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The evolution of complex gene regulation
by low-specificity binding sites

Alexander J. Stewart and Joshua B. Plotkin

Department of Biology, University of Pennsylvania, Philadelphia, PA, USA

Requirements for gene regulation vary widely both within and among

species. Some genes are constitutively expressed, whereas other genes require

complex regulatory control. Transcriptional regulation is often controlled by a

module of multiple transcription factor binding sites that, in combination,

mediate the expression of a target gene. Here, we study how such regulatory

modules evolve in response to natural selection. Using a population-genetic

model, we show that complex regulatory modules which contain a larger

number of binding sites must employ binding motifs that are less specific,

on average, compared with smaller regulatory modules. This effect is extre-

mely general, and it holds regardless of the selected binding logic that a

module experiences. We attribute this phenomenon to the inability of stabiliz-

ing selection to maintain highly specific sites in large regulatory modules. Our

analysis helps to explain broad empirical trends in the Saccharomyces cerevisiae
regulatory network: those genes with a greater number of distinct transcrip-

tional regulators feature less-specific binding motifs, compared with genes

with fewer regulators. Our results also help to explain empirical trends in

module size and motif specificity across species, ranging from prokaryotes

to single-cellular and multi-cellular eukaryotes.
1. Introduction
Transcriptional regulators integrate signals from genes and the environment

to ensure that the correct patterns of gene expression are maintained in the cell

[1–8]. This can be a complicated task, particularly in higher eukaryotes where

processes such as cell differentiation and complex inter-cellular signalling

occur [1,4]. Generally, the more complex a signal integration task, the more com-

plex the pattern of gene regulation required. On the face of it, we might expect

more complex gene regulation to be carried out by binding sites of higher

specificity—just as we expect a complicated machine to use high-precision com-

ponents. Here we show that, in fact, the opposite is true: natural selection favours

less-specific binding sites in more complex regulatory modules.

We use an established biophysical model of transcription factor binding to

describe a regulatory module—namely, a set of multiple transcription factor

binding sites, with a range of specificities, that in combination regulate the

expression of a given target gene. For selection of a given strength on the

target gene’s expression level, we determine the average information of binding

motifs that participate in a module of a given size, across all possible binding

logics. Our analysis predicts that the binding sites maintained in a large

module will each have lower information content, on average, than those main-

tained in a small module. We equate the size of a module with the complexity

of its regulatory capacity, because larger modules can assume a greater number

of distinct states and execute more complex binding logics. Thus, our analysis

predicts more complex regulation by less-specific binding motifs.

This simple but counterintuitive result helps to explain two broad empirical

patterns in transcription networks within and between species. First, regulatory

complexity in eukaryotes is greater than in prokaryotes [9,10], and this differ-

ence is accompanied by a tendency towards less-informative binding motifs

for eukaryotic transcription factors [11,12]. Second, within the yeast transcrip-

tion network, we observe that those genes whose expression varies across

environmental conditions, and therefore require more complex integration of
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Figure 1. A transcriptional module is a set of distinct transcription factor binding sites that, in combination, regulate the expression of a given target gene. Module size
is defined as the number of distinct binding sites (blocks (i), (ii) and (iii)). As module size increases, so too does regulatory complexity, as quantified by the number of
distinct states that the module can occupy. This is illustrated using truth tables (right) with ‘X’ indicating a bound site and ‘O’ indicating an unbound site. The fitness of
different binding combinations is shown in the final column. Selection favours some patterns of binding (fitness 1) and disfavours others ( fitness 1 – s) and thereby
determines the evolution of the binding sites in the module. (Online version in colour.)
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environmental signals, tend to have more transcriptional reg-

ulators with binding motifs that each have lower specificity,

compared with genes expressed consistently across environ-

mental conditions [13]

Our paper is structured as follows. We begin by inspecting

empirical data on the relationship between motif specificity

and regulatory complexity, in yeast. To help understand

these data, we then construct a model of regulatory module

evolution. Our analysis is based on a standard biophysical

model for transcription factor binding, which we use to con-

struct fitness landscapes for regulatory modules consisting

of multiple binding sites that are selected to execute a given

binding logic. We analyse the evolution of these modules in

the limit of weak mutation (which is appropriate when con-

sidering binding sites at a particular target gene [14–16]),

and we determine whether, at equilibrium under stabilizing

selection [17], the binding sites that belong to a module are

likely to be functional or non-functional (i.e. whether they

are likely to be bound by their respective transcription factors,

or not). We determine how the information content of the fac-

tors maintained in a module varies with the module’s size, for

fixed selection strength and population size. We initially focus

on modules consisting of only two transcription factors, since

this case can be understood analytically. We then employ

evolutionary simulations to explore larger modules. We also

analyse the impact of variation in the co-expression patterns

of transcription factor proteins on the equilibrium size of a

module. Finally, we study the generality of our results by

relaxing model assumptions. We conclude by comparison

with empirical data on transcription factor motifs and

modules, within and between species.

2. Empirical trends in binding site specificities
Transcriptional control of a gene is often mediated by a regu-

latory module—that is, a set of upstream binding sites
associated with distinct transcription factors that, in combina-

tion, regulate the expression level of the target gene. Larger

modules can assume a greater number of distinct states and

thus execute more complex binding logics (figure 1). We

focus on two pieces of empirical data concerning the com-

plexity of regulatory modules and the specificity of the

binding motifs they contain (figure 2). Our data come from

yeast [18–20]. First, we studied the relationship between

the number of binding sites that regulate a given target

gene (that is, the gene’s module size), and the average infor-

mation content of the binding motifs in the module. We

found a strong negative correlation between module size

and the average information content of motifs: larger mod-

ules employ less-specific binding motifs (figure 2). We also

found a negative correlation between module size and the

variance in the information content of its regulatory motifs

across target genes. Similar correlations were reported

previously by Bilu & Barkai [13].

Our second empirical observation concerns the relation-

ship between regulatory complexity and the variation in a

gene’s expression across environments. We found that genes

whose expression varies substantially across environmental

conditions tend to have a greater number of regulators

than genes with little expression variation across environ-

ments (figure 2—Bilu & Barkai [13] also report a similar

correlation). This observation supports our interpretation

that more regulators provide greater regulatory complexity.

These empirical results continue to hold when genes are

separated according to whether they contain a TATA box

[21,22]—or not (see the electronic supplementary material

and figure S1). Furthermore, we repeated our analysis for

the Escherichia coli transcription network [23] and found,

once again, a strong negative correlation between the

number of regulators of a gene and the average information

content of its regulating binding motifs (see the electronic

supplementary material, figure S2).
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Figure 2. (a) The empirical relationship between the number of regulators of
a gene and the information content of its regulatory binding sites, in the
yeast transcription network [18 – 20]. Both the average information content
of regulatory motifs ( points) and its standard deviation (bars) decrease
with the number of regulators. The dashed line is a linear fit to the data
and shows a significantly negative slope ( p , 2 � 1028). Points show
the average information content of binding motifs, for target genes
binned according to the number of regulators. (b) The empirical relationship
between the number of regulators of a gene and the variance in the gene’s
expression across environments in the yeast transcription network [13,
18 – 20]. The variance in gene expression increases with the number of reg-
ulators. The dashed line is a linear fit to the data and shows a significantly
positive slope ( p , 8 � 10215). Points show the average variance in target
gene expression across environments for target genes binned according to the
number of regulators. Bin sizes were chosen so that each bin contains at least
10 target genes. Bars show the standard deviation in the information content
of binding sites, taken across all genes with a given number of regulators.
Bars extend 1 s.d. either side of the mean.
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In summary, the empirical data in yeast reveal that (i) the

more transcription factors that co-regulate a gene, the lower

the information content of each factor’s binding motif and

(ii) the greater the expression variation of a gene across

environments, the greater the number of transcription factors

that co-regulate it. The second observation makes intuitive

sense: genes that vary their expression substantially across

environmental conditions generally require more complex

regulation, and thus larger module size, in order to integrate

and respond to different environmental signals. The first

observation—that larger regulatory modules comprises

individually less-specific regulatory motifs—is harder to

understand. Why should genes controlled by complex regulat-

ory modules use transcription factors with low information

content? We seek to answer this question by considering the

population genetics and evolution of regulatory modules.
3. Results
(a) Biophysical model of transcription factor binding
We use an established biophysical model of transcription-

factor binding [24–28], which treats a binding site as a

sequence of n consecutive nucleotides for which there is an

associated consensus sequence (or set of sequences) that

results in a minimum binding energy. Any set of n consecu-

tive bases can be characterized by its number of ‘mismatches’,

i.e. the number of nucleotide positions at which it differs from

the consensus sequence. In the standard model, each such

mismatch increases the binding energy of the sequence, com-

pared with the consensus sequence, by an amount e. The

increase in energy per-mismatch has been empirically

measured to fall within the range 1 and 3 kBT [11,29]. The

probability pi that any given n-nucleotide sequence is

bound by a transcription factor is determined by the

number of mismatches, i, the binding energy per-mismatch,

e, and the number of free transcription factor proteins in

the cell, P, according to the following equation:

pi ¼
P

Pþ exp½ei� : ð3:1Þ

We describe the consensus sequence of a binding motif by

assuming that each of the n-nucleotide positions can be treated

as having a degeneracy, r, which quantifies the (average)

number of different bases that can appear at each position and

still result in minimum binding energy. Thus, if r ¼ 1, minimum

binding energy is achieved only if each of the n nucleotides

adopts a single specific base. If r ¼ 2, minimum binding

energy can be achieved if each of the n nucleotides adopts one

of two bases, and so on. The average degeneracy for a given

transcription factor can be calculated from the position-specific

weight matrix (PSWM) of its binding site [12].

Increasing the average degeneracy r of a consensus

sequence lowers the specificity of the motif, since a greater

number of different nucleotide sequences result in minimum

binding energy. Similarly, reducing the length of the consen-

sus sequence, n, also decreases its specificity, since fewer

nucleotides need to be matched to a specific base to minimize

binding energy. In order to compare the specificities of differ-

ent binding motifs with different lengths and degeneracies,

we follow the approach used in earlier studies and measure

the information content, I, of a PSWM [30,31], I ¼ nlog2[4/r].

(b) Mutation and selection in the weak mutation limit
We use the probability of binding, pi to construct the fitness

landscape of a regulatory module. As in previous studies

[28], we assume that fitness is a linear function of the prob-

ability that a binding site under selection is in fact bound.

Thus, for a single binding site with i mismatched nucleotides,

the fitness wi is given by wi ¼ 1 2 s(1 2 pi). (We later gener-

alize this to modules composed of multiple binding sites.)

In the case of a single binding site, when pi ¼ 1 the site is

always bound producing fitness wi ¼ 1. The parameter s
quantifies the reduction in fitness that occurs when the bind-

ing site is unbound, so that if pi ¼ 0, and the site is always

unbound, we assign fitness wi ¼ 1 2 s.

Following the approach used previously, we analyse

binding site evolution at a single target gene in the limit of

weak mutation [14–16]. This regime is realistic because the

per-nucleotide mutation rate in both prokaryotes and

http://rspb.royalsocietypublishing.org/
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eukaryotes is low, m � O(1028), binding sites are typically

short, n � O(10) and selection on conserved binding sites is

sufficiently strong, with Ns � O(10), where N is the popu-

lation size. We later relax the assumption of weak mutation.

In the weak-mutation limit, evolution occurs through a

series of selective sweeps, with new mutations arising only

after earlier mutations have either fixed or gone extinct. We

can calculate the equilibrium distribution Fi of binding sites

with i mismatched nucleotides (see the electronic supplemen-

tary material). When there is no selection, s ¼ 0, then Fi is just

a binomial distribution whose mean is determined by the

rates of mutations that increase or decrease i. However,

when selection is present, i.e. s . 0, the equilibrium distri-

bution Fi is bimodal, with one peak occurring at values of i
for which pi � 1 and a second peak occurring at the neutral

equilibrium, i ¼ n(1 2 r/4) (see electronic supplementary

material, figure S3a).
131313
(c) A definition of functional binding
The bimodal form for the equilibrium distribution of mis-

matches provides a natural way to separate binding sites

into ‘functional’ and ‘non-functional’ categories. This classifi-

cation simplifies the analysis of modules containing multiple

binding sites. We adopt a simple, operational definition of a

functional binding site: all binding sites for which the prob-

ability of binding exceeds one half, i.e. pi . 0.5, are defined

as functional; all others are defined as non-functional. This

is a natural definition because the probability of binding,

pi, is a sigmoidal function of the number of mismatches, i,
with a fairly sharp threshold occurring at the value of i for

which pi ¼ 0.5 (the threshold value is given by i ¼ log[P]/e).

In practice, this definition means that binding sites belong-

ing to the mutation-selection peak of the bimodal distribution

(figure 2a) are considered functional, whereas binding sites

belonging to the drift peak of the bimodal distribution are

considered non-functional. To ensure that a neutrally evolving

region of DNA is not mislabelled as a functional binding site,

we impose the additional constraint n(1 2 r/4) . log[P]/e.

This constraint ensures that selection is able to differentiate

between the functional (selective) peak and the non-functional

(drift) peak in figure 2a. In essence, this condition excludes

binding motifs with very low information content from our

analysis. Furthermore, to account for the effects of spurious

binding to low-information content binding sites, we analysed

both the case in which the number of free transcription factor

proteins, P, is independent of binding-site information, and the

case when P decreases as information content decreases

(owing to spurious binding), see later.

Given our definition of functional binding, the equili-

brium probability, f, that a binding site will be functional is

given by

f ¼
X

fijpi.0:5g
Fi: ð3:2Þ

Electronic supplementary material, figure S3c shows how the

probability a binding site is functional, f, depends upon the

scaled strength of selection, Ns. This relationship displays a

sharp, threshold behaviour [27]. Thus, as selection strength

or population size increases, binding sites rapidly switch

from having many mismatched nucleotides to having few

mismatched nucleotides, so that the chance of binding

rapidly switches from below one-half to above one-half.
(d) Evolution of a single binding site
Before considering complex regulatory modules, we first ana-

lyse the evolution of a regulatory module composed of a

single binding site. We consider a single binding site with

information content I evolving in a population of size N
under stabilizing selection of strength s for binding. As

described earlier, we can determine the probability, f that it

is functional in equilibrium. The information content of the

binding site depends on its length n and average degeneracy

r, which are independent parameters. However, any pair

of values fn,rg that result in a given information content,

I ¼ nlog2[4/r], result in the same (or very close to the same)

probability f that the site is functional (see the electronic

supplementary material, figure S4). Thus, it is sufficient to

know only the total information content of a binding motif

in order to understand its evolution, as opposed to know

both n and r independently. Therefore, we confine ourselves

to discussing the information content of sites.

Typically, the strength of selection on binding sites is of the

order Ns � 10 [28,32]. Assuming Ns ¼ 10, electronic sup-

plementary material, figure S3b shows how the probability

that the site is functional, f, depends on its information

content, I. The figure also indicates the critical value of infor-

mation that results in the binding site being functional with

probability one-half; this occurs when I ¼ 37.5 bits. For

values of information content more than 37.5 bits, the prob-

ability that the site is functional declines rapidly to zero;

whereas a binding site with information less than 37.5 bits

has the probability of being functional near 1. Therefore, a

regulatory module consisting of a single binding site will

probably be functional whenever I � 37.5, given selection of

strength Ns ¼ 10. This threshold should not be taken too lit-

erally, because Ns varies among binding sites and among

species. However, for realistic parameter choices, this

threshold information content is roughly comparable with

the information content of empirical binding motifs [12]. The

simple case of a single binding site, described in this section,

forms a basis for comparison as we consider modules with

multiple binding sites, below.
(e) Evolution of regulatory modules composed of
two binding sites

Next, we used our population-genetic model to study the

evolution of regulatory modules composed of two binding

sites, under selection for a specific binding logic. A pair of

binding sites for two co-expressed transcription factors can

be bound in four possible combinations. We assume that

the regulated target gene produces fitness 1, if the two sites

are bound in a ‘desired’ combination, and fitness 1 – s other-

wise. We refer to the pattern of bound combinations that are

favoured by selection as the selected ‘binding logic’ of a

module (figure 1).

For a module with two binding sites, three important

binding logics may occur. Under selection for an AND bind-

ing logic, both factors must be simultaneously bound, so that

the fitness of the regulated gene is 1 when both binding sites

are bound and 1 – s otherwise. Under selection for an OR

binding logic, the fitness is 1 when either one or both of the

binding sites is bound. Under selection for an XOR binding

logic, the fitness is 1 when one but not both binding sites

are bound. We study how the binding motifs in the

http://rspb.royalsocietypublishing.org/


Table 1. Binding logics for modules with two binding sites.

logic gate selected regulation probability of selected binding

AND A and B must both be bound for correct regulation pA
i p

B
j

OR either A or B or both must be bound for correct regulation pA
i þ pB

j � pA
i p

B
j

XOR either A or B but not both must be bound for correct regulation pA
i þ pB

j � 2pA
i p

B
j

no interaction A and B contribute independently to correct regulation pA
ij þ pB

ij
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regulatory region will evolve in response to the selected bind-

ing logic—including the possibility that some of the motifs

might become non-functional (for example, if the selective

binding logic is XOR then both transcription factors are

present in the cell at all times).

We emphasize that the selected binding logic, shown

schematically in figure 1, is distinct from the logic of physical

interactions among factors bound in a regulatory region,

which collectively determine whether the target gene is tran-

scribed or not. Regardless of the interaction logic among

bound factors, the selected binding logic in a module is

what determines the long-term evolutionary outcome of the

binding motifs [33].

For a pair of binding sites, A and B, with i and j mismatched

nucleotides, respectively, the probability of desired binding for

an AND regulatory module is given by sAND
ij ¼ pA

i p
B
j . For an

OR regulatory module the probability of desired binding is

sOR
ij ¼ pA

i þ pB
j � pA

i p
B
j , and for an XOR module the prob-

ability of desired binding is sXOR
ij ¼ pA

i þ pB
j � 2pA

i p
B
j . These

three possibilities are summarized in table 1. Cooperativity

between the two transcription factor proteins is neglected

here, but considered below.

We have derived the equilibrium distribution of mis-

matched nucleotides (i,j ) for a two-site regulatory module,

evolving under weak mutation (see the electronic supple-

mentary material). Figure 3 shows contour plots for the

probabilities, fA and fB, that each of the binding sites are

functional in equilibrium, for different values of information

content at each binding site. The figure also shows these

contours for each of the three possible binding logics

described above, with selective strength Ns ¼ 10 for the

desired binding configurations.

Also shown for comparison in figure 3 is a contour map

for two binding sites functioning independently in isolation

of each other (figure 3a). Each such site corresponds to the

case of a single binding site, as discussed in §3d.

Figure 3 illustrates the central result of our study: for all

three possible binding logics, the range of information con-

tent for which both binding sites are functional (and thus

retained) is much smaller than the information content of a

functional, single-site module. Thus, our analysis predicts

that functional binding sites (which are retained over evol-

ution) in a two-site module, regardless of the selected

binding logic, will tend to have less information than a

binding site occurring in single-site module.

Although the analysis in figure 3 assumes that both tran-

scription factors are constitutively co-expressed in the cell,

our model can easily be generalized to the case in which

pairs of factors are co-expressed only for some proportion

of the time (see the electronic supplementary material). The

results shown in figure 3 are qualitatively unchanged in
such a scenario (electronic supplementary material, figures

S13–S15).

( f ) Evolution of regulatory modules composed of many
binding sites

Our analysis of two-site regulatory modules can be extended

to describe larger regulatory modules. We consider M
co-expressed transcription factors, whose binding sites co-

regulate a target gene. The group of M binding sites can be

bound by their respective transcription factors in 2M possible

combinations. Each combination of bound sites can, in turn,

constitute a desirable or an undesirable pattern of gene regu-

lation. As a result, there are 22M
possible binding logics that

can be executed by such a regulatory module. An example

is illustrated in the electronic supplementary material,

table S1. Analogously to the two-site case, we can construct

a function si1;i2 ;:::;iM to describe the probability that a set of

transcription factor binding sites, {A1;A2; :::;AM}, with

{i1; i2; :::; iM} mismatched nucleotides is bound in a desirable

pattern, for a given regulatory binding logic. The equilibrium

distribution for the number of mismatched nucleotides at

each binding site can once again be found analytically. This

expression is given in the electronic supplementary material,

however the combinatorial explosion in the number of poss-

ible selected binding logics with module size means that an

analytical exploration of modules with more than two bind-

ing sites quickly becomes impractical.

Instead, we performed simulations of evolution under

weak mutation. We constructed regulatory modules in our

simulations as follows: for each binding site, we drew a

energy contribution per mismatch, e, and a number of pro-

teins per cell, P, from a uniform distribution in the

empirically determined ranges 1 � e � 3 and 100 � P � 103,

respectively. We also drew a binding site length, n, and

average degeneracy, r, from a uniform distribution in the

range 5 � n � 40 and 1 � r , 4, respectively, with the

additional constraint that we condition on n(1 2 r/4) .

log[P]/e, to ensure that selection is able to differentiate

between functional and non-functional sites.

We can extend our analysis of two-site modules by

assuming a strict AND binding logic, or an OR binding

logic, across all the binding sites in the module. Alternatively,

we also explored random binding logics. To do this, we chose

a binding logic uniformly from among the 22M
possible logics.

Each module was then allowed to evolve until greater

than 102 mutations fixed, to ensure that equilibrium had

been reached, and the simulation was then stopped. Once

stopped, a module was defined as functional if each of its

composite binding sites is functional. We calculated the aver-

age information content of motifs, in all the functional

http://rspb.royalsocietypublishing.org/
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Figure 3. Regulatory modules containing two binding sites are composed of individually less specific binding sites, compared with a module composed of a single
binding site. Each panel shows a pair of overlapping contour plots for the probability that binding site A is functional, fA, and the probability that binding site B is
functional, fB. Solid black lines indicate the contours fA ¼ 0.5 and fB ¼ 0.5. Region (i) indicates that only A is likely to be functional, region (ii) indicates that only B
is likely to be functional and region (iii) indicates the overlap between regions (i) and (ii), meaning that both binding sites A and B are likely to be functional. White
regions indicate that neither site is likely to be functional. All plots are generated with selection strength Ns ¼ 10. The figures show: (a) probability of being
functional for individual binding sites in isolation: region (iii), which occurs when both binding sites have I & 37:5 bits, serves as a basis for comparison
with two-site binding modules. (b) A two-site module with AND binding logic, so that both A and B are selected to be bound. Region (iii) is smaller than
in the one-site case, indicating that functional binding sites maintained in the module will contain less information than in the one-site case. (c) A two-site
module with XOR binding logic, so that A or B but not both are selected to be bound; again, the binding sites maintained in such a two-site module each
have less information than in a single-site module. (d ) A two-site module with OR binding logic, so that A or B is selected to be bound. Only a small
region (iii) at low information content is visible. As a result, only the binding site with lower information content will typically remain functional. Information
content is calculated by fixing degeneracy r ¼ 1.6, and varying binding site length n to produce values of information content that coincide with the empirically
observed range [12], with P ¼ 100 and e ¼ 2. (Online version in colour.)
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modules of a given size. Because the parameter space is large

we constructed greater than 108 different regulatory modules,

of each size. Of these modules, typically less than 102 are

found functional in equilibrium.

Figure 4 shows the relationship between the average

information content of binding sites and module size. We

performed simulations using the randomly generated bind-

ing logics, described above, as well as modules executing

strict AND and OR binding logics. In all the cases, we

observe a decline in the average information content per

binding site as module size increases. In addition, we observe

a decline in the ensemble variance in information content of

binding sites with module size. Thus, the region of parameter

space in which functional modules are maintained by selec-

tion becomes smaller, and it includes lower information

binding sites, as the module size (and hence regulatory

complexity) increases. These results hold both for transcrip-

tion factors that are constitutively co-expressed (figure

4a,c,e), and for transcription factors that are co-expressed

only some proportion of the time (figure 4b,d,f ).
(g) Relaxation of model assumptions
Our analysis has relied on a number of assumptions regard-

ing the mechanistic details of transcription factor binding

to DNA. We now relax these assumptions to explore the

generality of our results. Our analysis assumed that transcrip-

tion factors bind their sites independently, whereas in reality

transcription factors often bind cooperatively (or antagonisti-

cally). Such interactions can be incorporated into our model

(see the electronic supplementary material). An example

showing the effects of cooperatively on the evolution of

two-site modules is given in the electronic supplementary

material, figures S8–S10. We find that cooperative binding

alters the quantitative range of motif information that can

be maintained under stabilizing selection. However, coopera-

tivity does not change our central conclusion: larger

regulatory modules tend to be composed of individually

less-informative sites. Likewise, when a transcription factor

binds cooperatively at multiple copies of its binding site,

we again find the same qualitative result (see the electronic

supplementary material, figure S11). We also relaxed the

http://rspb.royalsocietypublishing.org/
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Figure 4. Information content of binding sites is predicted to decrease with module size, regardless of the selected binding logic. Points show the ensemble average
information content per binding site in a module, and bars show the ensemble standard deviation (bar width is 2 s.d. either side of the mean). Panels top to
bottom show modules with AND, OR and mixed (arbitrary) binding logics. (a,c,e) (100% overlap) corresponds to a model in which all all transcription factors are co-
expressed, at all times. (b,d,f ) (50% overlap) corresponds to a model in which any given pair of factors are co-expressed half the time. Monte Carlo simulations of
binding site evolution in the weak selection limit were performed, as described in the main text. For each module size, replicate simulations were performed until at
least 102 functional modules were produced. (Missing data points indicate that no functional modules were produced, after even 106 simulations.) All modules were
evolved with selection strength Ns ¼ 10. In all the cases, the average information content of the functional binding sites in a module, and the ensemble variance of
information content among functional binding sites, decrease with module size, M.
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assumption that the pool of transcription factors free to bind

at a site, P, is independent of binding-site information, with-

out altering our qualitative conclusions; our results are robust

to this assumption as well (see the electronic supplementary

material, figure S12).

Our analysis has assumed that stronger binding, in the

selected binding logic, is always more beneficial. Nonethe-

less, several studies have found that binding sites with

intermediate binding affinity are widespread [34–36],

suggesting that selection might sometimes favour binding

of intermediate affinity. Therefore, we reconsidered our

analysis of two-site modules, in the case when selection

favours binding of intermediate strength. We found that

selection for intermediate-strength binding does not qualitat-

ively alter our results on the relationship between module

size and information content (see the electronic supplementary

material, figure S7).

We expect regulatory evolution to occur in the regime of

weak mutation, as has been commonly assumed in most bio-

physical studies [14–16]. Nonetheless, recombination can

play an important role in cis-regulatory evolution [37]. Pro-

vided modules are not too large, and the weak mutation

limit holds, we do not expect clonal interference or recombi-

nation to be important factors in determining the information
content of regulatory sites in our model. To test this expec-

tation, we ran simulations with elevated per-base mutation

rates (Nm ¼ 0.1) including recombination. As shown in the

electronic supplementary material, figure S16, we find the

same relationship between module size and information con-

tent as found under weak mutation. Finally, we tested our

results under different values of selection strength Ns (see

the electronic supplementary material, figures S5–S6 and

S17). As expected, stronger selection is able to maintain bind-

ing sites with greater information content, compared with

weaker selection. But the basic trend of complex regulation

by low-information binding sites holds for a range of

selection strengths.
4. Discussion
We have shown that as the size of a regulatory module

increases, the specificity of its constituent binding sites

is expected to decrease, if they are to be maintained over evol-

ution. This result is general in the sense that it does not depend

on the binding logic under selection nor does it depend on

the temporal expression pattern of the transcription factors

participating in the module.
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Our investigation was motivated by the empirical trend

that greater regulatory complexity tends to be carried out

by transcription factors with less-specific binding motifs, in

yeast. Bilu and Barkai, who made similar empirical obser-

vations, suggested that this trend may be explained either

by weaker selection on the expression of genes with highly

variable expression, or by a tendency for multiple co-regulat-

ing binding sites to experience compensatory mutations. Our

analysis does not rule out these explanations. However, we

have shown that no assumptions about the strength of selec-

tion on gene expression, or about the epistatic effects of

mutations among binding sites, are necessary to explain

these empirical patterns. Rather, it is necessary only to con-

sider the impact of stabilizing selection on the information

content of binding sites maintained in a regulatory module.

Our results do not tell us how ‘best’ to construct a regu-

latory module for a given task, a question which has been

addressed elsewhere [5,25,38]. Rather, our results hold

regardless of the binding logic favoured by selection. In a cer-

tain light, our results make simple, intuitive sense: it is all of

the nucleotide positions which belong to a regulatory module

that form the target of selection, and so as module size

increases, the maximum mutation rate at any given site,

and hence its maximum information content, must decrease.

What is not obvious, however, is that this effect should be so

pronounced, given the information content and selection

strengths typical of transcription factor binding sites. Yet,

this is precisely what we find.

It is important to note that while we expect the trend of

more complex regulation by lower specificity binding sites to

hold quite generally, our results do not give an exact prescrip-

tion for the information content of a given regulatory module,

as this is influenced by the strength of selection on the target

gene’s expression, as well as the biophysics of transcription

factor binding, which can vary among proteins and among

species. For example, cooperativity between factors, selection

for intermediate binding-site affinity, and multiple copies of

the same binding site at a given target gene [34–36] all
influence of the details of transcription factor binding. In

addition to these biophysical details, there are other evolution-

ary factors that can determine the specificity of binding motifs,

such as binding site turnover, or selection against spurious

binding elsewhere in the genome [12,31].

The results of our population-genetic analysis may also

help to explain module composition across different species.

In particular, prokaryotes are known to contain smaller tran-

scriptional modules, on average, than eukaryotes (average

module size 2.2 motifs in E. coli versus 3.0 motifs in Sacchar-
omyces cerevisiae [18–20,23]). Moreover, lower eukaryotes

tend to contain smaller modules than higher eukaryotes

(average module size 6.6 in human [20,39]). According to

our analysis, then, we would expect an inverse trend in the

information content of motifs in these three species. Such a

trend is indeed observed, with humans tending to use the

least-specific motifs (11.2 bits per motif [20]), followed by

yeast (12.1 bits per motifs [20]), and then by E. coli (14.9

bits per motif, [23]).

Higher eukaryotes must carefully orchestrate gene

expression to produce the elaborate phenotypes associated

with multi-cellularity. And even simple eukaryotes require

complex regulation of genes to respond to different environ-

mental conditions. In spite of this, many eukaryotic genes

have noisy expression, and many of the transcription factors

that regulate them bind weakly [40]. Our study suggests an

evolutionary perspective on this phenomenon: complexity

requires some sloppiness.
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