REVIEWS OF BOOKS AND PAPERS IN THE COMPUTER FIELD

R68-16 A Mathematical Model for the Investigation of Three-
Dimensional Fields with Asymmetric Boundaries—E. S. Ip (Proc.
Internat'l Assoc. for Analog Computation, vol. 9, no. 3, pp. 122-130,
July 1967).

The purpose of the investigation reported in this paper was to
test the feasibility of solving Laplace’s equation in a three-dimen-
sional region having asymmetric boundaries by means of an electro-
lytic tank and also by a three-dimensional network of resistors. The
region considered was one octant of an ellipsoid.

The author first presents an analytical solution for the potential
distribution in the interior of an ellipsoid in terms of ellipsoidal
coordinates. The boundary conditions consist of the voltages being
specified on plane electrodes with elliptic or hyperbolic boundaries.
These electrodes are located on the plane sides of the octant under
consideration.

The analytic results were evaluated numerically with the aid of
a digital computer and were compared with results measured directly
from an electrolytic tank having walls of ellipsoidal shape. A system
of fixed and movable probes was used to determine the location of the
equipotential surfaces.

Finally, a three-dimensional resistor network was used to solve
the same problem and the results of the three methods were com-
pared. The resistor network was, of course, a lumped model. Taking
15 cells along the semimajor axis, several thousand resistors of 2-
percent accuracy were used in the network. It turned out that the
electrolytic tank gave somewhat better accuracy than the network,
although the accuracy of either was within approximately 2 percent
of the applied potential difference. Estimates were made of the
errors due to resistor tolerances and due to truncation effects.

The number of hours of work required to perform the research
reported in this paper must have been very great indeed, since each
of the experimental portions was quite a project in itself. The prin-
cipal result obtained was the demonstration that an effective three-
dimensional probe can be used to obtain good accuracy for electro-
lytic tank problems having asymmetric boundaries.

The three-dimensional resistor network used well-known lumping
techniques and arrived at results of the accuracy that one might
expect. Consequently, this portion of the paper may not be of as
much general interest as the report on the electrolytic tank.

DonNaLp T. GREENWOOD
University of Michigan
Ann Arbor, Mich.

E. DIGITAL-TO-ANALOG CONVERSION

R68-17 Synthesis of Resistive Digital-to-Analog Conversion Lad-
ders for Arbitrary Codes with Fixed Positive Weights—M. R. Aaron
and S. K. Mitra (IEEE Trans. Electronic Computers, vol. EC-16,
pp. 277-281, June 1967).

The purpose of this paper is to develop design equations for
switched positive-resistance digital-to-analog converters. The au-
thors state that no synthesis method heretofore has existed for the
design of this type of ladder network. The problem to which the
paper addresses itself is the following.

1) Given a set of fixed positive weights (4;) and a set of positive
source conductances (g;), find the necessary and sufficient conditions
that these quantities and the input admittance must satisfy in order
for the resulting ladder decoder to be realizable with positive con-
ductance (G;) and ideal switches.

2) Derive explicit equations relating the (G;) to the (4;), (g;) and
input admittance.

The source conductances are, of course, a part of the ladder. The
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constraint placed upon them is found to be
A
8idj+1 <1
gind;

where 4, signifies a lesser weight of the desired code than 4;.
Thus, it is seen that the source conductances need not be equal,
the way they are usually designed, but must be in ratios constrained
by the weight of the code selected for synthesis.
The input admittance Y is constrained by the following rela-
tionship:
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These two inequalities answer part 1) of the problem statement.
The second part, the explicit equations relating the shunt conduct-
ances (G;) to the weights (4;) and to the series of source conductances
(g;) and input admittance, are:

Y.
G = ?
1= bjg
yj+1 = — &1
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In the special cases where the (g;) are ordered such that

gng, allj<n—1,
or where g; are equal to each other for all j<z—1, the realizability
condition becomes

A .
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allj <n—1;

that is, the weights of the selected code form a nonincreasing sequence.

After arriving at the general solution for the design problem,
the special cases of repetitive codes and the straight binary system
are treated, and simplified design equations for these cases are de-
veloped. These sections and those following assume equal (g;) normal-
ized to one ohm.

The paper concludes with a treatment of binary-coded decimal
systems which are repetitive structures. General-design equations
are again developed and an example is given utilizing the equations
to develop an 8421 weighted code.

The authors have written a letter which appeared in the Cor-
respondence section of the October, 1967, issue of this TRANSACTIONS,
entitled “A Note on the Design of D to A Converters.” The sub-
stance of this letter is to show how the generalized ladder reduces to
the weighted resistor grouping—sometimes called a star, or a ladder
grouping—by placing constraints on the ladder parameters and then
applying the equations which have been developed. Since these spe-
cial codes are extremely useful, the letter should be read along with
the paper by anyone interested in the subject.

The paper concludes with a tabulation of normalized conductances
of the repetitive DAC ladder for 17 different BCD codes.

The authors suggest that their paper is written to have engineer-
ing appeal. If this means that it can easily be used by engineers, I
would take some issue with them. Except for the tabulation at the
end of the paper, which allows the ladder resistors to be chosen sim-
ply by selecting from the table and multiplying by a constant, the
paper is not written so that it is especially easy to read. Some of the
notation is not defined prior to its use, but must be inferred from the
text, which compels one to reread sections several times or to work



410

out examples to make sure one has not gone astray. Also, the mathe-
matical notation was not as clear as it could have been if some addi-
tional explanations had been given. Much of the algebraic manipula-
tion of the derivation is left to be worked out by the reader. Finally,
the paper gives no hint as to why it was undertaken, except to say
that no synthesis previously existed. If, by way of background, a
brief description of the reason for synthesizing all possible DAC
ladders were included in the paper, it would have made it more
interesting and less academic.

However, these are minor points. The paper is instructive and
of interest to those involved in the design of digital-to-analog conver-
ters or analog computers.

CLARK F. CROCKER

A/D Equipment Development
Digital Equipment Corp.
Maynard, Mass.

F. STOCHASTIC COMPUTATION

R68-18 Random Pulse Machines—S. T. Ribeiro (IEEE Trans.
Electronic Computers, vol. EC-16, pp. 261-276, June 1967).

In conventional digital computation, continuous quantities are
quantized and represented by binary words in which the number of
bits determines the precision of representation. In stochastic com-
putation, as described in this paper, continuous quantities are repre-
sented as a sequence of one-bit binary words (i.e., as a pulse stream
or sequence of logic levels) in which the probability of an oN logic
level is a measure of the quantity. Since probability is a continuous
variable in the range 0 <p<1, this removes the effects of quantiza-
tion. However, a probability cannot be measured precisely, only
estimated subject to random variance, and hence there is an effective
random noise in the output of the computer.

Alternatively, the stochastic computer may be compared with
other forms of computer in terms of efficiency. Representation of
quantities as random variables enables very simple elements to be
used to perform arithmetic operations. For example, a single EX-
CLUSIVE-OR gate acts as a multiplier for two signed numbers; far
more complex and expensive hardware is required for four-quadrant
multiplication in either conventional analog or digital computers.
Similarly, simple digital elements may be used in the stochastic
computer to perform all the various operations—addition, subtrac-
tion, integration, and so on—commonly associated with the analog
computer.

The stochastic computer is thus very efficient in its utilization
of hardware. On the other hand, the noise inherent in stochastic com-
putation makes N2 pulses necessary to define a quantity with a pre-
cision of 1 part in N. This compares unfavorably with other pulse-
counting computers, such as the DDA, which need N pulses for the
same precision, and even more unfavorably with the general-purpose
digital computer, which requires log: N bits to obtain this precision.
The stochastic computer is thus inefficient in its use of the potential
information content of a data stream, and hence its operations are
slow compared with those of other machines. It scores when large
amounts of low-bandwidth (10 Hz) data have to be processed in
paralle] in a fairly complex fashion, for example, in pattern-recogni-
tion or multivariable adaptive control.
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It is difficult to trace the origins of stochastic computing back
very far, although one has the suspicion that the extremely simple
concept of representing analog variables by the probability of oc-
currence of discrete events may well have a fairly ancient lineage.
However, although the early Chinese had a grasp of number theory
which gives them some right to claim prior disclosure on patents for
residue-number machines, the concept of a quantitative representa-
tion of random events is itself sufficiently recent to preclude this for
stochastic machines. On the other hand, the human brain seems to
use stochastic computing as its mainstay (perhaps), and might be
considered prior art!

Certainly the possible genesis of stochastic computing may be
found in the use of high-frequency sawtooth “dither” to round off the
corners in the output of diode function generators, and, more re-
cently, to linearize polarity coincidence correlators, but none of this
work has ventured beyond the immediate application and generated
a complete computing system based on the representation of con-
tinuous variables as probabilities.

Suddenly this has been done, with papers presented at both the
Spring and Fall Joint Computer Conferences this year, together
with the excellent introduction to stochastic computing principles
which is the subject of the present review.

The author first introduces the concept that a logical interaction
between two independent binary sequences in a two-input, single-
output gate is equivalent to an arithmetic operation on their generat-
ing probabilities, and tabulates this operation for the 16 possible
Boolean functions of two variables. He then presents the problem of
coding any analog variable as a probability in such a way that this
effect may be used to perform arithmetic. Finally, the author con-
siders time-dependent operations, such as integration, gives a brief
analysis of the errors inherent in stochastic computation, and sug-
gests some possible applications.

In its treatment of memoryless computing elements and stochastic
representations of quantity, this paper is particularly comprehensive
and much to be welcomed. Time-dependent operations are not
covered in as great a depth. In particular, the stochastic integrator
with feedback, which is usually the outward interface of the com-
puter and fundamental to the solution of differential equations on the
stochastic computer, is hardly mentioned. Because of this, the wide
range of potential applications in control systems, both for identifica-
tion and optimization, is not described.

However, these are minor criticisms of the first paper to appear
in this TRANSACTIONS on a new type of computer which presents
exciting problems and a fruitful area for research. The main obstacle
to the practical application of the stochastic computer is, at present,
the generation of the random variables required in a reliable and
economical manner. It may well be that we should look to truly
random physical processes, such as photon—photon interactions, to
provide the hardware foundation for stochastic computing systems.

This is a relatively unexplored region, however, where much fur-
ther effort by mathematicians, engineers, and physicists will be
required before we can fully define the potential impact of stochastic
techniques on future computing systems. Fortunately, there is suffi-
cient commercial promise and intellectual novelty in the concept of
stochastic computing to attract ever-increasing research effort in a
wide range of locations.

B. R. GAINES

Dept. of Elec. Engrg. Science
University of Essex

Essex, England




