonsmooth regions that would trap a conventional gradient-based method. The hybrid
method of optimization adopted in this paper is also denominated in the literature of the hybrid algorithm, algorithm
with local search, memetic algorithm or optimization based in Lamarckian evolution [11,12].

Chaos describes the complex behavior of a nonlinear deterministic system. Optimization algorithms based on the
chaos theory are search methodologies that differ from any of the existing traditional stochastic optimization tech-
niques. Due to the non-repetition of chaos, it can carry out overall searches at higher speeds than stochastic ergodic
searches that depend on probabilities. In this context, the literature contains several optimization algorithms using cha-
otic sequences for solving design problems, such as the presented works in [13–21]. The application of chaotic sequences
instead of random sequences in PSO is a powerful strategy to diversify the population of particles and improve the
PSO’s performance in preventing premature convergence to local minima.

An EDP problem with 13 unit test system using nonsmooth fuel cost function [22] is employed in this paper for dem-
onstrate the performance of the proposed hybrid method. The results obtained with the chaotic PSO approach using
Hénon map and an IF local search were analyzed and compared with those obtained in recent literature.

The rest of the paper is organized as follows: Section 2 describes the EDP, while Section 3 explains the PSO, chaotic
PSO and IF concepts. Section 4 presents the simulation results of the 13 unit test problem optimization and compares
methods to solve the case study. Lastly, Section 5 outlines our conclusions and future research.
2. Description of economic dispatch problem

The objective of the economic dispatch problem is to minimize the total fuel cost at thermal power plants subjected
to the operating constraints of a power system. Therefore, it can be formulated mathematically with an objective func-
tion and two constraints. The equality and inequality constraints are represented by Eqs. (1) and (2) given by:
Xn

i¼1

P i � P L � P D ¼ 0 ð1Þ

P min
i 6 P i 6 P max

i ð2Þ
In the power balance criterion, an equality constraint must be satisfied, as shown in Eq. (1). The generated power
should be the same as the total load demand plus total line losses. The generating power of each generator should lie
between maximum and minimum limits represented by Eq. (2), where Pi is the power of generator i (in MW); n is the
number of generators in the system; PD is the system’s total demand (in MW); PL represents the total line losses (in
MW) and P min

i and P max
i are, respectively, the output of the minimum and maximum operation of the generating unit

i (in MW). The total fuel cost function is formulated as follows:
min f ¼
Xn

i¼1

F iðP iÞ ð3Þ
where Fi is the total fuel cost for the generator unity i (in $/h), which is defined by equation:
F iðP iÞ ¼ aiP 2
i þ biP i þ ci ð4Þ
where ai, bi and ci are coefficients of generator i.
A cost function is obtained based on the ripple curve for more accurate modeling. This curve contains higher order

nonlinearity and discontinuity due to the valve-point effect, and should be refined by a sine function. Therefore, Eq. (4)
can be modified [23], as:
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~F iðP iÞ ¼ F ðP iÞ þ eisin fi P min
i � P i

� �� ��� �� or ð5Þ
~F iðP iÞ ¼ aiP 2

i þ biP i þ ci þ eisin fi P min
i � P i

� �� ��� �� ð6Þ
where ei and fi are constants of the valve-point effect of generators. Hence, the total fuel cost that must be minimized,
according to Eq. (3), is modified to:
min f ¼
Xn

i¼1

~F iðP iÞ ð7Þ
where ~F i is the cost function of generator i (in $/h) defined by Eq. (6). In the case study presented here, we disregarded
the transmission losses, PL; thus, PL = 0.
3. Optimization methods to solve the economic dispatch problem

3.1. Particle swarm optimization

The PSO originally developed by Kennedy and Eberhart in 1995 [8,9] is a population-based swarm algorithm.
Swarm intelligence is an emergent research area with populational and evolutionary characteristics similar to those
of genetic algorithms. Swarm intelligence is inspired by nature, based on the fact that the individual experience of live
animals in a group contributes to the group’s overall experience, strengthening it in relation to others. However, swarm
intelligence differs insofar as it emphasizes cooperative behavior among group members. Swarm intelligence is used to
solve optimization and cooperating problems among intelligent agents.

Similarly to genetic algorithms [24], the PSO is an optimization tool based on a population, where each member is
seen as a particle, and each particle is a potential solution to the problem under analysis. Each particle in PSO has a
randomized velocity associated to it, which moves through the problem space. However, unlike genetic algorithms, PSO
does not have operators, such as crossover and mutation. PSO does not implement the survival of the fittest individuals;
rather, it implements the simulation of social behavior.

Each particle in PSO keeps track of its coordinates in the problem space, which are associated with the best solution
(fitness) it has achieved so far. This value is called pbest. Another ‘‘best’’ value that is tracked by the global version of the
particle swarm optimizer is the overall best value and its location obtained so far by any particle in the population. This
location is called gbest.

The PSO concept consists of, in each time step, changing (accelerating) the velocity of each particle flying toward its
pbest and gbest locations (global version of PSO). Acceleration is weighted by random terms, with separate random
numbers being generated for acceleration toward pbest and gbest locations, respectively. In this work, the gbest version
of PSO is adopted. The gbest (star) version is a fully connected neighborhood relation. Each particle has all the other
particles as neighbors; this implies that the global best particle-position for all particles is identical [25] (see Fig. 1).

The procedure for implementing the global version of PSO is given by the following steps [26,27] (see also the PSO
flow chart in Fig. 2):
Fig. 1. PSO using gbest neighborhood topology.



Fig. 2. Flow chart in PSO approach.
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(i) Initialize a population (array) of particles with random positions and velocities in the n dimensional problem
space using a uniform probability distribution function.

(ii) Evaluate the fitness value of each particle.
(iii) Compare each particle’s fitness with the particle’s pbest. If the current value is better than pbest, then set the pbest

value equal to the current value and the pbest location equal to the current location in n-dimensional space.
(iv) Compare the fitness with the population’s overall previous best. If the current value is better than gbest, then reset

gbest to the current particle’s array index and value.
(v) Change the velocity and position of the particle according to Eqs. (8) and (9), respectively:
viðt þ 1Þ ¼ w � viðtÞ þ c1 � udi;jðtÞ � ½piðtÞ � xiðtÞ� þ c2 � Udi;jðtÞ � ½pgðtÞ � xiðtÞ� ð8Þ
xiðt þ 1Þ ¼ xiðtÞ þ Dt � viðt þ 1Þ ð9Þ
where i = 1,2, . . . ,N indicates the number of particles of population (swarm); t = 1,2, . . . , tmax, indicates the iterations,
w is a parameter called the inertia weight; vi ¼ vi1vi2vin½ �T stands for the velocity of the i-th particle, xi ¼ xi1xi2; . . . ; xin½ �T
stands for the position of the i-th particle of population, and pi = [pi1 pi2, . . . ,pin]T represents the best previous position
of the ith particle. Positive constants c1 and c2 are the cognitive and social components, respectively, which are the accel-
eration constants responsible for varying the particle velocity towards pbest and gbest, respectively. Index g represents
the index of the best particle among all the particles in the swarm. Variables udi, j(t) and Udi, j(t) are uniformly distrib-
uted random numbers in the range [0,1] of the j-th design variable of i-th particle. Eq. (9) represents the position update,
according to its previous position and its velocity, considering Dt = 1.
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(iv) Loop to step (ii) until a stop criterion is met, usually a sufficiently good fitness or a maximum number of itera-
tions (generations).

Particle velocities in each dimension are clamped to a maximum velocity Vmax. If the sum of accelerations causes the
velocity in that dimension to exceed Vmax, which is a parameter specified by the user, then the velocity in that dimension
is limited to Vmax.

Vmax is a parameter serving to determine the resolution with which the regions around the current solutions are
searched. If Vmax is too high, the PSO facilitates a global search, and particles might fly past good solutions. Conversely,
if Vmax is too small, the PSO facilitates a local search and particles may not explore sufficiently beyond locally good
regions. Previous experience with PSO (trial and error, mostly) led us to set the Vmax to 20% of the dynamic range
of the particle in each dimension.

The first part in Eq. (8) is the momentum part of the particle. The inertia weight w represents the degree of the
momentum of the particles. The second part is the ‘cognition’ part, which represents the independent thinking of
the particle itself.

3.2. Chaotic particle swarm optimization

In PSO design, the concepts of optimization based on chaotic sequences can be a good alternative to provide diver-
sity in populations of PSO approaches. Different types of equations have been considered in literature for applications
in optimization methods. The logistic equation and other equations, such as ten map, Gauss map, Lozi map, sinusoidal
iterator, Chua’s oscillator, Mackey–Glass system, Lorenz system, Ikeda map, and others, have been adopted instead of
random ones and very interesting results [2,13–21].

The parameters udi, j(t) and Udi, j(t) are important control parameters that affect the PSO’s convergence. This paper
provides new approaches introducing chaotic mapping with ergodicity, irregularity and the stochastic property in PSO
to improve the global convergence in substitution of parameters udi, j(t) and Udi, j(t). The use of chaotic sequences in
PSO can be helpful to escape more easily from local minima than the traditional PSO methods.

New PSO approaches are proposed here based on Hénon map [28]. Hénon introduced this map as a simplified ver-
sion of the Poincaré map of the Lorenz system. The Hénon equations are given by
yðtÞ ¼ 1� a � yðt � 1Þ þ zðt � 1Þ ð10Þ
zðtÞ ¼ b � yðt � 1Þ ð11Þ
For a = 1.4 and b = 0.3 (the values for which the Hénon map has a strange attractor), the Hénon map is used in this
work, as presented in Fig. 3. In this case, the output values of z(t) 2 [�0.3854,0.3819]. In this work, the values of z(t) are
normalized in the range [0,1]. Another Hénon map using the same Eqs. (10) and (11) is used to generate the variable h(t)
normalized in the range [0,1].
Fig. 3. Example of evolution (100 samples) of Hénon map for a = 1.4 and b = 0.3.
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These new PSO approaches combined with chaotic sequences based on Hénon map (HPSO) are described as follows:
Approach 1 – HPSO1: Parameter udi, j(t) of Eq. (8) is modified by the following equation:
Table
Data f

Therm

1
2
3
4
5
6
7
8
9

10
11
12
13
viðt þ 1Þ ¼ w � viðtÞ þ c1 � zi;jðtÞ � ½piðtÞ � xiðtÞ� þ c2 � Udi;jðtÞ � ½pgðtÞ � xiðtÞ� ð12Þ
where zi, j(t) is given by Hénon map scaled with values between 0 and 1.
Approach 2 – CPSO2: Parameter Udi, j(t) of Eq. (8) is modified by the following equation:
viðt þ 1Þ ¼ w � viðtÞ þ c1 � udi;jðtÞ � ½piðtÞ � xiðtÞ� þ c2 � zi;jðtÞ � ½pgðtÞ � xiðtÞ� ð13Þ
Approach 3 – HPSO3: Parameters udi, j(t) and Udi, j(t) of Eq. (8) are modified by the following equation:
viðt þ 1Þ ¼ w � viðtÞ þ c1 � zi;jðtÞ � ½piðtÞ � xiðtÞ� þ c2 � hi;jðtÞ � ½pgðtÞ � xiðtÞ� ð14Þ
where zi, j(t) and hi, j(t) are given by Hénon map scaled with values between 0 and 1.

3.3. Combining of PSO and HPSO with IF local search

The quasi-Newton implicit filtering algorithms differ from other methods in the literature that use either inaccurate
gradient information, only samples of the function, or difference or interpolatory approximations to gradients and/or
Hessians.

Implicit filtering, originally proposed in the context of computer aided design of semiconductors [29] is a generaliza-
tion of the gradient projection algorithm of [30] in which derivatives are computed with difference quotients. The step
sizes (called scales) in the difference quotients are changed as the iteration progresses with the goal of avoiding local
minima that are caused by high-frequency, low amplitude oscillations. Real filtering could be performed, but this
requires sampling and filtering the entire solution space and thus, is computationally quite expensive. Implicit filtering
is very similar to adaptive meshing schemes used by the computational fluid mechanics community to avoid unwanted
harmonics. The algorithm is fully described in [31,32].

IF method and PSO approaches have advantages that complement each other. The proposed combination of PSO or
HPSO with IF for local search consists of a form of sequential hybridization based on [2,11,12]. Basically, in this com-
bined method, the PSO or HPSO is applied to the optimization problem and the best solution (or other chosen solution)
obtained by PSO or HPSO is used as starting point for the IF method.
4. Case study of 13 thermal units and analysis of optimization results

This case study consisted of 13 thermal units of generation with the effects of valve-point loading, as given in Appen-
dix (Table 1). The data shown in Table 1 is also available in [22,33]. In this case, the load demand expected to be deter-
mined was PD = 1800 MW.
1
or the 13 thermal units

al unit P min
i P max

i a b c e f

0 680 0.00028 8.10 550 300 0.035
0 360 0.00056 8.10 309 200 0.042
0 360 0.00056 8.10 307 150 0.042

60 180 0.00324 7.74 240 150 0.063
60 180 0.00324 7.74 240 150 0.063
60 180 0.00324 7.74 240 150 0.063
60 180 0.00324 7.74 240 150 0.063
60 180 0.00324 7.74 240 150 0.063
60 180 0.00324 7.74 240 150 0.063
40 120 0.00284 8.60 126 100 0.084
40 120 0.00284 8.60 126 100 0.084
55 120 0.00284 8.60 126 100 0.084
55 120 0.00284 8.60 126 100 0.084
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Each optimization method was implemented in Matlab (MathWorks). All the programs were run on a 3.2 GHz Pen-
tium IV processor with 2GB of random access memory. In each case study, 50 independent runs were made for each of
the optimization methods involving 50 different initial trial solutions for each optimization method. In this paper, the IF
routine is adopted using 2000 cost function evaluations in each run.

In this case study, the population size N was 20 and the stopping criterion tmax was 800 generations, and the inertia
weight w to linearly decrease from 0.9 to 0.4 for the PSO (using c1 = c2 = 2.05) and HPSO approaches. A key factor in
the application of optimization methods is how the algorithm handles the constraints relating to the problem. In this
work, a penalty-based method proposed in [2] was used.

The results obtained for this case study are given in Table 2, which shows that the HPSO-IF succeeded in finding the
best solution for the tested methods. However, the IF outperformed the other tested methods in terms of solution time.
The best results obtained for solution vector Pi, i = 1, . . . , 13 with HPSO1-IF with minimum cost of 17964.6772 is given
in Table 3.

Table 4 compares the results obtained in this paper with those of other studies reported in the literature. Note that in
studied case, the best result reported here using HPSO-IF is comparatively lower than recent studies presented in the
literature.
Table 2
Convergence results (50 runs) of a case study of 13 thermal units with valve-point and PD = 1800 MW

Method Mean time (s) Maximum cost ($/h) Minimum cost ($/h) Mean cost ($/h)

IF 0.11 19596.3745 18150.4924 18910.6512
PSO 1.69 19329.7864 18798.3258 19077.5215
HPSO1 1.72 19318.1177 18767.4843 19062.7045
HPSO2 1.72 19468.6801 18787.5006 19102.8226
HPSO3 1.73 19538.6992 18706.1454 19067.4146
PSO-IF 1.81 19332.0879 18057.6716 18832.8248
HPSO1-IF 1.83 19396.8603 17964.6772 18816.3809

HPSO2-IF 1.83 19538.0853 18049.4178 18887.0125
HPSO3-IF 1.85 19546.4058 18032.0175 18986.9347

Table 3
Best result (50 runs) obtained for the case study using HPSO1-IF

Power Generation (MW) Power Generation (MW)

P1 628.3179 P8 109.8951
P2 224.3921 P9 109.8607
P3 148.1492 P10 40.0000
P4 109.8661 P11 40.0000
P5 60.0000 P12 55.0000
P6 109.8330 P13 55.0000
P7 109.6859

P13
i¼1P i 1800.0000

Table 4
Comparison of best results for fuel costs presented in the literature

Optimization technique Case study with 13 thermal units

Evolutionary programming [22] 17994.07
Particle swarm optimization [1] 18030.72
Hybrid evolutionary programming with SQP [1] 17991.03
Hybrid particle swarm with SQP [1] 17969.93
Best result of this paper 17964.6772 (using HPSO1-IF)
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5. Conclusions and future research

This paper discusses the use of HPSO with an IF local search method. The hybrid methodology was successfully
validated for a test system consisting of 13 thermal units whose incremental fuel cost function takes into account
the valve-point loading effects.

From the comparison of the results for the case study through classical PSO and PSO-IF methods, it has been show
that the HPSO1, HPSO3, HPSO1-IF and HPSO2-IF have the ability to search better optimum solution. However, in
future works will include a detailed study of metrics, such as computation efficiency and convergence characteristics, of
the HPSO and HPSO-IF approaches for other EDPs.
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