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Environmental sounds form part of our daily life. With the advancement of deep learning

models and the abundance of training data, the performance of automatic sound

classification (ASC) systems has improved significantly in recent years. However, the

high computational cost, hence high power consumption, remains a major hurdle

for large-scale implementation of ASC systems on mobile and wearable devices.

Motivated by the observations that humans are highly effective and consume little

power whilst analyzing complex audio scenes, we propose a biologically plausible ASC

framework, namely SOM-SNN. This framework uses the unsupervised self-organizing

map (SOM) for representing frequency contents embedded within the acoustic signals,

followed by an event-based spiking neural network (SNN) for spatiotemporal spiking

pattern classification. We report experimental results on the RWCP environmental sound

and TIDIGITS spoken digits datasets, which demonstrate competitive classification

accuracies over other deep learning and SNN-based models. The SOM-SNN framework

is also shown to be highly robust to corrupting noise after multi-condition training,

whereby the model is trained with noise-corrupted sound samples. Moreover, we

discover the early decision making capability of the proposed framework: an accurate

classification can be made with an only partial presentation of the input.

Keywords: spiking neural network, self-organizing map, automatic sound classification, maximum-margin

Tempotron classifier, noise robust multi-condition training

1. INTRODUCTION

Automatic sound classification generally refers to the automatic identification of ambient sounds
in the environment. Environmental sounds, complementary to visual cues, informs us of our
surrounding environment and is an essential part of our daily life. ASC technologies enable a wide
range of applications including, but not limited to content-based sound classification and retrieval
(Guo and Li, 2003), audio surveillance (Rabaoui et al., 2008), sound event classification (Dennis
et al., 2011) and disease diagnosis (Kwak and Kwon, 2012).

The conventional ASC systems are inspired by automatic speech recognition systems, which
typically comprise of acoustic signal pre-processing, feature extraction and classification (Sharan
and Moir, 2016). As shown in Figure 1, signal pre-processing can be further sub-categorized
into pre-emphasis (high-frequency components are amplified), segmenting (continuous acoustic
signals are segmented into overlapping short frames), andwindowing (a window function is applied
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FIGURE 1 | Overview of the proposed SOM-SNN ASC framework, which uses the SOM as a mid-level feature representation of frequency contents in the sound

frames, and classifies the spatiotemporal spike patterns using SNNs.

to reduce the effect of spectral leakage). Several feature
representations for acoustic signals have been proposed over the
years for capturing frequency contents and temporal structures of
acoustic signals (Mitrović et al., 2010). The most frequently used
features are the Mel-Frequency Cepstral Coefficients (MFCC)
(Chu et al., 2009) and Gammatone Cepstral Coefficients (GTCC)
(Leng et al., 2012). Both these features mimic the human auditory
system, as they aremore sensitive to changes in the low-frequency
components. These frame-based features are then used to train a
GMM-HMM or deep learning models in a classification task.

Despite the significant performance improvement in recent
years driven by deep learning models and the abundance of
training data, two major challenges remain to prevent the large-
scale adoption of such frame-based ASC systems on mobile
and wearable devices. First of all, high-performance computing,
which typically entails high power consumption, is commonly
unavailable on such devices. Secondly, the performance of state-
of-the-art GMM-HMM and deep learning models, with MFCC
or GTCC feature as input, degrades significantly with increased
background noise.

We note that in comparison to existing machine learning
techniques, human performs much more efficiently and robustly
in various auditory perception tasks, whereby different frequency
components of the acoustic signal are asynchronously encoded
using sparse and highly parallel spiking impulses. Remarkably,
even though spiking impulses in biological neural systems are
transmitted at rates of several orders of magnitude slower than
signals in modern transistors, humans perceive complex audio
scenes with much lower energy consumption (Merolla et al.,
2014). Moreover, human learn to distinguish sounds with only
sparse supervision, currently formulated as zero-shot or one-shot
learning (Fei-Fei et al., 2006; Palatucci et al., 2009) in machine
learning. These observations of human auditory perception
motivate us to explore and design a biologically plausible event-
based ASC system.

Event-based computation, as observed in the human brain
and nervous systems, relies on asynchronous and highly parallel
spiking events to efficiently encode and transmit information.

In contrast to traditional frame-based machine vision and
auditory systems, event-based biological systems represent and
process information in a much more energy efficient manner
whereby energy is only consumed during spike generation and
transmission. Spiking neural network (SNN) is one such class
of neural networks motivated by event-based computation. For
training the SNN on a temporal pattern classification task, many
temporal learning rules have been proposed. Depending on
how the error function is formulated, they can be categorized
into either spike-time based (Ponulak and Kasiński, 2010;
Yu et al., 2013a) or membrane-potential based (Gütig and
Sompolinsky, 2006; Gütig, 2016; Zhang et al., 2017). For spike-
time based learning rules, the main objective is to minimize
the time difference between the actual and desired output spike
patterns by updating the synaptic weights. In contrast, membrane
potential based learning rules use the voltage difference between
the actual membrane potential and the firing threshold to guide
synaptic weight updates.

Recently, there are growing interests in integrating event-
based sensors, such as the DVS (Delbrück et al., 2010), DAVIS
(Brandli et al., 2014) and DAS (Liu et al., 2014), with event-
based neuromorphic processors such as TrueNorth (Merolla
et al., 2014) and SpiNNaker (Furber et al., 2013) for more energy
efficient applications (Serrano-Gotarredona et al., 2015; Amir
et al., 2017).

In this work, we propose a novel SNN framework for
automatic sound classification. We adopt a biologically plausible
auditory front-end (using logarithmicmel-scaled filter banks that
resemble the functionality of the human cochlea) to first extract
low-level spectral features. After which, the unsupervised self-
organizing map (SOM) (Kohonen, 1998) is used to generate
an effective and sparse mid-level feature representation. The
best-matching units (BMUs) of the SOM are activated over
time and the corresponding spatiotemporal spike patterns are
generated, which represent the characteristics of each sound
event. Finally, a newly developed Maximum-Margin Tempotron
temporal learning rule (membrane-potential based) is used to
classify the spike patterns into different sound categories.
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This paper furthers our recent research, which focused on
speech recognition (Wu et al., 2018a). In this work, we look into
the SOM-SNN properties, system architecture and its robustness
against noise in a sound event classification task.We also perform
a comparative study with the state-of-the-art deep learning
techniques. The main contributions of this work are threefold:

• We propose a biologically plausible event-based ASC
framework, namely the SOM-SNN. In this framework, the
unsupervised SOM is utilized to represent the frequency contents
of environmental sounds, while the SNN learns to distinguish
these sounds. This framework achieves competitive classification
accuracies compared with deep learning and other SNN-based
models on the RWCP and TIDIGITS datasets. Additionally, the
proposed framework is shown to be highly robust to corrupting
noise after multi-condition training (McLoughlin et al., 2015),
whereby the model is trained with noise-corrupted sound
samples.

•We propose a new Maximum-Margin Tempotron temporal
learning rule, which incorporates the Tempotron (Gütig and
Sompolinsky, 2006) with the maximum-margin classifier (Cortes
and Vapnik, 1995). This newly introduced hard margin ensures
a better separation between positive and negative classes, thereby
improving the classification accuracy of the SNN classifier.

• We discover the early decision making capability of the
proposed SNN-based classifier, which arises naturally from
the Maximum-Margin Tempotron learning rule. The earliest
possible discriminative spatiotemporal feature is identified
automatically in the SNN classifier, and an output spike
is immediately triggered by the correct output neuron.
Consequently, an input pattern could be classified with high
accuracy when only part of it is presented. Under the same test
conditions, the SNN-based classifier consistently outperforms
other traditional artificial neural networks (ANNs), [i.e., the
Recurrent Neural Network (RNN) (Graves et al., 2013) and Long
Short-Term Memory (LSTM) (Hochreiter and Schmidhuber,
1997)] in a temporal pattern classification task. It, therefore,
shows great potential for real-world applications, whereby
acoustic signals maybe intermittently distorted by noise: the
classification decision can be robustly made based on the input
portion with less distortion.

2. METHODS

In this section, we first describe the components of the proposed
SOM-SNN framework. Next, we present the experiments
designed to evaluate the classification performance and noise
robustness of the proposed framework. Finally, we compare it
with other state-of-the-art ANN- and SNN-based models.

2.1. Auditory Front-end
Human auditory front-end consists of the outer, middle and
inner ear. In the outer ear, sound waves travel through air and
arrive at the pinna, which also embeds the location information
of the sound source. From the pinna, the sound signals are then
transmitted via the ear canal, which functions as a resonator, to
the middle ear. In the middle ear, vibrations (induced by the
sound signals) are converted into mechanical movements of the

ossicles (i.e., malleus, incus, and stapes) through the tympanic
membrane. The tensor tympani and stapedius muscles, which
are connected to the ossicles, act as an automatic gain controller
to moderate mechanical movements under the high-intensity
scenario. At the end of the middle ear, the ossicles join with the
cochlea via the oval window, where mechanical movements of
the ossicles are transformed into fluid pressure oscillations which
move along the basilar membrane in the cochlea (Bear et al.,
2016).

The cochlea is a wonderful anatomical work of art.
It functions as a spectrum analyzer which displaces the
basilar membrane at specific locations that correspond to
different frequency components in the sound wave. Finally,
displacements of the basilar membrane activate inner hair
cells via nearby mechanically gated ion channels, converting
mechanical displacements into electrical impulse trains. The
spike trains generated at the hair cells are transmitted to the
cochlear nuclei through dedicated auditory nerves. Functionally,
the cochlear nuclei act as filter banks, which also normalize
activities of saturated auditory nerve fibers over different
frequency bands. Most of the auditory nerves terminate at the
cochlear nuclei where sound information is still identifiable.
Beyond the cochlear nuclei, in the auditory cortex, it remains
unclear how information is being represented and processed
(Møller, 2012).

The understanding of the human auditory front-end has a
significant impact on machine hearing research and inspires
many biologically plausible feature representations of acoustic
signals, such as the MFCC and GTCC. In this paper, we adopt the
MFCC representation. As shown in Figure 2, we pre-processed
the sound signals by first applying pre-emphasis to amplify
high-frequency contents, then segmenting the continuous sound
signals into overlapped frames of suitable length so as to better
capture the temporal variations of the sound signal, and finally
applying the Hamming window on these frames to reduce the
effect of spectral leakage. To extract the spectral contents in
the acoustic stimuli, we perform Short-Time Fourier-Transform
(STFT) on the sound frames and compute the power spectrum.
After that, we apply 20 logarithmic mel-scaled filters on the
resulting power spectrum, generating a compressed feature
representation for each sound frame. The mel-scaled filter
banks emulate the human perception of sound that is more
discriminative toward the low frequency as compared to the high
frequency components.

2.2. Feature Representation Using SOM
Feature representation is critical in all ASC systems; state-of-
the-art ASC systems input low-level MFCC or GTCC features
into the GMM-HMM or deep learning models so as to
extract higher-level representations. In our initial experiments,
we observe that existing SNN temporal learning rules cannot
discriminate latency (Yu et al., 2013b) or population (Bohte
et al., 2002) encoded mel-scaled filter bank outputs effectively.
Therefore, we propose to use the biologically inspired SOM
to form a mid-level feature representation of the sound
frames. The neurons in the SOM form distinctive synaptic
filters that organize themselves tonotopically and compete to
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FIGURE 2 | The details of the proposed SOM-SNN ASC framework. The sound frames are pre-processed and analyzed using mel-scaled filter banks. Then, the SOM

generates discrete BMU activation sequences which are further converted into spike trains. All such spike trains form a spatiotemporal spike pattern to be classified

by the SNN.

represent the filter bank output vectors. Such tonotopically
organized feature maps have been found in the human
auditory cortex in many physiological experiments (Pantev et al.,
1995).

As shown in Figure 2, all neurons in the SOM are fully
connected to the filter bank and receive mel-scaled filter outputs
(real-valued vectors). The SOM learns acoustic features in an
unsupervised manner, whereby two mechanisms: competition
and cooperation, guide the formation of a tonotopically
organized neural map. During training, the neurons in the SOM
compete with each other to best represent the input frame.
The best-matching unit (BMU), with its synaptic weight vector
closest to the input vector in the feature space, will update its
weight vector to become closer to the input vector. Additionally,
the neurons surrounding the BMU will cooperate with it by
updating their weight vectors to move closer to the input vector.
The magnitude of the weight update of neighboring neurons
is inversely proportional to its distance to the BMU, effectively
facilitating the formation of neural clusters. Eventually, the
synaptic weight vectors of neurons in the SOM follow the
distribution of input feature vectors and organize tonotopically,
such that adjacent neurons in the SOM will have similar weight
vectors.

During the evaluation, as shown in Figure 2, the SOM
(through the BMU neuron) emits a single spike at each
sound frame sampling interval. The sparsely activated BMUs
encourage pattern separation and enhance power efficiency. The
spikes triggered over the duration of a sound event form a
spatiotemporal spike pattern, which is then classified by the

SNN into one of the sound classes. The mechanisms of SOM
training and testing are provided in Algorithm 1 (see more
details Kohonen, 1998). This classical work (Kohonen, 1998)
trained the SOM for a phoneme recognition task, which then
used a set of hand-crafted rules to link sound clusters of the
SOM to actual phoneme classes. In this work, we use an SNN-
based classifier to automatically categorize the spatiotemporal
spike patterns into different sound events.

2.3. Supervised Temporal Classification
2.3.1. Neuron Model
For the SNN-based temporal classifier, we adopt the leaky
integrate-and-fire neuron model (Gütig and Sompolinsky, 2006),
which utilizes the kernel function to describe the effect of pre-
synaptic spikes on the membrane potential of post-synaptic
neurons. When there is no incoming spike, the post-synaptic
neuron i remains at its resting potential Vrest . Each incoming
spike from the pre-synaptic neuron j at tj will induce a post-
synaptic potential (PSP) on the post-synaptic neuron as described
by the following kernel function:

K(t − tj) = K0

(

exp(−
t − tj

τm
)− exp(−

t − tj

τs
)

)

θ(t − tj) (7)

where K0 is a normalization factor that ensures the maximum
value of the kernel K(t − tj) is 1. τm and τs correspond to the
membrane and synaptic time constants, which jointly determine
the shape of the kernel function. In addition, θ(t − tj) represents
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Algorithm 1: The Self-Organizing Map Algorithm

Input:
The randomly initialized weight vector wi(0) for neuron i =
1, ...,M · N, whereM and N are the length and width of the
SOM
The training set that is formed by framewise filter bank
output vectors
The initial width of the neighborhood function σ (0) =√
M2 + N2/2

The number of training epochs E, initial learning rate η0 and
time constant of the time-varying width τ1 = E/log[σ (0)]

Output:
The final weight vectors wi(E) for neuron i = 1, ...,M · N
Train:

for e ∈ [0, 1, 2, ...,E− 1] do
1. Randomly choose an input vector xtrain =
[x1, x2, x3, . . . , xn] from the training set, where n is the
total number of mel-scaled filters
2. Determine the winner neuron k that has a weight
vector closest to the current input vector xtrain:

k = argmin
i

||wi(e)− xtrain|| (1)

3. Update the learning rate η(e), the time-varying width
σ (e) and the Gaussian neighborhood function hi,k(e) for
all neurons i = 1, ...,m:

η(e) = η0 · exp(−e/E) (2)

σ (e) = σ (0) · exp(−e/τ1) (3)

hi,k(e) = exp{−||wi(e)− wk(e)||2/[2 · σ (e)2]} (4)

4. Update wi(e+ 1) for all neurons i = 1, ...,M · N:

wi(e+ 1) = wi(e)+ η(e) · hi,k(e) · [xtrain − wi(e)] (5)

Test:

Given any input vector xtest from the testing set, label it with
the winner neuron k that has weight vector closest to xtest :

k = argmin
i

||wi(E)− xtest|| (6)

the Heaviside function to ensure that only pre-synaptic spikes
emitted before time t are considered.

θ(x) =

{

1, if x ≥ 0

0, otherwise
(8)

At time t, the membrane potential of the post-synaptic neuron
i is determined by the weighted sum of all PSPs triggered by
incoming spikes before time t:

Vi(t) =
∑

j

wji

∑

tj<t

K(t − tj)+ Vrest ∀t ∈ [0,T] (9)

where wji is the synaptic weight between the pre-synaptic neuron
j and post-synaptic neuron i, and T is the duration of the
simulation. Whenever the membrane potential Vi(t) of the post-
synaptic neuron i reaches the firing threshold, it emits a spike. For
the single-spike based classifier used in this work, the membrane
potential of the post-synaptic neuron then smoothly relaxes back
to Vrest after spiking by shunting all subsequent input spikes
(i.e., input spikes arriving after the post-synaptic spike, have no
effect on the membrane potential of the post-synaptic neuron).
Since these input spikes would not contribute to any learning
in the single-spike based classifier, the unnecessary post-spike
computations can be safely ignored.

2.3.2. Maximum-Margin Tempotron Learning Rule
For the classification of spatiotemporal patterns as illustrated by
the SNN in Figure 2, we use a modified version of the biologically
plausible Tempotron (Gütig and Sompolinsky, 2006) learning
rule to train the classifier, which has been successfully used in
several ASC tasks (Dennis et al., 2013; Xiao et al., 2017). The
original Tempotron rule is designed for a binary classification
task, such that a neuron emits a spike when it observes a spike
pattern from its desired class, and remains quiescent otherwise.
For a multi-class classification task, we adopt the one-against-
all strategy to train one output neuron to respond to each
class.

During training, for neuron i that represents the ith class, we
treat all training samples with class label i as positive samples, and
all others as negative. During testing, we monitor the membrane
potential of all output neurons and classify the test sample as
follows: (1) If no output neuron fires over the sample duration,
we select the output neuron with the highest membrane potential
as the correct class. (2) If only a single output neuron fires, the
class label corresponding to this neuron is selected. (3) Otherwise,
if two or more neurons fire, we label the test sample with the
earliest firing neuron, which signals the detection of the earliest
local discriminative feature (a property of the Tempotron).

The Tempotron learning rule follows a stochastic gradient
descent method for synaptic weight updates: the desired output
neuron triggers a weight update whenever it fails to fire on
samples with matching class label or when the wrong output
neurons fire erroneously on samples from other classes. When
the desired output neuron i fails to fire, long-term potentiation
(LTP) update with cost function Vthr - Vtmax

i
is triggered.

Similarly, long-term depression (LTD) update with cost function
Vtmax

i
- Vthr is triggered when the wrong output neuron fires
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erroneously. The Tempotron update rule is defined as follows:

1wij =































λ
∑

t
(f )
j <tmax

i

K(tmax
i − t

(f )
j ), if LTP

−λ
∑

t
(f )
j <tmax

i

K(tmax
i − t

(f )
j ), if LTD

0, otherwise

(10)

where λ denotes a constant learning rate and tmax
i refers to

the time instant when the postsynaptic neuron i reaches its
maximum membrane potential over the pattern duration. The

t
(f )
j are spike times of spike emitted by the pre-synaptic neuron

j. The synaptic weights are only updated at the time instant of
tmax
i . For LTD weight update, the tmax

i is also the spike time since
the post-spike computations are ignored.

Inspired by the maximum-margin classifier (Cortes and
Vapnik, 1995), we introduce a hard margin 1 to the Vthr

and denote the new learning rule as the Maximum-Margin
Tempotron. During the training phase, the1 term is either added
to or deducted from the Vthr of the desired or wrong output
neurons, respectively. Consequently, for the desired neuron i, a
spike is generated at t if

Vi(t) = Vthr + 1 and
d

dt
Vi(t) > 0 (11)

For the other (wrong) neurons, a spike is generated if

Vi(t) = Vthr − 1 and
d

dt
Vi(t) > 0 (12)

The desired output neuron will fire only when it has observed
strong evidence that causes its Vtmax to rise above Vthr by a
margin of 1. Similarly, the other neurons will be discouraged
to fire and maintain its membrane potential by a margin 1

belowVthr . This additional margin1 imposes a harder constraint
during training and encourages the SNN classifier to find more
discriminative features in the input spike patterns. Therefore,
during testing, when the hard margin 1 is removed from Vi(t) as
described in Equation (9), the neurons are encouraged to respond
with the desired spiking activities. This strategy helps to prevent
overfitting and improves classification accuracy.

2.4. Multi-condition Training
Although state-of-the-art deep learning based ASC models
perform reasonably well under the noise-free condition, it
remains a challenging task for these models to recognize sound
robustly in noisy real-world environments. To address this
challenge, we investigated training the proposed SOM-SNN
model with both clean and noisy sound data, as per the multi-
condition training strategy.

The motivation for such an approach is that with training
samples collected from different noisy backgrounds, the trained
model will be encouraged to identify the most discriminative
features and becomemore robust to noise. This methodology has
been proven to be effective for Deep Neural Network (DNN) and

SVMmodels under the high noise condition, with some trade-off
in performance for clean sound data (McLoughlin et al., 2015).
Here, we investigate its generalizability to SNN-based temporal
classifiers under noisy environments.

2.5. Training and Evaluation
Here, we first introduce two standard benchmark datasets used
to evaluate the classification accuracies of the proposed SOM-
SNN framework, which are made up of environmental sounds
and human speech. After which, we describe the experiments
conducted on the RWCP dataset to evaluate model performance
pertaining to the effectiveness of feature representation using the
SOM, early decision making capability and noise robustness of
the classifier.

2.5.1. Evaluation Datasets
The Real World Computing Partnership (RWCP) (Nishiura and
Nakamura, 2002) sound scene dataset was recorded in a real
acoustic environment at a sampling rate of 16 kHz. For a fair
comparison with other SNN-based systems (Dennis et al., 2013;
Xiao et al., 2017), we used the same 10 sound event classes
from the dataset: “cymbals,” “horn,” “phone4,” “bells5,” “kara,”
“bottle1,” “buzzer,” “metal15,” “whistle1,” “ring.” The sound clips
were recorded as isolated samples with duration of 0.5s to 3s
at high SNR. There are also short lead-in and lead-out silent
intervals in the sound clips. We randomly selected 40 sound
clips from each class, of which 20 are used for training and the
remaining 20 for testing, giving a total of 200 training and 200
testing samples.

The TIDIGITS (Leonard and Doddington, 1993) dataset
consists of reading digit strings of varying lengths, and the speech
signals are sampled at 20 kHz. The TIDIGITS dataset is a publicly
available dataset from the Linguistic Data Consortium, which
is one of the most commonly available speech datasets used
for benchmarking speech recognition algorithms. This dataset
consists of spoken digit utterances from 111 male and 114
female speakers. We used all of the 12,373 continuous spoken
digit utterances for the SOM training and the rest of the 4,950
isolated spoken digit utterances for the SNN training and testing.
Each speaker contributes two isolated spoken digit utterances
for all 11 classes (i.e., “zeros” to “nine” and “oh”). We split the
isolated spoken digit utterances randomly with 3,950 utterances
for training and the remaining 1,000 utterances for testing.

2.5.2. SOM-SNN Framework
The SOM-SNN framework, as shown in Figure 2, consists of
three processing stages organized in a pipeline. These stages are
trained separately and then evaluated in a single, continuous
process. For the auditory front-end, we segment the continuous
sound samples into frames of 100 ms length with 50 ms
overlap between neighboring frames for the RWCP dataset.
In contrast, we use a frame length of 25 ms with 10 ms
overlap for the TIDIGITS dataset. These values are determined
empirically to sufficiently discriminate the signals without
excessive computational load. We utilize 20 mel-scaled filters for
the spectral analysis, ranging from 200 to 8,000 Hz and 200 to
10,000 Hz respectively for the RWCP and TIDIGITS datasets.
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The number of filters is again empirically determined, such that
more filters do not improve classification accuracy.

For feature representation learning in the SOM, we utilize the
SOM available in the MATLAB Neural Network Toolbox. The
Euclidean distance is used to determine the BMUs, which are
subsequently converted into spatiotemporal spike patterns. The
output spikes from the SOM are generated per sound frame, with
an interval as determined by the frame shift (i.e., 50ms for RWCP
dataset and 15 ms for TIDIGITS dataset). We study the effect of
different hyperparameters including SOM map size, number of
training epochs and number of activated neurons per incoming
frame. Their effects on classification accuracy are presented in
section 3.3.

We initialize the SNN by setting the threshold Vthr , the hard
margin 1 and learning rate λ to 1.0, 0.5 and 0.005 respectively.
The time constants of the SNN have determined empirically such
that the PSP duration is optimal for the particular dataset, and
we set τm to 750, 225 ms and τs to 187.5, 56.25 ms for the RWCP
and TIDIGITS datasets, respectively.We train all the SNNs for 10
epochs by when convergence is observed. The initial weights for
the neurons in the SNN classifier are drawn randomly from the
Gaussian distribution with a mean of 0 and standard deviation of
10−3. Parameters used in all our experiments are as above unless
otherwise stated.

2.5.3. Traditional Artificial Neural Networks
To facilitate comparison with other traditional ANN models
trained on the RWCP dataset, we implement four common
neural network architectures, namely theMulti-Layer Perceptron
(MLP) (Morgan and Bourlard, 1990), the Convolutional Neural
Network (CNN) (Krizhevsky et al., 2012), the Recurrent Neural
Network (RNN) (Graves et al., 2013) and the Long Short-Term
Memory (LSTM) (Hochreiter and Schmidhuber, 1997) using the
Pytorch library. For a fair comparison, we implement the MLP
with 1 hidden layer of 500 ReLU units, and the CNN with two
convolution layers of 128 feature maps each followed by 2 fully-
connected layers of 500 and 10 ReLU units. The input frames to
theMLP andCNN are concatenated over time into a spectrogram
image. Since the number of frames for each sound clip varies
from 20 to 100 and cannot be processed directly by the MLP
or CNN, we bilinearly rescale these spectrogram images into a
consistent dimension of 20× 64.

We implement both the RNN and LSTM with two hidden
layers containing 100 hidden units each, and a dropout layer
with a probability of 0.5 is applied after the first hidden layer
to prevent overfitting. The input to the RNN and LSTM are the
20-dimensional filter bank output vectors. The weights for all
networks are initialized with orthogonal conditions as suggested
in (Saxe et al., 2013). The deep learning networks are trained
with the cross-entropy criterion and optimized using the Adam
(Kingma and Ba, 2014) optimizer. The learning rate is decayed to
99% of the original value after every epoch, and all networks are
trained for 100 epochs, except for the CNN (50 epochs), by when
convergence is observed. Simulations are repeated 10 times for
each model, with random weight initialization.

To study the synergy between SOM and deep learning models
(i.e., RNN and LSTM), we use the mid-level features of the SOM

as inputs to train the RNN and LSTM, respectively denoted
as SOM-RNN and SOM-LSTM. These features are obtained by
converting the BMU that corresponds to each sound frame into
a one-hot vector and concatenating them over time to form a
sparse representation of each sound clip. We trained the SOM-
RNN and SOM-LSTM models with the same set-up as the RNN
and LSTMmentioned above.

2.5.4. Noise Robustness Evaluation

2.5.4.1. Environmental noise

We generate noise-corrupted sound samples by adding “Speech
Babble" background noise from the NOISEX-92 dataset (Varga
and Steeneken, 1993) to the clean RWCP sound samples. This
selected background noise represents a non-stationary noisy
environment with predominantly low-frequency contents, hence
making a fair comparison with the noise robustness tests
performed in LSF-SNN (Dennis et al., 2013) and LTF-SNN
models (Xiao et al., 2017). For each training or testing sound
sample, a random noise segment of the same duration is selected
from the noise file and added at 4 different SNR levels of 20,
10, 0 and -5 dB separately, giving a total of 1,000 training and
1,000 testing samples. The SNR ratio is calculated based on the
energy level of each sound sample and the corresponding noise
segment in our experiments. Training is performed over the
whole training set, while the testing set is evaluated separately at
different SNR levels.

We perform multi-condition training on all the MLP, CNN,
RNN, LSTM and SOM-SNN models. Additionally, we also
conduct experiments whereby the models are trained with clean
sound samples but tested with noise-corrupted samples (the
mismatched condition).

2.5.4.2. Neuronal Noise

We also consider the effect of neuronal noise which is known
to exist in the human brain, emulated by spike jittering and
deletion. Given that the human auditory system is highly robust
to these noises, it motivates us to investigate the performance of
the proposed framework under such noisy conditions.

For spike jittering, we add Gaussian noise with zero mean and
standard deviation σ to the spike timing t of all input spikes
entering the SNN classifier. The amount of jitter is determined
by σ which we sweep from 0.1 T to 0.8 T, where T is the spike
generation period. In addition, we also consider spike deletion,
where a certain fraction of spikes are corrupted by noise and
not delivered to the SNN. For both types of neuronal noise,
we trained the model without any noise and then tested it with
jittered (of varying standard deviation σ ) or deleted (of varying
ratio) input spike trains.

3. RESULTS

In this section, we first present the classification results of
the proposed SOM-SNN framework for the two benchmark
datasets and then compare them with other baseline models.
Next, we discuss its early decision-making capability, the
effectiveness of using the SOM for feature representation and
its underlying hyperparameters, as well as the key differences
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TABLE 1 | Comparison of the classification accuracy of the proposed SOM-SNN

framework against other ANNs and SNN-based frameworks on the RWCP

dataset.

Model Accuracy (%)

MLP 99.45

CNN 99.85

RNN 95.35

LSTM 98.40

SOM-RNN 97.20

SOM-LSTM 98.15

LSF-SNN (Dennis et al., 2013) 98.50

LTF-SNN (Xiao et al., 2017) 97.50

SOM-SNN (ReSuMe) 97.00

SOM-SNN (Maximum-Margin Tempotron) 99.60

The average results over 10 experimental runs with random weight initialization are

reported.

between the feedforward SNN-based and RNN-based systems
for a temporal classification task. Finally, we demonstrate the
improved classification capability of the modified Maximum-
Margin Tempotron learning rule and the robustness of the
framework against environmental and neuronal noises.

3.1. Classification Results
3.1.1. RWCP Dataset
As shown in Table 1, the SOM-SNN model achieved a test
accuracy of 99.60%, which is competitive compared with other
deep learning and SNN-based models. As described in the
experimental set-up, theMLP and CNNmodels are trained using
spectrogram images of fixed dimensions, instead of explicitly
modeling the temporal transition of frames. Despite their high
accuracy on this dataset, it may be challenging to use them
for classifying sound samples of long duration; the temporal
structures will be affected inconsistently due to the necessary
rescaling of the spectrogram images (Gütig and Sompolinsky,
2009). On the other hand, the RNN and LSTM models capture
the temporal transition explicitly. These models are however
hard to train for long sound samples due to the vanishing and
exploding gradient problem (Greff et al., 2017).

LSF-SNN (Dennis et al., 2013) and LTF-SNN (Xiao et al.,
2017) classify the sound samples by first detecting the spectral
features in the power spectrogram, and then encoding these
features into a spatiotemporal spike pattern for classification by
a SNN classifier. In our framework, the SOM is used to learn the
key features embedded in the acoustic signals in an unsupervised
manner, which is more biologically plausible. Neurons in the
SOM become selective to specific spectral features after training,
and these features learned by the SOM are more discriminative
as shown by the superior SOM-SNN classification accuracy
compared with the LSF-SNN and LTF-SNN models.

3.1.2. TIDIGITS Dataset
As shown in Table 2, it is encouraging to note that the SOM-
SNN framework achieves an accuracy of 97.40%, outperforming
all other bio-inspired systems on the TIDIGITS dataset.

TABLE 2 | Comparison of the classification accuracy of the proposed SOM-SNN

framework against other baseline frameworks on the TIDIGITS dataset.

Model Accuracy (%)

Single-layer SNN and SVM (Tavanaei and Maida, 2017a)a 91.00

Spiking CNN and HMM (Tavanaei and Maida, 2017b)a 96.00

AER Silicon Cochlea and SVM (Abdollahi and Liu, 2011)b 95.58

AER Silicon Cochlea and Deep RNN (Neil and Liu, 2016)b 96.10

AER Silicon Cochlea and Phased LSTM (Anumula et al., 2018)b 91.25

Liquid State Machine (Zhang et al., 2015)c 92.30

MFCC and GRU RNN (Anumula et al., 2018)c 97.90

SOM and SNN (this work)c 97.40

aEvaluate on the Aurora dataset which was developed from the TIDIGITS dataset.
bThe data was collected by playing the audio files from the TIDIGITS dataset to the AER

Silicon Cochlea Sensor.
cEvaluate on the TIDIGITS dataset.

In Anumula et al. (2018), Abdollahi and Liu (2011), and Neil
and Liu (2016), novel systems are designed to work with spike
streams generated directly from the AER silicon cochlea sensor.
This event-driven auditory front-end generates spike streams
asynchronously from 64 bandpass filters spanning over the
audible range of the human cochlea. Anumula et al. (Abdollahi
and Liu, 2011) provide a comprehensive overview of the
asynchronous and synchronous features generated from these
raw spike streams, once again highlighting the significant role of
discriminative feature representation in speech recognition tasks.

Tavanaei et al. (Tavanaei and Maida, 2017a,b) proposes two
biologically plausible feature extractors constructed from SNNs
trained using the unsupervised spike-timing-dependent plasticity
(STDP) learning rule. The neuronal activations in the feature
extraction layer are then transformed into a real-valued feature
vector and used to train a traditional classifier, such as the HMM
or SVM models. In our work, the features are extracted using
the SOM and then used to train a biologically plausible SNN
classifier. These different biologically inspired systems represent
an important step toward an end-to-end SNN-based automatic
speech recognition system.

We note that the traditional RNN based system offers a
competitive accuracy of 97.90% (Anumula et al., 2018); our
proposed framework, however, is fundamentally different from
traditional deep learning approaches. It is worth noting that the
network capacity and classification accuracy of our framework
can be further improved using multi-layer SNNs.

3.2. Early Decision Making Capability
We note that the SNN-based classifier can identify temporal
features within the spatiotemporal spike pattern and generate
an output spike as soon as enough discriminative evidence is
accumulated. This cumulative decision-making process is more
biologically plausible, as it mimics how human makes decisions.
A key benefit of such a decision-making process is low latency. As
shown in Figure 3A, the SNN classifier makes a decision before
the whole pattern has been presented. On average, the decision is
made when only 50% of the input is presented.
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FIGURE 3 | The demonstration of the early decision making capability of the SNN-based classifier. (A) The distribution of the number of samples as a function of the

ratio of decision time (spike timing) to sample duration on the RWCP test dataset. On average, the SNN-based classifier makes the classification decision when only

50% of the pattern is presented. (B) Test accuracy as a function of the percentage of test pattern input to different classifiers (classifiers are trained with full training

patterns).

Additionally, we conduct experiments on the SOM-SNN,
RNN, and LSTM models, whereby they are trained on the
full input patterns but tested with only a partial presentation
of the input. The training label is provided to the RNN and
LSTM models at the end of each training sequence by default
as it is not clear beforehand when enough discriminative
features have been accumulated. Likewise, the training labels are
provided at the end of input patterns for the SNN classifier.
For testing, we increase the duration of the test input pattern
presented from 10 to 100% of the actual duration, starting
from the beginning of each pattern. As shown in Figure 3B,
the classification accuracy as a function of the input pattern
percentage increases more rapidly for the SNNmodel. It achieves
a satisfactory accuracy of 95.1% when only 50% of the input
pattern is presented, much higher than the 25.7 and 69.2%
accuracy achieved by the RNN and LSTM models respectively.
For the RNN and LSTMmodels to achieve early decision-making
capability, onemay require that themodels be trainedwith partial
inputs or output labels provided at every time-step. Therefore,
SNN-based classifiers demonstrate great potential for real-time
temporal pattern classification, compared with state-of-the-art
deep learning models such as the RNN and LSTM.

3.3. Feature Representation of the SOM
To visualize the features extracted by the SOM, we plot the
BMU activation sequences and their corresponding trajectories
on the SOM for a set of randomly selected samples from class
“bell5,” “bottle1,” and “buzzer” in Figure 4. We observe low
intra-class variability and high inter-class variability in both the
BMU activation trajectories and sequences, which are highly
desirable for pattern classification. Furthermore, we perform
tSNE clustering on the concatenated input vectors entering
the SOM and the BMU trajectories generated by the SOM. In
Figure 5A (input vectors entering the SOM), it can be seen that
samples from the same class are distributed over several clusters

in 2D space (e.g., class 7, 10). The corresponding BMU vectors,
however, merge into a single cluster as shown in Figure 5B,
suggesting lower intra-class variability achieved by the SOM. The
class boundaries for the BMU trajectories may now be drawn
as shown in Figure 5B, suggesting high inter-class variability.
The outliers in Figure 5B maybe an artifact due to the uniform
rescaling performed on BMU trajectories, a necessary step for
tSNE clustering.

We note that the time-warping problem exists in the BMU
activation sequences, whereby the duration of sensory stimuli
fluctuates from sample to sample within the same class. However,
the SNN-based classifier is robust to such fluctuations as
shown in the classification results. The decision to fire for a
classifying neuron is made based on a time snippet of the
spiking pattern; such is the nature of the single spike-based
temporal classifier. As long as the BMU activation sequence
stays similar, duration fluctuations of input sample will not
affect the general trajectory of the membrane potential in each
output neuron; the right classification decision, therefore, can
be guaranteed. Hence, those outliers in Figure 5B underlying
the time-warping problem may not necessarily lead to poor
classification.

To investigate whether the feature dimension reduction of
the SOM is necessary for the SNN classifier to learn different
sound categories, we performed experiments that directly input
the spike trains of the latency-encoded (20 neurons) (Yu et al.,
2013b) or population-encoded (144 neurons) (Bohte et al., 2002)
mel-scaled filter bank outputs into the SNN for classification.
We find that the SNN classifier is unable to classify such
low-level spatiotemporal spike patterns, and only achieve 10.2
and 46.5% classification accuracy for latency- and population-
encoded spike patterns, respectively. For both latency- and
population-encoded spike patterns, as all encoding neurons spike
in every sound frame, albeit with different timing, the synaptic
weights therefore either all strengthen or all weaken in the event
of misclassification as defined in the Tempotron learning rule.
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FIGURE 4 | BMU activation trajectories of the SOM (A,C) and BMU activation sequences (B,D) for randomly selected sound samples from classes “bell5” (Row 1),

“bottle1” (Row 2) and “buzzer” (Row 3) of a trained 12 × 12 SOM on the RWCP dataset. For BMU activation trajectories, the lines connect activated BMUs from

frame to frame. The activated BMUs are highlighted from light to dark over time. For BMU activation sequences, the neurons of the SOM are enumerated along the

y-axis and color matched with neurons in the BMU activation trajectories. The low intra-class variability and high inter-class variability for the BMU activation

trajectories and sequences are observed.

Such synchronized weight updates make it challenging for the
SNN classifier to find discriminative features embedded within
the spike pattern.

As summarized in the section 1, the learning rules for the
SNN can be categorized into either membrane-potential based
or spike-time based; the Maximum-Margin Tempotron learning
rule belongs to the former. To study the synergy between the
SOM-based feature representation and spike-time based learning
rule, we conducted an experiment using the ReSuMe (Ponulak
and Kasiński, 2010) learning rule to train the SNN classifier.
For a fair comparison with the Maximum-Margin Tempotron
learning rule, we use one output neuron to represent each sound
class and each neuron has a single desired output spike. To
determine the desired spike timing for each output neuron, we
first present all training spiking patterns from the corresponding
sound class to the randomly initialized SNN; and monitor the
membrane potential trace of the desired output neuron during
the simulation. We note the time instant when the membrane
potential trace reaches its maximum (denoted as Tmax) for each
sound sample, revealing the most discriminative local temporal
feature. We then use the mean of Tmax across all 20 training
samples as the desired output spike time. As shown inTable 1, the
SNN trained with ReSuMe rule achieves a classification accuracy
of 97.0%, which is competitive with other models. This, therefore,
demonstrates the compatibility of features extracted by the SOM
and spike-time based learning rules, whereby the intra-class
variability of sound samples is circumvented by SOM feature
extraction such that a single desired spike time for each class
suffices.

We note that the SOM functions as an unsupervised sparse
feature extractor that provides useful, discriminative input
to downstream ANN classifiers. As shown in Table 1, the
classification accuracy of the SOM-RNN model is better than
that of the RNN model alone, and the accuracy of the SOM-
LSTM model is also comparable to that of the LSTM model.
Additionally, we also notice faster training convergence for both
the SOM-RNN and SOM-LSTM models compared to those
without the SOM, requiring approximately 25% less number
of epochs. This observation may be best explained by the
observationsmade in Figure 4, whereby only a subset of the SOM
neurons are involved in the spiking patterns of any sound sample
(with low intra-class variability and high inter-class variability)
which in itself is highly discriminative.

To analyze the effect of different hyperparameters in the SOM
on classification accuracy, we perform the following experiments:

Neural Map Size.We sweep the SOM neural map size from 2
× 2 to 16 × 16. As shown in Figure 6, we notice improved SNN
classification accuracy with larger neural map, which suggests
that a larger SOM captures more discriminative features and
therefore generates more discriminative spiking patterns for
different sound classes. However, the accuracy plateaus once
the number of neurons exceeds 120. We suspect that with
more neurons the effect of the time-warping problem starts to
dominate, leading tomoremisclassification. Hence, the optimum
neural map size has to be empirically determined.

Number of Training Epochs. We sweep the number of
training epochs used for the SOM from 100 to 1,000 with
an interval of 100. We observe improvements in classification
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FIGURE 5 | (A) tSNE clustering for concatenated input vectors entering the SOM. (B) tSNE clustering for BMU trajectories output from the SOM. Each dot on the

figure corresponds to one test sample in the TIDIGITS dataset, the numbers in the figure correspond to class centroids. The samples (e.g., Class 7 and 10) within the

same class get closer after being processed by the SOM as shown in this 2D visualization.

FIGURE 6 | The effect of the SOM neural map size and number of BMUs per

frame on classification accuracy. A larger neural map can capture more feature

variations and generate more discriminative spiking patterns for different

sound events. However, the accuracy plateaus once the number of neurons

exceeds 121. As shown in the inset, for neural maps of size above 121,

increasing the number K of BMUs for each frame enhances system

robustness with redundancy and improves classification accuracy.

accuracy of the SNN classifier, with more training epochs of the
SOM, which plateaus at 400 for the RWCP dataset.

Number of Activated Neurons. We perform experiments
with different number of activated output neurons K = [1, 2, 3]
for each sound frame. Specifically, the distances between the
SOM output neurons’ synaptic weight vectors and the input
vector are computed, and the top K neurons with the closest
weight vectors will emit a spike. The neural map sizes are swept
from 2 × 2 to 16 × 16, with number of training epochs fixed at
400. As shown in Figure 6, with more activated output neurons

in the SOM, the SNN achieves lower classification accuracy for
neural map size below 100, while achieving higher accuracy for
neural map size larger than that. It can be explained by the
fact that for smaller neural maps, given the same number of
feature clusters, fewer neurons are allocated to each cluster. Now,
with more activated neurons per frame, either fewer clusters
can be represented, or the clusters are now less distinguishable
from each other. Either way, inter-class variability is reduced,
and classification accuracy is adversely affected. This capacity
constraint is alleviated with a larger neural map, whereby
neighboring neurons are usually grouped into a single feature
cluster. As shown in the inset of Figure 6, for neural map size
larger than 100, more activated neurons per frame improves the
feature representation with some redundancy and lead to better
classification accuracy. However, it should be noted that with
more activated neurons per frame, there are more output spikes
generated in the SOM, hence increasing energy consumption.
Therefore, a trade-off between classification accuracy and energy
consumption has to be made for practical applications.

3.4. Tempotron Learning Rule With Hard
Maximum-Margin
As described in section 2, we modify the original Tempotron
learning rule by adding a hard margin 1 to the firing threshold
Vthr . With this modification, we note that the classification
accuracy of the SNN increases by 2% consistently with the same
SOM dimensions.

To demonstrate how the hard margin 1 improves
classification, we show two samples which have been
misclassified by the SNN classifier trained with the original
Tempotron rule (Figures 7A,B), but correctly classified by
the Maximum-Margin Tempotron rule (Figures 7C,D).
In Figure 7A, both output neurons (i.e., “ring” and
“bottle1”) are selective to the discriminative local feature
occurring between 2 and 10 ms. While in Figure 7B, the
discriminative local feature is overlooked by the desired
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FIGURE 7 | Selected samples misclassified by the Tempotron learning rule, while classified correctly by the modified Maximum-Margin Tempotron learning rule.

Sample from the “ring” class misclassified as “bottle1” (A), while correctly classified with Maximum-Margin Tempotron learning rule (C). Sample from the “kara” class

misclassified as “metal15” (B), while correctly classified with Maximum-Margin Tempotron learning rule (D).

output neuron, possibly due to the time-warping, and the
output neuron representing another class fires erroneously
afterward.

When trained with the additional hard margin 1, the
negative output neuron representing the “bottle1” class is
suppressed and prevented from firing (Figure 7C). Similarly,
the negative output neuron representing the “metal15” class
is also slightly suppressed, while the positive output neuron
representing the “kara” class undergoes LTP and correctly
crosses the Vthr (Figure 7D). Therefore, the additional
hard margin 1 ensures a better separation between the
positive and negative classes and improves classification
accuracy.

Since the relative ratio between the hard margin 1 and
the firing threshold Vthr is an important hyper-parameter, we
investigate its effect on the classification accuracy using the
RWCP dataset by sweeping it from 0 to 1.2 with an interval
of 0.1. The experiments are repeated 20 times for each ratio
value with random weight initialization. For simplicity, we only
study the symmetric cases whereby the hard margin has the same
absolute value for both positive and negative neurons. For the
case when the ratio is 0, the learning rule is reduced to the
standard Tempotron rule. As shown in Figure 8, the hard margin
1 improves the classification accuracy consistently for ratios
below 1.0, and the best accuracy is achieved with a ratio of 0.5.

The accuracy drops significantly for ratio above 0.9, suggesting
a high level of margin may interfere with learning and lead to
brittle models.

3.5. Robustness to Noise
3.5.1. Environmental Noise
We report the classification accuracies over 10 runs with random
weight initialization in Tables 3, 4 for mismatched and multi-
condition training respectively.

We note that under the mismatched condition, the
classification accuracy for all models degrades dramatically
with an increasing amount of noise and falls below 50% with
SNR at 10 dB. The LSF-SNN and LTF-SNN models use local key
points on the spectrogram as features to represent the sound
sample, and are therefore robust to noise under such conditions.
However, the biological evidence for such spectrogram features
is currently lacking.

As shown in Table 4, multi-condition training effectively
addresses the problem of performance degradation under noisy
conditions, whereby MLP, CNN, LSTM, and SOM-SNN models
have achieved classification accuracies above 95% even at
the challenging 0 dB SNR. Similar to observations made in
McLoughlin et al. (2015), we note that the improved robustness
to noise comes with a trade-off in terms of accuracy for clean
sounds, as demonstrated in the results for the ANN models.
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FIGURE 8 | The effect of the ratio between the hard margin 1 and the firing

threshold Vthr on classification accuracy. For 1/Vthr = 0, the learning rule is

reduced to the standard Tempotron rule. The hard margin 1 improves the

classification accuracy for ratios below 1.0, while the accuracy drops

significantly afterward. The best accuracy is achieved with a ratio of 0.5 on the

RWCP dataset.

However, the classification accuracies improve across the board
for the SOM-SNN model under all acoustic conditions using the
multi-condition training, achieving an accuracy of 98.7% even for
the challenging case of -5 dB SNR. The SOM-SNN model hence
offers an attractive alternative to other models especially when a
single trained model has to operate under varying noise levels.

3.5.2. Spike Jittering
As shown in Figure 9A, the SOM-SNN model is shown to be
highly robust to spike jittering and maintains a high accuracy
independent of the number of neurons activated per sound frame
in the SOM.We suspect that given only a small subset of neurons
in the SOM are involved for each sound class, the requirement of
the SNN for precise spike timing is relaxed.

3.5.3. Spike Deletion
As shown in Figure 9B, the SOM-SNN model maintains a high
classification accuracy when spike deletion is performed on the
input to the SNN. As only a small subset of pre-synaptic neurons
in the SOM deliver input spikes to the SNN for each sound class,
with high inter-class variability, the SNN classifier is still able to
classify correctly even with some input spike deletion. The peak
membrane potential value is used in some cases to make the
correct classification.

4. DISCUSSION

In this paper, we propose a biologically plausible SOM-SNN
framework for automatic sound classification. This framework
integrates the auditory front-end, feature representation learning
and temporal classification in a unified framework. Biological
plausibility is a key consideration in the design of our framework,

which distinguishes it from many other machine learning
frameworks.

The SOM-SNN framework is organized in a modular manner,
whereby acoustic signals are pre-processed using a biologically
plausible auditory front-end, the mel-scaled filter bank, for
frequency content analysis. This framework emulates the
functionality of the human cochlea and the non-linearity of
human perception of sound (Bear et al., 2016). Although it is
still not clear how information is represented and processed
in the auditory cortex, it has been shown that certain neural
populations in the cochlear nuclei and primary auditory cortex
are organized in a tonotopic fashion (Pantev et al., 1995;
Bilecen et al., 1998). Motivated by this, the biologically plausible
SOM is used for the feature extraction and representation of
mel-scaled filter bank outputs. The selectivity of neurons
in the SOM emerges from unsupervised training and
organizes in a tonotopic fashion, whereby adjacent neurons
share similar weight vectors. The SOM effectively improves
pattern separation, whereby each sound frame originally
represented by a 20-dimensional vector (mel-scaled filter
bank output coefficients) is translated into a single output
spike. The resulting BMU activation sequences are shown
to have the property of low intra-class variability and high
inter-class variability. Consequently, the SOM provides an
effective and sparse representation of acoustic signals as
observed in the auditory cortex (Hromádka et al., 2008).
Additionally, the feature representation of the SOM was shown
to be useful inputs for RNN and LSTM classifiers in our
experiments.

Although the SOM is biologically inspired by cortical maps
in the human brain, it lacks certain characteristics of the
biological neuron, such as spiking output and access to only
local information. Other studies (Rumbell et al., 2014; Hazan
et al., 2018) have shed light on the feasibility of using spiking
neurons and spike-timing dependent plasticity (STDP) learning
rule (Song et al., 2000) to model the SOM. We would investigate
how we may integrate the spiking-SOM and the SNN classifier
for classification tasks in the future.

Acoustic signals exhibit large variations not only in their
frequency contents but also in temporal structures. State-of-the-
art machine learning based ASC systems model the temporal
transition explicitly, using the HMM, RNN or LSTM, while
our work focuses on building a biologically plausible temporal
classifier based on the SNN. For efficient training, we use
supervised temporal learning rules, namely the membrane-
potential based Maximum-Margin Tempotron and spike-timing
based ReSuMe. The Maximum-Margin Tempotron (combining
the Tempotron rule with the maximum-margin classifier)
ensures a better separation between the positive and negative
classes, improving classification accuracy in our experiments.
As demonstrated in our experiments, the SOM-SNN framework
achieves comparable classification results on both the RWCP and
TIDIGITS datasets against other deep learning and SNN-based
models.

We further discover that the SNN-based classifier has
an early decision making capability: making a classification
decision when only part of the input is presented. In our
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TABLE 3 | Average classification accuracy of different models under the mismatched-condition.

SNR MLP CNN RNN LSTM SOM-SNN

Clean 99.45 ± 0.35% 99.85 ± 0.23% 95.35 ± 1.06% 98.40 ± 0.86% 99.60 ± 0.15%

20 dB 55.05 ± 4.30% 61.5 ± 4.71% 25.15 ± 8.86% 47.20 ± 5.36% 79.15±3.70%

10 dB 32.10 ± 8.38% 42.70 ± 5.84% 11.85 ± 2.06% 34.50 ± 10.61% 36.25±1.25%

0 dB 24.60 ± 4.94% 28.40 ± 6.60% 10.10 ± 1.64% 22.35 ± 6.63% 26.50 ± 1.29%

-5 dB 18.40 ± 4.58% 22.65 ± 5.08% 9.20 ± 1.98% 16.60 ± 7.00% 19.55 ± 0.16%

Average 45.92% 51.02% 30.33% 43.81% 52.21%

Experiments are conducted over 10 runs with random weight initialization.

The bold values indicate the best classification accuracies under different SNR.

TABLE 4 | Average classification accuracy of different models with multi-condition training.

SNR MLP CNN RNN LSTM SOM-SNN

Clean 96.10 ± 1.18% 97.60 ± 0.89% 94.30 ± 3.04% 98.15 ± 0.71% 99.80 ± 0.22%

20 dB 98.45 ± 0.61% 99.50 ± 0.22% 94.30 ± 2.70% 99.10 ± 0.89% 100.00 ± 0.00%

10 dB 99.35 ± 0.45% 99.70 ± 0.33% 95.25 ± 2.49% 99.05 ± 1.25% 100.00 ± 0.00%

0 dB 98.20 ± 1.45% 99.45 ± 0.75% 93.65 ± 2.82% 95.80 ± 3.93% 99.45 ± 0.55%

-5 dB 92.50 ± 1.53% 98.35 ± 0.78% 86.85 ± 5.20% 91.35 ± 4.82% 98.70 ± 0.48%

Average 96.92% 98.92% 92.87% 96.69% 99.59%

Experiments are conducted over 10 runs with random weight initialization.

The bold values indicate the best classification accuracies under different SNR.

FIGURE 9 | The effect of spike jittering and spike deletion on the classification accuracy. (A) Classification accuracy as a result of spike jitter added at the input to the

SNN classifier. The amount of jitter is added as a fraction of the spike generation period T (i.e., 50 ms used for the RWCP dataset). The classifier is robust to spike

jitter, maintaining a high accuracy with different amount of jitter. (B) Classification accuracy as a result of spike deletion at the input to the SNN classifier. The accuracy

of the classifier remains stable for spike deletion ratio below 60% and decays with increased spike deletion.

experiments, the SNN-based classifier achieves an accuracy
of 95.1%, significantly higher than those of the RNN and
LSTM (25.7% and 69.2% respectively) when only 50% of
the input pattern is presented. This early decision making
capability can be further exploited in noisy environments,
as exemplified by the cocktail party problem (Haykin and
Chen, 2005). The SNN-based classifier can potentially identify
discriminative temporal features and classify accordingly
from a time snippet of the acoustic signals that are less

distorted, which is desirable for an environment with fluctuating
noise.

Environmental noise poses a significant challenge to the
robustness of any sound classification systems: the accuracy
of many such systems degrade rapidly with an increasing
amount of noise as shown in our experiments. Multi-condition
training, whereby the model is trained with noise-corrupted
sound samples, is shown to overcome this challenge effectively.
In contrast to the DNN and SVM classifiers (McLoughlin et al.,

Frontiers in Neuroscience | www.frontiersin.org 14 November 2018 | Volume 12 | Article 836

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Wu et al. SOM-SNN Framework for Sound Classification

2015), there is no trade-off in performance for clean sounds in the
SOM-SNN framework with multi-condition training; probably
because the classification decision is made based on local
temporal patterns. Additionally, noise is also known to exist in
the central nervous system (Schneidman, 2001; van Rossum et al.,
2003) which can be simulated by spike jittering and deletion.
Notably, the SOM-SNN framework is shown to be highly robust
to such noises introduced to spike inputs arriving at the SNN
classifier.

The SNN classifier makes a decision based on a single local
discriminative feature which often only lasts for a fraction of
the pattern duration, as a direct consequence of the Maximum-
Margin Tempotron learning rule. We expect improved accuracy
when more such local features within a single spike pattern
are utilized for classification, which may be learned using the
multi-spike Tempotron (Gütig, 2016; Yu et al., 2018). The
accuracy of the SOM-SNN model trained with the ReSuMe
learning rule may also be improved by using multiple spike
times. However, defining these desired spike times is a challenge
exacerbated by increasing intra-class variability. Although the
existing single-layer SNN classifier has achieved promising
results on both benchmark datasets, it is not clear how the
proposed framework may scale for more challenging datasets.
Recently, there is progress made in training multi-layer SNNs
(Lee et al., 2016; Neftci et al., 2017; Wu et al., 2018b), which
could significantly increase model capacity and classification
accuracy. For future work, we would investigate how to
incorporate these multi-spike and multi-layer SNN classifiers
into our framework for more challenging large-vocabulary
speech recognition tasks.

For real-life applications such as audio surveillance, we may
add inhibitory connections between output neurons to reset all
neurons once the decision has been made (i.e., a winner-takes-
all mechanism). This allows output neurons to compete once
again and spike upon receipt of a new local discriminative spike
pattern. The firing history of all output neurons can then be
analyzed so as to understand the audio scene.

The computational cost and memory bandwidth
requirements of our framework would be the key concerns
in a neuromorphic hardware implementation. As the proposed
framework is organized in a pipelinedmanner, the computational
cost could be analyzed independently for the auditory front-
end, SOM and SNN classifier. For the auditory front-end, our
implementation is similar to that of the MFCC. As evaluated
in Anumula et al. (2018), the MFCC implementation is

computationally more costly compared to the spike trains
generated directly from the neuromorphic cochlea sensor. Our

recent work (Pan et al., 2018) proposes a novel time-domain
frequency filtering scheme which addresses the cost issue in
MFCC implementation. We expect the SOM to be the main
computational bottleneck of the proposed framework. For
each sound frame, the calculation of the Euclidean distance
of synaptic weights from the input vector is done for each
SOM neuron. Additionally, the distances are required to be
sorted so as to determine the best-matching units. However, this
computational bottleneck can be addressed with the spiking-
SOM implementation (Rumbell et al., 2014; Hazan et al., 2018),
whereby the winner neuron spikes the earliest and inhibits all
other neurons from firing (i.e., a winner-takes-all mechanism)
and hence by construction, the BMU. The spiking-SOM also
facilitates the implementation of the whole framework on a
neuromorphic hardware. In tandem with the SNN classifier, a
fully SNN-based framework when implemented would translate
to significant power saving.

As for memory bandwidth requirements, the synaptic weight
matrices connecting the auditory front-end with the SOM
and the SOM with the SNN classifier are the two major
components for memory storage and retrieval. For the synaptic
connections between the auditory front-end and the SOM, the
memory bandwidth increases quadratically with the product of
the number of neurons in the SOM and the dimensionality
of the filter banks. Since the number of output neurons is
equal to the total number of classes and hence fixed, the
memory bandwidth only increases linearly with the number of
neurons in the SOM. Therefore, the number of neurons in the
SOM should be carefully designed for a particular application
considering the trade-off between classification accuracy and
hardware efficiency.
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