
Breaking tolerance in cancer immunotherapy: time to ACT
Willem W Overwijk
The discovery of defined tumor antigens and their application

in therapeutic cancer vaccines has not yet resulted in

a successful therapy for cancer patients. Recent data

suggest that this might be because most current clinical

immunotherapeutic strategies rely on a tolerized tumor-

reactive T-cell repertoire, resulting in a weak T-cell

response that cannot induce tumor regression in the face

of a multitude of normal and tumor-induced immunoregulatory

mechanisms. New insights from animal models and clinical

trials suggest a rationale for combination approaches in which

the ineffective endogenous anti-tumor immune response is

enhanced through a combination of adoptive cell transfer

(ACT), specific vaccination and cytokine help for the reliable

induction of a robust anti-tumor immune response and tumor

regression.
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Introduction
The molecular identification of defined human tumor

antigens in the early 1990s invigorated the field of cancer

immunotherapy: scientific rationale predicted that vac-

cine-induced T-cell immunity to these antigens would

destroy tumors and provide long-term protection against

tumor recurrence. However, one decade of clinical

experience with cancer vaccines has not resulted in

immunotherapy that consistently induces robust T-cell

responses and long-lasting tumor regressions [1–3]. It

appears that a major hurdle in the induction of strong,

curative anti-tumor immunity is immunological toler-

ance to cancer cells. This review will summarize some

recent developments in the field of immunological

tolerance to cancer and discuss their ramifications for

possible strategies towards more effective cancer immu-

notherapy.
www.sciencedirect.com
Mechanisms of immunological tolerance
to cancer
It is now clear that there are several potential bottlenecks

in the immune response to cancer cells:
1. L
ack of high-avidity tumor-specific T cells.
2. I
nefficient priming of tumor-specific T cells.
3. P
hysical and functional deletion of primed tumor-

specific T cells.
4. T
umor evasion and counterattack.
Lack of high-avidity tumor-specific T cells
Most tumor antigens, particularly the shared self-antigens

which are the most useful for off-the-shelf vaccine devel-

opment, are expressed in the thymus during thymic T-

cell selection and thus induce profound central immuno-

logical tolerance through clonal T-cell deletion. This

notion has been reinforced by the discovery that even

(tumor) antigens that were previously thought to be

exclusively expressed in the periphery can be expressed

in the thymus under control of proteins such as the

autoimmune regulator (AIRE) gene product [4]. In addi-

tion, dendritic cells (DCs) can cross-present peripheral

antigens in the thymus and induce T-cell deletion [5].

The result is a tolerized repertoire of T cells with only low

to intermediate avidity for self-tumor antigens. The rela-

tively high activation threshold of these T cells results in

poor proliferation and effector function upon antigenic

stimulation [6,7�]. Despite possible exceptions, such as

the apparent high thymic output of functional MART-1

melanoma antigen-specific T cells, the majority of evi-

dence points to the presence of only low numbers of high-

avidity self-tumor-antigen-specific T cells in both healthy

individuals and cancer patients [8].

Inefficient priming of tumor-specific T cells

T cells that have survived thymic selection and enter the

periphery remain under the control of an elaborate system

of checks and balances that prevent autoimmune disease

[4,7�]. These mechanisms of peripheral tolerance also

limit the activation and proliferation of tumor-specific

T cells [9]. First, T cells with proven specificity for tumor

antigens tend to largely ignore tumor cells. There is

ample evidence in mouse and man that most solid

cancers, similar to normal somatic cells, do not directly

prime self-tumor-antigen-specific T cells very efficiently

[10,11�,12]. The most straightforward explanation for this

phenomenon is that any self-reactive T cell of sufficiently

low avidity to escape thymic deletion will also be of too

low avidity to respond to that antigen on a tumor cell.

Tumor-specific T cell ignorance is compounded by the
Current Opinion in Immunology 2005, 17:187–194
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absence on most tumor cells of co-stimulatory molecules

that promote optimal T-cell activation by professional

antigen-presenting cells such as dendritic cells (DCs)

[13].

Tumor antigen cross-presentation

Whether tumor antigens can be productively cross-

presented to T cells has been the subject of considerable

debate [14–16]; it now appears that the degree of cross-

presentation depends greatly on the individual antigen

and experimental system studied [15,17]. Tumor

antigens can be cross-presented, but the resulting T cell

response is usually weak due to the typically poor avidity

of responding T cells. In addition, DCs in tumor-draining

lymph nodes are often incompletely activated, favoring

the induction of cross-tolerance instead of cross-priming

[16,18]. Still, strong overexpression or alternative proces-

sing of tumor antigens in tumor cells can sometimes break

tolerance (Y Ono et al., unpublished; [19]). Human cancer

vaccines may also act through cross-priming; Thomas

et al. [20] detected mesothelin-specific CD8+ T cells

restricted by patient HLA molecules after vaccination

with an HLA-mismatched pancreatic whole tumor cell

vaccine. It remains to be determined exactly which con-

ditions favor tumor-specific T-cell cross-priming [20,21]

or cross-tolerance [18].

Some animal data suggest that growing tumors efficiently

prime naı̈ve T cells; however, this is often attributable to

the use of tumors expressing foreign antigens selected for

their potent immunogenicity and to which the mouse

T-cell repertoire has not undergone thymic or prolonged

peripheral tolerization. Indeed, the large majority of

animal studies that employ true self or neo-self antigens,

and more importantly most human studies, reveal detect-

able yet very poor endogenous priming of tumor-specific

T-cells[19,22,23], often followed by their rapid deletion

or dysfunction [24�,25��,26��].

Physical deletion and functional suppression of

primed tumor-specific T cells

Low-avidity T cells are typically poorly activated by

endogenous, tumor-derived antigen but can sometimes

respond to a cancer vaccine that induces strong antigen

presentation in an inflammatory setting or to antigenic

stimulation ex vivo. This activation can dramatically lower

the threshold for antigen recognition, in some cases

enabling recognition of the tumor cells that were previously

ignored [11,27]. Yet these activated T cells also become

immediately susceptible to the normal homeostatic

immune mechanisms that prevent excessive immune reac-

tivity as well as to tumor-specific immune deviations that

limit T-cell proliferation, function and survival.

Treg cells in cancer

Activated T cells can be silenced through the action of

various types of suppressor T cells, now renamed regu-
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latory T (Treg) cells. Treg cells can strongly suppress IL-2

production and proliferation of antigen-specific T cells

and, in animals, can prevent tumor regression [28,29]. In

an elegant study by Turk et al. [29] the depletion of Treg

cells enabled the induction of specific T cells by a primary

tumor, preventing the growth of a second tumor inocu-

lum. Still, these T cells failed to stop primary tumor

growth, suggesting that depletion of Treg cells can

enhance tumor immunity but might not be sufficient

to allow the induction of curative immunity.

Suppressive Treg cells, some of which are tumor-antigen-

specific, have recently been found in human breast,

ovarian and lung cancer, and in melanoma, indicating

that they might keep a cancer patient’s immune system

from rejecting ‘self-like’ cancer cells [30�,31,32]. It is

unknown whether the eradication of Treg cells contri-

butes to the high success rate of allogeneic hematopoietic

stem cell transplantation in lymphodepleted patients

with hematological malignancies, or to the 50% response

rate in melanoma patients receiving non-myeloablative

lymphodepletion followed by adoptive cell transfer

(ACT) with ex vivo expanded tumor-specific T cells

([33,34]; see also the review by Wrzesinski and Restifo

in this issue [35]).There is ongoing debate as to whether

the T cell inhibitory molecule CTLA-4 mediates the

suppressive effect of some types of Treg cells. What is

clear is that in vivo CTLA-4 blockade can facilitate T-cell

dependent tumor regression in mice [28,36], and to some

extent in melanoma patients [37,38], suggesting that

CTLA-4 mediates a significant inhibition of anti-tumor

immunity.

Physical deletion of tumor-specific T cells

Successful priming can expose tumor-specific T cells to

direct deletion by tumor-derived antigen [9,13]. For

example, the absence of high-avidity CD8+ T cells

against the self-antigen proteinase-3 correlated with high

tumor burden in patients with chronic myelogenous

leukemia. In vitro stimulation with high specific peptide

concentrations likewise induced apoptosis of high-avidity

proteinase-3 specific T cells, suggesting it was high tumor

(antigenic) burden that induced the selective deletion of

high-avidity T cells in vivo [9,13,18,24].

Inhibition of tumor-specific T cell effector function

In addition to being physically deleted, tumor-specific T

cells can be functionally silenced [9,13,39]. A recent study

found a profound inhibition of IFN-g production in

tumor-derived but not blood-derived MART-1

melanoma-antigen-specific CD8+ T cells. Importantly,

tumor-derived cytomegalovirus-specific T cells were

fully functional [26]. A different study found that

tumor-infiltrating T cells secreted normal IFN-g levels

but were incompletely differentiated and expressed

abnormally low amounts of perforin and granzyme [25].

Apparently there is an antigen-specific functional
www.sciencedirect.com
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impairment of T cells at the tumor site, possibly due

to chronic stimulation by tumor-derived antigen

[39,40], local Treg cell activity [30�,31,32] or direct T-cell

inhibition by tumor cells and their products, as discussed

below.

Tumor evasion and counterattack

Tumor-specific T cells are subject not only to normal

immunoregulatory mechanisms but also to tumor-

induced inhibition of their priming, proliferation, effector

function and survival. The ever-increasing number of

molecularly defined mechanisms by which tumors escape

immune destruction have been thoroughly reviewed else-

where [9,41]. Although a systematic inventory of the

presence or absence of all these mechanisms in individual

patients’ tumors has never been reported, such an inven-

tory can be compiled from the literature for the malignant

mouse melanoma, B16. Table 1 lists a series of immu-

noevasive and counterattack mechanisms that have all

been identified in a variety of human tumors and are

present in B16 melanoma. With the caveat that B16 is a

long-term established melanoma cell line, this exempli-

fies how tumors can escape immune destruction through

multiple simultaneous mechanisms of immune evasion

and counterattack.
Table 1

Barriers to immunotherapy of B16 melanoma.

Barrier Effect on

Very low expression of MHC class I and class II molecules Poor reco

No TAP-1 expression Poor pep

MHC clas

Very low expression of CD1d non-classical MHC molecule Poor reco

No expression of known co-stimulatory molecules Poor dire

Low affinity of antigenic gp10025-33 peptide for

MHC class I molecule

Poor reco

poor cros

Treg cell-mediated suppression of anti-tumor immunity Suppress

T-cell pro

CTLA-4-mediated suppression of anti-tumor immunity Inhibitory

Tumor cells express PD-L1/B7H-1 Inhibition

cytokine

Tumor cells express constitutively active STAT-3 Suppress

productio

Tumor cells secrete TGF-b Suppress

Tumor cells express CD95/FasL Induction

Tumor cells express galectin-1 Induction

and block

Tumor cells express arginase Local arg

expressio

Tumors induce protective stromal barrier Poor tum

DCs in tumor-draining lymph node express IDO Local tryp
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Tumor immunotherapy: only for the
hopelessly optimistic?
The sheer number and variety of possible mechanisms

underlying the remarkable resistance of tumors to immu-

notherapy makes it difficult to envision a therapeutic

strategy that could effectively overcome each obstacle

with a specific countermeasure. Such a strategy is further

complicated because different mechanisms may play a

more or less dominant role depending on tumor histology

and the genetics of individual cancer patients and their

tumors. Unless one particular mechanism is identified as a

consistent and dominant inhibitory factor, successful

immunotherapy by reversing tumor-specific T-cell toler-

ance and tumor evasion/counterattack might prove a

lengthy and rocky road with few significant milestones

in sight.

One way to circumvent the normal and tumor-induced

inhibition of tumor-specific T cells is to remove them

from the tumor-bearing host and expand them ex vivo
before re-infusion. ACT with allogeneic stem cells and

donor lymphocytes has shown the potential of adoptive

transfer in the treatment of hematological malignancies,

whereas a clinical trial of ACT with autologous, ex vivo
expanded tumor-specific T cells after non-myeloablative
T cell-mediated anti-tumor immunity References

gnition/killing by CD8+ and CD4+ T cells [58,59]

tide-loading and surface stability of

s I molecules

[60,61]

gnition/killing by NK cells [58]

ct priming of tumor-specific CD8+ T cells [62]

gnition by gp100-specific CD8+ T cells;

s-priming by DCs

[11�,63]

ion of tumor-specific CD4+ and CD8+

liferation and function

[28,29]

signaling in tumor-specific T cells [64]

of tumor-specific T-cell proliferation,

production and cytotoxicity

[65]

ion of proinflammatory cytokine and chemokine

n; inhibition of DC maturation and T-cell priming

[66]

ion of tumor-specific T-cell proliferation [59]

of apoptosis of tumor-infiltrating T cells [59]

of T-cell growth arrest and apoptosis,

ing of inflammatory cytokine production

[67]

inine depletion and inhibition of TCR

n and T-cell proliferation

[68]

or invasion by tumor-specific lymphocytes [12]

tophan depletion and inhibition of T-cell proliferation [69]
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lymphodepletion showed remarkable efficacy in meta-

static melanoma patients [33,34,35]. The latter study

demonstrates that T cells that have failed to control tumor

growth can be expanded ex vivo under non-tolerogenic

conditions and can, upon re-introduction into the

conditioned patient, mediate strong tumor regression.

Combination therapy: a three-stranded
cord is not easily broken
Animal models of melanoma have been instructive in

defining new immunotherapeutic strategies and the

mechanisms through which they function. As an example,

B16 melanoma is notoriously resistant to treatment even

with strategies that induce the complete regression of

other, more immunogenic, murine tumors. Indeed, stu-

dies on the efficacy of an immunotherapeutic approach in

different murine tumors usually identify B16 as the most

difficult to treat [42–44], possibly due to its many immu-

noevasive and counterattack mechanisms (Table 1).

From this viewpoint, B16 might be a suitable model

for most human cancers that are also remarkably resistant

to immunointerventions that are highly successful against

many murine tumors.

B16 naturally expresses mouse gp100, the homologue of

the human melanoma antigen gp100, which has been

targeted in a variety of vaccine trials. ACT with large

numbers of naı̈ve or in vitro activated CD8+ T cells

bearing a mouse gp100-specific TCR did not slow the

growth of even undetectably small three-day established

subcutaneous B16 tumors [11]. Likewise, vaccination

with mouse gp100 peptide and agonistic anti-CD40

monoclonal antibody or recombinant vaccinia or fowlpox

virus encoding mouse gp100 did not induce tumor regres-

sion. Even high-dose IL-2 therapy, effective in some

melanoma patients, did not slow aggressive tumor growth.

Any dual combination of ACT, vaccination and IL-2

was also ineffective, all of which mimics the general
Table 2

General barriers to the anti-tumor immunity and potential countermea

Barrier Countermeasu

The endogenous repertoire to self or neoantigens on

tumors generally consists of low numbers

of T cells with poor avidity

Adoptive trans

autologous tum

Adoptive trans

Tumor-reactive T cells can be ignorant due to low

affinity of the peptide for MHC molecules or low

affinity of the TCR for the MHC-peptide complex

Vaccinate with

increased bind

increased bind

Tumor-reactive T cells can be anergized by antigen

on normal cells, tumor cells or on immature DCs

presenting captured tumor antigen

Adoptively tran

activated tumo

Support transf

effector functio

and common g

Tumor cells can escape destruction by directly or

indirectly inhibiting or killing tumor-specific T cells

Deplete Treg ce

Overwhelm inh
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experience with mono- or dual-combination therapies

using ACT and/or vaccination and/or IL-2 for the treat-

ment of cancer patients [1,3].

Despite their ineffectiveness as single or dual immuno-

logical intervention, ACT, vaccination and IL-2 in a triple

combination reliably induced the complete and long-

lasting regression of large, 1 cm subcutaneous B16

tumors. There was a strong quantitative aspect to tumor

regression; complete cure was dependent on large num-

bers of T cells, powerful vaccination and medium to high

doses of IL-2. Prior lymphodepletion reduced the

required number of infused T cells, reminiscent of the

clinical trial of ACT after lymphodepletion [33,34]. IL-2

not only boosted CD8+ T cell numbers, but also drama-

tically reversed their lack of effector function at the tumor

site. When thus activated, previously ineffective gp100-

specific T cells induced the complete regression of large

B16 tumors in a host lymphocyte independent fashion

and without the frequent induction of tumor escape

variants [11].

It is somewhat surprising that complete tumor regression

relied only on the administration of tumor-specific

T cells, vaccination and cytokine help to counter the

multitude of known suppressive immune deviations

induced by B16 melanoma (Table 1). This suggests that

it might be possible to overcome the multiple normal and

tumor-induced tolerogenic and immune escape mechan-

isms that prevent immune-mediated destruction of

tumors by overwhelming them with large numbers of

vaccine-activated, cytokine-driven tumor-specific T cells

(Table 2; [45]). Such an approach is reminiscent of the

sometimes massive endogenous immune responses

mounted by healthy individuals against immunoevasive

pathogens such as Epstein-Barr virus [46]. At the present

time this strategy might be more readily applied than an

approach that aims to overcome each individual barrier to
sures.

re References

fer of ex vivo expanded

or-reactive T cells

[11,33,34,70]

fer of TCR-transduced autologous T cells [47�,48–50]

altered peptide ligand:

ing of peptide to MHC molecule and/or [11,51,71]

ing of MHC-peptide to TCR [72,73]

sfer non-anergic, ex vivo

r-reactive lymphocytes

[11,33,34,70]

erred T cell proliferation and

n by conditioning lymphodepletion

-chain cytokine help

[11,33,34,53,54,74,75]
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ibition with more T cells [34,45]
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therapeutic tumor immunity with a specific pharmacolo-

gical or immunological intervention.

Towards improved immunotherapy
A clinical test of a combination immunotherapy as out-

lined above is not trivial to implement. Most significantly,

tumor-specific T cells can only be isolated and grown

from roughly half of metastatic melanoma patients, and

from virtually none of the patients with non-melanoma

cancers. This major limitation could be relieved by the

use of autologous lymphocytes retrovirally transduced

with tumor-specific TCR genes, as recently demonstrated

by several groups [47�,48–50]. Initial concerns regarding

the oncogenicity of retroviral transduction have dimin-

ished by the recognition that observed adverse events

were directly linked to the treatment-specific genes,

transduced cell types and disease characteristics [51].

TCR gene transfer enables the rapid engineering of T

cells that efficiently recognize any of the growing number

of tumor antigen–MHC combinations for which TCR

genes have been isolated, thus providing a reliable source

of tumor-specific T cells for ACT.

TCR gene-transduced T cells can be activated in vivo by

vaccination, as their target antigens and target TCRs are

defined [48]. A multitude of cancer vaccine trials have

identified a variety of vaccine formulations that are safe

and can induce measurable T-cell expansion [3]. As the

third component of combination immunotherapy, IL-2

appears to enhance the efficacy of both vaccine-induced

and adoptively transferred T cells in mouse and man

[11�,36,52–55]. Recent data suggest that other common

g-chain cytokines, such as IL-7, IL-15 and IL-21, might

be even more effective, possibly by preventing activa-

tion-induced cell death and/or promoting the differentia-

tion of adoptively transferred T cells to a more persisting,

central memory phenotype [56,57].

The continuing optimization of immunological techni-

ques will facilitate the design of immunotherapy of

patients with advanced, otherwise incurable cancer; this

could lead to strategies that facilitate and broaden the

applicability of ACT for cancer patients in a scenario such

as that summarized in Box 1.
Box 1 An approach to the immunotherapy of cancer.

1. Patient leukapheresis, HLA typing and tumor antigen expression

analysis.

2. Selection of therapeutic TCRs.

3. Retroviral TCR gene transduction of patient PBLs.

4. Patient DC preparation.

5. Patient lymphodepletion.

4. Short-term TCR gene-transduced T cell expansion and adoptive

transfer.

5. Vaccination with antigen-loaded DCs.

6. Administration of common g-chain cytokine.

7. Repeat if necessary.

www.sciencedirect.com
Such a futuristic yet feasible approach would bypass

known bottlenecks in the anti-tumor immune response

and facilitate the generation of large numbers of tumor-

specific T cells, their subsequent in vivo activation and

expansion through vaccination, and further enhanced

expansion, effector function and survival by cytokine

help. Each component of this regimen has already

demonstrated safety and limited efficacy in mice and,

with the exception of TCR gene-transduced T cells

currently in clinical trials, in cancer patients. Although

logistically challenging, a combination approach is possi-

ble. Most importantly, by no longer relying on the endo-

genous T-cell repertoire, the success rate of generating

large numbers of tumor-specific T cells ex vivo should

only be limited by the growing availability of antigen-

specific TCRs [47�,48–50]. The use of TCR gene-

transduced autologous T cells would also extend the

availability of antigen-specific immunotherapy by ACT

to non-melanoma cancers.

Conclusions
Preclinical and clinical evidence suggests that the anti-

tumor immune response, even when stimulated by vac-

cination, is weak due to the poor quantity and quality of

the tolerized endogenous anti-tumor T-cell repertoire as

well as a multitude of tumor-specific immune deviations.

Our currently incomplete knowledge and understanding

of these multiple pathways and mechanisms makes it

difficult to design rational therapies that will release the

brakes on the endogenous anti-tumor immune response

through combinations of specific countermeasures. There

is an opportunity to combine ACT to supply high num-

bers of ex vivo generated tumor-specific T cells, which can

then be activated in vivo with currently available, validated

vaccines and supported with cytokine help. Combination

strategies might yield new insights into which elements

of the immune response to cancer are limiting and increase

the clinical benefit of cancer immunotherapy.
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