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XAVIER MESTRE, Centre Tecnològic de Telecomunicacions de Catalunya,

NEXUS 1 Building, Gran Capita 2–4, 08034 Barcelona, Spain

ARYE NEHORAI, Department of Electrical Engineering and Computer Science,

University of Illinois at Chicago, Chicago, IL 60607

RAFFAELE PARISI, INFOCOM Department, University of Roma “La Sapienza,”

Via Eudossiana 18, I-00184 Roma, Italy

SHAHRAM SHAHBAZPANAHI, McMaster University, Hamilton, Ontario L8S

4L8, Canada

PETRE STOICA, Division of Systems and Control, Department of Information

Technology, Uppsala University, SE-75105 Uppsala, Sweden

ALLE-JAN VAN DER VEEN, Department of Electrical Engineering, Delft Univer-

sity of Technology, 2628 Delft, The Netherlands

ZHISONGWANG, Department of Electrical and Computer Engineering, Engineer-

ing Bldg., Center Drive, University of Florida, Gainesville, FL 32611

ix





PREFACE

Beamforming is a ubitiquitous task in array signal processing with applications,

among others, in radar, sonar, acoustics, astronomy, seismology, communications,

and medical-imaging. The standard data-independent beamformers include the

delay-and-sum approach as well as methods based on various weight vectors for

sidelobe control. The data-dependent or adaptive beamformers select the weight

vector as a function of the data to optimize the performance subject to various con-

straints. The adaptive beamformers can have better resolution and much better inter-

ference rejection capability than the data-independent beamformers. However, the

former are much more sensitive to errors, such as the array steering vector errors

caused by imprecise sensor calibrations, than the latter. As a result, much effort

has been devoted over the past three decades to devise robust adaptive beamformers.

The primary goal of this edited book is to present the latest research develop-

ments on robust adaptive beamforming. Most of the early methods of making the

adaptive beamformers more robust to array steering vector errors are rather ad

hoc in that the choice of their parameters is not directly related to the uncertainty

of the steering vector. Only recently have some methods with a clear theoretical

background been proposed, which, unlike the early methods, make explicit use of

an uncertainty set of the array steering vector. The application areas of robust adap-

tive beamforming are also continuously expanding. Examples of new areas include

smart antennas in wireless communications, hand-held ultrasound imaging systems,

and directional hearing aids. The publication of this book will hopefully provide

timely information to the researchers in all the aforementioned areas.

The book is organized as follows. The first three chapters (Chapter 1 by Robert G.

Lorenz and Stephen P. Boyd; Chapter 2 by Alex B. Gershman, Zhi-Quan Luo, and

Shahram Shahbazpanahi; and Chapter 3 by Jian Li, Petre Stoica, and ZhisongWang)

discuss how to address directly the array steering vector uncertainty within a clear

theoretical framework. Specifically, the robust adaptive beamformers in these chap-

ters couple the standard Capon beamformers with a spherical or ellipsoidal uncer-

tainty set of the array steering vector. The fourth chapter (by Xavier Mestre and

Miguel A. Lagunas) concentrates on alleviating the finite sample size effect.

Two-dimensional asymptotics are considered based on the assumptions that both

the number of sensors and the number of observations are large and that they

xi



have the same order of magnitude. The fifth chapter (by Yonina C. Eldar and Arye

Nehorai) considers the signal waveform estimation. The mean-squared error rather

than the signal-to-interference-plus-noise ratio is used as a performance measure.

Two cases are treated, including the case of known steering vectors and the case

of random steering vectors with known second-order statistics. The sixth chapter

(by Alle-Jan van der Veen and Amir Leshem) focuses on constant modulus algor-

ithms. Two constant modulus algorithms are put into a common framework with

further discussions on their iterative and adaptive implementations and their direc-

tion finding applications. Finally, the seventh chapter (by Elio D. Di Claudio and

Raffaele Parisi) is devoted to robust wideband beamforming. Based on a constrained

stochastic maximum likelihood error functional, a steered adaptive beamformer

is presented to adapt the weight vector within a generalized sidelobe canceller

formulation.

We are grateful to the authors who have contributed to the chapters of this book

for their excellent work. We would also like to acknowledge the contributions of

several other people and organizations to the completion of this book. Most of

our work in the area of robust adaptive beamforming is an outgrowth of our research

programs in array signal processing. We would like to thank those who have sup-

ported our research in this area: the National Science Foundation, the Swedish

Science Council (VR), and the Swedish Foundation for International Cooperation

in Research and Higher Education (STINT). We also wish to thank George Telecki

(Associate Publisher) and Rachel Witmer (Editorial Assistant) at Wiley for their

effort on the publication of this book.

JIAN LI AND PETRE STOICA
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1

ROBUST MINIMUM VARIANCE
BEAMFORMING

Robert G. Lorenz

Beceem Communications, Santa Clara, CA 95054

Stephen P. Boyd

Information Systems Laboratory, Stanford University, Stanford, CA 94305

1.1 INTRODUCTION

Consider the n dimensional sensor array depicted in Figure 1.1. Let a(u) [ Cn

denote the response of the array to a plane wave of unit amplitude arriving from

direction u; we shall refer to a(�) as the array manifold. We assume that a

narrow-band source s(t) is impinging upon the array from angle u and that the

source is in the far-field of the array. The vector array output y(t) [ Cn is then

y(t) ¼ a(u)s(t)þ v(t), (1:1)

where a(u) includes effects such as coupling between elements and subsequent

amplification; v(t) is a vector of additive noises representing the effect of undesired

signals, such as thermal noise or interference. We denote the sampled array output

by y(k). Similarly, the combined beamformer output is given by

yc(k) ¼ w�y(k) ¼ w�a(u)s(k)þ w�v(k)

where w [ Cn is a vector of weights, that is, design variables, and (�)� denotes the
conjugate transpose.

1
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The goal is to make w�a(u) � 1 and w�v(t) small, in which case, yc(t) recovers

s(t), that is, yc(t) � s(t). The gain of the weighted array response in direction u is

jw�a(u)j; the expected effect of the noise and interferences at the combined

output is given by w�Rvw, where Rv ¼ E vv� and E denotes the expected value. If

we presume a(u) and Rv are known, we may choose w as the optimal solution of

minimize w�Rvw

subject to w�a(ud) ¼ 1:
(1:2)

Minimum variance beamforming is a variation on (1.2) in which we replace Rv with

an estimate of the received signal covariance derived from recently received

samples of the array output, for example,

Ry ¼ 1

N

Xk
i¼k�Nþ1

y(i)y(i)� [ Cn�n: (1:3)

The minimum variance beamformer (MVB) is chosen as the optimal solution of

minimize w�Ryw

subject to w�a(u) ¼ 1:
(1:4)

w1

wn

w2

a(◊)

q

Output

Figure 1.1 Beamformer block diagram.
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This is commonly referred to as Capon’s method [1]. Equation (1.4) has an analyti-

cal solution given by

wmv ¼
R�1y a(u)

a(u)�R�1y a(u)
: (1:5)

Equation (1.4) also differs from (1.2) in that the power expression we are mini-

mizing includes the effect of the desired signal plus noise. The constraint

w�a(u) ¼ 1 in (1.4) prevents the gain in the direction of the signal from being

reduced.

A measure of the effectiveness of a beamformer is given by the signal-to-

interference-plus-noise ratio, commonly abbreviated as SINR, given by

SINR ¼ s2
djw�a(u)j2
w�Rvw

, (1:6)

where s2
d is the power of the signal of interest. The assumed value of the array

manifold a(u) may differ from the actual value for a host of reasons including

imprecise knowledge of the signal’s angle of arrival u. Unfortunately, the SINR

of Capon’s method can degrade catastrophically for modest differences between

the assumed and actual values of the array manifold. We now review several tech-

niques for minimizing the sensitivity of MVB to modeling errors in the array

manifold.

1.1.1 Previous Work

One popular method to address uncertainty in the array response or angle of arrival

is to impose a set of unity-gain constraints for a small spread of angles around the

nominal look direction. These are known in the literature as point mainbeam con-

straints or neighboring location constraints [2]. The beamforming problem with

point mainbeam constraints can be expressed as

minimize w�Ryw

subject to C�w ¼ f ,
(1:7)

where C is a n� L matrix of array responses in the L constrained directions and f is

an L� 1 vector specifying the desired response in each constrained direction. To

achieve wider responses, additional constraint points are added. We may similarly

constrain the derivative of the weighted array output to be zero at the desired

look angle. This constraint can be expressed in the same framework as (1.7); in

this case, we let C be the derivative of the array manifold with respect to look

angle and f ¼ 0. These are called derivative mainbeam constraints; this derivative

may be approximated using regularization methods. Point and derivative mainbeam

constraints may also be used in conjunction with one another. The minimizer of (1.7)

1.1 INTRODUCTION 3



has an analytical solution given by

wopt ¼ R�1y C(C�R�1y C)�1f : (1:8)

Each constraint removes one of the remaining degrees of freedom available to

reject undesired signals; this is particularly significant for an array with a small

number of elements. We may overcome this limitation by using a low-rank approxi-

mation to the constraints [3]. The best rank k approximation to C, in a least squares

sense, is given by USV�, where S is a diagonal matrix consisting of the largest k

singular values, U is a n� k matrix whose columns are the corresponding left singu-

lar vectors of C, and V is a L� k matrix whose columns are the corresponding right

singular vectors of C. The reduced rank constraint equations can be written as

VS
T
U�w ¼ f , or equivalently

U�w ¼ S
y
V�f , (1:9)

where y denotes the Moore–Penrose pseudoinverse. Using (1.8), we compute the

beamformer using the reduced rank constraints as

wepc ¼ R�1y U(U�R�1y U )�1SyV�f :

This technique, used in source localization, is referred to as minimum variance

beamforming with environmental perturbation constraints (MV-EPC), see Krolik

[2] and the references contained therein.

Unfortunately, it is not clear how best to pick the additional constraints, or, in the

case of the MV-EPC, the rank of the constraints. The effect of additional constraints

on the design specifications appears difficult to predict.

Regularization methods [4] have also been used in beamforming. One technique,

referred to in the literature as diagonal loading, chooses the beamformer to minimize

the sum of the weighted array output power plus a penalty term, proportional to the

square of the norm of the weight vector. The gain in the assumed angle of arrival

(AOA) of the desired signal is constrained to be unity. The beamformer is chosen

as the optimal solution of

minimize w�Rywþ mw�w
subject to w�a(u) ¼ 1:

(1:10)

The parameter m . 0 penalizes large values of w and has the general effect of detun-

ing the beamformer response. The regularized least squares problem (1.10) has an

analytical solution given by

wreg ¼ (Ry þ mI )�1a(u)
a(u)�(Ry þ mI )�1a(u)

: (1:11)
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Gershman [5] and Johnson and Dudgeon [6] provide a survey of these methods; see

also the references contained therein. Similar ideas have been used in adaptive

algorithms, see Haykin [7].

Beamformers using eigenvalue thresholding methods to achieve robustness have

also been used; see Harmanci et al. [8]. The beamformer is computed according to

Capon’s method, using a covariance matrix which has been modified to ensure no

eigenvalue is less than a factor m times the largest, where 0 � m � 1: Specifically,
let VLV� denote the eigenvalue/eigenvector decomposition of Ry, where L is a

diagonal matrix, the ith entry (eigenvalue) of which is given by li, that is,

L ¼
l1

. .
.

ln

2
64

3
75:

Without loss of generality, assume l1 � l2 . . . � ln: We form the diagonal

matrix Lthr, the ith entry of which is given by max {ml1, li}; viz,

Lthr ¼

l1
max {ml1, l2}

. .
.

max {ml1,ln}

2
6664

3
7775:

The modified covariance matrix is computed according to Rthr ¼ VLthrV
�. The

beamformer using eigenvalue thresholding is given by

wthr ¼ R�1thr a(u)

a(u)�R�1thr a(u)
: (1:12)

The parameterm corresponds to the reciprocal of the condition number of the covari-

ance matrix. A variation on this approach is to use a fixed value for the minimum eigen-

value threshold. One interpretation of this approach is to incorporate a priori knowledge

of the presence of additive white noise when the sample covariance is unable to observe

said white noise floor due to short observation time [8]. The performance of this beam-

former appears similar to that of the regularized beamformer using diagonal loading;

both usually work well for an appropriate choice of the regularization parameter m.
We see two limitations with regularization techniques for beamformers. First, it

is not clear how to efficiently pick m. Second, this technique does not take into

account any knowledge we may have about variation in the array manifold, for

example, that the variation may not be isotropic.

In Section 1.1.3, we describe a beamforming method that explicitly uses infor-

mation about the variation in the array response a(�), which we model explicitly

as an uncertainty ellipsoid in R2n. Prior to this, we introduce some notation for

describing ellipsoids.
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1.1.2 Ellipsoid Descriptions

An n-dimensional ellipsoid can be defined as the image of an n-dimensional

Euclidean ball under an affine mapping from Rn to Rn; that is,

E ¼ {Auþ c j kuk � 1}, (1:13)

where A [ Rn�n and c [ Rn. The set E describes an ellipsoid whose center is c and
whose principal semiaxes are the unit-norm left singular vectors of A scaled by the

corresponding singular values. We say that an ellipsoid is flat if this mapping is not

injective, that is, one-to-one. Flat ellipsoids can be described by (1.13) in the proper

affine subspaces of Rn. In this case, A [ Rn�l and u [ Rl. An interpretation of a flat

uncertainty ellipsoid is that some linear combinations of the array manifold are

known exactly [9].

Unless otherwise specified, an ellipsoid in Rn will be parameterized in terms

of its center c [ Rn and a symmetric non-negative definite configuration matrix

Q [ Rn�n as

E(c,Q) ¼ {Q1=2uþ c j kuk � 1} (1:14)

where Q1=2 is any matrix square root satisfying Q1=2(Q1=2)T ¼ Q. When Q is full

rank, the nondegenerate ellipsoid E(c,Q) may also be expressed as

E(c,Q) ¼ {x j (x� c)TQ�1(x� c) � 1} (1:15)

or by the equivalent quadratic function

E(c,Q) ¼ {x j T(x) � 0}, (1:16)

where T(x) ¼ xTQ�1x� 2cTQ�1xþ xTc Q
�1xc � 1. The first representation (1.14) is

more natural when E is degenerate or poorly conditioned. Using the second descrip-
tion (1.15), one may easily determine whether a point lies within the ellipsoid. The

third representation (1.16) will be used in Section 1.6.1 to compute the minimum-

volume ellipsoid covering the union of ellipsoids.

We will express the values of the array manifold a [ Cn as the direct sum of its

real and imaginary components in R2n; that is,

zi ¼ ½Re(a1) � � �Re(an) Im(a1) � � � Im(an)�T : (1:17)

While it is possible to cover the field of values with a complex ellipsoid in Cn, doing

so implies a symmetry between the real and imaginary components which generally

results in a larger ellipsoid than if the direct sum of the real and imaginary com-

ponents are covered in R2n.
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1.1.3 Robust Minimum Variance Beamforming

A generalization of (1.4) that captures our desire to minimize the weighted power

output of the array in the presence of uncertainties in a(u) is then:

minimize w�Ryw

subject to Re w�a � 1 8a [ E, (1:18)

where Re denotes the real part. Here, E is an ellipsoid that covers the possible range
of values of a(u) due to imprecise knowledge of the array manifold a(�), uncertainty
in the angle of arrival u, or other factors. We shall refer to the optimal solution of

(1.18) as the robust minimum variance beamformer (RMVB).

We use the constraint Re w�a � 1 for all a [ E in (1.18) for two reasons. First,

while normally considered a semi-infinite constraint, we show in Section 1.3 that it

can be expressed as a second-order cone constraint. As a result, the robust minimum

variance beamforming problem (1.18) can be solved reliably and efficiently. Second,

the real part of the response is an efficient lower bound for the magnitude of the

response, as the objective w�Ryw is unchanged if the weight vector w is multiplied

by an arbitrary shift e jf. This is particularly true when the uncertainty in the array

response is relatively small. It is unnecessary to constrain the imaginary part of the

response to be nominally zero.

Our approach differs from the previously mentioned beamforming techniques in

that the weight selection uses the a priori uncertainties in the array manifold in a pre-

cise way; the RMVB is guaranteed to satisfy the minimum gain constraint for all

values in the uncertainty ellipsoid.

Recently, several papers have addressed uncertainty in a similar framework. Wu

and Zhang [10] observe that the array manifold may be described as a polyhedron

and that the robust beamforming problem can be cast as a quadratic program.

While the polyhedron approach is less conservative, the size of the description

and hence the complexity of solving the problem grows with the number of vertices.

Vorobyov et al. [11, 12] and Gershman [13] describe the use of second-order cone

programming for robust beamforming in the case where the uncertainty is in the

array response is isotropic, that is, a Euclidean ball. Our method, while derived dif-

ferently, yields the same beamformer as proposed by Li et al. [14–16].

In this chapter, we consider the case in which the uncertainty is anisotropic

[17–19]. We also show how the beamformer weights can be computed efficiently.

1.1.4 Outline of the Chapter

The rest of this chapter is organized as follows. In Section 1.2, we motivate the need

for robustness with a simple array which includes the effect of coupling between

antenna elements. In Section 1.3 we discuss the RMVB. A numerically efficient

technique based on Lagrange multiplier methods is described; we will see that the

RMVB can be computed with the same order of complexity as its nonrobust counter-

part. A numerical example is given in Section 1.4. In Section 1.5 we describe
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ellipsoidal modeling methods which make use of simulated or measured values of

the array manifold. In Section 1.6 we discuss more sophisticated techniques,

based on ellipsoidal calculus, for propagating uncertainty ellipsoids. In particular,

we describe a numerically efficient method for approximating the numerical range

of the Hadamard (element-wise) product of two ellipsoids. This form of uncer-

tainty arises when the array outputs are subject to multiplicative uncertainties.

A numerical beamforming example considering multiplicative uncertainties is

given in Section 1.7. Our conclusions are given in Section 1.8.

1.2 A PRACTICAL EXAMPLE

Our goals for this section are twofold:

. To make the case that antenna elements may behave very differently in free

space than as part of closely spaced arrays, and

. To motivate the need for robustness in beamforming.

Consider the four-element linear array of half-wave dipole antennas depicted in

Figure 1.2. Let the frequency of operation be 900 MHz and the diameter of the

y
4

y
3

y
2

y
1

g
1

g
2

g
3

g
4

4
λ

2
λ

Figure 1.2 The four-element array. For this array, we simulate the array response which

includes the effect of coupling between elements. In this example, the gains g1, . . . ,g4 are all

assumed nominal. Later we consider the effect of multiplicative uncertainties.
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elements be 1.67 mm. Assume each dipole is terminated into a 100 ohm load. The

length of the dipole elements was chosen such that an isolated dipole in free space

matched this termination impedance.

The array was simulated using the Numerical Electromagnetics Code, version 4

(NEC-4) [20]. Each of the radiating elements was modeled with six wire segments.

The nominal magnitude and phase responses are given in Figures 1.3 and 1.4,

respectively. Note that the amplitude is not constant for all angles of arrival or

the same for all elements. This will generally be the case with closely spaced

antenna elements due to the high level of interelement coupling.

In Figure 1.5, we see that the vector norm of the array response is not a constant

function of AOA, despite the fact that the individual elements, in isolation, have an

isotropic response.

Next, let us compare the performance of the RMVB with Capon’s method using

this array, with nominal termination impedances. Assume the desired signal

impinges on the array from an angle usig ¼ 1278 and has a signal-to-noise ratio

(SNR) of 20 decibels (dB). We assume that an interfering signal arrives at an
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Figure 1.3 Magnitude of response of four-element array consisting of half-wave dipoles with

uniform spacing of l=2. The currents have units of amperes for a field strength of 1 volt/meter.

The angle of arrival (AOA) is in degrees. Note the symmetry of the response. The outer

elements correspond to the top left and bottom right plots; the inner elements, top right and

lower left.
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Figure 1.4 Phase response, in radians, of the four-element half-wave dipole array. The angle of

arrival is in degrees. Again, note the symmetry in the response.

0 360
0

4

8

||a
(.

)|
| (

C
ur

re
nt

)

x 10−4

AOA

Figure 1.5 The vector norm of the array response as a function of AOA. Note that the norm is

not constant despite the fact that each of the elements are isotropic with respect to AOA.
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angle of uint ¼ 1508 with amplitude twice that of the desired signal. For Capon’s

method, we assume an AOA of unom ¼ 1208. For the RMVB, we compute a mini-

mum-volume ellipsoid covering the numerical range of the array manifold for all

angles of arrival between 1128 and 1288. The details of this calculation will be

described in Section 1.5. Let wmv [ C4 denote the beamformer vector produced

by Capon’s method and wrmvb [ C4 the robust minimum-variance beamformer,

that is, the optimal solution of (1.18).

A plot of the response of the minimum-variance beamformer (MVB) and the

robust minimum-variance beamformer (RMVB) as a function of angle of arrival

is shown in Figure 1.6. By design, the response of the MVB has unity gain in the

direction of the assumed AOA, that is, w�mva(unom) ¼ 1, where a :R! C4 denotes

the array manifold. The MVB produces a deep null in the direction of the interfer-

ence: w�mva(uint) ¼ �0:0061þ 0i. Unfortunately, the MVB also strongly attenuates

the desired signal, with w�mva(usig) ¼ �0:0677þ 0i. The resulting post-beamforming

signal-to-interference-plus-noise ratio (SINR) is 210.5 dB, appreciably worse than

the SINR obtained using a single antenna without beamforming.

While the robust beamformer does not cast as deep a null in the direction of the

interfering signal, that is, w�rmvba(uint) ¼ �0:0210þ 0i, it maintains greater than

unity gain for all angles of arrival in our design specification. The SINR obtained

using the RMVB is 12.4 dB.
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Figure 1.6 The response of the minimum-variance beamformer (Capon’s method) and the

robust minimum-variance beamformer (RMVB). The a priori uncertainty in the angle of arrival

(AOA) was +88. We see that the RMVB maintains at least unity gain for all angles in this

range, whereas Capon’s method fails for an AOA of approximately 1278.
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When the actual AOA of the desired signal equals the assumed 1208, the SINR of

the MVB is an impressive 26.5 dB, compared to 10.64 dB for the RMVB. It is

tempting then to consider methods to reduce the uncertainty and potentially realize

this substantial improvement in SINR. Such efforts are unlikely to be fruitful. For

example, a 18 error in the assumed AOA reduces the SINR of Capon’s method by

more than 20 dB to 4.0 dB. Also, the mathematical values of the array model

differ from the actual array response for a number of reasons, of which error in

the assumed AOA is but one. In the presence of array calibration errors, variations

due to termination impedances, and multiplicative gain uncertainties, nonrobust

techniques simply do not work reliably.

In our example, we considered only uncertainty in the angle of arrival; verifying

the performance for the nonrobust method involved evaluating points in a one-

dimensional interval. Had we considered the additional effect of multiplicative

gain variations, for example, the numerical cost of verifying the performance of

the beamformer for a dense grid of possible array values could dwarf the compu-

tational complexity of the robust method. The approach of the RMVB is different;

it makes specific use of the uncertainty in the array response. We compute either a

worst-case optimal vector for the ellipsoidal uncertainty region or a proof that the

design specification is infeasible. No subsequent verification of the performance

is required.

1.3 ROBUST WEIGHT SELECTION

Recall from Section 1.1 that the RMVB was the optimal solution to

minimize w�Ryw

subject to Re w�a � 1 8a [ E: (1:19)

For purposes of computation, we will express the weight vector w and the values

of the array manifold a as the direct sum of the corresponding real and imaginary

components

x ¼ Re w

Im w

� �
and z ¼ Re a

Im a

� �
: (1:20)

The real and imaginary components of the product w�a can be expressed as

Re w�a ¼ xTz (1:21)

and

Im w�a ¼ xTUz, (1:22)
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where U is the orthogonal matrix

U ¼ 0 In
�In 0

� �
,

and In is an n� n identity matrix. The quadratic form w�Ryw may be expressed in

terms of x as xTRx, where

R ¼ ReRy �ImRy

ImRy ReRy

� �
:

Assume R is positive definite; with sufficient sample support, it is with probability -

one.

Let E ¼ {Auþ c j kuk � 1} be an ellipsoid covering the possible values of x, that

is, the real and imaginary components of a. The ellipsoid E is centered at c; the

matrix A determines its size and shape. The constraint Re w�a � 1 for all a [ E
in (1.18) can be expressed

xTz � 1 8z [ E, (1:23)

which is equivalent to

uTATx � cTx� 1 for all u s.t.; kuk � 1: (1:24)

Now, (1.24) holds for all kuk � 1 if and only if it holds for the value of u that maxi-

mizes uTATx, namely u ¼ ATx=kATxk: By the Cauchy-Schwartz inequality, we see

that (1.23) is equivalent to the constraint

kATxk � cTx� 1, (1:25)

which is called a second-order cone constraint [21]. We can then express the robust

minimum-variance beamforming problem (1.18) as

minimize xTRx

subject to kATxk � cTx� 1,
(1:26)

which is a second-order cone program. See references [21–23]. The subject of

robust convex optimization is covered in references [9, 24–28].

By assumption, R is positive definite and the constraint kATxk � cTx� 1 in

(1.26) precludes the trivial minimizer of xTRx: Hence, this constraint will be tight

for any optimal solution and we may express (1.26) in terms of real-valued
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quantities as

minimize xTRx

subject to cTx ¼ 1þ kATxk: (1:27)

Compared to the MVB, the RMVB adds a margin that scales with the size of the

uncertainty. In the case of no uncertainty where E is a singleton whose center is c ¼
½Re a(ud)T Im a(ud)

T �T , (1.27) reduces to Capon’s method and admits an analytical

solution given by the MVB (1.5). Unlike the use of additional point or derivative main-

beam constraints or a regularization term, the RMVB is guaranteed to satisfy the mini-

mum gain constraint for all values in the uncertainty ellipsoid. In the case of isotropic

array uncertainty, the optimal solution of (1.18) yields the same weight vector (to a

scale factor) as the regularized beamformer for the proper the proper choice of m:

1.3.1 Lagrange Multiplier Methods

We may compute the RMVB efficiently using Lagrange multiplier methods. See,

for example, references [29–30], [31, §12.1.1], and [32]. The RMVB is the optimal

solution of

minimize xTRx

subject to kATxk2 ¼ (cTx� 1)2
(1:28)

if we impose the additional constraint that cTx � 1: We define the Lagrangian

L: Rn � R! R associated with (1.28) as

L(x, l) ¼ xTRxþ l kATxk2 � (cTx� 1)2
� �

¼ xT (Rþ lQ)xþ 2lcTx� l,
(1:29)

where Q ¼ AAT � ccT : To calculate the stationary points, we differentiate L (x, y)

with respect to x and l; setting these partial derivatives equal to zero yields the

Lagrange equations:

(Rþ lQ)x ¼ �lc (1:30)

and

xTQxþ 2cTx� 1 ¼ 0: (1:31)

To solve for the Lagrange multiplier l, we note that equation (1.30) has an

analytical solution given by

x ¼ �l(Rþ lQ)�1c;
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applying this to (1.31) yields

f (l) ¼ l2cT (Rþ lQ)�1Q(Rþ lQ)�1c� 2lcT (Rþ lQ)�1c� 1: (1:32)

The optimal value of the Lagrange multiplier l� is then a zero of (1.32). We proceed

by computing the eigenvalue/eigenvector decomposition

VGVT ¼ R�1=2Q(R�1=2)T

to diagonalize (1.32), that is,

f (l) ¼ l2 �cT (I þ lG)�1G(I þ lG)�1 �c� 2l�cT (I þ lG)�1 �c� 1, (1:33)

where �c ¼ VTR�1=2c: Equation (1.33) reduces to the following scalar secular

equation:

f (l) ¼ l2
Xn
i¼1

�c2i gi
(1þ lgi)

2
� 2l

Xn
i¼1

�c2i
(1þ lgi)

� 1, (1:34)

where g [ Rn are the diagonal elements of G: The values of g are known as the gen-

eralized eigenvalues of Q and R and are the roots of the equation det (Q� lR) ¼ 0:
Having computed the value of l� satisfying f (l�) ¼ 0, the RMVB is computed

according to

x� ¼ �l�(Rþ l�Q)�1c: (1:35)

Similar techniques have been used in the design of filters for radar applications; see

Stutt and Spafford [33] and Abramovich and Sverdlik [34].

In principle, we could solve for all the roots of (1.34) and choose the one that results

in the smallest objective value xTRx and satisfies the constraint cTx . 1, assumed in

(1.28). In the next section, however, we show that this constraint is only met for values

of the Lagrange multiplier l greater than a minimum value, lmin: We will see that

there is a single value of l . lmin that satisfies the Lagrange equations.

1.3.2 A Lower Bound on the Lagrange Multiplier

We begin by establishing the conditions under which (9) has a solution. Assume R ¼
RT 	 0, that is, R is symmetric and positive definite.

Lemma 1. For A [ Rn�n full rank, there exists an x [ Rn for which kATxk ¼
cTx� 1 if and only if cT (AAT )�1c . 1:

Proof. To prove the if direction, define

x(l) ¼ (ccT � AAT � l�1R)�1c: (1:36)
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By the matrix inversion lemma, we have

cTx(l)� 1 ¼ cT (ccT � AAT � l�1R)�1c� 1

¼ 1

cT (AAT þ l�1R)�1c� 1
:

(1:37)

For l . 0, cT (AAT þ l�1R)�1c is a monotonically increasing function of l; there-
fore, for cT (AAT )�1c . 1, there exists a lmin [ Rþ for which

cT (AAT þ l�1minR)
�1c ¼ 1: (1:38)

This implies that the matrix (Rþ lminQ) is singular. Since

lim
l!1

cTx(l)� 1 ¼ �cT (AAT � ccT )�1c� 1

¼ 1

cT (AAT )�1c� 1
. 0,

cTx(l)� 1 . 0 for all l . lmin:
As in (1.32) and (1.34), let f (l) ¼ kATxk2 � (cTx� 1)2: Examining (1.32),

we see

lim
l!1

f (l) ¼ �cT (AAT � ccT )�1c� 1

¼ 1

cT (AAT )�1c� 1
. 0:

Evaluating (1.32) or (1.34), we see liml!lþ
min

f (l) ¼ �1: For all l . lmin, c
Tx .

1 and f (l) is continuous. Hence f (l) assumes the value of 0, establishing the exist-

ence of a l . lmin for which cTx(l)� 1 ¼ kATx(l)k:
To show the only if direction, assume x satisfies kATxk � cTx� 1: This condition

is equivalent to

zTx � 18z [ E ¼ {Auþ c j kuk � 1}: (1:39)

For (1.39) to hold, the origin cannot be contained in ellipsoid E, which implies

cT (AAT )�1c . 1. A

REMARK. The constraints (cTx� 1)2 ¼ kATxk2 and cTx� 1 . 0 in (1.28), taken

together, are equivalent to the constraint cTx� 1 ¼ kATxk in (1.27). For

R ¼ RT 	 0, A full rank and cT (AAT )�1c . 1, (1.27) has a unique minimizer x�:
For l . lmin, (l

�1Rþ Q) is full rank, and the Lagrange equation (1.30)

(l�1Rþ Q)x� ¼ �c
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